
Citation: Kramar, V.; Alchakov, V.

Time-Series Forecasting of Seasonal

Data Using Machine Learning

Methods. Algorithms 2023, 16, 248.

https://doi.org/10.3390/a16050248

Academic Editors: Madhusudan

Singh, Dhananjay Singh and

Frank Werner

Received: 20 February 2023

Revised: 30 April 2023

Accepted: 8 May 2023

Published: 10 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Time-Series Forecasting of Seasonal Data Using Machine
Learning Methods
Vadim Kramar * and Vasiliy Alchakov

Department of Informatics and Control in Technical Systems, Sevastopol State University,
299053 Sevastopol, Russia
* Correspondence: kramarv@mail.ru

Abstract: The models for forecasting time series with seasonal variability can be used to build auto-
matic real-time control systems. For example, predicting the water flowing in a wastewater treatment
plant can be used to calculate the optimal electricity consumption. The article describes a performance
analysis of various machine learning methods (SARIMA, Holt-Winters Exponential Smoothing, ETS,
Facebook Prophet, XGBoost, and Long Short-Term Memory) and data-preprocessing algorithms
implemented in Python. The general methodology of model building and the requirements of the
input data sets are described. All models use actual data from sensors of the monitoring system. The
novelty of this work is in an approach that allows using limited history data sets to obtain predictions
with reasonable accuracy. The implemented algorithms made it possible to achieve an R-Squared
accuracy of more than 0.95. The forecasting calculation time is minimized, which can be used to run
the algorithm in real-time control and embedded systems.

Keywords: seasonal time series; machine learning; forecasting; XGBoost; Prophet; SARIMA; Long
Short-Term Memory; Holt-Winters Exponential Smoothing

1. Introduction

Generally, a time series is a set of data ordered in time. Each time series element
is assigned a unique Timestamp (TS) index. The distance between indexes can be sec-
onds, hours, days, months, or even years. At that time, the value of the time interval
between neighboring indexes is usually assumed to be the same and is denoted by
Ts = TS[k]− TS[k− 1]. For example, the change in quotes on the exchange can be de-
scribed by the set of real numbers Y[k] with an interval with Ts = 1 min, and the quotes are
accumulated in the data set from the start of trading on the exchange until its closure. Some
finite sample Y is considered at a specific time interval t ∈

[
t0, t0 + Ts, . . . , t f

]
. In general,

a time series can be represented by a function of the form Yt = Tt + St + Rt, where Tt is
the trend cycle component (Trend), St is the seasonal component (Seasonal), and Rt are the
residuals (Residuals). Time series containing a seasonal component St has periodicity prop-
erties. That is, the character of the variability of the time series repeats from time to time.
An example is the growth of purchasing power during the holiday season or the growth
of passenger traffic during the vacation season. Modern machine learning methods can
create predictive models for this type of time series, which allows calculating the estimate
(forecasting) of the parameter for several steps forward relative to the current point in time
(forecast horizon) [1–6]. In this case, to train the model, we need only knowledge of the
history of the parameter, which is described by the time series, that is, the historical data on
the time interval, the length of which corresponds to several periods of seasonal variability
T. The knowledge of other parameters, as a rule, is not required. Thus, the task arises of
building models which can estimate some experimental parameters with seasonal vari-
ability on some forecast horizon based on information about previous and present values
of this parameter (historical data). Currently, the analysis and forecasting of time series

Algorithms 2023, 16, 248. https://doi.org/10.3390/a16050248 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16050248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0528-1978
https://orcid.org/0000-0002-1392-1699
https://doi.org/10.3390/a16050248
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16050248?type=check_update&version=2

Algorithms 2023, 16, 248 2 of 16

with seasonal variability are most common in financial markets and trading [7–10]. The
works [11–14] build models to obtain forecasts of commodity prices and rates of cryptocur-
rencies. The works [15,16] forecast the value of tourist flow, depending on the time of year.
In turn, tourist flows impact changes in passenger traffic by various modes of transport, as
shown in [17,18]. Processes that affect climate [19,20], ecology [21,22], and medicine [23,24]
are also subject to seasonal changes. The authors [25–28] describe the application of time
series with seasonal variability in industry and energy and resource consumption. The
application of deep learning technology and long short-term memory network for physical
systems is shown in [29,30]. All research above uses practically the same set of methods and
algorithms. First, these are methods for obtaining autoregressive models ARIMA (Autore-
gressive Integrated Moving Average) and SARIMA (Seasonal ARIMA), which have been
known for quite a long time, and the mathematical apparatus of which is well developed.
The first mention of the method was made in 1970 by George Box and Gwilym Jenkins.
ARIMA/SARIMA allows us to obtain the primary class of models used for time series
analysis and forecasting. The Holt-Winters Exponential Smoothing method, developed by
Charles Holt in the late 1950s, and its modern modification, the Exponential Smoothing
Algorithm (ETS), are also used. In addition to the above methods, which can already be
classified as classical, new algorithms have appeared in recent years, successfully coping
with constructing predictive models of time series with seasonal variability. These are the
methods of Facebook Prophet [31], XGboost [32], and a set of Artificial Neural Network
(ANN) methods, in particular, the Long Term Memory (LSTM) method [33–35].

This article presents the results of applying the above methods to build a model to
predict the inlet flow of wastewater from a wastewater treatment plant. This model can
be used to calculate the optimal loading of equipment and to ensure a given quality of
treatment, which in turn will significantly reduce the consumption of electrical energy by
the plant. The methodology of data preparation and the specifics of applying each of the
methods are described, the statistical analysis of the obtained results is performed, and
recommendations for improving the forecast quality are given. All numerical calculations
and implementation of algorithms were performed using the Python language and special-
ized libraries [36]. The novelty of the work lies in the use of machine learning methods for
predicting the technological process. The forecast results are used in the real-time control
system. A method for preparing data for use in predictive models is proposed. A feature of
the approach is using data over a short time interval. A sample for the last 15–17 days is
used for training. In this case, the forecast is made for the next two days. Automatic retrain-
ing of the model is used every 24 h to maintain accuracy of the model. At the same time, it
takes less than 10 s to train a new model, and the accuracy of the model remains unchanged.
As a result, several methods were chosen that optimally solve the problem. The developed
algorithms can be easily integrated into embedded control systems or software tools for
real-time treatment plant control and do not require significant computing resources.

The Section 2 describes the main approaches used for data preprocessing. The data
format is defined, and a technical map is proposed for solving the problem. The Section 3
discusses the main provisions of the methods and provides recommendations for using
Python libraries. The graphical results of checking each model on a test data set are also
given. For the XGBoost and LTSM methods, an algorithm for generating a synthetic data set
for training is given, which must be obtained from the original data set to build a prediction
model. The Section 4 describes the statistical metrics used to compare the accuracy of the
models. The results of the numerical calculation of the metrics are given, as well as the time
spent on the preparation and use of each model. The Section 5 summarizes the findings
and outlines areas for further research.

2. Methodology

The study aimed to find, using known approaches, the optimal algorithm that would
allow building a short-term forecast in the shortest time and with the least initial dataset
(historical data).

