
Citation: Shablya, Y. Combinatorial

Generation Algorithms for Some

Lattice Paths Using the Method

Based on AND/OR Trees. Algorithms

2023, 16, 266. https://doi.org/

10.3390/a16060266

Academic Editors: Roberto

Montemanni and George Karakostas

Received: 5 May 2023

Revised: 21 May 2023

Accepted: 23 May 2023

Published: 26 May 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Combinatorial Generation Algorithms for Some Lattice Paths
Using the Method Based on AND/OR Trees †

Yuriy Shablya

Laboratory of Algorithms and Technologies for Discrete Structures Research, Tomsk State University of Control
Systems and Radioelectronics, 634050 Tomsk, Russia; syv@fb.tusur.ru
† This paper is an extended version of our paper published in the proceedings book of the 5th Mediterranean

International Conference of Pure & Applied Mathematics and Related Areas (MICOPAM 2022, Antalya,
Turkey, 27–30 October 2022).

Abstract: Methods of combinatorial generation make it possible to develop algorithms for generating
objects from a set of discrete structures with given parameters and properties. In this article, we
demonstrate the possibilities of using the method based on AND/OR trees to obtain combinatorial
generation algorithms for combinatorial sets of several well-known lattice paths (North-East lattice
paths, Dyck paths, Delannoy paths, Schroder paths, and Motzkin paths). For each considered combi-
natorial set of lattice paths, we construct the corresponding AND/OR tree structure where the number
of its variants is equal to the number of objects in the combinatorial set. Applying the constructed
AND/OR tree structures, we have developed new algorithms for ranking and unranking their vari-
ants. The performed computational experiments have confirmed the obtained theoretical estimation
of asymptotic computational complexity for the developed ranking and unranking algorithms.

Keywords: combinatorial generation; ranking; unranking; AND/OR tree; lattice path; Dyck path;
Delannoy path; Schroder path; Motzkin path

1. Introduction

Combinatorial generation is a branch of science that lies at the intersection of computer
science and combinatorics. This scientific direction is devoted to various methods that
allow processing sets of discrete structures (combinatorial sets) in terms of generating
elements of such sets. The following scientific monographs are devoted to a detailed
description of the main concepts and significant results in combinatorial generation: Kreher
and Stinson [1], Ruskey [2], and Knuth [3].

The main tasks of combinatorial generation are as follows:

• Listing: the sequential generation of all objects belonging to the combinatorial set;
• Ranking: the assignment of an individual number (a rank) to an object belonging to

the combinatorial set (this requires some way to order the elements of the combinato-
rial set);

• Unranking: the generation of an object belonging to the combinatorial set by the value
of its rank (this requires some way to order the elements of the combinatorial set);

• Random selection: the generation of random objects belonging to the combinatorial set.

In discrete mathematics, there are many typical classes of discrete structures (such
as permutations, subsets, trees, lattice paths, and others), and each of them has its own
specifics. In this article, we study combinatorial generation algorithms for the combinatorial
sets of lattice paths [4,5].

A lattice path P is a sequence P = (P0, P1, . . . , Pk) of points Pi in the d-dimensional
integer lattice (i.e., Pi ∈ Zd), where P0 is the starting point and Pk is the end point. It is also
required to specify a set of possible steps S in the lattice path, where each step si ∈ S is

Algorithms 2023, 16, 266. https://doi.org/10.3390/a16060266 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16060266
https://doi.org/10.3390/a16060266
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-9695-7493
https://doi.org/10.3390/a16060266
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16060266?type=check_update&version=1

Algorithms 2023, 16, 266 2 of 27

a vector in the d-dimensional integer lattice (i.e., si ∈ Zd). Furthermore, a lattice path can
be represented as a sequence of steps performed, i.e., P = (s1, . . . , sk), where si =

−−−→
Pi−1Pi.

Lattice paths are widely used in combinatorics, since they are a fairly simple combina-
torial object in terms of their representation. In addition, they are well-suited to encoding
various other combinatorial objects. Therefore, it is possible to study the properties of
complex discrete structures by studying the properties of the corresponding lattice paths.
A brief historical review of research related to lattice paths is presented by Humphreys [6].
A more detailed description of the main methods and results in lattice path enumeration is
presented in [7].

An analysis of research papers shows that lattice paths are most often used to solve
enumerative combinatorics problems (including other more complex structures that have
a bijection with lattice paths). However, lattice paths can also be used to solve combinatorial
generation problems (i.e., to obtain algorithms for generating such structures). For example,
Zaks and Richards [8] developed the algorithms for ranking and unranking lattice paths
in the (t + 1)-dimensional integer lattice that begin at the point (n0, n1, . . . , nt), end at
the origin, and do not go below the hyperplane x0 = ∑t

i=1 (ki − 1)xi. The use of such lattice
paths helped them to obtain combinatorial generation algorithms for the ordered trees
with n0 + 1 leaves and ni internal nodes having ki child nodes where i = 1, . . . , t. Bent [9]
developed algorithms for ranking and unranking n-node binary trees by applying Dyck n-
paths. In this case, the order in which the trees differ by one rotation was used, and the effect
of these rotations on the lattice paths was studied. Parque and Miyashita [10] also studied
n-node binary trees based on their corresponding Dyck n-paths and proposed an efficient
algorithm for their exhaustive generation that uses O(n) space and O(1) time on average
per tree. There are also studies that consider the development of combinatorial generation
algorithms directly for lattice paths. For example, Barcucci, Bernini, and Pinzani [11,12]
developed the algorithms for exhaustive generation of Motzkin and Schroder positive
paths and their prefixes. Kuo [13] considered the North-East lattice paths with t turns
and proposed an algorithm for their generation. In addition, the Combinatorial Object
Server [14] has an implementation of an algorithm for generating Dyck n-paths.

The purpose of this work is to develop new combinatorial generation algorithms for
different types of lattice paths based on a common approach. As an example, it is proposed
to consider the following lattice paths: North-East lattice paths, Dyck paths, Delannoy
paths, Schroder paths, and Motzkin paths.

2. Materials and Methods

There are several basic general methods for developing combinatorial generation
algorithms, such as backtracking [1], the ECO-method [15], Flajolet’s method [16], and
Kruchinin’s method [17]. This article discusses the application of the latter method, which is
based on the representation of combinatorial sets in the form of an AND/OR tree structure.
An AND/OR tree is a tree structure that contains nodes of two types: OR nodes (such
nodes correspond to the union of sets, i.e., it is the union of elements of subsets) and AND
nodes (such nodes correspond to the Cartesian product of sets, i.e., it is the combination of
elements of subsets). A variant of an AND/OR tree is a tree structure obtained by removing
all edges except one for each OR node. In this case, the number of variants of an AND/OR
tree is equal to the number of objects of the corresponding combinatorial set.

The main restriction on the application of this method is the requirement to have
the cardinality function of a given combinatorial set belonging to the algebra {N,+,×, R}
(i.e., usage of only natural numbers, addition and product operations, and the primitive
recursion operator). This article continues the study presented in [18], where the possibility
of constructing an AND/OR tree structure for each studied combinatorial set of lattice
paths was shown. Therefore, using AND/OR tree structures, it is possible to develop
new combinatorial generation algorithms for such lattice paths. A detailed description of
the method for developing combinatorial generation algorithms based on AND/OR trees
is presented in [17].

Algorithms 2023, 16, 266 3 of 27

3. Results

In this section, we consider the main steps in developing combinatorial generation al-
gorithms for combinatorial sets of several well-known lattice paths by applying the method
based on AND/OR trees.

3.1. Combinatorial Generation Algorithms for North-East Lattice Paths
3.1.1. Combinatorial Set

A North-East lattice path is a lattice path in the plane which begins at (0, 0), ends at
(n, m), and consists of steps (0, 1) and (1, 0) [19]. The step (0, 1) is called the North-step
and is denoted by N; the (1, 0) step is called the East-step and is denoted by E.

Figure 1 shows all possible 20 variants of the considered North-East lattice paths for
n = 3 and m = 3.

N, N, E, E, N, E E, N, N, N, E, E N, E, N, N, E, E N, N, E, N, E, E N, N, N, E, E, E

E, E, N, N, N, E E, N, E, N, N, E N, E, E, N, N, E E, N, N, E, N, E N, E, N, E, N, E

E, N, E, N, E, N N, E, E, N, E, N E, N, N, E, E, N N, E, N, E, E, N N, N, E, E, E, N

E, E, E, N, N, N E, E, N, E, N, N E, N, E, E, N, N N, E, E, E, N, N E, E, N, N, E, N

Figure 1. All North-East lattice paths beginning at (0, 0) and ending at (3, 3).

