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Abstract: Cooperative attention provides a new method to study how epidemic diseases are spread.
It is derived from the social data with the help of survey data. Cooperative attention enables the
detection possible anomalies in an event by formulating the spread variable, which determines the
disease spread rate decision score. This work proposes a determination spread variable using a
disease spread model and cooperative learning. It is a four-stage model that determines answers by
identifying semantic cooperation using the spread model to identify events, infection factors, location
spread, and change in spread rate. The proposed model analyses the spread of COVID-19 throughout
the United States using a new approach by defining data cooperation using the dynamic variable
of the spread rate and the optimal cooperative strategy. Game theory is used to define cooperative
strategy and to analyze the dynamic variable determined with the help of a control algorithm. Our
analysis successfully identifies the spread rate of disease from social data with an accuracy of 67%
and can dynamically optimize the decision model using a control algorithm with a complexity of
order O(n2).

Keywords: social data analysis; cooperative attention; cooperative learning; COVID-19; tracking

1. Introduction

The spread of infectious diseases is a major concern worldwide, with potential conse-
quences for human health and the global economy. Social data have been used to monitor
and predict disease spread, but its reliability and effectiveness have been questioned due to
limitations in traditional methods. Therefore, new approaches are required to utilize social
data for effective disease control and prevention. The recent COVID-19 pandemic required
optimal control for the spread of disease through person-to-person contact. Thus, the
question arose, “How effectively can the spread of any commutable disease be tracked and
mitigated”. Hence, we designed a spread model using cooperative learning by utilizing
social and physical network data.

In recent years, data analytics have changed the pattern of interpretation through
the pair modelling of critical sentences, as well as the identification of paraphrases and
important features of textual entailment in many natural language processing (NLP) tasks.
An important aspect of this analysis is to not consider the impact of any two sentences, i.e.,
not defining the impact of each sentence separately, but instead their mutual relationship [1].
This inherently develops limitations concerning data analysis and prediction for short-term
analysis. This non-consideration of mutual influence is in contrast with the approach that
does not change contexts. As humans, if two people’s arguments are presented, then we
extract word identities and relations to understand the entire scenario. Hence, the analysis
veracity of a group of sentences becomes challenging. This challenge entails figurative
language representation, in which meanings are usually not concrete. This figurative
language is often presented as sarcasm, which people often use on social media where they
represent negative feelings through positive words, or vice versa.

Detecting sarcasm and the multinomial meaning of a sentence can be categorized as
a classical classification problem that depends on efficiently identifying features and the
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use of advantageous learning techniques. The word advantageous is used to determine a
learning technique that can understand the sparseness of social media text and disseminate
perpetual information, such as identifying events and trends that correlate the context
of sentences. In a network, for example a micro-blogging website such as Twitter, the
number of users increases and each of them expresses their own views. Twitter is a popular
micro-blog rich in sentiment expression from users. It generates a massive amount of data
in real time, but has a limit on the number of words that can be used for each post. This
limitation on characters increases the inability to identify words that are critical for the
occurrence of an event; techniques to remove this sparseness were recently developed
using supervised and unsupervised learning approaches [2–5].

A model considering natural language generation has been proposed using reinforce-
ment adaptation of an attention-based neural natural language generator (NLG) [6]. This
model handles NLG in a spoken dialogue system with short-term memory using a recurrent
neural network (RNN) model. The research showed a better integration attention model in
the subnetwork, which rephrased the sentences in the network for effective explorations
and meaning detection through condition in the environment.

Detecting an event using a determined set of parameters results in the detection of a
global event; however, a global event occurs because of, or creates, multi subevents. The
detection of subevents is complicated in nature. For example, if pollution in a city increases
during a specific time period every week, it can be counted as a subevent; each of these can
further have subevents, such as increased factory production, increased wind, or any other
natural disasters. Thus, finding distinct subevents is necessary; some subevents are not part
of the global event, but they can be direct or indirect factors, such as sports tournaments,
political rallies, or protests. Each subevent should be detected in order to augment the exact
map of any event.

Mapping and detecting these subevents through contextual and sarcastic words and
phrases requires a fine set of features to categorize the dynamics. This requires the identifi-
cation of important and influential users in a social network. Recently, the authors of [7]
suggested ranking the methodology of users through their social standing. However, these
standings were based on the activities and posts published users. This method is able
to find influential and important posts, and can help pick up prejudiced information in
a network. Thus, in [8], the selection of influential words and data were generated for
making cooperative decisions.

Cooperation exploitation is a viable test and is in demand in human societies that have
a network of engagement. However, how can the interaction information be advanced to
create a populous cooperation structure? Accounting for the possible interactions between
individual users of a network, emphasizing selective neighbor interactions, can lead to
natural reward and cooperation, in line with the game theory model [9,10]. This conditional
reward, in accordance with the game theory model, encourages interactions that produce a
clustering strategy, known as local interactions with non-random cooperation. The results
of these interactions promote cooperation, and better reward systems and relative structures
can be seen in various behavioral experiments [11–19]. One of the key things in behavioral
experiments are the dynamics in a social network. A social network is considered a
biased network if it has no dynamics. Here, dynamics refers to the interactions, changes,
and patterns that occur within a social network over time. These dynamics influence
how individuals in the network relate to one another, share information, and adapt their
behaviors based on various events or conditions. It emphasizes that a proper social network
should have such dynamics to enable clustering opportunities for different strategies. This
means that the network should allow for the formation of groups or sub-networks based
on shared interests or behaviors, in response to specific events or conditions. The ability
to create variable action in a dynamic network, in this context, is defined as “cooperative
attention”, which implies a collective focus or joint effort among network members to
address particular situations or challenges.
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However, cooperative attention within a network fosters evolution and promotes
behavioral reciprocity, which is in line with strategy-based game theory [1,20,21]. This
theory characterizes reciprocity as a relational aspect of interactions, where one user’s
actions toward another user depend on previous responses. However, this creates a new
problem dimension when there are more than three users, the situation becomes more
complex, creating a new problem dimension that is not adequately addressed by traditional
two-player game theory. To mitigate reciprocity, a strategic approach is needed. An
unbiased solution that does not solely rely on past interactions is proposed as a dynamic
variable. It involves introducing an additional feature called “neighborhood bond”, which
can change dynamically with or without prior interactions between three or more users.
The neighborhood bond serves as a connection for establishing reciprocity, allowing users
to engage and disengage, while maintaining a fair reward distribution [22–27].

Recently, game theory models have highlighted the concept of reciprocity [26], which
illustrates the capacity to foster and enhance interactions within a group. These interac-
tions also encourage cooperation in dynamic networks. Dynamic network models directly
facilitate matched cooperation support, allowing for dynamic assessment of changes in
proposed node connections. This enables non-sequential link updates for node cooperation,
which can result in failure to adapt the network appropriately [28–30]. Upon further exami-
nation of these networks, it is apparent that slow and static network connection variations
yield a lower heterogeneity compared with rapidly changing networks. Consequently,
to maintain stable and accurately predicted connections, non-essential node connections
should have a stable connection probability. This can be achieved by establishing stable
bonds based on diverse data sources.