Algorithms 2023, 16, 248 3 of 16

The main idea and novelty of the implemented approach are that our algorithm does
not use the same machine-learning model. The model is built again using new data every
24 h. That is why short-term samples of initial data are used for training and testing models.
This idea allows us to consider new factors that cannot be included in the long-term model,
such as equipment replacement, maintenance, and unplanned load changes. It keeps the
forecast accuracy at a high level, as well.

Below is a methodology that allows us to implement the described approach effectively.

2.1. The Technical Roadmap and Data Collection

In this research, we used the actual data obtained from the monitoring system of
the wastewater treatment plant. The monitoring system sensors collect basic parameters,
such as input and output flow value, oxygen concentration, ammonia content, etc. Data
from sensors come to the OPC server, and the OPC monitor records data with a frequency
of once per second in synchronous and asynchronous modes. After the preprocessing,
the monitoring system saves data in the database. The monitoring system operates 24/7,
allowing obtaining data for any period of interest in the form of a comma-separated
values format.

The model development process can generally be presented as a technical roadmap,
shown in Figure 1.

Algorithms 2023, 16, x FOR PEER REVIEW 3 of 17

2. Methodology

The study aimed to find, using known approaches, the optimal algorithm that would

allow building a short-term forecast in the shortest time and with the least initial dataset

(historical data).

The main idea and novelty of the implemented approach are that our algorithm does

not use the same machine-learning model. The model is built again using new data every

24 h. That is why short-term samples of initial data are used for training and testing mod-

els. This idea allows us to consider new factors that cannot be included in the long-term

model, such as equipment replacement, maintenance, and unplanned load changes. It

keeps the forecast accuracy at a high level, as well.

Below is a methodology that allows us to implement the described approach effec-

tively.

2.1. The Technical Roadmap and Data Collection

In this research, we used the actual data obtained from the monitoring system of the

wastewater treatment plant. The monitoring system sensors collect basic parameters, such

as input and output flow value, oxygen concentration, ammonia content, etc. Data from

sensors come to the OPC server, and the OPC monitor records data with a frequency of

once per second in synchronous and asynchronous modes. After the preprocessing, the

monitoring system saves data in the database. The monitoring system operates 24/7, al-

lowing obtaining data for any period of interest in the form of a comma-separated values

format.

The model development process can generally be presented as a technical roadmap,

shown in Figure 1.

Figure 1. The technical roadmap of data analysis.

There are two layers: the data layer and the model layer. Each layer is conventionally

divided into three steps.

As described above, the data layer (steps 1–3) implements preprocessing and data

preparation.

The model layer involves selecting model parameters (step 4), which can be imple-

mented in two ways: automatically and manually. The selection method depends on the

library’s capabilities to build the model. The next step (step 5) is model building, which

involves setting the parameters defined in the previous step and training the model. At

this step, all actions with the model can be called «model building». The last step (step 6)

Figure 1. The technical roadmap of data analysis.

There are two layers: the data layer and the model layer. Each layer is conventionally
divided into three steps.

As described above, the data layer (steps 1–3) implements preprocessing and data preparation.
The model layer involves selecting model parameters (step 4), which can be imple-

mented in two ways: automatically and manually. The selection method depends on the
library’s capabilities to build the model. The next step (step 5) is model building, which
involves setting the parameters defined in the previous step and training the model. At
this step, all actions with the model can be called «model building». The last step (step 6)
is the validation of the model. By «model validation», we mean obtaining a prediction
and comparing the parameter estimates with their actual values. To assess the quality of
the model, we will use a set of metrics described below. If the model metrics meet the
specified ones, the model is saved and can be used to generate a forecast. If the metrics
are unsatisfactory, you should return to step 4 and perform all subsequent steps at the
data layer.

The estimation of the model’s accuracy was calculated with five statistical metrics:
correlation coefficient (R2), mean squared error (MSE), root mean squared error (RMSE),

Algorithms 2023, 16, 248 4 of 16

mean absolute error (MAE), and mean absolute percentage error (MAPE) [12,37]. The
correlation coefficient (R2) is used to determine the degree of fit of the forecasted values
to the actual values. MSE is the average change in actual and forecast values, RMSE is
the square root of MSE, and MAE is proposed as the average change between actual and
predicted values. Compared with MAE, RMSE emphasizes the variance between data
outliers. These metrics are calculated with equations:

R2 = 1− ∑m
i=1|ŷi−yi |2

∑m
i=1| 1

m ∑m
i=1 yi−yi|2

MSE = 1
m

m
∑

i=1
|ŷi − yi|2

RMSE =

√
1
m

m
∑

i=1
|ŷi − yi|2

MAE = 1
m

m
∑

i=1
|ŷi − yi|

MAPE = 100% 1
m

m
∑

i=1

|ŷi−yi |
|yi |

(1)

where yi and ŷi are the actual and predicted values, and m represents the number of samples.

2.2. Data Preprocessing

The data from the monitoring system sensors are stored in the database in raw form.
This means that a simple upload of a parameter of interest over a specific time interval
cannot be used as an input data set for model training. Pre-processing and filtering are
required. The data format to be used in the vast majority of methods can be represented in
general terms as DD−MM−YYYY HH : MM : SS VALUE, where YYYY is a four-digit
year code, MM is a two-digit current month code, DD is a two-digit day code, HH is a
two-digit hour code, MM is a two-digit minute code, SS is a two-digit seconds code, and
VALUE is the real number corresponding to the parameter value obtained from the sensor.

As was mentioned above, the parameters are recorded with a frequency of 1 time per
second. Since the resources of the monitoring system are limited, data averaged over 1 min
are recorded in the database for each observed parameter. This frequency is also redundant
for building an input flow prediction model, so the raw data obtained from the database
underwent preprocessing. First, the data containing obvious outliers and anomalous values
were discarded. At the next processing stage, the data were averaged over 1 h (resampling).
As a result, a sample of data was generated for 19 days of observations, in which each day
was represented by a set of 24 values of the observed parameter. The data set corresponding
to the first 17 days of observations was used as training data. The remaining data were
used to test the quality of the models. All preprocessing was performed using Pandas
(Python Data Analysis Library) [38].

Table 1 shows a data slice of the entire dataset (total of 457 rows) obtained after
applying the preprocessing procedure.

Figure 2 shows the periodicity of the process, with a seasoning period of 24 h. The
data in the green area (Test Data) have been used to test the model quality, and the data
to the left of the green area (Train Data) have been used to train the model. The task is
formulated as follows: to build a predictive model using the available training dataset
and use the model to build a forecast of the input stream for the next 48 h. Further steps
are reduced to constructing and validating the obtained models using machine learning
methods, discussed at the article’s beginning.

Algorithms 2023, 16, 248 5 of 16

Table 1. The slice of the entire dataset.

ID Timestamp Measurement

0 12 December 2022 00:00:00 6.305967
1 12 December 2022 01:00:00 5.355895
2 12 December 2022 02:00:00 4.122726
3 12 December 2022 03:00:00 3.546737

. . .
452 30 December 2022 20:00:00 6.578148
453 30 December 2022 21:00:00 6.591513
454 30 December 2022 22:00:00 6.785699
455 30 December 2022 23:00:00 6.396174
456 31 December 2022 00:00:00 6.322228

Algorithms 2023, 16, x FOR PEER REVIEW 5 of 17

Table 1 shows a data slice of the entire dataset (total of 457 rows) obtained after ap-

plying the preprocessing procedure.