The total number of North-East lattice paths is defined by the following binomial
coefficient (the sequence A007318 in OEIS [20]):

Lm
n =

(
n + m

m

)
=

(
n + m

n

)
. (1)

The value of Lm
n can also be calculated using the following recurrence that belongs to

the required algebra {N,+,×, R}:

Lm
n = Lm−1

n + Lm
n−1, L0

n = Lm
0 = 1. (2)

In addition, the sequence of values of Lm
n is defined by the bivariate generating function

∑
n≥0

∑
m≥0

Lm
n xnym =

1
1− x− y

.

Algorithms 2023, 16, 266 4 of 27

3.1.2. AND/OR Tree Structure

Since Equation (2) satisfies the requirements of the applied method, the corresponding
AND/OR tree structure for Lm

n can therefore be constructed (see Figure 2).

𝐿𝑛−1
𝑚

𝐿𝑛
𝑚

𝐿𝑛
𝑚−1

Figure 2. An AND/OR tree for Lm
n .

For this AND/OR tree structure, there are the following initial conditions:

• Each node labeled L0
n is a leaf node in the AND/OR tree for Lm

n ;
• Each node labeled Lm

0 is a leaf node in the AND/OR tree for Lm
n .

Figure 3 presents an example of the AND/OR tree structure for Lm
n where n = 3 and

m = 3. The total number of its variants is equal to L3
3 = 20. Since the obtained AND/OR

tree structure does not contain AND nodes, each variant of such a tree is a path from
the root to a leaf.

𝐿0
1

𝐿1
1

𝐿1
0

𝐿2
1

𝐿2
0

𝐿3
1

𝐿3
0 𝐿0

1

𝐿1
3

𝐿1
0

𝐿0
1

𝐿1
1

𝐿1
0

𝐿2
1

𝐿2
0

𝐿2
2

𝐿0
1

𝐿1
1

𝐿1
0

𝐿0
2

𝐿1
2

𝐿3
2 𝐿2

3

𝐿3
3

𝐿0
1

𝐿1
1

𝐿1
0

𝐿2
1

𝐿2
0

𝐿2
2

𝐿0
1

𝐿1
1

𝐿1
0

𝐿0
2

𝐿1
2

𝐿0
1

𝐿1
1

𝐿1
0

𝐿0
2

𝐿1
2

Figure 3. An AND/OR tree for L3
3.

For a compact representation, a variant of the AND/OR tree for Lm
n is encoded by

a sequence v = (v1, v2, . . .) of the selected children of the OR nodes in this tree (the left
child corresponds to vi = 1 and the right child corresponds to vi = 2).

Theorem 1. There is a bijection between the set of North-East lattice paths beginning at (0, 0) and
ending at (n, m) and the set of variants of the AND/OR tree for Lm

n .

Proof. The total number of North-East lattice paths beginning at (0, 0) and ending at (n, m)
is equal to Lm

n . The total number of variants of the AND/OR tree for Lm
n presented in

Figure 2 is also equal to Lm
n . Therefore, it is possible to associate each such lattice path with

one specific variant of the AND/OR tree for Lm
n . A bijection between the set of North-East

lattice paths beginning at (0, 0) and ending at (n, m) and the set of variants of the AND/OR
tree for Lm

n is defined by the following rules:

Algorithms 2023, 16, 266 5 of 27

• Each selected left child of the OR node labeled Lm
n determines the addition of one

North-step to the North-East lattice path obtained by the subtree of the node labeled
Lm−1

n : the resulting lattice path is (s1, . . . , sn+m−1, N);
• Each selected right child of the OR node labeled Lm

n determines the addition of one East-
step to the North-East lattice path obtained by the subtree of the node labeled Lm

n−1:
the resulting lattice path is (s1, . . . , sn+m−1, E);

• Each leaf node labeled L0
n determines the lattice path from (0, 0) to (n, 0) that consists

of n East-steps: the resulting lattice path is (s1, . . . , sn) = (E, . . . , E);
• Each leaf node labeled Lm

0 determines the lattice path from (0, 0) to (0, m) that consists
of m North-steps: the resulting lattice path is (s1, . . . , sm) = (N, . . . , N).

The algorithms that implement the developed bijection rules have linear time complex-
ity O(n+m), since they require one pass to fill a sequence of (n+m) elements. An example
of applying these bijection rules is presented in Table 1.

Table 1. Ranking the set of North-East lattice paths beginning at (0, 0) and ending at (3, 3).

Lattice Path Variant of AND/OR Tree Rank

E, E, E, N, N, N (1, 1, 1) 0
E, E, N, E, N, N (1, 1, 2, 1) 1
E, N, E, E, N, N (1, 1, 2, 2, 1) 2
N, E, E, E, N, N (1, 1, 2, 2, 2) 3
E, E, N, N, E, N (1, 2, 1, 1) 4
E, N, E, N, E, N (1, 2, 1, 2, 1) 5
N, E, E, N, E, N (1, 2, 1, 2, 2) 6
E, N, N, E, E, N (1, 2, 2, 1, 1) 7
N, E, N, E, E, N (1, 2, 2, 1, 2) 8
N, N, E, E, E, N (1, 2, 2, 2) 9
E, E, N, N, N, E (2, 1, 1, 1) 10
E, N, E, N, N, E (2, 1, 1, 2, 1) 11
N, E, E, N, N, E (2, 1, 1, 2, 2) 12
E, N, N, E, N, E (2, 1, 2, 1, 1) 13
N, E, N, E, N, E (2, 1, 2, 1, 2) 14
N, N, E, E, N, E (2, 1, 2, 2) 15
E, N, N, N, E, E (2, 2, 1, 1, 1) 16
N, E, N, N, E, E (2, 2, 1, 1, 2) 17
N, N, E, N, E, E (2, 2, 1, 2) 18
N, N, N, E, E, E (2, 2, 2) 19

3.1.3. Ranking and Unranking Algorithms

Applying the general approach described in [17], we develop algorithms for ranking
(Algorithm 1) and unranking (Algorithm 2) the variants of the AND/OR tree for Lm

n .
In these algorithms, () denotes an empty sequence and the function concat(a, b) denotes
merging sequences a and b.

Algorithm 1: An algorithm for ranking a variant of the AND/OR tree for Lm
n .

1 Rank_L(v = (v1, v2, . . .), n, m)
2 begin
3 if n = 0 or m = 0 then r := 0
4 else
5 if v1 = 1 then r := Rank_L((v2, . . .), n, m− 1)
6 else r := Lm−1

n + Rank_L((v2, . . .), n− 1, m)
7 end
8 return r
9 end

Algorithms 2023, 16, 266 6 of 27

Algorithm 2: An algorithm for unranking a variant of the AND/OR tree for Lm
n .

1 Unrank_L(r, n, m)
2 begin
3 if n = 0 or m = 0 then v := ()
4 else
5 if r < Lm−1

n then v :=concat((1), Unrank_L(r, n, m− 1))
6 else v :=concat((2), Unrank_L(r− Lm−1

n , n− 1, m))
7 end
8 return v
9 end

The developed algorithms have the following computational complexity:

• Algorithm 1 has at most m recursive calls where v1 = 1 (each such recursive call
requires one assignment) and has at most n recursive calls where v1 = 2 (each such
recursive call requires calculations of Lm−1

n). Applying Equation (1), the calculation
of Lm

n has linear time complexity O(m) for m < n and O(n) for m > n. Hence,
Algorithm 1 has polynomial time complexity O(nm) for m < n and O(m + n2) for
m > n;

• Algorithm 2 has at most (n + m) recursive calls where each such recursive call re-
quires calculations of Lm−1

n . Hence, Algorithm 2 has polynomial time complexity
O(m(n + m)) for m < n and O(n(n + m)) for m > n.

Table 1 presents an example of ranking the combinatorial set of all North-East lattice
paths beginning at (0, 0) and ending at (3, 3).

3.2. Combinatorial Generation Algorithms for Dyck Paths
3.2.1. Combinatorial Set

A Dyck n-path is a lattice path in the plane which begins at (0, 0), ends at (n, n),
consists of steps (0, 1) and (1, 0), and never rises above the diagonal y = x [21]. The set
of Dyck n-paths is a subset of the North-East lattice paths beginning at (0, 0) and ending
at (n, n).

