
Citation: Barghi, A.; DeFord, D.

Stirling Numbers of Uniform Trees

and Related Computational

Experiments. Algorithms 2023, 16, 223.

https://doi.org/10.3390/a16050223

Academic Editor:Jesper Jansson

Received: 1 February 2023

Revised: 30 March 2023

Accepted: 13 April 2023

Published: 27 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Stirling Numbers of Uniform Trees and Related
Computational Experiments
Amir Barghi 1,*,† and Daryl DeFord 2,†

1 Department of Mathematics and Statistics, Saint Michael’s College, Colchester, VT 05439, USA
2 Department of Mathematics and Statistics, Washington State University, Pullman, WA 99163, USA
* Correspondence: abarghi@smcvt.edu
† These authors contributed equally to this work.

Abstract: The Stirling numbers for graphs provide a combinatorial interpretation of the number
of cycle covers in a given graph. The problem of generating all cycle covers or enumerating these
quantities on general graphs is computationally intractable, but recent work has shown that there exist
infinite families of sparse or structured graphs for which it is possible to derive efficient enumerative
formulas. In this paper, we consider the case of trees and forests of a fixed size, proposing an
efficient algorithm based on matrix algebra to approximate the distribution of Stirling numbers.
We also present a model application of machine learning to enumeration problems in this setting,
demonstrating that standard regression techniques can be applied to this type of combinatorial
structure.

Keywords: Stirling numbers for graphs; cycle covers; random algorithms; classification problems

1. Introduction

In a recent paper [1], we showed that several global graph statistics applied to trees of
fixed order realize their extrema at paths and stars as the two opposite extremes. In addition
to radius and diameter, these statistics include global degree centrality, global closeness
centrality, and global betweenness centrality. Moreover, as we define below, graphical
Stirling numbers of the first kind for trees and graphical factorials for trees also follow a
similar pattern. We discuss algorithms for computing these values and generating the cycle
covers, as well as introducing randomized methods for approximating these constructions.

In this paper, we also apply statistical learning methods to an enumerative combi-
natorial problem, using the algorithms mentioned above to generate the training sets.
Applications of statistical learning and machine learning techniques in combinatorics is a
recent development that can be very useful for problems such as the one we are considering
in this paper where the underlying enumeration problem is #P complete [2,3]. One of our
main objectives is to train models on trees of fixed order with global graph statistics as
predictors and Stirling numbers of the first kind as the response variables. We then compare
different models based on their performance on a test set. The other objective is to use
these graph statistics to classify trees as “path-like” or “star-like”. To this end, we will use
a polynomial, introduced by Liu [4], that uniquely characterizes unrooted and unlabeled
trees—we refer to these polynomials as distinguishing polynomials.

Outline

The organization of the paper is as follows: We discuss the mathematical background
for the paper in Section 2. This is followed by computational algorithms for exact and
probabilistic enumeration in Sections 3 and 4, respectively. In Section 5, we use the Stirling
numbers computed by the previous algorithms as inputs for statistical learning methods,
demonstrating that these measurements are effective predictors of structural properties of

Algorithms 2023, 16, 223. https://doi.org/10.3390/a16050223 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16050223
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-4410-5819
https://orcid.org/0000-0003-2032-3168
https://doi.org/10.3390/a16050223
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16050223?type=check_update&version=1

Algorithms 2023, 16, 223 2 of 22

trees in both regression and classification tasks. Finally, in Section 6 we discuss potential
future applications of this work.

2. Mathematical Preliminaries

Let G be a graph on n vertices. The k-th Stirling number of the first kind of G, denoted
by [Gk], is the number of partitions of G into exactly k disjoint cycles, where a single vertex is
a 1-cycle, an edge is a 2-cycle, and cycles of order three or higher have two orientations. The
graphical factorial of G, denoted by G!, is the total number of such decompositions without
any restrictions on the number of cycles involved, i.e., G! = ∑k [

G
k]. For results regarding the

Stirling numbers of the first kind and graphical factorials for families including paths, cycles,
complete bipartite graphs, and fans, among others, see articles by Barghi [5] and DeFord [6].
These results were initially motivated by a combinatorial model of seating rearrangements
presented by Honsberger [7] and further analyzed by Kennedy and Cooper [8] and Otake,
Kennedy, and Cooper [9].