2. Literature Review

When individuals collaborate to support each other, they both save and spend money in
the process. Cooperation is a vital component of any human community network [1–4,9–13].
Accumulating evidence suggests that people are impacted by their social connections,
spreading emotions, beliefs, and behaviors throughout their networks [15–23]. Conse-
quently, the question of whether collaboration can be transmitted through social contagion
emerges. This is an important issue with direct implications for strategies aimed at promot-
ing collaborative action. Homophily, the tendency for individuals to form and maintain
relationships with those similar to them, plays a role in these networks [21,23,28]. How-
ever, distinguishing between spreader and homophily can be challenging. Past studies
have employed observational data to examine the relationship between contagion and
homophily, leading to observations on homophily using unobserved attributes. Gaining a
clear understanding of these hidden characteristics within a network through statistical
learning can be difficult [23,28]. To address the challenges associated with differentiating
prior knowledge of node interactions within a specific network topology, controlled data
experiments with predetermined sample sizes are used.

A recent study found that social contagion can naturally promote collaboration within
an environment. The researchers utilized social contagion to foster cooperation, incorporat-
ing data from a controlled sample size into a game theory model that incorporated social
data. This enabled them to formulate a hypothesis based on the social data. Throughout
the observational cycles, users were randomly assigned to interact with new groups of
unrelated nodes, with each group determining the reward distribution among specific
nodes in the network. This approach minimized bias by limiting the influence of past
node behavior on current connections. Despite the challenges, nodes assigned to larger
groups with more substantial reward contributors tended to share more rewards with other
network nodes. This finding indicates that without any bias, contribution activities will
spread uniquely across a network of random users [31–36].

According to the available evidence, activity related to cooperative games spreads
quickly in static social networks. On the other hand, homophily within a network can
be eradicated by a set of nodes if nodes are pre-bonded with their particular neighbors
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in each sample size. In the event that we have more than one user, we can employ a
multi-player strategy. This technique is analogous to the prisoner’s dilemma problems
that arise in static networks that make use of a variety of different systems in order to
discover cooperation [34–36]. These studies add to the growing body of evidence that
social activity in a network, in the sense of cooperation, will spread from one consumer
to the next and that this effect can be extended to fixed networks. In other words, these
studies show that social activity in a network will spread from one consumer to the next.
In addition to this, they hypothesize that the degree to which behaviors of cooperation and
selfishness can be contagious can vary. Participants in the fixed network were aware not
only of the decisions made by their neighbors, but also of the overall compensation they
would receive as a result of their neighbors’ decisions. Assuming that the performance of
the rebels in the accumulation of rewards is greater than that of the cooperators, this can
lead to an incorrect allocation of rewards among the cooperators as follows: rebels who
have a significant number of cooperative neighbors’ nodes will be able to identify an extra
link to swap; nevertheless, this impulse link may lessen the overall required payment for
the node. As a consequence of this, additional research is required to determine whether
or not cooperative action would expand, despite the absence of particular information
regarding the allocation of rewards.

Additionally, it is imperative to research the transmission of collaboration in dynamic
networks as opposed to fixed networks. In many different types of social experiments,
networks exert control over their relationships because of their ability to both break existing
linkages and create new ones. When compared with static networks, dynamic networks
offer a wider variety of strategies, such as information dissemination, collaboration mech-
anisms, and consensus mechanisms, among other things. Because of this, the strategic
environments of stable and dynamic networks might support distinct approaches; more
specifically, the contagion of cooperative and selfish actions may behave quite differently in
fixed and dynamic networks. When active user nodes engage frequently in relatively fixed
social networks, one of their primary goals may be to find a way to reconcile the conflicting
interests of effectively cooperating with others and preventing free-rider manipulation.
This is because cooperation is superior to mutual defection (as defecting with a defector is
preferable to cooperating with a defector). A common strategy for dealing with this issue
is to employ reactive tactics, also known as reacting to the acts of the interaction partners
by collaborating with them while they are pleasant and defecting when they are not. In
recurrent cooperative games, players appear to either defect unconditionally or employ
conditional tactics [35–39].

In contrast, dynamic social networks give rise to the emergence of another goal, which
is the recruitment of additional cooperative interaction partners. Individuals may be
encouraged to try cooperating, despite the fact that their current relationship partners
are relatively uncooperative if they believe (correctly) that cooperators are more likely
to establish relations with them when they cooperate. This can be the case even if the
individuals’ existing relationship partners are relatively uncooperative. As a consequence
of this, less of a connection can be anticipated between the actions of one’s current neighbors
and the actions that will take in the future in social networks that are becoming increasingly
up to date and in which there is significant potential to attract new cooperation partners.

3. Research Objectives

The objective of this research is to investigate the application of diverse data sources
and cooperative learning techniques to analyze the spread of epidemic diseases such
as COVID-19. This study emphasizes measuring social spread by observing behavioral
changes over time, and establishing a connection between transition probabilities and co-
operative approaches. The goal is to propose an algorithm and attention-based cooperative
learning method that can potentially enhance disease control and prevention strategies. The
research utilizes physical location-based datasets and Twitter data to gain insight into the
spread of disease in New York and Florida. Additionally, the study examines the potential
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of multi-node cooperative problems for determining locations and explores the possibilities
of using different data sources to better understand the spread of disease.

The decision spread model block diagram in Figure 1 represents the process for
analyzing social and physical data to determine the overall spread factor of an event.
The block diagram is divided into four stages. Stage 1 represents the preprocessing and
semantic integration of social data by creating an attention-based user category considering
physical data events. This stage is important as it provides a deeper understanding of
the relationship between social data and physical data events. Stage 2 is physical data
analysis using the susceptible exposed infected recovered (SEIR) model, which provides
essential information such as hyper parameters for events, infection factor, location spread,
and change in spread rate. This stage provides crucial information on how an event is
spreading and helps to predict its future spread. Stage 3 represents the cooperation spread
and control model [5] to determine the spread variable. This stage takes into account the
interplay between social and physical data to determine the overall spread factor. Finally,
Stage 4 represents the policy determination and optimization for analysis. The results from
the previous stages are used to make informed decisions about how to mitigate or control
the spread of an event. This stage is critical for making decisions on how to respond to an
event based on the information obtained from the previous stages.

Figure 1. Decision spread model block diagram.

Overall, the decision spread model block diagram shows a comprehensive approach
for analyzing social and physical data to determine the overall spread factor of an event.
This information can be used to make informed decisions on how to respond to and control
the spread of an event.

Here, we provide a solution to test how cooperative attention can predict and learn
different actions by asking how the spread occurs by different sources in a social network,
where the individual node behaviors depend on a node’s social actions and connectivity
with other nodes. We explored this issue using the current pandemic data for COVID-19 col-
lected from Twitter, as well as physical data available from the Johns Hopkins Coronavirus
Data Source [40]. In this analysis, the level of connection control was varied conditionally
from one user node to another. This was achieved using the dataset in order to find com-
plete information, allowing us to decide on a dimensional approach to separate cooperation
with contagion across time, even when bias was possible because of the nature of the
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homophilic structure. We utilized this dataset to separate the cooperative and selfish node
actions and reactions in a dynamic social network. We optimized and created different
rules to structurally define the analysis in order to better understand the social interactions
and information spread.

In this study, we focused on developing and implementing a novel multi-agent coop-
erative learning algorithm that leverages social data, particularly Twitter tweets, to analyze
and understand the spread of diseases, with a specific focus on the COVID-19 pandemic.
To achieve this objective, the following methodologies and approaches were employed:

1. Utilizing reinforcement learning, game theory tools, and complex optimization meth-
ods to enable sequential decision-making based on actions and information in a
cooperative multi-agent setting.

2. Integrating attention-based cooperative learning and partially observed settings to
make the best use of diverse data sources and to simulate states and actions through
stochastic games with common rewards.