Figure 4 shows all possible 5 variants of the considered Dyck paths for n = 3.

E, E, E, N, N, N E, E, N, E, N, N E, N, E, E, N, N E, E, N, N, E, N E, N, E, N, E, N

Figure 4. All Dyck paths beginning at (0, 0) and ending at (3, 3).

The total number of Dyck n-paths is defined by the Catalan number Cn (the sequence
A000108 in OEIS [20]):

Cn =
1

n + 1

(
2n
n

)
. (3)

The value of Cn can also be calculated using the following recurrence that belongs to
the required algebra {N,+,×, R}:

Cn =
n−1

∑
i=0

CiCn−1−i, C0 = 1. (4)

In addition, the sequence of values of Cn is defined by the generating function

∑
n≥0

Cnxn =
1−
√

1− 4x
2x

.

Algorithms 2023, 16, 266 7 of 27

3.2.2. AND/OR Tree Structure

Since Equation (4) satisfies the requirements of the applied method, the corresponding
AND/OR tree structure for Cn can therefore be constructed (see Figure 5).

𝐶𝑛−1 𝐶0

𝑖 ≔
0

𝐶𝑛−2 𝐶1

𝑖 ≔
1

𝐶0 𝐶𝑛−1

𝑖 ≔
𝑛 − 1 …

𝐶𝑛

Figure 5. An AND/OR tree for Cn.

For this AND/OR tree structure, there is the following initial condition:

• Each node labeled C0 is a leaf node in the AND/OR tree for Cn.

Figure 6 presents an example of the AND/OR tree structure for Cn where n = 3.
The total number of its variants is equal to C3 = 5.

𝐶2

𝐶1

𝐶0 𝐶0

𝑖 ≔ 0

𝐶1

𝐶0 𝐶0

𝑖 ≔ 0

𝐶0

𝑖 ≔ 0

𝐶0

𝑖 ≔ 1

𝐶3

𝑖 ≔ 1

𝐶1

𝐶0 𝐶0

𝑖 ≔ 0

𝐶1

𝐶0 𝐶0

𝑖 ≔ 0

𝑖 ≔ 0

𝐶0 𝐶2

𝐶1

𝐶0 𝐶0

𝑖 ≔ 0

𝐶1

𝐶0 𝐶0

𝑖 ≔ 0

𝐶0

𝑖 ≔ 0

𝐶0

𝑖 ≔ 1

𝑖 ≔ 2

𝐶0

Figure 6. An AND/OR tree for C3.

For a compact representation, a variant of the AND/OR tree for Cn is encoded by
a sequence v = (I, v1, v2), where the following apply:

• An empty sequence v = () corresponds to the selection of a leaf node labeled C0;
• I corresponds to the selected value of i in the AND/OR tree for Cn;
• v1 corresponds to the variant of the subtree of the node labeled CI (the left subtree);
• v2 corresponds to the variant of the subtree of the node labeled Cn−1−I (the right

subtree).

Algorithms 2023, 16, 266 8 of 27

Theorem 2. There is a bijection between the set of Dyck n-paths and the set of variants of
the AND/OR tree for Cn.

Proof. The total number of Dyck n-paths is equal to Cn. The total number of variants of
the AND/OR tree for Cn presented in Figure 5 is also equal to Cn. Therefore, it is possible
to associate each such lattice path with one specific variant of the AND/OR tree for Cn.
A bijection between the set of Dyck n-paths and the set of variants of the AND/OR tree for
Cn is defined by the following rules:

• Each selected child of the OR node labeled Cn determines the addition of one East-step
and one North-step to the Dyck (n− 1)-path that merges the Dyck I-path obtained by
the subtree of the node labeled CI and consisting of 2I steps and the Dyck (n− 1− I)-
path obtained by the subtree of the node labeled Cn−1−I and consisting of (2n− 2I− 2)
steps: the resulting Dyck n-path is (s1, . . . , s2I , E, s2I+2, . . . , s2n−1, N);

• The subtree of the node labeled CI (the left subtree) determines the Dyck I-path of
the form (s1, . . . , s2I);

• The subtree of the node labeled Cn−1−I (the right subtree) determines the Dyck
(n− 1− I)-path of the form (s2I+2, . . . , s2n−1);

• Each leaf node labeled C0 determines the empty lattice path ().

The algorithms that implement the developed bijection rules have polynomial time
complexity O(n2), since they make 2n recursive calls, where each such recursive call
requires one pass to fill a sequence of 2n elements. An example of applying these bijection
rules is presented in Table 2.

Table 2. Ranking the set of Dyck paths beginning at (0, 0) and ending at (3, 3).

Lattice Path Variant of AND/OR Tree Rank

E, E, E, N, N, N (0, (), (0, (), (0, (), ()))) 0
E, E, N, E, N, N (0, (), (1, (0, (), ()), ())) 1
E, N, E, E, N, N (1, (0, (), ()), (0, (), ())) 2
E, E, N, N, E, N (2, (0, (), (0, (), ())), ()) 3
E, N, E, N, E, N (2, (1, (0, (), ()), ()), ()) 4

3.2.3. Ranking and Unranking Algorithms

Applying the general approach described in [17], we developed algorithms for ranking
(Algorithm 3) and unranking (Algorithm 4) the variants of the AND/OR tree for Cn.

The developed algorithms have the following the computational complexity:

• Algorithm 3 has at most n recursive calls, where each such recursive call requires
calculations of Cn maximum (2n− 1) times. Applying Equation (3), the calculation
of Cn has linear time complexity O(n). Hence, Algorithm 3 has polynomial time
complexity O(n3);

• Algorithm 4 has at most n recursive calls, where each such recursive call requires
calculations of Cn maximum (2n + 1) times. Hence, Algorithm 4 has polynomial time
complexity O(n3).

Table 2 presents an example of ranking the combinatorial set of all Dyck paths begin-
ning at (0, 0) and ending at (3, 3).

Algorithms 2023, 16, 266 9 of 27

Algorithm 3: An algorithm for ranking a variant of the AND/OR tree for Cn.

1 Rank_C(v = (I, v1, v2), n)
2 begin
3 if n = 0 then r := 0
4 else

5 sum :=
I−1
∑

i=0
CiCn−1−i

6 w1 := C(I)
7 l1 := Rank_C(v1, I)
8 l2 := Rank_C(v2, n− 1− I)
9 r := sum + l1 + w1l2

10 end
11 return r
12 end

Algorithm 4: An algorithm for unranking a variant of the AND/OR tree for Cn.

1 Unrank_C(r, n)
2 begin
3 if n = 0 then v := ()
4 else
5 sum := 0
6 for i := 0 to n− 1 do
7 s := CiCn−1−i
8 if sum + s > r then
9 r := r− sum

10 I := i
11 break
12 end
13 sum := sum + s
14 end
15 w1 := C(I)
16 l1 := r mod w1

17 l2 :=
⌊

r
w1

⌋
18 v1 := Unrank_C(l1, I)
19 v2 := Unrank_C(l2, n− 1− I)
20 v := (I, v1, v2)

21 end
22 return v
23 end

3.3. Combinatorial Generation Algorithms for Delannoy Paths
3.3.1. Combinatorial Set

A Delannoy path is a lattice path in the plane which begins at (0, 0), ends at (n, m),
and consists of steps (0, 1), (1, 0) and (1, 1) [22]. The step (1, 1) is called the North-East-step
and denoted by NE. Thus, the set of Delannoy paths is a generalization of the North-East
lattice paths beginning at (0, 0) and ending at (n, m) by adding the North-East-steps.

Figure 7 shows all possible 25 variants of the considered Delannoy paths for n = 3
and m = 2.

Algorithms 2023, 16, 266 10 of 27

The total number of Delannoy paths is defined by the Delannoy number Dm
n (the se-

quence A008288 in OEIS [20]):

Dm
n =

min(n,m)

∑
i=1

(
n
i

)(
m
i

)
2i. (5)

E, E, E, N, N E, E, N, E, N E, N, E, E, N N, E, E, E, N NE, E, E, N

E, NE, E, N E, E, NE, N E, E, N, N, E E, N, E, N, E N, E, E, N, E

NE, E, N, E E, NE, N, E E, N, N, E, E N, E, N, E, E NE, N, E, E

N, N, E, E, E N, NE, E, E E, N, NE, E N, E, NE, E NE, NE, E

E, E, N, NE E, N, E, NE N, E, E, NE NE, E, NE E, NE, NE

Figure 7. All Delannoy paths beginning at (0, 0) and ending at (3, 2).