We showed [1] that for any tree T on n vertices and any integer n ≥ k ≥ d n
2 e,[

Sn

k

]
≤
[

T
k

]
≤
[

Pn

k

]
,

where Sn and Pn are the star and path of order n. Consequently, we have

Sn! ≤ T! ≤ Pn!.

We now define global closeness and between centralities. Let G be a connected graph.
For a vertex v, closeness is defined as

clsG(v) =
n− 1

∑u∈V d(u, v)
,

where d(u, v) is the distance between u and v. The global closeness centrality, which is a
Freeman centrality measure [10,11], can be defined as

Ccls(G) =
∑n

i=1(clsG(v∗)− clsG(vi))

H
,

where n = |V(G)|, v∗ is a vertex in G such that cls(v∗) = maxv∈V cls(v), and H is the
maximum value the nominator of Ccls(G) realizes for all connected graphs of order n.

For a vertex v in a graph G, the betweenness centrality is defined as

btw(v) =
1

(n−1
2)

∑
u,w∈V−v

P(u, w; v)
P(u, w)

,

where P(u, w) is the number of shortest paths from u to w and P(u, w; v) are such paths
that go through v. We divide by (n−1

2) to normalize this centrality measure. The global
betweenness centrality, which is a Freeman centralization [10,11], is defined as

Cbtw(G) =
∑n

i=1(btwG(v∗)− btwG(vi))

H
,

where n = |V(G)|, v∗ is a vertex in G such that btwG(v∗) = maxv∈V btwG(v), and H is the
maximum value the nominator of Cbtw(G) realizes for all connected graphs of order n. In
the case of Cbtw(G) it does not matter whether we use a normalized or nonnormalized
definition for Cbtw(v).

We showed [1] that for any tree T of order n, where n ≥ 2,

Ccls(Pn) ≤ Ccls(T) ≤ Ccls(Sn)

Algorithms 2023, 16, 223 3 of 22

and
Cbtw(Pn) ≤ Cbtw(T) ≤ Cbtw(Sn).

For more information on different centrality measures, especially in the context of social
networks, see a paper by Borgatti [12].

We now define distinguishing polynomials for trees. First, we need to define them for
rooted unlabeled trees. For a rooted tree Tr, where r is the root, the primary subtree is a
subtree S of Tr such that S has the same root as Tr and every leaf of Tr is either a leaf of S or
is a descendant of a leaf of S. For a primary subtree S of Tr, we define Q(S; x, y) = xαyβ,
where α is the number of leaves of S that are leaves in Tr and β is the number of leaves of
S that are internal vertices in Tr. By convention, the root in a rooted tree is considered an
internal vertex even though its degree might be one. The polynomial P(Tr; x, y), which
we call a distinguishing polynomial, is defined as ∑S Q(S; x, y), where the sum is over all
primary trees of Tr. Liu [4] shows that P(.; x, y) is a complete isomorphism invariant for
rooted unlabeled trees.

For an unrooted and unlabeled tree T, the distinguishing polynomial P(T; x, y) is
the product of P(T1; x, y), . . . , P(Tl ; x, y), where l is the number of leaves in T and Ti is a
rooted tree obtained from T by contracting an edge incident with a leaf and declaring the
resulting vertex the root of Ti. Liu [4] also shows that P(.; x, y) is an isomorphism invariant
polynomial for unrooted and unlabeled trees.

One way to define a total ordering on trees of order n using P(.; x, y) is to order them
by evaluating log10(P(T; x, y)) at appropriate values of x and y. In this approach, we find
x = µn for which P(T; µn, 1) 6= P(T′; µn, 1) for any unrooted and unlabeled trees T, T′

of order n such that T 6' T′. We call this method of ordering trees of a fixed order, the
evaluation-based total ordering and the two extremes of this total ordering are realized at
the path and star of order n. In this paper, we use this approach to classify trees of order
n by evenly dividing the associated evaluation-based total ordering into two classes and
identifying the class containing Pn and Sn as “path-like” and “star-like”, respectively. For a
more detailed discussion of distinguishing polynomials, see papers by Liu [4] and Barghi
and DeFord [1].