3. Employing clustering techniques on social data to generate macro actions by learning
different scenarios, represented by the spread of yellow, green, and red nodes.

4. Implementing a greedy policy to address decision convergence challenges and to en-
hance the algorithm’s performance while avoiding action merging in multiple nodes.

5. Developing a policy accumulation mechanism to efficiently distribute the spread
decisions within the network and ensure unbiasedness through non-prior information.

6. Conducting a comprehensive evaluation of the algorithm using a dataset of
185,755 tweets collected from January 2020 to October 2020, focusing on the spread of
COVID-19 in New York and Florida, and analyzing the results using the SEIR model
and natural language processing (NLP) techniques.

The ultimate goal of this research is to provide valuable insight into the correlations
between disease spread, information dissemination, and decision-making by addressing the
challenges and limitations associated with decentralized decision-making, computational
costs, and policy optimization.

4. Methodology

A cooperative learning framework is developed to analyze the spread of epidemic
diseases and to leverage diverse data sources, such as social media and traditional public
health data. Our approach is based on the use of multi-agent reinforcement learning,
where each agent represents a geographical location and makes decisions based on its own
observations and the observations of its neighbors. The agents collaborate to determine
the optimal policies that minimize the spread of disease while maximizing social welfare.
To implement this framework, we collected two types of data: social media data from
Twitter and traditional public health data from the John Hopkins Coronavirus Resource
Center. Social media data were used to understand the public’s sentiment towards the
disease, as well as to identify potential outbreaks and hotspots. The public health data
provide information on the number of confirmed cases, deaths, and recoveries, as well as
the geographic distribution of these cases. To illustrate our methodology, we provided an
example of a tweet that we collected during our data collection phase, namely “Feeling sick
today. Staying home to avoid spreading the flu”. Our feature extraction process extracted
the location of the tweet, which was used to determine the geographic spread of the disease.
The time of the tweet was used to track the spread over time, and the sentiment of the tweet
was used to determine the severity of the disease in that location. Our cooperative learning
approach used this information to make decisions about how to prevent the spread of
disease in that location.

We preprocessed the data by cleaning and filtering out irrelevant information, such
as non-English tweets and duplicate entries. We then use NLP techniques to analyze the
sentiment of the tweets and identify keywords related to the disease. Next, we used game
theory to define the cooperative strategies that the agents could use to make decisions. We
formulated the problem as a stochastic game with a common reward function that encour-
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aged cooperation and minimized the spread of disease. The agents used reinforcement
learning algorithms to learn the optimal policies, which were updated iteratively based on
the observations of their neighbors.

To evaluate the effectiveness of our approach, we use a spread-based analysis that
measured the correlation between the spread of disease and the spread of information on
social media. We also determined the dynamic variable of the spread rate and optimized
the decision model using a control algorithm with complexity of order O

(
n2).

As an example, we wanted to understand the relationship between Twitter activity
and the spread of COVID-19 in a particular state. Thus, we first collected Twitter data
related to COVID-19 for that state, including hashtags, keywords, and geolocation data. We
also collected physical data, such as the number of confirmed cases, deaths, and recoveries,
from the John Hopkins University COVID-19 dashboard. We then integrated the data and
pre-processed it to form a comprehensive dataset. The proposed model was then used
to determine the optimal cooperative strategy for analyzing the spread of COVID-19 in
that state. A spread-based analysis was carried out by defining the spread variable and
using cooperative learning to determine the disease spread rate decision score. The spread
dynamic variable was determined through the use of a stochastic game with a common
reward, and the results were analyzed to understand the relationship between Twitter
activity and the spread of COVID-19 in that state.

4.1. Learning-Based Multi-Agent Cooperation

Learning-based multi-agent cooperation is a framework that enables multiple agents
to learn and act together to achieve a common goal. In this framework, agents interact
with their environment and other agents to learn and develop strategies that maximize a
common reward. The approach is particularly useful in complex scenarios where multiple
agents must work together to solve a problem, such as in disease spread analysis. By
leveraging learning-based multi-agent cooperation, we can enhance our understanding
of the dynamics of disease spread and improve the effectiveness of disease control and
prevention strategies. The complete interactions and dependability formulate collective
functionalities in a complex network. It was observed that the full cooperation depends on
the topological structure of a network with temporal constraints on information links, which
constitute the dynamics of the network. The information links are reaction information,
which evolve with time, and series of activated events at discrete time. The linked sequence
of information dissemination is a state of causal flow, which affects the characteristics of
a social network. These characteristics redefine the network structure, which includes
clustering, node, controllability, and link length. These show static and irregular patterns
of the inter-burst of temporal links. Thus, the systematic encapsulation of these inter-
burst temporal links resolves the cooperative decision-making problem in the multi-agent
network and require multiagent cooperation for optimized long-term cooperation [18,33].

Assuming nodes xi are choosing actions ai after observing the system link states
s simultaneously to distribute the reward γi (Refer to Table A1 in Appendix A for the
notations used throughout the paper). Thus, the agents can make decisions and accumulate
rewards, as shown in Figure 2. This tree-like diagram illustrates how the agents can make
decisions and accumulate rewards based on their actions and the state of the system. It is
a visual representation of the relationships between actions and rewards in a cooperative
setting, and helps to understand how the agents can work together to achieve the best
possible outcome. It displays the information sphere for cooperation, which includes
the choices that agents can make and the rewards they can expect to receive based on
their actions.

In this figure, the root node represents the initial state of the system, and the branches
represent different possible actions that can be taken by the agents. Each branch leads
to a different sub-tree that represents the consequences of taking that particular action.
The leaves of the tree represent the terminal states, where the agents have completed their
actions and received their rewards.
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Figure 2. Action and reward cooperation.

Lemma 1. Given a multi-agent system, the cooperative algorithm ensures that agents adapt their
policies based on local observations, leading to an improved overall system performance.

Proof. Assume agents can learn and adapt their policies based on the information available
to them. The cooperative algorithm utilizes reinforcement learning to update agents’
policies, resulting in an iterative process where agents make decisions and receive rewards.
As agents update their policies, their decision-making process converges towards optimal
actions, leading to an improved overall system performance. �

Assuming a variable space containing t states as st with n actions as an; hence,
the probable transitions in respect of a ∆st are stated with reward (γ) as P = st × an;
γ = st × an × st. Thus, each time t the user chooses action an,t which causes
st+1 ∼ P

(
Event

st
× an,t

)
to accumulate reward as γ

(
st × an,t, st+1

)
; therefore, the func-

tion can be defined for n nodes with a trade-off factor of ω ε 0→ 1 . Suppose we have
a state s that represents a person’s health status, and the possible actions are to take a
medicine or not. The reward function γ

(
st × an,t, st+1

)
could represent the improvement

or worsening of the person’s health depending on the action taken. The trade-off factor ω
could represent the importance of immediate relief versus potential long-term side effects.

β(s) = E
[
∑t≥0

n>−1 ωγ
(
st × an,t, st+1

)
, s0 = s

]
(1)

Hence, for multiple nodes,

βi(s) = E
[
∑t≥0

n>−1 ωtγi,n(st × an,t, st+1
)
, s0 = s

]
(2)

Now, to have an optimal reward distribution policy in a cooperative setting γi,n =
γi,1 . . . . . . . . . . γi,N , and to obtain global optima, Nash equilibrium is utilized by averaging
the reward, ∑iεN,t≥0,n>−1 γ

(
st × an,t, st+1

)
. Thus, a proper distribution and link formation

policy is created by applying a competitive setting ∑iεN,t≥0,n>−1 γ
(
st × an,t, st+1

)
= 0 to

define the link reaction policy (π). Suppose we have a multi-agent system where each node
represents a different person, and state s represents the current weather conditions. The
possible actions could be to go outside or stay indoors. The joint policy function π(a|s)
would then represent the probability of each person going outside or staying indoors

based on the current weather conditions. The probabilities π
(i,j)( an,i→j,t

st
) would represent
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the likelihood of each pair of people (i, j) going outside or staying indoors together based
on the weather conditions.