Table 1. The slice of the entire dataset.

ID Timestamp Measurement

0 12 December 2022 00:00:00 6.305967

1 12 December 2022 01:00:00 5.355895

2 12 December 2022 02:00:00 4.122726

3 12 December 2022 03:00:00 3.546737

…

452 30 December 2022 20:00:00 6.578148

453 30 December 2022 21:00:00 6.591513

454 30 December 2022 22:00:00 6.785699

455 30 December 2022 23:00:00 6.396174

456 31 December 2022 00:00:00 6.322228

Figure 2 shows the periodicity of the process, with a seasoning period of 24 h. The

data in the green area (Test Data) have been used to test the model quality, and the data

to the left of the green area (Train Data) have been used to train the model. The task is

formulated as follows: to build a predictive model using the available training dataset and

use the model to build a forecast of the input stream for the next 48 h. Further steps are

reduced to constructing and validating the obtained models using machine learning meth-

ods, discussed at the article’s beginning.

Figure 2. Initial dataset with a breakdown into training and test samples.

The following section will outline the main theoretical provisions and peculiarities of

implementing the above methods using Python and open-source libraries.

3. Development of the Models

3.1. SARIMA

Seasonal Autoregressive Integrated Moving Average (SARIMA), or Seasonal ARIMA,

is an extension of ARIMA that explicitly supports univariate time series data with a sea-

sonal component. According to [39], the seasonal ARIMA model includes autoregressive

and moving average terms at lag 𝑠.

Figure 2. Initial dataset with a breakdown into training and test samples.

The following section will outline the main theoretical provisions and peculiarities of
implementing the above methods using Python and open-source libraries.

3. Development of the Models
3.1. SARIMA

Seasonal Autoregressive Integrated Moving Average (SARIMA), or Seasonal ARIMA,
is an extension of ARIMA that explicitly supports univariate time series data with a seasonal
component. According to [39], the seasonal ARIMA model includes autoregressive and
moving average terms at lag s.

The seasonal ARIMA(p, d, q)(P, D, Q)s model can be most succinctly expressed using
the backward shift operator.

ΘP(Bs)θp(B)(1− Bs)D(1− B)dxi = ΦQ(Bs)φq(B)ωt. (2)

In Equation (2), ΘP, θp, ΦQ and φq are polynomials of orders P, p, Q and q, respec-
tively. In general, the model is non-stationary, although, if D = d = 0 and the roots of the
characteristic equation (polynomial terms on the left-hand side of Equation (1)) all exceed
unity in absolute value, the resulting model would be stationary.

Thus, it is necessary to check the original dataset for stationarity before using the
method. This can be performed using the Augmented Dickey-Fuller (ADfuller) test. This
test is based on a hypothesis, where, if the p-value is less than 0.05, then we can consider
the time series stationary, and if the p-value is greater than 0.05, then the time series is
non-stationary.

Algorithms 2023, 16, 248 6 of 16

To perform the ADfuller test and implement the SARIMA method, the library stat-
models is used [40]. ADfuller test result are as follows:

Augmented Dickey-Fuller Test for SARIMA method
1. ADF : −6.162488723252326
2. P-Value : 7.118446442706881e−08
3. Num Of Lags : 18
4. Num Of Observations Used For ADF: 389
5. Critical Values :

1% : −3.447272819026727
5% : −2.868998737588248
10% : −2.5707433189709294

Thus, the original time series is stationary.
The selection of parameters (p, d, q)(P, D, Q) can be performed automatically using

the auto_arima function of the pmdarima library [41]. The result of the function is:
AutoARIMA. Performing stepwise search to minimize aic
ARIMA(2,0,1)(0,1,2)[24] intercept : AIC=191.369, Time=44.95 sec
ARIMA(1,0,2)(0,1,2)[24] intercept : AIC=184.365, Time=28.39 sec
ARIMA(1,0,2)(0,1,1)[24] intercept : AIC=202.174, Time=3.42 sec
ARIMA(1,0,2)(1,1,2)[24] intercept : AIC=inf, Time=31.94 sec
ARIMA(1,0,2)(1,1,1)[24] intercept : AIC=inf, Time=5.80 sec
ARIMA(0,0,2)(0,1,2)[24] intercept : AIC=218.241, Time=13.98 sec
ARIMA(2,0,2)(0,1,2)[24] intercept : AIC=177.020, Time=39.47 sec
ARIMA(2,0,2)(0,1,1)[24] intercept : AIC=194.216, Time=5.32 sec
ARIMA(2,0,2)(1,1,2)[24] intercept : AIC=inf, Time=51.64 sec
ARIMA(2,0,2)(1,1,1)[24] intercept : AIC=inf, Time=9.51 sec
ARIMA(3,0,2)(0,1,2)[24] intercept : AIC=176.735, Time=46.17 sec
ARIMA(3,0,2)(0,1,1)[24] intercept : AIC=191.289, Time=8.32 sec
ARIMA(3,0,2)(1,1,2)[24] intercept : AIC=inf, Time=54.78 sec
ARIMA(3,0,2)(1,1,1)[24] intercept : AIC=inf, Time=9.91 sec
ARIMA(3,0,1)(0,1,2)[24] intercept : AIC=177.137, Time=37.80 sec
ARIMA(3,0,3)(0,1,2)[24] intercept : AIC=181.003, Time=48.34 sec
ARIMA(2,0,3)(0,1,2)[24] intercept : AIC=177.237, Time=51.24 sec
ARIMA(3,0,2)(0,1,2)[24] : AIC=169.441, Time=44.18 sec
ARIMA(3,0,2)(0,1,1)[24] : AIC=185.525, Time=9.49 sec
ARIMA(3,0,2)(1,1,2)[24] : AIC=inf, Time=52.88 sec
ARIMA(3,0,2)(1,1,1)[24] : AIC=inf, Time=9.48 sec
ARIMA(2,0,2)(0,1,2)[24] : AIC=178.763, Time=26.75 sec
ARIMA(3,0,1)(0,1,2)[24] : AIC=178.903, Time=25.43 sec
ARIMA(3,0,3)(0,1,2)[24] : AIC=182.748, Time=31.08 sec
ARIMA(2,0,1)(0,1,2)[24] : AIC=177.159, Time=28.53 sec
ARIMA(2,0,3)(0,1,2)[24] : AIC=178.965, Time=39.95 sec
Best model: ARIMA(3,0,2)(0,1,2)[24]
Total fit time: 865.904 seconds

Where s = 24 is the period of the seasonal time series in hours.
After the model is built considering the obtained optimal parameters, in order to make

a prediction, it is sufficient to use the get_forecast method of the model object, passing as a
parameter the number of time counts, for which we need to obtain a prediction. Since the
interval between the samples in the initial dataset is 1 h, and the forecast is made for 48 h,
you should specify the input parameter steps = 48.