The value of Dm
n can also be calculated using the following recurrence that belongs to

the required algebra {N,+,×, R}:

Dm
n = Dm−1

n + Dm
n−1 + Dm−1

n−1 , D0
n = Dm

0 = 1. (6)

In addition, the sequence of values of Dm
n is defined by the bivariate generating

function

∑
n≥0

∑
m≥0

Dm
n xnym =

1
1− x− y− xy

.

3.3.2. AND/OR Tree Structure

Since Equation (6) satisfies the requirements of the applied method, the corresponding
AND/OR tree structure for Dm

n can therefore be constructed (see Figure 8).

Algorithms 2023, 16, 266 11 of 27

𝐷𝑛−1
𝑚

𝐷𝑛
𝑚

𝐷𝑛
𝑚−1 𝐷𝑛−1

𝑚−1

Figure 8. An AND/OR tree for Dm
n .

For this AND/OR tree structure, there are the following initial conditions:

• Each node labeled D0
n is a leaf node in the AND/OR tree for Dm

n ;
• Each node labeled Dm

0 is a leaf node in the AND/OR tree for Dm
n .

Figure 9 presents an example of the AND/OR tree structure for Dm
n where n = 3 and

m = 2. The total number of its variants is equal to D2
3 = 25. Since the obtained AND/OR

tree structure does not contain AND nodes, each variant of such a tree is a path from
the root to a leaf.

𝐷0
1

𝐷1
1

𝐷1
0 𝐷0

0

𝐷2
1

𝐷2
0 𝐷1

0

𝐷3
1

𝐷3
0 𝐷2

0

𝐷0
1

𝐷1
1

𝐷1
0 𝐷0

0

𝐷0
2

𝐷1
2

𝐷0
1

𝐷0
1

𝐷1
1

𝐷1
0 𝐷0

0

𝐷2
1

𝐷2
0 𝐷1

0 𝐷0
1

𝐷1
1

𝐷1
0 𝐷0

0

𝐷2
2

𝐷0
1

𝐷1
1

𝐷1
0 𝐷0

0

𝐷2
1

𝐷2
0 𝐷1

0

𝐷3
2

Figure 9. An AND/OR tree for D2
3 .

For a compact representation, a variant of the AND/OR tree for Dm
n is encoded by

a sequence v = (v1, v2, . . .) of the selected children of the OR nodes in this tree (the left
child corresponds to vi = 1, the middle child corresponds to vi = 2 and the right child
corresponds to vi = 3).

Theorem 3. There is a bijection between the set of Delannoy paths beginning at (0, 0) and ending
at (n, m) and the set of variants of the AND/OR tree for Dm

n .

Proof. The total number of Delannoy paths beginning at (0, 0) and ending at (n, m) is equal
to Dm

n . The total number of variants of the AND/OR tree for Dm
n presented in Figure 8

is also equal to Dm
n . Therefore, it is possible to associate each such lattice path with one

specific variant of the AND/OR tree for Dm
n . A bijection between the set of Delannoy paths

beginning at (0, 0) and ending at (n, m) and the set of variants of the AND/OR tree for Dm
n

is defined by the following rules:

• Each selected left child of the OR node labeled Dm
n determines the addition of one

North-step to the Delannoy path obtained by the subtree of the node labeled Dm−1
n

and consisting of k steps: the resulting lattice path is (s1, . . . , sk, N);

Algorithms 2023, 16, 266 12 of 27

• Each selected middle child of the OR node labeled Dm
n determines the addition of one

East-step to the Delannoy path obtained by the subtree of the node labeled Dm
n−1 and

consisting of k steps: the resulting lattice path is (s1, . . . , sk, E);
• Each selected right child of the OR node labeled Dm

n determines the addition of one
North-East-step to the Delannoy path obtained by the subtree of the node labeled
Dm−1

n−1 and consisting of k steps: the resulting lattice path is (s1, . . . , sk, NE);
• Each leaf node labeled D0

n determines the Delannoy path from (0, 0) to (n, 0) that
consists of n East-steps: the resulting lattice path is (s1, . . . , sn) = (E, . . . , E);

• Each leaf node labeled Dm
0 determines the Delannoy path from (0, 0) to (0, m) that

consists of m North-steps: the resulting lattice path is (s1, . . . , sm) = (N, . . . , N).

The algorithms that implement the developed bijection rules have linear time complex-
ity O(n + m), since they require one pass to fill a sequence of maximum (n + m) elements.
An example of applying these bijection rules is presented in Table 3.

Table 3. Ranking the set of Delannoy paths beginning at (0, 0) and ending at (3, 2).

Lattice Path Variant of AND/OR Tree Rank

E, E, E, N, N (1, 1) 0
E, E, N, E, N (1, 2, 1) 1
E, N, E, E, N (1, 2, 2, 1) 2
N, E, E, E, N (1, 2, 2, 2) 3
NE, E, E, N (1, 2, 2, 3) 4
E, NE, E, N (1, 2, 3) 5
E, E, NE, N (1, 3) 6
E, E, N, N, E (2, 1, 1) 7
E, N, E, N, E (2, 1, 2, 1) 8
N, E, E, N, E (2, 1, 2, 2) 9
NE, E, N, E (2, 1, 2, 3) 10
E, NE, N, E (2, 1, 3) 11
E, N, N, E, E (2, 2, 1, 1) 12
N, E, N, E, E (2, 2, 1, 2) 13
NE, N, E, E (2, 2, 1, 3) 14
N, N, E, E, E (2, 2, 2) 15
N, NE, E, E (2, 2, 3) 16
E, N, NE, E (2, 3, 1) 17
N, E, NE, E (2, 3, 2) 18
NE, NE, E (2, 3, 3) 19
E, E, N, NE (3, 1) 20
E, N, E, NE (3, 2, 1) 21
N, E, E, NE (3, 2, 2) 22
NE, E, NE (3, 2, 3) 23
E, NE, NE (3, 3) 24

3.3.3. Ranking and Unranking Algorithms

Applying the general approach described in [17], we develop algorithms for ranking
(Algorithm 5) and unranking (Algorithm 6) the variants of the AND/OR tree for Dm

n .

Algorithms 2023, 16, 266 13 of 27

Algorithm 5: An algorithm for ranking a variant of the AND/OR tree for Dm
n .

1 Rank_D(v = (v1, v2, . . .), n, m)
2 begin
3 if n = 0 or m = 0 then r := 0
4 else
5 if v1 = 1 then r := Rank_D((v2, . . .), n, m− 1)
6 else if v1 = 2 then r := Dm−1

n + Rank_D((v2, . . .), n− 1, m)
7 else r := Dm−1

n + Dm
n−1+ Rank_D((v2, . . .), n− 1, m− 1)

8 end
9 return r

10 end

Algorithm 6: An algorithm for unranking a variant of the AND/OR tree for Dm
n .

1 Unrank_D(r, n, m)
2 begin
3 if n = 0 or m = 0 then v := ()
4 else
5 if r < Dm−1

n then v :=concat((1), Unrank_D(r, n, m− 1))
6 else if r < Dm−1

n +Dm
n−1 then v :=concat((2), Unrank_D(r−Dm−1

n , n−1, m))
7 else v :=concat((3), Unrank_D(r− Dm−1

n − Dm
n−1, n− 1, m− 1))

8 end
9 return v

10 end

The developed algorithms have the following computational complexity:

• Algorithm 5 has at most m recursive calls where v1 = 1 (each such recursive call
requires one assignment), has at most n recursive calls where v1 = 2 (each such
recursive call requires calculations of Dm−1

n), and has at most min(n, m) recursive
calls where v1 = 3 (each such recursive call requires calculations of Dm−1

n and Dm
n−1).

Applying Equation (5), the calculation of Dm
n has polynomial time complexity O(m2)

for m < n and O(n2) for m > n. Hence, Algorithm 5 has polynomial time complexity
O(m2(n + m)) for m < n and O(m + n3) for m > n;

• Algorithm 6 has at most (n+m) recursive calls where each such recursive call requires
calculations of Dm−1

n or Dm
n−1. Hence, Algorithm 2 has polynomial time complexity

O(m2(n + m)) for m < n and O(n2(n + m)) for m > n.