π(a|s) := ∩iεN,n>−1,t≥0πi,j
(

an,i→j,t

st

)
(3)

where i and j are node links and xi is the neighborhood bond. Hence, the optimal reward
link is,

β
i,j
πi (s) = E

[
∑t≥0, i,j≥0

n>−1 ωtγi,n(st × an,t, st+1
)
|an,i→j,t ∼ π(Event|st), s0 = s

]
(4)

Now optimal joint cooperative policy πi,j : si,j
t → ∆an,t for i, j will be dependent on

actions history hi,j,

τt
π = ∏h′ :h′avh πp(h′)(a|M(h→ S)) : τt

πi,j = ∏i,j>0
N∪p(h′) ∏n

h′ :h′avh πi,j,p(h′∈i,j)
(

ai
∣∣∣M(h→ S)

)
(5)

where, p(h) ∼ p(h′) = P is the probability of an action user node takes for a policy πP.

β
i,j
πi (s) = E[∑t≥0, i,j≥0

n>−1 ωtγi,n(st × an,t, st+1
)
|an,i→j,t, xi(t) ∼ τt

π , s0 = s] (6)

The optimal joint cooperative policy πi,j for nodes i and j, is dependent on the actions
history hi,j. For example, suppose node i represents a hospital and node j represents a
government health department. The actions history hi,j might include information on the
number of COVID-19 patients being treated at the hospital, the availability of medical
supplies, and the current policies being implemented by the health department. Based on
this information, the joint policy πi,j can be determined to optimize the reward distribution
for both nodes i and j. To calculate the optimal reward distribution, Equation (5) is utilized,
where τt

π represents the probability of a user node taking a certain action for policy πP, and
β

i,j
πi (s) represents the expected reward for nodes i and j. For example, suppose the joint

policy πi,j results in the hospital (node i) receiving more medical supplies from the health
department (node j) and the health department receiving more data on COVID-19 patients
being treated at the hospital. This joint policy can be optimized by calculating the expected
reward for both nodes based on the actions taken and the resulting transitions in state s.

The learning-based multi-agent cooperation algorithm is shown in Appendix B.1
to define reward from a single to multimode and policy function for optimal reward
distribution.

4.2. Cooperative Learning and Strategy Creation

Cooperative learning refers to the process of agents learning and improving their
decision-making strategies through collaboration with other agents. Cooperative learning
states the variability in network with the help of reciprocity to maintain the dynamics of the
information for unbiased reward distribution by creating a strategy tie for consensus in any
two states. This learning strategy constitutes the continuous communication dissemination
in a network with continuous and discrete data sources. For example, consider the problem
of a cluster of users that are randomly interacting to another cluster of users at any instant.
Additionally, the length of the action link and time are not capped (time limitation for each
links). However, the reaction can change according to the reciprocity of the user node
reactions, thus the user link needs to reach into consensus for reward distribution.

Lemma 2. Cooperative learning results in the creation of strategies that maximize the collective
reward of the multi-agent system.

Proof. Assume agents in a multi-agent system can cooperate and learn from each other’s
actions. Through cooperative learning, agents update their policies based on the rewards



Algorithms 2023, 16, 240 10 of 25

received from the environment and the actions of other agents. This iterative process
converges towards strategies that maximize the collective reward of the system. �

Hence, to do this, assume that each user node has an information link of xi where i
represents the ith information of reward reciprocity, each user determine the length of time
the communication occurs and sets as xi(0) and communicate through a directed graph and
undirected graph (ρs, ε) [25], where ρs = {1, . . . .n} user nodes and ε ⊂ ρs× ρs is an edge
set of ordered pair of nodes. Assuming the edge (i, j) ∈ ε denotes the user node j which
obtains information from i (not vice versa!) (directed) and undirected vice versa works.

Therefore, the amount of information flow is proportional to an accumulated amount
of reward link formation. This link accumulation constitutes reactions, actions, and neigh-
bor bond. The dynamics of accumulation of this is a dependent on a consensus breaking
factor (CBF) and is designed by having direct messenger link with proportional consensus
breaking factor. CBF is defined here as an information bonding link after the node decision.
Here, we refer CBF as factors that are depended on influencing information, which can
be gathered by other linking constraints to influences as k0 and k1 are which are rate of
constants of influence and de-influence respectively.

Hence, the establishment of links depends on the rate of reactions with the dependence
of neighbor bond. The explanation of the cooperative learning and strategy creation is
shown in Appendix B.2. The algorithm states a multi-agent cooperation with class and the
constructor as agents, states, actions, reward, and trade-off factors. Here, the reward is used
to compute from state and actions, whereas the joint policy and strategy is achieved by
computing optimal joint policy [18,29–33]. This is formulated from the below formulation
and with respect to a neighbor bond, when given as,

Neighbor Bond(xi(t)) = −in f ormation graph (G(t)) ∗ in f ormation state
(

x(t)′
)

(7)

where G(t) = [pi,j(t)]εRn×n is a Laplacian communication flow [24] pi,j(t) in f ormation
and (x(t)) = [ x1 . . . . . . .xn] is an information at any state.

communication f low rate k0,i = (rate o f reaction coe f f icient)λ0,1∗
exp((Activation state o f Bond)x0,i(t)/dynamic event change Θ))

(8)

The activation state of bond represents the amount of influence that a node has on
other nodes in the network, and the communication flow rate represents the rate at which
information is exchanged between nodes. For example, in the context of the COVID-19
pandemic, the activation state of bond represents the level of trust or authority that a
person or organization has in providing accurate and trustworthy information about the
pandemic. The communication flow rate represents the speed at which information is
shared or disseminated among different groups or communities.

We developed a social network formation model with large number of parameters
and latent variables. We first allocated values to the unknown variables before testing the
model’s validity. We learned the legacy vectors using real-world network observations,
assuming the real-world networks were at or near pairwise symmetry, to equip our model
with the capacity to match real-world networks. Thus, to construct the latent influence
strategy, we defined Equation (9) to establish the optimal accumulated strategy, incorpo-
rating the communication link topology. This topology represents the organization and
configuration of nodes and their connections within a network, denoted mij.

kπi

0,i = −λ0,1exp(
β

i,j
πi (s)

minmax
(
σ, µi,j

)
,
) (9)

where σ covex and µi,j concave as joint event evaluation.
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Hence, the optimal accumulated strategy is be defined as,

.

kπi

0,1→i,j(t) = −∑n
j=1 mij

(
kπi

0,1→i(t)− kπi

0,1→j(t)
)

, i = {1, . . . .n} (10)

where mij defines the communication link topology.

4.3. Spread-Based Analysis for Cooperative Learning

In the context of spread-based analysis, “spread” refers to the dissemination or propa-
gation of a phenomenon, such as the transmission of infectious diseases within a population.
Spread-based analysis focuses on understanding and predicting the patterns of this propa-
gation, considering various factors and data sources that may influence the spread. Here,
we introduce a spread-based analysis approach for cooperative learning, designed to eval-
uate the potential of social data in forecasting the spread of disease with the help of the
susceptible, exposed, infectious, and recovered (SEIR) model.