Figure A1 (see Appendix A) shows the time series plot obtained with the SARIMA
model (solid blue line on the plot) and the actual measurement values from the test data
set (dark bullet marker on the plot). The Section 4 will give a quantitative assessment of
the quality of this and subsequent predictive models.

Algorithms 2023, 16, 248 7 of 16

3.2. Holt-Winters Exponential Smoothing

The Holt-Winters seasonal method comprises the forecast equation and three smooth-
ing equations—one for the level `t, one for the trend bt, and one for the seasonal component
st, with corresponding smoothing parameters α, β∗ and γ.

The parameter m is used to denote the seasonality period [42]. Two variations of this
method differ from the seasonal component—the additive and multiplicative methods.

The component form for the additive method is:

ŷt+h|t = `t + hbt + st+h−m(k+1)

`t = α(yt − st−m) + (1− α)(`t−1 + bt−1)

bt = β∗(`t − `t−1) + (1− β∗)bt−1

st = γ(yt − `t−1 − bt−1) + (1− γ)st−m .

(3)

The component form for the multiplicative method is:

ŷt+h|t = `t + hbt + st+h−m(k+1)

`t = α(yt − st−m) + (1− α)(`t−1 + bt−1)

bt = β∗(`t − `t−1) + (1− β∗)bt−1

st = γ(yt − `t−1 − bt−1) + (1− γ)st−m .

(4)

The k in Equations (3) and (4) is the integer part of (h− 1)/m. The level equation `t
shows a weighted average between the seasonally adjusted observation (yt − st−m) and the
non-seasonal forecast (`t − `t−1) for time t. The trend equation bt is identical to Holt’s linear
method. The seasonal equation shows a weighted average between the current seasonal
index, (yt − `t−1 − bt−1), and the seasonal index of the same season m time periods ago.
The st is an equation for the seasonal component. To create a predictive model based on the
Holt-Winters Exponential Smoothing method, the function Exponential Smoothing of the
statmodels library [40] is used. The function takes three parameters as input: the data set
for training, the type of seasonal component add/mul, and the value of the parameter m
from Equations (2) and (3)—the value of the seasonality period of the sample. The result of
forecasting with the Holt-Winters model is shown in Figure A2 (see Appendix A).

3.3. ETS

The ETS models are a family of time series models with an underlying state space
model consisting of a level component, a trend component (T), a seasonal component (S),
and an error term (E). Point forecasts can be obtained from the models by iterating the
equations for t = T + 1, . . . , T + h and setting all = 0 for t > T. For example, for the
model, ETS (M, A, N) = (1 + εT+1). Therefore ŷT+1|T = `T + bT . Similarly,

yT+2 = (`T+1 + bT+1)(1 + εT+2) = [(`T + bT)(1 + αεT+1) + bT + β(`T + bT)εT+1](1 + εT+2). (5)

Therefore, ŷT+2|T = `T + 2bT , and so on (see Equation (5)). These forecasts are identical
to the forecasts from Holt’s linear method and also to those from model ETS (A, A, N).
Thus, the point forecasts obtained from the method and from the two models that underlie
the method are identical (assuming that the same parameter values are used). The ETS
point forecasts constructed in this way are equal to the means of the forecast distributions,
except for the models with multiplicative seasonality [42]. As with the Holt-Winters model,
the ETS model can be obtained using the statmodels library. The ETSModel function takes
as input parameters an array of data with time series counts, a flag defining seasonal
component type add/mul, and seasonal period value (for the example under consideration
seasonal_periods = 24). The get_prediction method of the model object, which receives as
input parameters two timestamp values corresponding to the start and end time for the
desired prediction horizon, is used to obtain the prediction. When using pandas, these
values can be found as start and end values of the pandas dataframe object index, where
the test selection of the time series is stored. The result for the ETS model is shown in
Figure A3 (see Appendix A).

Algorithms 2023, 16, 248 8 of 16

3.4. Facebook Prophet

Prophet is a procedure for forecasting time series data based on an additive regression
model, where non-linear trends are fit with yearly, weekly, and daily seasonality, plus
holiday effects. It works best with time series that have strong seasonal effects and several
seasons of historical data. Prophet is robust to missing data and shifts in the trend, and it
typically handles outliers well [43]. The main idea of the method is presented in [31]. The
Prophet is an open-source library that is distributed in R and Python. The selection of the
required model parameters is fully automated, so to build a model, it is sufficient to pass
the input dataset for training. The Prophet function of the prophet library is used to create
the model. Predicted parameter values can be found using the prediction model method,
with a data frame of time stamps corresponding to the prediction horizon as input. The
result of forecasting with the Prophet model is shown in Figure A4 (see Appendix A).

3.5. XGBoost

Extreme Gradient Boosting (XGBoost) is an optimized distributed gradient boosting
library designed to be highly efficient, flexible, and portable. It implements machine
learning algorithms under the Gradient Boosting framework. XGBoost provides a parallel
tree boosting (also known as GBDT, GBM) that solves many data science problems in a fast
and accurate way. The same code runs on the major distributed environment (Hadoop,
SGE, MPI) and can solve problems beyond billions of examples [44].

The main idea of the method is presented in [32]. The model is created using the
XGBRegressor function of the xgboost library. The function contains a relatively large
number of parameters, and a complete list can be found in the documentation section of
the library [45]. In our case, only four parameters were used:

• max_depth = 6—maximum tree depth for base learners;
• learning_rate = 0.05—boosting learning rate (xgb’s “eta”);
• n_estimators = 5000—number of gradients boosted trees (equivalent to the number of

boosting rounds);
• gamma = 0.1—minimum loss reduction required to make a further partition on a leaf

node of the tree.

It should be noted that, in contrast to the previously described implementations, the
xgboost library can predict only one step ahead. Previous methods allowed setting the
forecast horizon length in hours after training the model, after which the model output
produced an estimate of the observed parameter. The XGBoost model allows one to obtain
a forecast only for one step ahead (i.e., for 1 h). The aim is to obtain the forecast 48 h ahead.
It is necessary to change the scheme of data preparation, which is fed to the model input.
The algorithm for generating the data used to train and test the model is as follows:

1. To generate a forecast for 1 h ahead, the model’s input is the historical sample for the
previous 48 h. The model’s output estimates the observed parameter 1 h ahead.

2. One element shifts the historical sample dataset to the left, and as a result, its length is
reduced by 1. An element is placed in the place of the missing element at the end of
the sample—the estimate of the observed parameter obtained at the previous step. A
new parameter estimate is obtained at the model’s output, corresponding to the 2-h
forecast horizon.

3. Iterations continue until the desired forecast horizon is obtained.

An explanation of this algorithm for the task of obtaining a forecast horizon for the
next 48 h is shown in Figure 3. A similar approach was used to prepare data for the Long
Short-Term Memory model.

When testing the model, you can use actual data from the test dataset instead of
parameter estimates (real test data), but to obtain a prediction in a real-time system, you
will have to use parameter estimates to generate a new dataset (synthetic test data). Below,
the results will be given for real and synthetic test data.

Algorithms 2023, 16, 248 9 of 16

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 17

A new parameter estimate is obtained at the model’s output, corresponding to the 2-

h forecast horizon.