Table 3 presents an example of ranking the combinatorial set of all Delannoy paths
beginning at (0, 0) and ending at (3, 2).

3.4. Combinatorial Generation Algorithms for Schroder Paths
3.4.1. Combinatorial Set

A Schroder n-path is a lattice path in the plane which begins at (0, 0), ends at (n, n),
consists of steps (0, 1), (1, 0), and (1, 1), and never rises above the diagonal y = x [23].
The set of Schroder n-paths is a subset of the Delannoy paths beginning at (0, 0) and ending
at (n, n).

Figure 10 shows all possible 22 variants of the considered Schroder paths for n = 3.

Algorithms 2023, 16, 266 14 of 27

NE, NE, NE E, N, NE, NE E, NE, N, NE E, E, N, N, NE NE, E, N, NE

E, N, E, N, NE E, NE, NE, N E, E, N, NE, N E, E, NE, N, N E, E, E, N, N, N

E, NE, E, N, N E, E, N, E, N, N NE, E, NE, N E, N, E, NE, N NE, E, E, N, N

E, N, E, E, N, N NE, NE, E, N E, N, NE, E, N E, NE, N, E, N E, E, N, N, E, N

NE, E, N, E, N E, N, E, N, E, N

Figure 10. All Schroder paths beginning at (0, 0) and ending at (3, 3).

The total number of Schroder n-paths is defined by the Schroder number Sn (the se-
quence A006318 in OEIS [20]):

Sn =
n

∑
i=0

1
i + 1

(
n + i

i

)(
n
i

)
. (7)

The value of Sn can also be calculated using the following recurrence that belongs to
the required algebra {N,+,×, R}:

Sn = Sn−1 +
n−1

∑
i=0

SiSn−1−i, S0 = 1. (8)

In addition, the sequence of values of Sn is defined by the generating function

∑
n≥0

Snxn =
1− x−

√
1− 6x + x2

2x
.

3.4.2. AND/OR Tree Structure

Since Equation (8) satisfies the requirements of the applied method, the corresponding
AND/OR tree structure for Sn can therefore be constructed (see Figure 11).

Algorithms 2023, 16, 266 15 of 27

𝑆𝑛−1 𝑆0

𝑖 ≔
0

𝑆𝑛−2 𝑆1

𝑖 ≔
1

𝑆0 𝑆𝑛−1

𝑖 ≔
𝑛 − 1 …

𝑆𝑛

𝑆𝑛−1

Figure 11. An AND/OR tree for Sn.

For this AND/OR tree structure, there is the following initial condition:

• Each node labeled S0 is a leaf node in the AND/OR tree for Sn.

Figure 12 presents an example of the AND/OR tree structure for Sn where n = 3.
The total number of its variants is equal to S3 = 22.

For a compact representation, a variant of the AND/OR tree for Sn is encoded by
a sequence v:

1. If the left child of the OR nodde labeled Sn is selected, then v = (I, v1), where

• I = −1;
• v1 corresponds to the variant of the subtree of the node labeled Sn−1;

2. Otherwise v = (I, v1, v2), where

• I corresponds to the selected value of i in the AND/OR tree for Sn;
• v1 corresponds to the variant of the subtree of the node labeled SI ;
• v2 corresponds to the variant of the subtree of the node labeled Sn−1−I ;

3. An empty sequence v = () corresponds to the selection of a leaf node labeled S0.

𝑆2

𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0

𝑆0

𝑖
≔ 0 𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0 𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0

𝑆0

𝑖
≔ 1 𝑆2

𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0

𝑆0

𝑖
≔ 0 𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0 𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0

𝑆0

𝑖
≔ 1

𝑆0

𝑖
≔ 0

𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0

𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0

𝑖
≔ 1

𝑆2

𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0

𝑆0

𝑖
≔ 0 𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0 𝑆1

𝑆0 𝑆0

𝑖
≔ 0 𝑆0

𝑆0

𝑖
≔ 1

𝑆0

𝑖
≔ 2

𝑆3

Figure 12. An AND/OR tree for S3.

Theorem 4. There is a bijection between the set of Schroder n-paths and the set of variants of
the AND/OR tree for Sn.

Proof. The total number of Schroder n-paths is equal to Sn. The total number of variants of
the AND/OR tree for Sn presented in Figure 11 is also equal to Sn. Therefore, it is possible
to associate each such lattice path with one specific variant of the AND/OR tree for Sn.
A bijection between the set of Schroder n-paths and the set of variants of the AND/OR tree
for Sn is defined by the following rules:

• Each selected left child of the OR node labeled Sn determines the addition of one North-
East-step to the Schroder (n− 1)-path obtained by the subtree of the node labeled
Sn−1 and consisting of k steps: the resulting Schroder n-path is (s1, . . . , sk, NE);

Algorithms 2023, 16, 266 16 of 27

• Each selected child of the OR node labeled Sn determines the addition of one East-step
and one North-step to the Schroder (n− 1)-path that merges the Schroder I-path ob-
tained by the subtree of the node labeled SI and consisting of k1 steps and the Schroder
(n− 1− I)-path obtained by the subtree of the node labeled Sn−1−I and consisting of
k2 steps: the resulting Schroder n-path is

(
s1, . . . , sk1 , E, sk1+2, . . . , sk1+1+k2 , N

)
;

• The subtree of the node labeled SI (the left subtree) determines the Schroder I-path of
the form

(
s1, . . . , sk1

)
;

• The subtree of the node labeled Sn−1−I (the right subtree) determines the Schroder
(n− 1− I)-path of the form

(
sk1+2, . . . , sk1+1+k2

)
;

• Each leaf node labeled S0 determines the empty lattice path ().

The algorithms that implement the developed bijection rules have polynomial time
complexity O(n2), since they make n recursive calls where each such recursive call requires
one pass to fill a sequence of maximum 2n elements. An example of applying these bijection
rules is presented in Table 4.

Table 4. Ranking the set of Schroder paths beginning at (0, 0) and ending at (3, 3).

Lattice Path Variant of AND/OR Tree Rank

NE, NE, NE (−1, (−1, (−1, ()))) 0
E, N, NE, NE (−1, (−1, (0, (), ()))) 1
E, NE, N, NE (−1, (0, (), (−1, ()))) 2
E, E, N, N, NE (−1, (0, (), (0, (), ()))) 3
NE, E, N, NE (−1, (1, (−1, ()), ())) 4
E, N, E, N, NE (−1, (1, (0, (), ()), ())) 5
E, NE, NE, N (0, (), (−1, (−1, ()))) 6
E, E, N, NE, N (0, (), (−1, (0, (), ()))) 7
E, E, NE, N, N (0, (), (0, (), (−1, ()))) 8
E, E, E, N, N, N (0, (), (0, (), (0, (), ()))) 9
E, NE, E, N, N (0, (), (1, (−1, ()), ())) 10
E, E, N, E, N, N (0, (), (1, (0, (), ()), ())) 11
NE, E, NE, N (1, (−1, ()), (−1, ())) 12
E, N, E, NE, N (1, (0, (), ()), (−1, ())) 13
NE, E, E, N, N (1, (−1, ()), (0, (), ())) 14
E, N, E, E, N, N (1, (0, (), ()), (0, (), ())) 15
NE, NE, E, N (2, (−1, (−1, ())), ()) 16
E, N, NE, E, N (2, (−1, (0, (), ())), ()) 17
E, NE, N, E, N (2, (0, (), (−1, ())), ()) 18
E, E, N, N, E, N (2, (0, (), (0, (), ())), ()) 19
NE, E, N, E, N (2, (1, (−1, ()), ()), ()) 20
E, N, E, N, E, N (2, (1, (0, (), ()), ()), ()) 21

3.4.3. Ranking and Unranking Algorithms

Applying the general approach described in [17], we develop algorithms for ranking
(Algorithm 7) and unranking (Algorithm 8) the variants of the AND/OR tree for Sn.

The developed algorithms have the following the computational complexity:

• Algorithm 7 has at most n recursive calls where I = −1 (each such recursive call
requires one assignment) and has at most n recursive calls where I 6= −1 (each such
recursive call requires calculations of Sn maximum 2n times). Applying Equation (7),
the calculation of Sn has polynomial time complexity O(n2). Hence, Algorithm 7 has
polynomial time complexity O(n4);

• Algorithm 8 has at most n recursive calls where I = −1 (each such recursive call
requires calculations of Sn) and has at most n recursive calls where I 6= −1 (each
such recursive call requires calculations of Sn maximum (2n + 2) times). Hence,
Algorithm 8 has polynomial time complexity O(n4).