The SEIR model is a popular epidemiological model for the spread of diseases. To
predict the development of infectious diseases in a community, the SEIR model reflects the
progression of individuals through several stages of infection, namely from susceptible
to infected to recovered. Individuals are divided into four stages according to the SEIR
model [12,31–34]. Susceptible (S): People in this stage are at risk of contracting the disease,
but have not been exposed to it yet. Exposed (E): People in this stage have been exposed to
the infection but are not yet contagious. They may not have symptoms just yet because
they are still in the incubation stage. Infected (I): People who are in this stage can spread
the illness to others. Recovered (R): Those in this stage have made a full recovery from the
illness and have developed immunity.

In order to explain how people move between various stages based on variables
such as the transmission rate, recovery rate, and incubation duration, the SEIR model
uses differential equations. By utilizing these equations, the SEIR model can forecast the
progression of the disease over time and assist decision-makers in comprehending the
effects of various control methods. In this study, the spread analysis model is defined
through reward optimization of a social network with the help of physical network data.
The model represents basic stages of susceptible, exposed, infectious, and recovered, in
which the probable infections are defined with respect to an event, situation, or state.

Lemma 3. Cooperative learning enables the multi-agent system to adapt to the spread of a disease,
minimizing its impact on the network.

Proof. Assume agents in the multi-agent system can cooperate and learn from the spread
of the disease. Agents utilize spread-based analysis to update their policies based on the
current state of the disease and its impact on the network. As the disease spreads, agents
adapt their strategies to minimize its impact, leading to a reduction in the rate of infection
and an overall improvement in the network health. �

Here, we propose using cooperative strategy learning, which has a low reward with
respect to reward accumulation dynamics. However, to create a consensus in reward
distribution, CBF is selected for any unmatched micro events in case of any macro event.
The micro and macro events refer to different levels of analysis or granularity when
examining events within a system, such as a network or a social setting. Hence, the reward
spread is defined as the exponential of the learning-based cooperation, cumulative infection
rate, and environment. The spread process is then defined as the maximization of reward
spread, which is to maximize the spread estimation ξ(s) by considering the exponential of
the transmission rate between individuals (i, j), and is formulated as shown below,
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Spread ξ(s) = maxπi [exp(
β

i,j
πi (s)

minmax(σ,µi,j),
)× Lt (cummlative in f ection location rate)×

ηt (Dynamic Environment Variable)]
(11)

This is considered in order to understand the spread and reward processes considering
granularity. The social data bank analysis provides a building block to identify susceptible
nodes by monitoring the activities of friends and relatives. The algorithm achieves this by
scrutinizing word clusters and identifying hidden outbreaks within the network. These
rewards and allocations help track the progression of disease and offer insight into its
impact on different individuals and communities. The SEIR model serves to simulate the
dissemination of infectious diseases, providing information on parameters such as event
occurrence, infection rate, geographical spread, and alterations in the spread rate. The SEIR
model is supplemented by data from physical sources, contributing to a more accurate
representation of the disease’s propagation.

The method shown in Figure 3 incorporates microenvironment and random change
exposure effects, along with social data bank analysis. This increasing complexity repre-
sents the diverse factors affecting disease transmission, such as climate change, population
mobility, and public health initiatives. Random change exposure effects reveal the disease’s
impact on various individuals and communities, influenced by factors such as behavior,
socio-economic conditions, and public health measures. The algorithm includes a block for
past actions, assisting in tracking the progression of disease and understanding its influ-
encing factors. This block uses data from the SEIR model and social data bank analysis to
determine optimal measures and policies for preventing and slowing the spread of disease.

Our proposed technique merges attention-based cooperative learning with a partially
observable setting, allowing for the efficient utilization of diverse data sources to predict
disease dissemination. The spread-based analysis offers comprehensive insight into the
reliability of social data for predicting the spread of disease, while the cooperative learning
algorithm uses the SEIR model to predict the spread in specific locations, as demonstrated
in Appendix B.3. The model algorithm takes into account various factors, namely trans-
mission, recovery, and the incubation period, concerning social data to forecast the spread.
The algorithm calculates the disease spread by considering the combined effect of these
factors in a cooperative manner, exponentially emphasizing the importance of each fac-
tor’s contribution and accounting for the cumulative effect of these factors over time in a
dynamic environment.

4.4. Determination of Spread Dynamic Variable

Determining the spread dynamic variable is a critical aspect of understanding disease
transmission. In the current pandemic situation, developing effective methods to gauge
disease spread has become increasingly vital. The spread dynamic variable represents the
rate at which a disease is transmitted from one person to another, influenced by factors such
as infection rate, location, and time. The selection of dynamic variables is best suited for
statistical tests or criteria that employ automatic variable selection techniques to optimally fit
the sample based on statistical information criteria, including stepwise regression and shrink-
age methods. When selecting a variable, the pros and cons are always considered as potential
factors for defining and selecting a model in order to justify the global optimal criteria, where
the variance of outcomes changes over time and increases the number of computations. It is
known that as variables increase, the model’s complexity grows exponentially. Consequently,
when time series data incorporate dynamic variables, the correlation may generate nonsensical
relationships that affect accuracy and precision [30,33–35].
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Figure 3. Adaptive algorithm for determining the spread of disease.

In a dynamic social network, the data source consists of discrete timestamps for a
specific period, where interconnected nodes have a high likelihood of forming strong recip-
rocal links, creating a dynamic cluster. However, this dynamic cluster poses a challenge, as
it can cause long-term bias in the social network. Smaller perturbations can lead to signifi-
cant changes in relationships and bonds within the network, which can be identified as
variances from the current state. As a result, small changes can lead to increased variances
in link reciprocity due to alterations in the network and the presence of unnecessary links
(noise). Furthermore, a cooperative strategy is employed to detect these temporal links and
achieve optimal information dissemination.

Lemma 4. The spread dynamic variable (SDV) quantifies the relationship between the spread of the
disease and the actions taken by the multi-agent system.

Proof. Assume the spread dynamic variable is a function of the disease spread and the
actions taken by the multi-agent system. As the system adapts its policies to minimize the
impact of the disease, SDV reflects the effectiveness of these actions. SDV converges as the
multi-agent system learns to optimally respond to the spread of the disease, quantifying
the relationship between the system’s actions and the disease spread. �

To maximize the objectivity of this strategy, we optimize the function by compositing
two or more variables, which results in better network topography by defining the cost
difference of the objective function. Assuming the linear objective function is given by
the changes in nodes evolution x over the period of t, dx

dt = ki − ki+1x. If the variable
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environment is stationary for a given time interval, the parameter ki and ki+1 will result in
the following constraints,

x(t) = xm − (xm − x0) exp(−ki+1t) (12)

where a steady state xm = ki
ki+1

and x0 ∼ initial value, and the dynamic variable will be
defined as,

ηt
i,j
πi = exp

 kπi

0,1→j(t)− kπi

0,1→i(t)

minmax
(
µi,j
)

 (13)

Hence, the optimal cooperative spread will be defined as,

Oπi
t =

{
ηt

i,j
πi−ηt

1,0
π0−......−ηt

n,n+1
πn

}
{{

ηt
j,i

π j−ηt
0,1
π0−......−ηt

n+1,n
πn

}} = ∑
i,jεN
t≥0

{
1−

exp
[
−ηt

i,j
πi (1−χi,j)πp(hi,j)

]
1−exp(−∑i,j>−1

[
ηt

i,j
πi (σ(t))χi,j

]
+ηt

i,j
πi (σ(t+1))(1−χi,j))πp(hi,j)

}
(14)

χ, is a critical state for determining action.
Here, Equation (12), represents the changes in the evolution of nodes over a period.