3. Iterations continue until the desired forecast horizon is obtained.

An explanation of this algorithm for the task of obtaining a forecast horizon for the

next 48 h is shown in Figure 3. A similar approach was used to prepare data for the Long

Short-Term Memory model.

Figure 3. Data preprocessing algorithm for the XGBoost model.

When testing the model, you can use actual data from the test dataset instead of pa-

rameter estimates (real test data), but to obtain a prediction in a real-time system, you will

have to use parameter estimates to generate a new dataset (synthetic test data). Below, the

results will be given for real and synthetic test data.

The result of forecasting with the XGBoost model based on real and synthetic test

data is shown in Figures A5 and A6 (see Appendix A).

As follows from the graphical results, we can conclude that, when using synthetic

test data (i.e., the system works in real conditions), the accuracy will decrease as the fore-

cast horizon increases. That is why we should either increase the amount of data in the

input vector fed into the model or decrease the forecast horizon. The accuracy of the model

will also be affected by the XGBoost model setup.

3.6. Long Short-Term Memory

Long Short-Term Memory (LSTM) is an artificial neural network in artificial intelli-

gence and deep learning. Unlike standard feedforward neural networks, LSTM has feed-

back connections. Such a recurrent neural network (RNN) can process single data points

and entire data sequences. This characteristic makes LSTM networks ideal for processing

and predicting data, including time series. The main idea of the method is presented in

[21].

To build the LSTM model, we used the keras library and a set of functions Sequential,

Dense, and LSTM, which were used to set the structure of the neural network. The follow-

ing parameters were chosen to build the model:

• batch_size = 16—number of samples per gradient update;

• epochs = 200—number of epochs to train the model;

• units = 32—dimensionality of the output space.

A description of the LTSM model obtained using the keras library is shown below.

LSTM model summary

Model: “sequential”

 Layer (type) Output Shape Param #

 lstm (LSTM) (None, 32) 4352

 dense (Dense) (None, 1) 33

Figure 3. Data preprocessing algorithm for the XGBoost model.

The result of forecasting with the XGBoost model based on real and synthetic test data
is shown in Figures A5 and A6 (see Appendix A).

As follows from the graphical results, we can conclude that, when using synthetic test
data (i.e., the system works in real conditions), the accuracy will decrease as the forecast
horizon increases. That is why we should either increase the amount of data in the input
vector fed into the model or decrease the forecast horizon. The accuracy of the model will
also be affected by the XGBoost model setup.

3.6. Long Short-Term Memory

Long Short-Term Memory (LSTM) is an artificial neural network in artificial intel-
ligence and deep learning. Unlike standard feedforward neural networks, LSTM has
feedback connections. Such a recurrent neural network (RNN) can process single data
points and entire data sequences. This characteristic makes LSTM networks ideal for
processing and predicting data, including time series. The main idea of the method is
presented in [21].

To build the LSTM model, we used the keras library and a set of functions Sequential,
Dense, and LSTM, which were used to set the structure of the neural network. The following
parameters were chosen to build the model:

• batch_size = 16—number of samples per gradient update;
• epochs = 200—number of epochs to train the model;
• units = 32—dimensionality of the output space.

A description of the LTSM model obtained using the keras library is shown below.

Algorithms 2023, 16, x FOR PEER REVIEW 10 of 18

LSTM model summary

Model: “sequential”

 Layer (type) Output Shape Param #

 lstm (LSTM) (None, 32) 4352

 dense (Dense) (None, 1) 33

Total params: 4,385

Trainable params: 4,385

Non-trainable params: 0

The result of forecasting with the LSTM model based on real and synthetic test data

is shown in Figure A7 and Figure A8 (see Appendix A).

4. Results and Discussions

Table 2 shows the results of calculating statistical metrics to assess the accuracy of the

created models. The first columns are the statistical metrics, T.Time is the time in seconds

that it took to build the model, and P.Time is the time in seconds to calculate the

prediction. The build model time includes the time to obtain all necessary data, optimal

parameter selection, and model time creation with the Python libs.

Table 2. Statistical and performance time analysis.

Model R2 MSE RMSE MAE MAPE T.Time P.Time

SARIMA 0.961 0.076 0.276 0.198 0.035 1298.060 0.020

Holt-Winters ES 0.921 0.156 0.396 0.324 0.059 0.049 0.001

ETS 0.945 0.109 0.329 0.254 0.043 0.285 0.001

Prophet 0.918 0.162 0.402 0.331 0.062 0.881 0.754

XGBoost (real test data) 0.975 0.050 0.224 0.163 0.029 7.505 0.005

XGBoost (synthetic test data) 0.954 0.091 0.301 0.228 0.043 7.505 0.235

LSTM (real test data) 0.960 0.080 0.282 0.218 0.041 39.505 0.361

LSTM (synthetic test data) 0.907 0.184 0.429 0.322 0.063 39.505 3.185

All models show good quality with a good R-squared metric > 0.9. The models with

R-squared > 0.95 shows excellent accuracy. However, the second factor—time for

preprocessing and training models and time to obtain the forecasting—will be used to

choose the best model.

The leaders in accuracy are three models: SARIMA, LSTM, and XGBoost. However,

SARIMA and LSTM significantly lose the time required to create a new model, which is

caused by the automatic procedure of selecting parameters. The SARIMA method has

high accuracy, but its application in systems with non-stationary time series with seasonal

variability can be complex because of the long time required for automatic model

preparation. The LSTM method showed promising results on accurate data. Still, the

accuracy decreases significantly on synthetic test data, i.e., the forecast horizon for natural

systems will decrease to preserve the precision. This indicates that the method has good

potential but requires more careful tuning, network structure choice, and input data

optimization for training and model use. XGBoost requires less than 10 s for fully

automatic model building. The time it takes to obtain a prediction when the control signal

is applied once per second is 0.2 s, i.e., about 20%. In addition to Python, the XGBoost

libraries are implemented in the C++/C# programming languages, making it easy to bring

it into production. Therefore, the optimal choice for solving the task is the XGBoost

method.

It should be noted that this study has limitations: we assume that the sensors are

working correctly. New data are always coming in. If the system is interrupted for more

The result of forecasting with the LSTM model based on real and synthetic test data is
shown in Figures A7 and A8 (see Appendix A).

4. Results and Discussion

Table 2 shows the results of calculating statistical metrics to assess the accuracy of the
created models. The first columns are the statistical metrics, T.Time is the time in seconds
that it took to build the model, and P.Time is the time in seconds to calculate the prediction.

Algorithms 2023, 16, 248 10 of 16

The build model time includes the time to obtain all necessary data, optimal parameter
selection, and model time creation with the Python libs.

Table 2. Statistical and performance time analysis.