3. Exact Computations

In this section, we describe algorithms for the exact enumeration of Stirling numbers
of the first kind on trees. We note that using the loop-erased random walk algorithm of
Wilson [13], we can generate uniform spanning trees on n vertices beginning with Kn. This
allows us to empirically estimate the distribution of Stirling numbers of the first kind for
these trees as well as the expected distributions of several common metrics studied on
graphs. We use these values to inform our parameter selection and classification of trees
below. Additionally, as mentioned in Section 1, trees of a fixed size interpolate between
being path-like and star-like with respect to many graph metrics. To sample more efficiently
from these extremes, it is possible to implement a weighted version of the cycle basis walk
on spanning trees, and the autocorrelation of this model is analyzed in the first section
of the Supplementary Information. The Supplementary Information is posted on our
corresponding GitHub repository for this paper; for a link to this repository, see our Data
Availability Statement.

In addition to uniform trees, it is also possible to efficiently sample uniform cycle
covers for bipartite, planar graphs, building on the method of Jerrum and Sinclair [14,15] for
sampling uniform perfect matchings. This is described in Algorithm 1 below. Next, we ob-
serve that while computing the k-Stirling numbers of the first kind can be computationally
intensive, computing the graph factorial, which is the sum of these numbers over k, can be
done with a single matrix determinant for planar graphs using the FKT algorithm described
in Section 1.2 and Theorem 1.4 in a book by Jerrum [16]. This algorithm, introduced in
a paper by Kasteleyn [17], counts the number of perfect matchings in a planar graph by
constructing a Pfaffian orientation in polynomial time. This is a simple example of the
permanent-determinant method [18]. By modifying the Pfaffian with polynomial entries

Algorithms 2023, 16, 223 4 of 22

we can compute the number of 2-cycles that appear in the cycle cover as the coefficient of xk.
We provide implementations of these algorithms in our corresponding GitHub repository
and present examples in the section below motivating conjectures for uniform trees.

Algorithm 1: Uniform Cycle Cover

Input: A planar, bipartite graph G = (A, B)
Output: A uniform cycle cover of G
Select: two uniform perfect matchings M1 and M2 on G
Initialize: M = {} for edge (a,b) in M1 do

Add (a,b) to M
end
for edge (a,b) in M2 do

Add (b,a) to M
end
Return: M

Theorem 1. Algorithm 2 returns the number of k−matchings of T across all 0 ≤ k ≤ |V(T)|.

Proof. The permanent adjacency matrix of a tree T counts the cycle covers of T. These
correspond to matchings since the only possible cycle lengths are 1 and 2. Let A(T) be
the adjacency matrix of T. We note that viewing A(T) as a biadjacency matrix gives T�P2,
which is planar since T is outerplanar. Thus, we can apply the FKT algorithm to T�P2 to
obtain a Pfaffian orientation of A(T�P2). This means that the number of perfect matchings
in the product can be computed as the square root of this number, which is exactly the
number of cycle covers that we were trying to compute.

Algorithm 2: Tree Stirling
Input: A tree T
Output: The number of k-matchings of T for all k
Construct H = T�P2
Orient the adjacency matrix A of G with FKT
Multiply the non-diagonal elements of the signed matrix by x
Compute P = Det(A)
Return:

√
P

There is also an algebraic method for computing these values by representing the
terms with a symbolic determinant.

Theorem 2. The determinant of ixA(T) + In returns the number of k−matchings of T across all
0 ≤ k ≤ |V(T)| as the coefficient of x2k.

Proof. A non-zero term in the determinant of ixA(T) + In consists of a set of diagonal
elements S counted with a weight of positive one and a perfect matching of T\S where
each term collects a weight of −x. The product of these terms is then equal to x2k where k
is the number of edges of T that occur in the matching. Summing up over all permutations
of the nodes in the determinant gives that the coefficient of x2k is the desired number
of k-matchings. We note that a similar argument shows that the determinant matrix of
xA(T) + In with the upper-triangular portion negative also returns the same values as
coefficients and the determinant of the unsigned matrix xA(T) + In returns the values with
signs according to the parity of k.

Although the above results show that the problem of enumerating the number of
cycle covers of a given size can be completed in polynomial time in the number of nodes
in the tree, actually generating the cycle covers themselves is a more difficult problem.

Algorithms 2023, 16, 223 5 of 22

The reason that computing the complete list of cycle covers for graphs is computationally
taxing is that even for trees and forests we need to rely on a modified version of the classic
deletion-contraction algorithm described in Chapter 2 of [19] and Chapter 1 of [20], which
we call the deletion–inclusion algorithm. In the deletion–inclusion algorithm, for an edge e
in a forest F, we either delete e or we contract e and remove all the other edges incident
with the endpoints of e. Since this is a binary branching algorithm, we continue with this
process in each branch until there are no edges left to remove in the said branch. If the
order of the empty graph at the end of a branch is k, it contributes to [Fk]. The advantage of
the deletion–inclusion algorithm to the uniform cycle cover is that it produces the set of all
cycle covers of F while the running time of the two algorithms, at least for small enough
trees, is comparable.