Here, x(t) is the value of the node at time t, xm is the steady state value, x0 is the initial
value, and ki+1 is the parameter that determines the rate of change of the node. The
equation shows that the value of the node approaches the steady state value exponentially
over time. Equation (13) calculates the spread dynamic variable (SDV), which measures the
relationship between the spread of a disease and the actions taken by the multi-agent system.

Here, ηt
(
πi)i,j is the SDV between nodes i and j at time t, k(0, 1→ j)πi

(t) is the number
of connections from node i to node j at time t in the cluster πi, kπi

0,1→i(t) is the number of
connections from node j to node i at time t in the cluster πi, and µi,j is a normalization factor.
It calculates SDV as the difference between the number of connections to node j and the
number of connections to node i, normalized by the maximum and minimum value of SDV.
Hence, Equation (14) determines the optimal cooperative spread in the network, given the
SDV and a critical state of action determination, χ. The equation calculates the probability
that a susceptible node will transition from cooperation to defection or from defection to
cooperation, based on the determined SDV and the critical state of action. The equation
involves multiple parameters such as πi, which is the cluster at time t, where πp(hi,j) is the
probability of a node h to take an action in cluster πi, and σ(t) is the probability of a node
to take a specific action at time t.

The method determines the network configuration at any given time by utilizing
clusters extracted from the previous time step. This approach introduces a two-stage
event-based adaptive algorithm, illustrated in Figure 3, which employs an event-tracking
system. For each time step, the associated components of the spread collected from the last
timestamp serve as the initial information for the state. The distribution surrounding the
seeds is established by optimizing the ratio of the average internal and external degree of
information of the local cluster. The bursty nature of social networks contributes to the
complexities of various social and economic phenomena. This event-based spread implicitly
acknowledges that network links change over specific time periods. This spread analysis
highlights the bursty character of social networks [37,39,41–43], where the dynamics of
social and economic impact are compared for spread analysis.

Social network analysis offers a method for examining communications and relation-
ships within groups, providing various measures for understanding and quantifying the
spread of information, influence, or other characteristics within a network. To ascertain
situational spread, it is essential to have a clear understanding of the cumulative infec-
tion location rate (Lt). To achieve this, information fusion is employed to identify the
relationships between objects. In such contexts, one approach to reduce the knowledge
presented to the user involves classifying objects based on their capacities or properties [18].
However, in some instances, it may be more beneficial to recognize the observed entities
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solely according to their relationships with other entities. This relationship is measured
through a similarity computation using the Cosine model for a CF model [25,35].

Lt

(
xi(t), ai, u

)
=

∑
i,jεN
uj UserSim

(
ui, uj)× r

(
xi(t), ai, uj)

∑
i,j
r(xi(t),ai, uj)

∣∣∣UserSim(ui, uj)
∣∣∣ (15)

where u represents a location rating for the spread corresponding to each action. The
location rate calculates the cumulative infection location rate (Lt) by considering the
similarity between users (UserSim) and their relationship with other entities. It takes into
account the observed entities and their relationships, providing a metric to measure the
spread of influence or information within the network. This analysis is conducted using
Twitter data related to COVID-19 and physical data obtained from the Johns Hopkins
website [40].

To identify vulnerable nodes, word categories were grouped into positive feelings
regarding COVID-19. The study created a sampling space with homogeneous spread
and actions, but did not fully represent influencing locations. Positivity rates in specific
cities were calculated using physical data and similarity scores to map exposed users.
Figure 4 shows that a cooperation estimation and strategy are key components, involving
information processing and network distribution. A triangular agenda visually represents
this, and the data assess social trust, trust likelihood, and reciprocity-based network actions.
Distributed analysis, decision-making, and reliable network ties form the cooperation
strategy to foster social trust and effective cooperative spread.

Figure 4. Link trusts evaluation after influence score.

As we know, the social and physical network establishes a multiagent system that is
based on decentralized cooperation. It represents the nodes that forward critical informa-
tion about events or situations in possible conditions. The situations are filtered from the
data gathered from physical locations that are behaving abnormally from the threshold
values at that time interval, corresponding to the social data. This leads to categorizing the
words from the social data in ascending order. The first level is physical data, as per Twitter
user-based importance. This data directly relates to user updates copied or correlated with
agencies’ reports. This is the raw critical information categorized from real-time data using
physical data. Assuming each user network node u ∈ X, where X is a set of all of the
network nodes, with the capability to perceive a local and global directed and direct path
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for link reciprocity. Each node xi receives observation as yi via a noisy observation link
Ai : s→ p

(
yi ) , such that the node i observes a random variable yi ∼ Ai(Event|s) for the

environment state s. Thus, the collective information links is defined as [5],

Ii
t =

{
Ai,
(

Oπi

t

)
jεN

(Spread ξ(s)j→i) : (t = 0 . . . t− 1)
}
∪
{

Ai
t

}
(16)

Therefore, utilizing the control algorithm [5],

Kgεp(sp,t, Ii
t = ρ

)
= max

g
.[∑

ρ
i=1 li ∗ τi ∗ Im(lat(i)) + (1− λ1−

λ2). ∑T
t=0, ∑N

i=1[xi ∗ (γ, t + 1) ∗ Im(Cat(i))] + At+1
γ,t ∗ {λ1 ∗ Ct ∗∑m

j=1 CTScore(j)∗

yj. ∗ (Im(Cat(i))) + λ2 ∗ CE ∑
p
k=1 SS(k) ∗ zk ∗maxi∈T,SSk (Im(Cat(i)))}]

(17)

As time passes, the size of information increases, leading to memory utilization
challenges. To address this issue, the latent space is defined using weight sharing and an
attention mechanism that incorporates a policy adapted to the multi-agent environment.
Figure 5 presents the effects of various factors on the spread for decision-making policies
within a network. The figure demonstrates the analysis results obtained through a control
algorithm for sampled space, action influence, location influence, and spread influence.
Furthermore, social spread is observed by measuring behavior changes over time using
location-based COVID-19 datasets from the US. This approach, adapted from previous
work, focuses on data source changes rather than behavior frequencies. Figure 5 reveals
a relationship between spread and action influence, as well as their cumulative effect.
Influence spread is examined using influence space scores, and action space helps assess
network cooperation and trust. It presents the adaptive algorithm results for a 49,999-node
sample space, showing the influence scores, policy accumulation, and spread decision rates
for seven nodes. Influence scores (0–1) indicate node impact, policy accumulation (0–2.56)
refers to decision-making policy buildup, and spread decision rates (0.05–0.32) represent
policy dissemination rates.

Nodes with higher influence scores have higher policy accumulation and spread
decision rates, implying greater effectiveness in decision-making and policy dissemination.
Higher spread decision rates correlate with higher policy accumulation, indicating that
effective policy dissemination leads to greater policy accumulation. This information can
identify key nodes and optimize the spread of policy decision-making. This knowledge
can be applied to improve network resilience, particularly in situations where cooperative
behavior is essential. By understanding the dynamics of social spread and focusing on
influential nodes, it is possible to promote cooperation and trust within the network,
leading to better decision-making and more effective policy implementation.