Algorithms 2023, 16, 266 17 of 27

Algorithm 7: An algorithm for ranking a variant of the AND/OR tree for Sn.

1 Rank_S(v = (I, v1, . . .), n)
2 begin
3 if n = 0 then r := 0
4 else
5 if I = −1 then r := Rank_S(v1, n− 1)
6 else

7 sum := S(n− 1) +
I−1
∑

i=0
SiSn−1−i

8 w1 := S(I)
9 l1 := Rank_S(v1, I)

10 l2 := Rank_S(v2, n− 1− I)
11 r := sum + l1 + w1l2
12 end
13 end
14 return r
15 end

Algorithm 8: An algorithm for unranking a variant of the AND/OR tree for Sn.

1 Unrank_S(r, n)
2 begin
3 if n = 0 then v := ()
4 else
5 if r < Sn−1 then
6 I := −1
7 v1 := Unrank_S(r, n− 1)
8 v := (I, v1)

9 end
10 else
11 r := r− Sn−1
12 sum := 0
13 for i := 0 to n− 1 do
14 s := SiSn−1−i
15 if sum + s > r then
16 r := r− sum
17 I := i
18 break
19 end
20 sum := sum + s
21 end
22 w1 := S(I)
23 l1 := r mod w1

24 l2 :=
⌊

r
w1

⌋
25 v1 := Unrank_S(l1, I)
26 v2 := Unrank_S(l2, n− 1− I)
27 v := (I, v1, v2)

28 end
29 end
30 return v
31 end

Algorithms 2023, 16, 266 18 of 27

Table 4 presents an example of ranking the combinatorial set of all Schroder paths
beginning at (0, 0) and ending at (3, 3).

3.5. Combinatorial Generation Algorithms for Motzkin Paths
3.5.1. Combinatorial Set

A Motzkin n-path is a lattice path in the plane which begins at (0, 0), ends at (n, n),
consists of steps (0, 2), (2, 0) and (1, 1), and never rises above the diagonal y = x [24].
The step (0, 2) is the double North-step, the step (2, 0) is the double East-step. The set of
Motzkin n-paths is a subset of the Schroder n-paths.

Figure 13 shows all possible 4 variants of the considered Motzkin paths for n = 3.

NE, NE, NE E, E, N, N, NE E, E, NE, N, N NE, E, E, N, N

Figure 13. All Motzkin paths beginning at (0, 0) and ending at (3, 3).

The total number of Motzkin n-paths is defined by the Motzkin number Mn (the se-
quence A001006 in OEIS [20]):

Mn =
b n

2 c
∑
i=0

1
i + 1

(
n
2i

)(
2i
i

)
. (9)

The value of Mn can also be calculated using the following recurrence that belongs to
the required algebra {N,+,×, R}:

Mn = Mn−1 +
n−2

∑
i=0

Mi Mn−2−i, M0 = M1 = 1. (10)

In addition, the sequence of values of Mn is defined by the generating function

∑
n≥0

Mnxn =
1− x−

√
1− 2x− 3x2

2x2 .

3.5.2. AND/OR Tree Structure

Since Equation (10) satisfies the requirements of the applied method, the corresponding
AND/OR tree structure for Mn can therefore be constructed (see Figure 14).

For this AND/OR tree structure, there is the following initial condition:

• each node labeled M0 or M1 is a leaf node in the AND/OR tree for Mn.

Figure 15 presents an example of the AND/OR tree structure for Mn where n = 3.
The total number of its variants is equal to M3 = 4.

Algorithms 2023, 16, 266 19 of 27

𝑀𝑛−2 𝑀0

𝑖 ≔
0

𝑀𝑛−3 𝑀1

𝑖 ≔
1

𝑀0 𝑀𝑛−2

𝑖 ≔
𝑛 − 2 …

𝑀𝑛

𝑀𝑛−1

Figure 14. An AND/OR tree for Mn.

𝑀3

𝑀1 𝑀0

𝑖 ≔ 0 𝑀2

𝑀0 𝑀0

𝑖 ≔ 0 𝑀1 𝑀1 𝑀0

𝑖 ≔ 1

Figure 15. An AND/OR tree for M3.

For a compact representation, a variant of the AND/OR tree for Mn is encoded by
a sequence v:

1. If the left child of the OR node labeled Mn is selected, then v = (I, v1), where

• I = −1;
• v1 corresponds to the variant of the subtree of the node labeled Mn−1;

2. Otherwise v = (I, v1, v2), where

• I corresponds to the selected value of i in the AND/OR tree for Mn;
• v1 corresponds to the variant of the subtree of the node labeled MI ;
• v2 corresponds to the variant of the subtree of the node labeled Mn−2−I ;

3. An empty sequence v = () corresponds to the selection of a leaf node labeled M0.

Theorem 5. There is a bijection between the set of Motzkin n-paths and the set of variants of
the AND/OR tree for Mn.

Algorithms 2023, 16, 266 20 of 27

Proof. The total number of Motzkin n-paths is equal to Mn. The total number of variants
of the AND/OR tree for Mn presented in Figure 14 is also equal to Mn. Therefore, it is
possible to associate each such lattice path with one specific variant of the AND/OR tree for
Mn. A bijection between the set of Motzkin n-paths and the set of variants of the AND/OR
tree for Mn is defined by the following rules:

• each selected left child of the OR node labeled Mn determines the addition of one
North-East-step to the Motzkin (n − 1)-path obtained by the subtree of the node
labeled Mn−1 and consisting of k steps: the resulting Motzkin n-path is (s1, . . . , sk, NE);

• each selected child of the OR node labeled Mn determines the addition of two East-
steps and North-steps to the Motzkin (n− 2)-path that merges the Motzkin I-path ob-
tained by the subtree of the node labeled MI and consisting of k1 steps and the Motzkin
(n− 2− I)-path obtained by the subtree of the node labeled Mn−2−I and consisting of
k2 steps: the resulting Motzkin n-path is

(
s1, . . . , sk1 , E, E, sk1+3, . . . , sk1+2+k2 , N, N

)
;

• the subtree of the node labeled MI (the left subtree) determines the Motzkin I-path of
the form

(
s1, . . . , sk1

)
;

• the subtree of the node labeled Mn−2−I (the right subtree) determines the Motzkin
(n− 2− I)-path of the form

(
sk1+3, . . . , sk1+2+k2

)
;

• each leaf node labeled M1 determines the lattice path from (0, 0) to (1, 1) that consists
of one North-East-step: the resulting lattice path is (s1) = (NE);

• each leaf node labeled M0 determines the empty lattice path ().

The algorithms that implement the developed bijection rules have polynomial time
complexity O(n2), since they make n recursive calls where each such recursive call requires
one pass to fill a sequence of maximum 2n elements. An example of applying these bijection
rules is presented in Table 5.

Table 5. Ranking the set of Motzkin paths beginning at (0, 0) and ending at (3, 3).

Lattice path Variant of AND/OR tree Rank

NE, NE, NE (−1, (−1, (−1, ()))) 0
E, E, N, N, NE (−1, (0, (), ())) 1
E, E, NE, N, N (0, (), (−1, ())) 2
NE, E, E, N, N (1, (−1, ()), ()) 3

3.5.3. Ranking and Unranking Algorithms

Applying the general approach described in [17], we develop algorithms for ranking
(Algorithm 9) and unranking (Algorithm 10) the variants of the AND/OR tree for Mn.

The developed algorithms have the following the computational complexity:

• Algorithm 9 has at most n recursive calls where I = −1 (each such recursive call
requires one assignment) and has at most n recursive calls where I 6= −1 (each
such recursive call requires calculations of Mn maximum (2n− 2) times). Applying
Equation (9), the calculation of Mn has polynomial time complexity O(n2). Hence,
Algorithm 9 has polynomial time complexity O(n4);

• Algorithm 10 has at most n recursive calls where I = −1 (each such recursive call
requires calculations of Mn) and has at most n recursive calls where I 6= −1 (each such
recursive call requires calculations of Mn maximum 2n times). Hence, Algorithm 10
has polynomial time complexity O(n4).

Algorithms 2023, 16, 266 21 of 27

Algorithm 9: An algorithm for ranking a variant of the AND/OR tree for Mn.