Algorithm 3: Deletion-Inclusion Step
Input: A forest F
Output: A contracted edge E and two sub-forests F1, and F2 with |E(Fi)| < |E(F)|
Select: A uniformly random edge E = (i, j) ∈ E(F)
Compute: I(E) = {e ∈ E(F)|i ∈ e or j ∈ e}
Remove and Contract: F1 = G\E
Contract F2 = (G\I(E))/E Return: E, F1, F2

Algorithm 4: Deletion-Inclusion
Input: A tree T
Output: Compatible edge subsets for cycle covers
Initialize: A = {T} and R = {}
while |A| > 0 do

for G ∈ A do
e, F1, F2 = Deletion-InclusionStep(G)
A = A\G
if |F1| = 0 then

R = R ∪ F1
end
else

A = A ∪ F1
end
if |F2| = 0 then

R = R ∪ F2
end
else

A = A ∪ F2
end

end
end
Return: R

Algorithms 2023, 16, 223 6 of 22

Algorithm 5: Generate Cycle Covers
Input: A tree T
Output: All cycle covers of T
Initialize: A = {T}, R = {}, C = {}, and M = {}
while |A| > 0 do

for G ∈ A do
e, F1, F2 = Deletion-InclusionStep(G)
A = A\G
if |F1| = 0 then

R = R ∪ F1
end
else

A = A ∪ F1
end
if |F2| = 0 then

R = R ∪ F2
end
else

A = A ∪ F2
end

end
end
Return: R

We note that this generation process can be carried out in a polynomial time for fixed
k and n by evaluating the (n

n−k) many one-cycles for perfect matchings, which suggests that
we should be mindful of letting n and k grow simultaneously, particularly when k is close
to n

2 .
To provide a complete implementation of the algorithms described in this section, we

also included the Python scripts in our GitHub repository. In Figure 1, we use these methods
to compute all k Stirling numbers across all isomorphism classes of trees on n = 12 nodes.
These are representative of the values that we use in Section 5 as inputs to the statistical
learning methods.

Figure 1. Full distribution of the k Stirling numbers of the first kind across all isomorphism classes of
trees on 12 vertices. We focus on isomorphism classes since our intended application is to classify up
to isomorphism.

Algorithms 2023, 16, 223 7 of 22

4. Probabilistic Approach

Our next approach for computing Stirling numbers of the first kind is probabilistic,
applying techniques from matrix algebra.

Let F be a forest and let V and E be its vertex and edge set, respectively, with c
connected components. Let us assume that |V| = n; hence, |E| = n− c. Suppose Pk is
a partition of F into k cycles. For v ∈ V, denote the set of incident edges with v by I(v).
For every ei ∈ E, where i ∈ {1, . . . , n− 1}, define xei as follows:

xei =

{
1, if ei is a 2-cycle in Pk;
0, otherwise.

With this definition in mind, [Fk] = |{(xe1 , . . . , xen−c) | some conditions are met}|, where
these conditions are as follows:

• For every v ∈ V,

∑
ei∈I(v)

xei =

{
0, if v is in a 1-cycle;
1, if v is in a 2-cycle.

• Subsequently, if xei = 1 for some ei = uv ∈ E, then xej = 0 for all ej ∈ I(v) ∪ I(u) and
j 6= i.

If we denoted the set of vertices in 1-cycles and 2-cycles by A and B, respectively, then
k = |A|+ |B|/2. Please note that A = {v | ∑ei∈I(v) xei = 0}, B = {v | ∑ei∈I(v) xei = 1} and
|A|+ |B| = n. It follows that |A| = 2k− n, |B| = 2(n− k). As a result, n ≥ k ≥ n

2 .
Let A be the incidence matrix for a forest F and x the column vector (xe1 , . . . , xen−c)

T ,
then b = Ax is a {0, 1}-column vector with exactly |B| = 2(n− k) many 1’s and |A| = 2k− n
many 0’s. Reversing the previous discussion gives the following result that we can use to
develop an approximation algorithm.

Lemma 1. For any {0, 1}-column vector b with 2(n− k) many 1’s and 2k − n many 0’s, the
probability that the linear equation Ax = b has a {0, 1}-solution is:

[Fk]

(n
2(n−k))

,

where F is the forest with incidence matrix A.