The sampled space represents the number of individuals in the network capable
of making decisions and influencing others. Action influence measures the impact an
individual’s actions have on the dissemination of decision-making policies within the
network. As shown in Figure 5, the highest action influence value was 0.71, while the
lowest was 0.07. Location influence quantifies the effect an individual’s location has on the
propagation of decision-making policies throughout the network. In Figure 5, the highest
location influence value is 0.87, and the lowest is 0.31.

The spread influence measures the collective impact of the network on the propagation
of decision-making policies. This information reveals that the dissemination of decision-
making policies within a network is affected by individual actions, location, and the overall
influence of the network. Upon examining this data, it becomes evident that the spread of
decision-making policies in a network is not exclusively reliant on a single factor; rather, it is
shaped by a combination of various factors. This underscores the significance of taking into
account both individual actions and network influences when assessing the distribution of
decision-making policies in a network.
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Figure 5. The spread of disease with actionable analysis.

5. Analysis and Discussion

To analyze the data, nodes share rewards with other nodes in the network based on
local observation [28,29,40]. We solved the model using a combination of influence data,
policy optimization, Monte Carlo tree search (MCTS), and sampling for policy iteration.

5.1. Observation Model

The setup is designed for a cooperative setting with partial observability, characterized
by a decentralized nature in which nodes share rewards with all other nodes concerning
the reward function and transition model, except for the difference in neighbor bonds.
Each node in the network has local observations for any state s, without reciprocity links to
other agents and without maintaining a global belief vector. To solve this model, influence
data are used to identify the observation points for all nodes, which are then optimized
by defining policies using the influence data [5,40]. This process maps local observation
histories to actions, determining the predicted spread. Monte Carlo tree search (MCTS) and
sampling are used for policy iteration.

For multi-agent networks, MCTS actions are either predefined or set in a default
offline state by defining the action space. However, our model employs a search process in
which actions are repeated for flexible operation within a sampled hierarchical system. In
this setup, user nodes simultaneously choose actions without knowing the future actions
of other nodes, receiving immediate intermittent rewards for transitioning to another
consecutive state. However, the transition states are dependent on each node’s actions.
Each state agent aims to maximize cumulative rewards by following the optimal policy
using the ε-greedy search algorithm [35],

π
i,j
t

(
ai
∣∣∣st

)
=

{
1− ε + w

min(|X|,|Y|) i f a = argmaxaεA = Kgεp(sp,t, Ii
t = ρ

)
w

min(|X|,|Y|) otherwise
(18)
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The search space for multi-node networks presents several key challenges, such as
asynchronous decisions, flexibility, and extensive cooperation. Asynchronous decisions
arise in a multi-node network due to varying link durations and asynchronous endpoints,
leading to different reward accumulations. To address this, a strategy that enables decen-
tralized synchronization is necessary, allowing each node to make independent macro
decisions. Furthermore, a network’s policy should be designed to be learned and adapted,
ensuring flexible adjustments in response to events or anomalies. Relying on predefined
nodes may result in biased systems with limited actions. In addition, extensive cooperation
is essential to maintaining system flexibility. The network should disregard primitive
actions that are unsuitable for real-time changes in information (ϕ). An option policy is
introduced based on the action space when π(a|s) = 1, and flexibility termination is 1, then
ϕ→s.

5.2. Evaluation Points and Results

The evaluation of the proposed algorithm for multi-node networks focuses on learning
nodes, quick convergence, and robust solutions for both cooperative and non-cooperative
links with the key performance metrics. By cross-referencing the system state and selecting
communication strategies based on random starting action links, the algorithm reduces
computational costs. It learns from clustered social data on key sentiments and chooses
macro actions, which enables efficient decision-making and policy implementation [5].
The algorithm makes decisions quickly to avoid action merging and implements a greedy
policy to improve performance. Each scenario is indexed with an initial variable of 0 to a
desired indexed γdis.

To ensure the smooth functioning of the algorithm, several assumptions are made,
including the need for pre-existing data, the requirement for nodes to communicate effec-
tively, and the selection of a cooperative strategy after message exchange. Additionally, a
random selection of starting action links is assumed to reduce computational costs. The
algorithm effectively generates macro actions by learning from various scenarios depicted
by clustering nodes, as shown in Figure 6, in different stages of the spread of COVID-19.
Figure 6 depicts the various stages of clustered nodes, including the initial affected, infected,
and recovery stages. The figure demonstrates the spread of infection as the simulation
progresses and the algorithm learns macro actions to control the spread. Monte Carlo tree
search (MCTS), along with a cooperation factor, is employed to control the nodes, enabling
effective management of the spread.

Decision convergence is crucial for the algorithm’s performance, as it replicates reward
distribution and eliminates action merging cases for multiple nodes. Implementing a
greedy policy improves performance while increasing the number of iterations. Policy
accumulation plays a vital role in efficiently distributing spread decisions in the network. By
utilizing decentralization for multi-node networks, the algorithm allows for asynchronous
decision-making and unbiased policies. This approach improves the accuracy of the results
and enables the optimal distribution of spread decisions in the network, providing valuable
insights for researchers and policymakers in response to the COVID-19 pandemic.

The collected data consisted of 185,755 tweets with an average of 65 words per tweet,
giving a word cloud of 76,781 words [44]. The physical data were analyzed using the
SEIR model to define the rate of infection and map the accumulated location infection
rate. In order to assess the results and policies of the algorithm, key metrics were used as
critical performance indicators to evaluate the effectiveness of decision-making policies
in controlling disease transmission in a social network. These metrics include infection
state, policy decision convergence, and policy accumulation with influence. The optimal
cooperative spread metric can be used to identify the most influential nodes in the network
and optimize the spread of decision-making policies. These metrics can be measured using
accuracy, precision, F1 score, and confusion matrix to ensure the validity of the results and
can be seen in Figure 7a,b. Table 1 shows the location and key metrics to predict infection
state in the US states of New York and Florida.
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Figure 6. Clustered nodes in the network at different stages.

Table 1. Metric for action determination in states.

Location Infection State Confusion Matrix

New York Low TP: 42, FP: 3, FN: 8, TN: 447
New York Medium TP: 98, FP: 17, FN: 42, TN: 343
New York High TP: 162, FP: 17, FN: 38, TN: 283
New York Critical TP: 187, FP: 42, FN: 13, TN: 258
New York High TP: 125, FP: 5, FN: 10, TN: 450

Florida Low TP: 44, FP: 6, FN: 9, TN: 441
Florida Medium TP: 121, FP: 68, FN: 19, TN: 259
Florida High TP: 67, FP: 129, FN: 23, TN: 128
Florida Critical TP: 46, FP: 164, FN: 9, TN: 108
Florida High TP: 89, FP: 31, FN: 38, TN: 266

TP: true positive, FP: false positive, FN: false negative, and TN: true negative.

Figure 7a,b shows our evaluation assessing various performance metrics such as
accuracy, precision, F1 score, and ROC AUC at different time points. In Figure 7a, our
analysis showed that the decision convergence was generally high across all locations and
time points, with an average convergence rate of 67%. We found that policy accumulation
with influence played a significant role in determining the model’s performance metrics. A
higher influence score was associated with better accuracy, precision, F1 score, and ROC
AUC, indicating the importance of cooperation and attention-based analysis for optimal
decision making. The model’s performance in New York was outstanding, with accuracy up
to 0.95 and an F1 score up to 0.91 with an average of 0.69 for different sampled periods. In
Florida, the model’s performance was relatively good, with accuracy and F1 scores ranging
from 0.64 to 0.88. Our analysis has important implications, as it highlights the importance
of incorporating policy accumulation with influence, cooperation, and attention-based
analysis in decision-making models. These models can be effective at managing the spread
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of infectious diseases across different locations and infection states. Figure 7b depicts the
results of the key metric analysis based on the physical data, where the average accuracy
was found to be 87%. Notably, the figure reveals periodic dips in accuracy, which were
caused by the accumulation of influence data in the algorithm policy-determination process.