1 Rank_M(v = (I, v1, . . .), n)
2 begin
3 if n = 0 then r := 0
4 else
5 if I = −1 then r := Rank_M(v1, n− 1)
6 else

7 sum := M(n− 1) +
I−1
∑

i=0
Mi Mn−2−i

8 w1 := M(I)
9 l1 := Rank_M(v1, I)

10 l2 := Rank_M(v2, n− 2− I)
11 r := sum + l1 + w1l2
12 end
13 end
14 return r
15 end

Algorithm 10: An algorithm for unranking a variant of the AND/OR tree for Mn.

1 Unrank_M(r, n)
2 begin
3 if n = 0 then v := ()
4 else
5 if r < Mn−1 then
6 I := −1
7 v1 := Unrank_M(r, n− 1)
8 v := (I, v1)

9 end
10 else
11 r := r−Mn−1
12 sum := 0
13 for i := 0 to n− 1 do
14 s := Mi Mn−2−i
15 if sum + s > r then
16 r := r− sum
17 I := i
18 break
19 end
20 sum := sum + s
21 end
22 w1 := M(I)
23 l1 := r mod w1

24 l2 :=
⌊

r
w1

⌋
25 v1 := Unrank_M(l1, I)
26 v2 := Unrank_M(l2, n− 2− I)
27 v := (I, v1, v2)

28 end
29 end
30 return v
31 end

Algorithms 2023, 16, 266 22 of 27

Table 5 presents an example of ranking the combinatorial set of all Motzkin paths
beginning at (0, 0) and ending at (3, 3).

3.6. Computational Experiments

We have also performed a computational experiment aimed at testing the obtained
computational complexity of the developed ranking and unranking algorithms. For this
purpose, we implemented these algorithms in the computer algebra system Maxima [25] on
a laptop (Intel i7-9750H, 2.6 GHz, Windows 10, 64 bit). We then measured the elapsed time
of the algorithms for ranking and unranking variants of the AND/OR trees for Lm

n , Cn, Dm
n ,

Sn and Mn with different values of the parameters n and m. All calculations were made
for the variants of the AND/OR trees with the maximum rank (because this is usually
the hardest case to compute due to the need to traverse the entire AND/OR tree structure).

For the maximum rank r := Lm
n − 1, Algorithms 1 and 2 have polynomial time

complexity O(nm) for m < n and O(n2) for n < m. Figure 16a presents the average time
for unranking and ranking such variants of the AND/OR tree for Lm

n where m = 100 and
n is in the range of 5 to 200 with step 5. This figure confirms polynomial time complexity
O(n2) for n < 100 and linear time complexity O(n) for n > 100 when m = 100. Figure 16b
presents the average time for unranking and ranking variants of the AND/OR tree for Lm

n
where n = 100 and m is in the range of 5 to 200 with step 5. This figure confirms linear
time complexity O(m) for m < 100 and constant time complexity O(1) for m > 100 when
n = 100. For other fixed values of m (or n), the general form of the dependence on n (or m)
does not change.

0

2

4

6

8

10

12

14

16

18

0 50 100 150 200

T
im

e,
 m

s.

n

(a)

0

1

2

3

4

5

6

0 50 100 150 200

T
im

e,
 m

s.

m

(b)

Figure 16. Average time for unranking (blue) and ranking (red) variants of the AND/OR tree for Lm
n :

(a) dependence on n when m = 100; and (b) dependence on m when n = 100.

For the maximum rank r := Cn − 1, Algorithms 3 and 4 have polynomial time
complexity O(n3). Figure 17 presents the average time for unranking and ranking such
variants of the AND/OR tree for Cn where n is in the range of 1 to 50 with step 1. This
figure confirms polynomial time complexity O(n3).

Algorithms 2023, 16, 266 23 of 27

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50

T
im

e,
 m

s.

n

Figure 17. Average time for unranking (blue) and ranking (red) variants of the AND/OR tree for Cn.

For the maximum rank r := Dm
n − 1, Algorithms 5 and 6 have the following polyno-

mial time complexity (due to all special cases of the calculation of Equation (5)): O(m3)
for 2m < n, O(m2(n−m)) for m < n < 2m, O(n2(m− n)) for n < m < 2n, and O(n3) for
2n < m. Figure 18a presents the average time for unranking and ranking such variants
of the AND/OR tree for Dm

n where m = 50 and n is in the range of 5 to 200 with step 5.
Figure 18b presents the average time for unranking and ranking variants of the AND/OR
tree for Dm

n where n = 50 and m is in the range of 5 to 200 with step 5. These figures confirm
the derived polynomial time complexity for all special cases. For other fixed values of m
(or n), the general form of the dependence on n (or m) does not change.

0

5

10

15

20

25

30

35

40

0 50 100 150 200

T
im

e,
 m

s.

n

(a)

0

5

10

15

20

25

30

35

40

0 50 100 150 200

T
im

e,
 m

s.

m

(b)

Figure 18. Average time for unranking (blue) and ranking (red) variants of the AND/OR tree for
Dm

n : (a) dependence on n when m = 50; and (b) dependence on m when n = 50.

Algorithms 2023, 16, 266 24 of 27

For the maximum rank r := Sn − 1, Algorithms 7 and 8 have polynomial time
complexity O(n4). Figure 19 presents the average time for unranking and ranking such
variants of the AND/OR tree for Sn where n is in the range of 1 to 50 with step 1. This
figure confirms polynomial time complexity O(n4).

0

100

200

300

400

500

600

0 10 20 30 40 50

T
im

e,
 m

s.

n

Figure 19. Average time for unranking (blue) and ranking (red) variants of the AND/OR tree for Sn.

For the maximum rank r := Mn − 1, Algorithms 9 and 10 have polynomial time
complexity O(n4). Figure 20 presents the average time for unranking and ranking such
variants of the AND/OR tree for Mn where n is in the range of 1 to 50 with step 1. This
figure confirms polynomial time complexity O(n4).

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50

T
im

e,
 m

s.

n

Figure 20. Average time for unranking (blue) and ranking (red) variants of the AND/OR tree for Mn.

Algorithms 2023, 16, 266 25 of 27

4. Discussion

In this article, we have demonstrated the possibilities of using the method based on
AND/OR trees to obtain combinatorial generation algorithms for combinatorial sets of
several well-known lattice paths. In particular, the following lattice paths were considered:
North-East lattice paths, Dyck paths, Delannoy paths, Schroder paths, and Motzkin paths.
For each of these combinatorial sets of lattice paths, there is an expression of its cardinality
function that belongs to the algebra {N,+,×, R}. This fact made it possible to construct
AND/OR tree structures for these combinatorial sets, in which the number of their variants
is equal to the number of objects in the combinatorial set. To associate each considered lattice
path with one specific variant of the corresponding AND/OR tree structure, the bijection
rules were derived.

Applying the constructed AND/OR tree structures, we have developed algorithms
for ranking and unranking their variants. All developed algorithms have a recursive
form since the applied AND/OR tree structures were built by using recurrence relations.
The developed algorithms, together with the obtained bijection rules, make it possible
to encode a given lattice path as a single number (by applying ranking algorithms). For
example, this reduces the amount of data stored if it is necessary to store information about
a large number of lattice paths. It is also possible to recover each lattice path by decoding
the corresponding rank (by applying unranking algorithms). In addition, the unranking
algorithms make it possible to form a sample of random lattice paths with the given
properties by applying them to random rank values. If it is necessary to generate all objects
with the given parameters (for example, when an exhaustive search is needed to solve
an optimization problem), then we can run the unranking algorithm for all rank values.
Furthermore, the exhaustive generation can be performed by sequentially traversing all
variants of the considered AND/OR tree structure.

The developed combinatorial generation algorithms for lattice paths have polynomial
time complexity, which is determined by the maximum number of recursive calls (the height
of an AND/OR tree), the maximum number of child nodes of a given node (the width of
an AND/OR tree), and the computational complexity of calculating the value of the car-
dinality function. Assuming algebraic operations with numbers in O(1), the performed
computational experiments confirmed the obtained theoretical estimation of asymptotic
computational complexity for the developed ranking and unranking algorithms.