Model R2 MSE RMSE MAE MAPE T.Time P.Time

SARIMA 0.961 0.076 0.276 0.198 0.035 1298.060 0.020
Holt-Winters ES 0.921 0.156 0.396 0.324 0.059 0.049 0.001

ETS 0.945 0.109 0.329 0.254 0.043 0.285 0.001
Prophet 0.918 0.162 0.402 0.331 0.062 0.881 0.754

XGBoost (real test data) 0.975 0.050 0.224 0.163 0.029 7.505 0.005
XGBoost (synthetic test data) 0.954 0.091 0.301 0.228 0.043 7.505 0.235

LSTM (real test data) 0.960 0.080 0.282 0.218 0.041 39.505 0.361
LSTM (synthetic test data) 0.907 0.184 0.429 0.322 0.063 39.505 3.185

All models show good quality with a good R-squared metric > 0.9. The models
with R-squared > 0.95 shows excellent accuracy. However, the second factor—time for
preprocessing and training models and time to obtain the forecasting—will be used to
choose the best model.

The leaders in accuracy are three models: SARIMA, LSTM, and XGBoost. However,
SARIMA and LSTM significantly lose the time required to create a new model, which is
caused by the automatic procedure of selecting parameters. The SARIMA method has
high accuracy, but its application in systems with non-stationary time series with seasonal
variability can be complex because of the long time required for automatic model prepa-
ration. The LSTM method showed promising results on accurate data. Still, the accuracy
decreases significantly on synthetic test data, i.e., the forecast horizon for natural systems
will decrease to preserve the precision. This indicates that the method has good potential
but requires more careful tuning, network structure choice, and input data optimization for
training and model use. XGBoost requires less than 10 s for fully automatic model building.
The time it takes to obtain a prediction when the control signal is applied once per second
is 0.2 s, i.e., about 20%. In addition to Python, the XGBoost libraries are implemented in the
C++/C# programming languages, making it easy to bring it into production. Therefore,
the optimal choice for solving the task is the XGBoost method.

It should be noted that this study has limitations: we assume that the sensors are
working correctly. New data are always coming in. If the system is interrupted for more
than two days, it will be necessary to accumulate new continuous historical data for the
last two to three weeks before starting.

5. Conclusions

The article considers various methods of forecasting time series with seasonality. Clas-
sical and newer approaches based on machine learning algorithms and neural networks,
as well as statistical models, are presented. A test of prediction accuracy using statistical
metrics was performed for each of the considered methods. The authors proposed an
approach that allows using small historical data samples (less than 21 days) to build a
short-term forecast (nearest 48 h). It reduces the load on computing resources and maintains
the accuracy of the estimates. It is crucial when implementing predictive systems based
on embedded devices that implement real-time automatic control. The model must be
retrained once a day to achieve the goal, considering the newly received data. Thus, the
criterion responsible for the time for collecting data, training the model, and obtaining a
forecast plays a decisive role in choosing a model. The best method, according to a set
of attributes, turned out to be the XGBoost method. Nevertheless, optimizing algorithms
to search model parameters can bring other algorithms, such as LSTM, to the forefront.
Further research will be devoted to the optimization of model learning. A new approach for
the hyperparameters finding procedure and a new algorithm for the optimal data length
calculation should be developed. The existing methods will be extended for the using of

Algorithms 2023, 16, 248 11 of 16

the recommended systems and robust optimal control real-time systems. The participation
of the operator in setting up the algorithms should be minimized.

Author Contributions: Conceptualization, V.K. and V.A.; methodology, V.K.; software, V.A.; formal
analysis, V.K.; investigation, V.K. and V.A.; writing—original draft preparation, V.A.; writing—review
and editing, V.K.; visualization, V.A.; supervision, V.K.; All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The code and data presented in this study available on GitHub “https://
github.com/vasoftlab/algorithms-2263871 (accessed on 8 May 2023)”. All details can be provided
upon request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:
ADfuller Augmented Dickey-Fuller
ANN Artificial Neural Network
ARIMA Autoregressive integrated moving average
DB Data base
ETS Exponential smoothing
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
MSE Mean squared error
OPC Open Platform Communications
P.Time Prediction time
R2 Correlation coefficient
RMSE Root mean squared error
RNN Recurrent neural network
SARIMA Seasonal autoregressive integrated moving average
T.Time Training time

Appendix A

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 17

Appendix A

Figure A1. Prediction result with SARIMA model and actual values from the test dataset.

Figure A2. Prediction result with Holt-Winters Exponential Smoothing model and actual values

from the test dataset.

Figure A1. Prediction result with SARIMA model and actual values from the test dataset.

https://github.com/vasoftlab/algorithms-2263871
https://github.com/vasoftlab/algorithms-2263871

Algorithms 2023, 16, 248 12 of 16

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 17

Appendix A

Figure A1. Prediction result with SARIMA model and actual values from the test dataset.

Figure A2. Prediction result with Holt-Winters Exponential Smoothing model and actual values

from the test dataset.

Figure A2. Prediction result with Holt-Winters Exponential Smoothing model and actual values from
the test dataset.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 17

Figure A3. Prediction result with ETS model and actual values from the test dataset.

Figure A4. Prediction result with Prophet model and actual values from the test dataset.

Figure A3. Prediction result with ETS model and actual values from the test dataset.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 17

Figure A3. Prediction result with ETS model and actual values from the test dataset.

Figure A4. Prediction result with Prophet model and actual values from the test dataset. Figure A4. Prediction result with Prophet model and actual values from the test dataset.

Algorithms 2023, 16, 248 13 of 16
Algorithms 2023, 16, x FOR PEER REVIEW 14 of 17

Figure A5. Prediction result with the XGBoost model (based on real test data) and actual values

from the test dataset.

Figure A6. Prediction result with the XGBoost model (based on synthetic test data) and actual values

from the test dataset.

Figure A5. Prediction result with the XGBoost model (based on real test data) and actual values from
the test dataset.

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 17

Figure A5. Prediction result with the XGBoost model (based on real test data) and actual values

from the test dataset.

Figure A6. Prediction result with the XGBoost model (based on synthetic test data) and actual values

from the test dataset.

Figure A6. Prediction result with the XGBoost model (based on synthetic test data) and actual values
from the test dataset.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 17

Figure A7. Prediction result with the LSTM model (based on real test data) and actual values from

the test dataset.

Figure A8. Prediction result with the LSTM model (based on synthetic test data) and actual values

from the test dataset.

Appendix B

Algorithm A1: XGBoost model retraining and prediction (48 h ahead)

1 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡; 𝑡𝑖𝑚𝑒𝑠𝑡𝑜𝑝 ← The time interval for the training data

2 𝑑𝑎𝑡𝑎_𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑜𝑝)← Resample and training data generation

3 Output: 𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛

4 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 6 ← Maximum tree depth for base learners

5 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 0.05 ← Boosting learning rate

6 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 5000 ← Number of gradients boosted trees

7 𝑔𝑎𝑚𝑚𝑎 = 0.1 ← Minimum loss reduction

8 𝑚𝑜𝑑𝑒𝑙 = 𝑋𝐺𝐵𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ′𝑟𝑒𝑔: 𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑒𝑟𝑟𝑜𝑟′,← XGBoost regressor

9 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠,

10 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ,

Figure A7. Prediction result with the LSTM model (based on real test data) and actual values from
the test dataset.

Algorithms 2023, 16, 248 14 of 16

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 17

Figure A7. Prediction result with the LSTM model (based on real test data) and actual values from

the test dataset.

Figure A8. Prediction result with the LSTM model (based on synthetic test data) and actual values

from the test dataset.