Figure 7. (a) Key metric of social data analysis. (b) Key metric of physical data analysis.

6. Model Limitations and Challenges

The spread analysis presented in this study provides a thorough and objective account
of using social data to evaluate the actual spread of disease. Every node in a network
influences the potential outcomes, and this has been a key research area in reinforcement
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learning for making sequential judgments based on actions and information. The analysis is
based on multi-agent cooperation. Game theory tools and complex optimization methods,
which have been successfully applied in a variety of contexts and applications where
cooperative learning is used, are needed for the multi-agent study. The study in this paper
makes use of attention-based cooperative learning and a method that makes use of partially
witnessed settings in order to utilize a variety of data sources. A stochastic game with a
common reward is used to simulate the states and actions.

To discover the best information state with all feasible policies, generational steps
must be taken. The challenge, however, is that nodes make their own observations and
decentralized judgments, which causes a nesting problem and raises the computing cost
of the research. In order to avoid the convergence result following the standard gradient
strategy, some assumptions were established to confirm the link quality setting with regard
to neighbor bonds. In addition, the proposed cooperative algorithm, cooperative learning,
and dynamic variable demonstrated a direct correlation of disease spread.

7. Conclusions

In conclusion, the spread analysis described in this paper provides a comprehensive
objectivity on the reliance of social data to understand the possible spread of a disease. The
multi-agent analysis uses tools from game theory and non-trivial optimization techniques,
and is based on cooperative learning to make sequential decisions based on actions and
information. The proposed cooperative algorithm shows a direct correlation between the
spread of information and the spread of the disease, with a correlation range of 45% to 81%
depending on the policy accumulation.

The study provides an essential way to utilize diverse data sources to find coopera-
tiveness in a network and demonstrates the potential of multi-node cooperative problems
in solving location determination. However, the analysis faced some limitations, including
the issue of nodes making their own observations and making decentralized decisions,
leading to an increased computational cost and the need for further optimization.

In future work, we need to expand the objectives and include more data sources.
This will require further optimization to tune the system parameters for an improved
performance. The study highlights the importance of effectively utilizing social data and
demonstrates the potential for using cooperative learning in understanding the spread of
diseases. With further advancements and improvements, this analysis can contribute to the
development of effective disease control and prevention strategies.

Author Contributions: Conceptualization, H.S. and R.S.; methodology, H.S.; software, H.S.; Valida-
tion, H.S. and R.S.; writing—original draft preparation, H.S. and R.S.; writing—review and editing
H.S. and R.S. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. List of notations used in the paper.

Symbols Definition

ρs, ρ, st, li
User nodes, threshold values of physical sensor data, state of the event at time t, and indicated variable
for time-based sensor data, respectively

N, n Number of tweets considered for summarization (in the time window specified by user) and number
variable, respectively
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Table A1. Cont.

Symbols Definition

T, m, p, sp,t
Total time, number of distinct content words and subevents included in the n tweets, and state of
subevent at time t, respectively

msize Number of tweets containing distinct words
i, j, k, a Index for tweets, content of words, subevents, and classes, respectively

xi, yj, zk Indicator variable for tweet i or bonds, for content word j, and for subevent k, respectively
CT_Score(j) Feature score of content word

SS(k), ω The score of subevent k and trade-off factor, respectively
Im Importance/informative score of class a

Cat(i), lat Class of tweet i and lateral averaged required data, respectively
τ, g, π Optimal joint cooperative policy, policy determination, and link reaction policy, respectively
λ1, λ2 Tuning parameter—relative weight for the tweet content word and subevent score, respectively
CE, Ct Set of categorized words and subevents present in tweets, respectively

ai, γi, β Actions for i tweets, reward variable for i tweets, and reward function accumulator, respectively
hi Actions ai history.

k0, k1 Influence and de-influence constraints, respectively
xi(t)

′,G(t), x(t)′ Neighbor bond, information graph, and information state, respectively

k0,i, λ0.1, x0.i(t), Θ
Communication flow rate, rate of reaction coefficient, activation state of bond, and dynamic event
change, respectively

kπi

0,i Optimal accumulated strategy
ξ(s), Lt, ηt Spread of infection, cumulative infection location rate, and dynamic environment variable, respectively

Appendix B

Appendix B.1

Algorithm A1: Learning-Based Multi-Agent Cooperation Algorithm

1. Define variables
2. states = t actions = n
3. Define reward function for a single node

def node_reward(states, actions, node_number):
reward = 0 for n in range(actions):
for t in range(states):
reward += omega * gamma(states * actions, next_state) return reward

4. Define reward function for multiple nodes

def multi_node_reward(states, actions, nodes):
reward = 0 for i in nodes: reward += node_reward(states, actions, i)
return reward

5. Define policy function

def policy(actions, states):
policy = 1 for i in nodes: for j in nodes: for n in range(actions):
for t in range(states):
policy * = pi(actions, i, j, t)/states return policy

6. Define optimal reward function

def optimal_reward(policy, states, actions, nodes):
reward = 0 for i in nodes: for j in nodes:
reward += beta(policy, i, j, states) return reward

7. Define optimal joint policy function

def optimal_joint_policy(policy, states, actions, nodes):
joint_policy = 0 for i in nodes:
for j in nodes:
joint_policy += tau_policy(policy, states, actions, i, j)
return joint_policy
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Appendix B.2

Algorithm A2: Cooperative Learning and Strategy Creation Algorithm

1. Initialize variables:

t = 0 (time step)
s_0 = initial state of the system
N = number of nodes
n = number of actions
ω = trade-off factor (0 to 1)
γ = reward
π = link reaction policy
h = actions history

2. Calculate reward for each node:

β
i,j
πi (s) = E

[
∑

t≥0, i,j≥0
n>−1 ωtγi,n(st × an,t, st+1

)∣∣∣an,i→j,t, xi(t) ∼ π(Event|st), s0 = s
]

3. Average reward to obtain global optima:[
∑t≥0

n>−1 ωγ
(
st × an,t, st+1

)
,
]

= 0

4. Create link reaction policy:

π(a|s) := ∩iεN,n>−1,t≥0πi,j
(

an,i→j,t

st

)
5. Calculate optimal reward link:

β
i,j
πi (s) = E

[
∑

t≥0, i,j≥0
n>−1 ωtγi,n(st × an,t, st+1

)∣∣∣an,i→j,t, xi(t) ∼ τt
π , s0 = s

]
6. Calculate optimal joint cooperative policy:

πi,j : si,j
t → ∆an,t

7. Update actions history:

τt
π = ∏

h′ :h′avh
πp(h′ |st)

8. Repeat steps 2 to 7 until terminal state is reached

Appendix B.3

Algorithm A3: Spread-Based Analysis for the Cooperative Learning Algorithm

def spread_dynamic_variable(network, spread_rate, spread_time, spread_initial_nodes):
spread_status = {}
for node in network.nodes:

spread_status[node] = 0
for node in spread_initial_nodes:

spread_status[node] = 1
for t in range(spread_time):

for node in network.nodes:
if spread_status[node] == 1:

for neighbor in network.neighbors(node):
if random.uniform(0, 1) < spread_rate:

spread_status[neighbor] = 1
return spread_status
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