To reduce the time complexity of these algorithms, we can add a preliminary step
where all the required values of the cardinality function are calculated and stored. In this
case, the computational complexity of algorithms will depend only on the size of the
AND/OR tree structure. However, this improvement requires additional memory space.
In addition, if an AND/OR tree structure contains OR nodes where the number of children
depends on the AND/OR tree parameters (for example, as AND/OR trees for Cn, Sn
and Mn), then the computational complexity of ranking and unranking algorithms can be
reduced as follows:

• By calculating sum (for example, see Line 5 in Algorithm 3 or Lines 5–14 in Algorithm 4),
applying a simpler explicit formula without using the summation operator;

• By a preliminary search of the value of the selected child of the OR node (for example,
the parameter I defined in Lines 6–14 in Algorithm 4), applying an approximate
formula (as in [26]).

Thus, the main contribution of this article is the derivation of bijections between two
sets of discrete structures (the set of lattice paths and the set of AND/OR tree variants),
as well as new algorithms for their generation. The scheme used in this article to develop
combinatorial generation algorithms for lattice paths can also be applied to the classes of
more complex lattice paths that have additional types of steps (for example, skew Dyck
paths [27] or skew Dyck paths with catastrophes [28]) or depend on more parameters (for
example, lattice paths associated with the generalized Narayana numbers [29]). The main
restriction is that the cardinality function for such lattice paths must belong to the required
algebra {N,+,×, R}.

Algorithms 2023, 16, 266 26 of 27

Funding: This research was funded by the Russian Science Foundation, grant number 22-71-10052.

Data Availability Statement: Source code can be made available on request.

Acknowledgments: The author would like to thank the referees for their helpful comments
and suggestions.

Conflicts of Interest: The author declare no conflict of interest.

References
1. Kreher, D.L.; Stinson, D.R. Combinatorial Algorithms: Generation, Enumeration, and Search; CRC Press: Boca Raton, FL, USA, 1999.
2. Ruskey, F. Combinatorial Generation. Available online: https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-

Gen.pdf (accessed on 1 May 2023).
3. Knuth, D.E. The Art of Computer Programming, Volume 4A: Combinatorial Algorithms, Part 1; Addison-Wesley Professional: Boston,

MA, USA, 2011.
4. Stanley, R.P. Enumerative Combinatorics: Volume 1, 2nd ed.; Cambridge University Press: New York, NY, USA, 2012.
5. Wallner, M. Combinatorics of Lattice Paths and Tree-Like Structures. Ph.D. Thesis, Institute of Discrete Mathematics and

Geometry, Vienna University of Technology, Vienna, Austria, 2016.
6. Humphreys, K. A history and a survey of lattice path enumeration. J. Statist. Plann. Inference 2010, 140, 2237–2254. [CrossRef]
7. Krattenthaler, C. Lattice path enumeration. In Handbook of Enumerative Combinatorics; Bona, M., Ed.; CRC Press: New York, NY,

USA, 2015; pp. 589–678.
8. Zaks, S.; Richards, D. Generating trees and other combinatorial objects lexicographically. SIAM J. Comput. 1979, 8, 73–81.

[CrossRef]
9. Bent, S.W. Ranking trees generated by rotations. Lect. Notes Comput. Sci. 1990, 447, 132–142.
10. Parque, V.; Miyashita, T. An efficient scheme for the generation of ordered trees in constant amortized time. In Proceedings of the

15th International Conference on Ubiquitous Information Management and Communication (IMCOM), Seoul, Republic of Korea,
4–6 January 2021.

11. Barcucci, E.; Bernini, A.; Pinzani, R. Exhaustive generation of positive lattice paths. In Proceedings of the 11th International
Conference on Random and Exhaustive Generation of Combinatorial Structures (GASCom), Athens, Greece, 18–20 June 2018.

12. Barcucci, E.; Bernini, A.; Pinzani, R. Exhaustive generation of some lattice paths and their prefixes. Theoret. Comput. Sci. 2021,
878–879, 47–52. [CrossRef]

13. Kuo, T. From enumerating to generating: A linear time algorithm for generating 2D lattice paths with a given number of turns.
Algorithms 2015, 8, 190–208. [CrossRef]

14. The Combinatorial Object Server. Available online: http://combos.org/ (accessed on 1 May 2023).
15. Barcucci, E.; Del Lungo, A.; Pergola, E.; Pinzani, R. ECO: A methodology for the enumeration of combinatorial objects. J. Differ.

Equ. Appl. 1999, 5, 435–490. [CrossRef]
16. Flajolet, P.; Zimmerman, P.; Cutsem, B. A calculus for the random generation of combinatorial structures. Theoret. Comput. Sci.

1994, 132, 1–35. [CrossRef]
17. Shablya, Y.; Kruchinin, D.; Kruchinin, V. Method for developing combinatorial generation algorithms based on AND/OR trees

and its application. Mathematics 2020, 8, 962. [CrossRef]
18. Shablya, Y.; Tokareva, A. Development of combinatorial generation algorithms for some lattice paths using the method based on

AND/OR trees. In Proceedings of the 5th Mediterranean International Conference of Pure & Applied Mathematics and Related
Areas (MICOPAM), Antalya, Turkey, 27–30 October 2022.

19. Mohanty, G. Lattice Path Counting and Applications; Academic Press: New York, NY, USA, 1979.
20. The On-Line Encyclopedia of Integer Sequences. Available online: https://oeis.org/ (accessed on 1 May 2023).
21. Mansour, T. Statistics on Dyck paths. J. Integer Seq. 2005, 9, 06.1.5.
22. Banderier, C.; Schwer, S. Why Delannoy numbers? J. Statist. Plann. Inference 2005, 135, 40–54. [CrossRef]
23. Shapiro, L.W.; Sulanke, R.A. Bijections for the Schroder numbers. Math. Mag. 2000, 73, 369–376. [CrossRef]
24. Oste, R.; Van der Jeugt, J. Motzkin paths, Motzkin polynomials and recurrence relations. Electron. J. Combin. 2015, 22, P2.8.

[CrossRef] [PubMed]
25. Maxima, a Computer Algebra System. Available online: https://maxima.sourceforge.io/ (accessed on 1 May 2023).
26. Kruchinin, V.; Shablya, Y.; Kruchinin, D. Unranking small combinations of a large set in co-lexicographic order. Algorithms 2022,

15, 36. [CrossRef]
27. Deutsch, E.; Munarini, E.; Rinaldi, R. Skew Dyck paths. J. Statist. Plann. Inference 2010, 140, 2191–2203. [CrossRef]

https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
https://page.math.tu-berlin.de/~felsner/SemWS17-18/Ruskey-Comb-Gen.pdf
http://doi.org/10.1016/j.jspi.2010.01.020
http://dx.doi.org/10.1137/0208006
http://dx.doi.org/10.1016/j.tcs.2020.12.013
http://dx.doi.org/10.3390/a8020190
http://combos.org/
http://dx.doi.org/10.1080/10236199908808200
http://dx.doi.org/10.1016/0304-3975(94)90226-7
http://dx.doi.org/10.3390/math8060962
https://oeis.org/
http://dx.doi.org/10.1016/j.jspi.2005.02.004
http://dx.doi.org/10.1080/0025570X.2000.11996878
http://dx.doi.org/10.37236/4781
http://www.ncbi.nlm.nih.gov/pubmed/36981690
https://maxima.sourceforge.io/
http://dx.doi.org/10.3390/a15020036
http://dx.doi.org/10.1016/j.jspi.2010.01.015

Algorithms 2023, 16, 266 27 of 27

28. Prodinger, H. Skew Dyck paths with catastrophes. Discrete Math. Lett. 2022, 10, 9–13.
29. Kruchinin, D.; Kruchinin, V.; Shablya, Y. On some properties of generalized Narayana numbers. Quaest. Math. 2022, 45, 1949–1963.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.2989/16073606.2021.1980448

	Introduction
	Materials and Methods
	Results
	Combinatorial Generation Algorithms for North-East Lattice Paths
	Combinatorial Set
	AND/OR Tree Structure
	Ranking and Unranking Algorithms

	Combinatorial Generation Algorithms for Dyck Paths
	Combinatorial Set
	AND/OR Tree Structure
	Ranking and Unranking Algorithms

	Combinatorial Generation Algorithms for Delannoy Paths
	Combinatorial Set
	AND/OR Tree Structure
	Ranking and Unranking Algorithms

	Combinatorial Generation Algorithms for Schroder Paths
	Combinatorial Set
	AND/OR Tree Structure
	Ranking and Unranking Algorithms

	Combinatorial Generation Algorithms for Motzkin Paths
	Combinatorial Set
	AND/OR Tree Structure
	Ranking and Unranking Algorithms

	Computational Experiments

	Discussion
	References