Appendix B

Algorithm A1: XGBoost model retraining and prediction (48 h ahead)

1 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡; 𝑡𝑖𝑚𝑒𝑠𝑡𝑜𝑝 ← The time interval for the training data

2 𝑑𝑎𝑡𝑎_𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑖𝑛𝑔(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑟𝑡, 𝑡𝑖𝑚𝑒𝑠𝑡𝑜𝑝)← Resample and training data generation

3 Output: 𝑋_𝑡𝑟𝑎𝑖𝑛, 𝑦_𝑡𝑟𝑎𝑖𝑛

4 𝑚𝑎𝑥𝑑𝑒𝑝𝑡ℎ = 6 ← Maximum tree depth for base learners

5 𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔𝑟𝑎𝑡𝑒 = 0.05 ← Boosting learning rate

6 𝑛𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 5000 ← Number of gradients boosted trees

7 𝑔𝑎𝑚𝑚𝑎 = 0.1 ← Minimum loss reduction

8 𝑚𝑜𝑑𝑒𝑙 = 𝑋𝐺𝐵𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑜𝑟(𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 = ′𝑟𝑒𝑔: 𝑠𝑞𝑢𝑎𝑟𝑒𝑑𝑒𝑟𝑟𝑜𝑟′,← XGBoost regressor

9 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠,

10 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ = 𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ,

Figure A8. Prediction result with the LSTM model (based on synthetic test data) and actual values
from the test dataset.

Appendix B

Algorithm A1: XGBoost model retraining and prediction (48 h ahead)

1 timestart; timestop ← The time interval for the training data
2 data_preprocessing

(
timestart, timestop

)
← Resample and training data generation

3 Output : X_train, y_train
4 maxdepth = 6←Maximum tree depth for base learners
5 learningrate = 0.05← Boosting learning rate
6 nestimators = 5000← Number of gradients boosted trees
7 gamma = 0.1←Minimum loss reduction
8 model = XGBRegressor(objective =′ reg : squarederror′,← XGBoost regressor
9 n_estimators = n_estimators,

10 max_depth = max_depth,
11 learning_rate = learning_rate,
12 gamma = gamma)
13 model. f it(X_train, y_train)← Training model
14 y_pred_new = []← Prediction array initialization
15 for i = (1 to 48) do
9 x_list = x_train.iloc[:, 1 :].values.tolist()

10 y_list = y_pred.tolist()
11 x_train = pd.DataFrame(x_list[0]+y_list[0])← New train data
12 x_train = x_train.transpose()
13 y_pred = model.predict(x_train)← Get prediction
14 y_pred = pd.DataFrame(y_pred)← Convert to the Pandas dataframe
15 y_pred = y_pred.values
16 y_pred_new.append(y_pred.tolist()[0])← Add new predicted value
17 end for
18 Output : y_pred_new← Prediction dataset for the next 48 hrs

References
1. Nguyen, G.; Dlugolinsky, S.; Bobák, M. Machine learning and deep learning frameworks and libraries for large-scale data mining:

A survey. Artif. Intell. Rev. 2019, 52, 77–124. [CrossRef]
2. Makridakis, S.; Wheelwright, S.C.; Hyndman, R.J. Forecasting Methods and Applications; John Wiley and Sons: Hoboken, NJ,

USA, 2008.
3. Box, G.E.P.; Jenkins, G.M. Time Series Analysis: Forecasting and Control; John Wiley and Sons: Hoboken, NJ, USA, 2008.
4. Martínez-Álvarez, F.; Troncoso, A.; Asencio-Cortés, G.; Riquelme, J.C. A survey on data mining techniques applied to electricity-

related time series forecasting. Energies 2015, 8, 13162–13193. [CrossRef]
5. Fu, T.C. A review on time series data mining. Eng. Appl. Artif. Intell. 2011, 24, 164–181. [CrossRef]

https://doi.org/10.1007/s10462-018-09679-z
https://doi.org/10.3390/en81112361
https://doi.org/10.1016/j.engappai.2010.09.007

Algorithms 2023, 16, 248 15 of 16

6. Torres, J.F.; Galicia, A.; Troncoso, A. A scalable approach based on deep learning for big data time series forecasting. Integr.
Comput.-Aided Eng. 2018, 25, 335–348. [CrossRef]

7. Liu, Z.; Jiang, P.; Zhang, L.; Niu, X. A combined forecasting model for time series: Application to short-term wind speed
forecasting. Appl. Energy 2020, 259, 114137. [CrossRef]

8. Torres, J.; Hadjout, D.; Sebaa, A.; Martínez-Álvarez, F.; Troncoso, A. Deep Learning for Time Series Forecasting: A Survey. Big
Data 2020, 9, 3–21. [CrossRef]

9. Hajirahimi, Z.; Khashei, M. Hybrid structures in time series modeling and forecasting: A review. Eng. Appl. Artif. Intell. 2019,
86, 83–106. [CrossRef]

10. Gasparin, A.; Lukovic, S.; Alippi, C. Deep learning for time series forecasting: The electric load case. CAAI Trans. Intell. Technol.
2021, 7, 1–25. [CrossRef]

11. Pongdatu, G.A.N.; Putra, Y.H. Time Series Forecasting using SARIMA and Holt Winter’s Exponential Smoothing. IOP Conf. Ser.
Mater. Sci. Eng. 2018, 407, 012153. [CrossRef]

12. Huang, W.; Li, Y.; Zhao, Y.; Zheng, L. Time Series Analysis and Prediction on Bitcoin. BCP Bus. Manag. 2022, 34, 1223–1234.
[CrossRef]

13. Kemalbay, G.; Korkmazoglu, O.B. Sarima-arch versus genetic programming in stock price prediction. Sigma J. Eng. Nat. Sci. 2021,
39, 110–122. [CrossRef]

14. Paliari, I.; Karanikola, A.; Kotsiantis, S. A comparison of the optimized LSTM, XGBOOST and ARIMA in Time Series forecasting.
In Proceedings of the 12th International Conference on Information, Intelligence, Systems & Applications (IISA), Chania Crete,
Greece, 12–14 July 2021.

15. Andreeski, C.; Mechkaroska, D. Modelling, Forecasting and Testing Decisions for Seasonal Time Series in Tourism. Acta Polytech.
Hung. 2020, 17, 149–171. [CrossRef]

16. Uğuz, S.; Büyükgökoğlan, E. A Hybrid CNN-LSTM Model for Traffic Accident Frequency Forecasting during the Tourist Season.
Teh. Vjesn.–Tech. Gaz. 2022, 29, 2083–2089.

17. Etuk, E. A seasonal time series model for Nigerian monthly air traffic data. IJRRAS 2013, 14, 596–602.
18. Feng, T.; Tianyu, Z.; Zheng, Y.; Jianxing, Y. The comparative analysis of SARIMA, Facebook Prophet, and LSTM for road traffic

injury prediction in Northeast China. Front. Public Health 2022, 10, 946563. [CrossRef]
19. Zhu, X.; Helmer, E.H.; Gwenzi, D.; Collin, M. Characterization of Dry-Season Phenology in Tropical Forests by Reconstructing

Cloud-Free Landsat Time Series. Remote Sens. 2021, 13, 4736. [CrossRef]
20. Figueiredo, N.; Blanco, C. Water level forecasting and navigability conditions of the Tapajós River–Amazon–Brazil. La Houille

Blanche 2016, 3, 53–64. [CrossRef]
21. Shen, J.; Valagolam, D.; McCalla, S. Prophet forecasting model: A machine learning approach to predict the concentration of air

pollutants (PM2.5, PM10, O3, NO2, SO2, CO) in Seoul, South Korea. PeerJ 2020, 8, e9961. [CrossRef]
22. Hasnain, A.; Sheng, Y.; Hashmi, M.Z. Time Series Analysis and Forecasting of Air Pollutants Based on Prophet Forecasting Model

in Jiangsu Province, China Citation. Front. Environ. Sci. 2022, 10, 1044. [CrossRef]
23. Luo, Z.; Jia, X.; Bao, J. A Combined Model of SARIMA and Prophet Models in Forecasting AIDS Incidence in Henan Province,

China. Int. J. Environ. Res. Public Health 2022, 19, 5910. [CrossRef]
24. Pandit, A.; Khan, D.Z.; Hanrahan, J.G. Historical and future trends in emergency pituitary referrals: A machine learning analysis.

Pituitary 2022, 25, 927–937. [CrossRef] [PubMed]
25. Benkachcha, S.; Benhra, J.; El Hassani, H. Seasonal Time Series Forecasting Models based on Artificial Neural Network. Int. J.

Comput. Appl. 2015, 116, 9–14.
26. Palmroos, C.; Gieseler, J.; Morosan, N. Solar energetic particle time series analysis with Python. Front. Astron. Space Sci. 2022,

9, 1073578. [CrossRef]
27. Wan, X.; Zou, Y.; Wang, J.; Wang, W. Prediction of shale oil production based on Prophet algorithm. J. Phys. Conf. Ser. 2021,

2009, 012056. [CrossRef]
28. El-Rawy, M.; Abd-Ellah, M.K.; Fathi, H.; Abdella Ahmed, A.K. Forecasting effluent and performance of wastewater treatment

plant using different machine learning techniques. J. Water Process Eng. 2021, 44, 102380. [CrossRef]
29. Ding, Z.; Yu, Y.; Xia, Y. Nonlinear hysteretic parameter identification using an attention-based long short-term memory network

and principal component analysis. Nonlinear Dyn 2023, 111, 4559–4576. [CrossRef]
30. Yu, Y.; Liang, S.; Samali, B.; Nguyen, T.N.; Zhai, C.; Li, J.; Xie, X. Torsional capacity evaluation of RC beams using an improved

bird swarm algorithm optimized 2D convolutional neural network. Eng. Struct. 2022, 273, 115066. [CrossRef]
31. Taylor, S.; Letham, B. Forecasting at scale. Am. Stat. 2018, 72, 37–45. [CrossRef]
32. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International

Conference, San Francisco, CA, USA, 13 August 2016; pp. 785–794.
33. Hochreiter, S.; Schmidhuber, J. Long Short-term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
34. Rumelhart, D.; Hinton, G.; Williams, R. Long short-term memory. Naturev 1986, 323, 533–536. [CrossRef]
35. Anqi, X.; Hao, Y.; Jing, C.; Li, S.; Qian, Z. A Short-Term Wind Speed Forecasting Model Based on a Multi-Variable Long Short-Term

Memory Network. Atmosphere 2021, 12, 651.
36. Zemkoho, A. A Basic Time Series Forecasting Course with Python. Oper. Res. Forum 2023, 4, 2. [CrossRef]

https://doi.org/10.3233/ICA-180580
https://doi.org/10.1016/j.apenergy.2019.114137
https://doi.org/10.1089/big.2020.0159
https://doi.org/10.1016/j.engappai.2019.08.018
https://doi.org/10.1049/cit2.12060
https://doi.org/10.1088/1757-899X/407/1/012153
https://doi.org/10.54691/bcpbm.v34i.3163
https://doi.org/10.14744/sigma.2021.00001
https://doi.org/10.12700/APH.17.10.2020.10.9
https://doi.org/10.3389/fpubh.2022.946563
https://doi.org/10.3390/rs13234736
https://doi.org/10.1051/lhb/2016031
https://doi.org/10.7717/peerj.9961
https://doi.org/10.3389/fenvs.2022.945628
https://doi.org/10.3390/ijerph19105910
https://doi.org/10.1007/s11102-022-01269-1
https://www.ncbi.nlm.nih.gov/pubmed/36085340
https://doi.org/10.3389/fspas.2022.1073578
https://doi.org/10.1088/1742-6596/2009/1/012056
https://doi.org/10.1016/j.jwpe.2021.102380
https://doi.org/10.1007/s11071-022-08095-x
https://doi.org/10.1016/j.engstruct.2022.115066
https://doi.org/10.1080/00031305.2017.1380080
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1038/323533a0
https://doi.org/10.1007/s43069-022-00179-z

Algorithms 2023, 16, 248 16 of 16

37. Plevris, V.; Solorzano, G.; Bakas, N.; Ben Seghier, M. Investigation of Performance Metrics in Regression Analysis and Machine
Learning-Based Prediction Models. In 8th European Congress on Computational Methods in Applied Sciences and Engineering
(ECCOMAS 2022) at Oslo; European Community on Computational Methods in Applied Sciences: Barcelona, Spain, 2022.

38. Pandas—Python Data Analysis Library. Available online: https://pandas.pydata.org/ (accessed on 3 February 2023).
39. Cowpertwait, P.S.P.; Metcalfe, A.V. Introductory Time Series with R; Springer: Berlin/Heidelberg, Germany, 2009; pp. 142–143.
40. Introduction—Statmodels. Available online: https://www.statsmodels.org/stable/index.html/ (accessed on 3 February 2023).
41. Pmdarima: ARIMA Estimators for Python. Available online: https://alkaline-ml.com/pmdarima/index.html (accessed on

3 February 2023).
42. Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; Otexts, Monash University: Melbourne, Aus-

tralia, 2022.
43. Prophet|Forecasting at Scale. Available online: https://facebook.github.io/prophet/ (accessed on 3 February 2023).
44. XGBoost. Available online: https://xgboost.ai/about (accessed on 3 February 2023).
45. Python API Reference—XGBoost Documentation. Available online: https://xgboost.readthedocs.io/en/stable/python/index.

html (accessed on 3 February 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://pandas.pydata.org/
https://www.statsmodels.org/stable/index.html/
https://alkaline-ml.com/pmdarima/index.html
https://facebook.github.io/prophet/
https://xgboost.ai/about
https://xgboost.readthedocs.io/en/stable/python/index.html
https://xgboost.readthedocs.io/en/stable/python/index.html

	Introduction
	Methodology
	The Technical Roadmap and Data Collection
	Data Preprocessing

	Development of the Models
	SARIMA
	Holt-Winters Exponential Smoothing
	ETS
	Facebook Prophet
	XGBoost
	Long Short-Term Memory

	Results and Discussion
	Conclusions
	Appendix A
	Appendix B
	References