The previous result suggests an algorithm for estimating [Fk] by sampling uniformly
from the set of binary vectors with exactly 2(n− k) many 1’s, and determining whether the
solution to Ax = b has binary entries.

For 1 ≤ j ≤ m, let bj be a {0, 1}-column vector with 2(n− k) many 1’s and 2k− n
many 0’s random entries and let B = [bj]. Solving the equation AX = B, where X = [xj]
is a (n− c)×m matrix of unknowns column vectors xj. The time complexity of applying
Gaussian elimination to the augmented matrix [A|B] is O((n − c + m)n2). Using back-
substitution to find a solution xj for Axj = bj is O(n2) and checking whether this solution
consists of only 0s and 1s require O(n) operations. With m random vectors bj, we need
O(mn2) operations. Therefore, the overall time complexity of checking which random
column vectors bj yield an allowable solution xj requires O(n3 +mn2) operations, assuming
c is fixed.

This naive approach requires fully solving the associated linear system and checking
whether the resulting solution vectors are binary. We can circumvent this computational
hurdle by instead interpreting the system as a collection of Diophantine equations, moti-
vated by interpreting the product as occurring over the edges of the tree, rather than the
vertices.

Algorithms 2023, 16, 223 8 of 22

Note that
∑

ei∈E
xei + ∑

ei∈E
(1− xei) = ∑

ei∈E
1 = n− c.

It follows that
|B|/2 + ∑

ei∈E
(1− xei) = n− c

and
n− k + ∑

ei∈E
(1− xei) = n− c.

Now define yei as 1− xei for every ei ∈ E. It follows that

∑
ei∈E

yei = k− c.

Additionally, the restrictions on xei ’s translate to the following restrictions for yei :

• If ∑ei∈I(v) xei = 0 for some v ∈ V, then ∑ei∈I(v) yei = ∑ei∈I(v)(1− xei) = d(v).
• If ∑ei∈I(v) xei = 1 for some v ∈ V, then ∑ei∈I(v) yei = ∑ei∈I(v)(1− xei) = d(v)− 1.

It follows that A = {v | ∑ei∈I(v) yei = d(v)} and B = {v | ∑ei∈I(v) yei = d(v)− 1},
and [

F
k

]
= |{(ye1 , . . . , yen−c) | |A| = 2k− n, |B| = 2(n− k)}|. (1)

In general, without any restrictions, the number of {0, 1}-solutions to the Diophantine
equation

ye1 + · · ·+ yen−c = k− c

is (n−c
k−c). This implies the following result that allows for a more efficient randomized

method.

Lemma 2. Let Y = (ye1 , . . . , yen−1) be a binary vector indexed by the edges of F. Then the
probability that the positive entries of Y induce a partition of F into k cycles and hence correspond
to edges that are not 2-cycles in Pk is

[Fk]

(n−c
k−c)

.

As with the previous approximation result, Lemma 2 suggests an algorithm for esti-
mating [Fk] by sampling uniformly from the set of binary vectors indexed by the edges of F,
and determining whether they induced a partition with the proper number of cycles.

If 1 is the column vector whose entries are 1’s and A is the incidence matrix of F,
then d = A1 is column vector containing the degree sequence of F. On the other hand,
if y = (ye1 , . . . , yen−c)

T satisfies the conditions in (1), then d−Ay = A(1− y) should consist
of 2(n− k) many 1’s. If we have m many {0, 1}-column vectors yj with random entries
consisting of k− c many 1’s, then the time complexity to check whether each one satisfies
the conditions in (1) is O(n(n− c)) and the overall time complexity is O(mn(n− c)), which
may be more efficient than our earlier approach.

For an implementation of this approach in Python, on our GitHub repository, see the
Jupyter notebook TreeLearning-Testing_Probabilistic_Approach.ipynb. In this notebook,
a random tree T is generated, so the number of components c is one. The code generates m trials.
At each trial, a {0, 1}-column vector with random entries is generated and a trial is considered
a “success” if the condition that it contains exactly k− 1 many 1’s is met. We use a Bernoulli
random variable to represent the outcome of each trial. In other words, we denote the random
variable representing the ith trial by

Xi =

{
1 with probability p;
0 with probability 1− p,

Algorithms 2023, 16, 223 9 of 22

where p is the probability of “success”. The main objective is to estimate [Tk] via simulation.
Let X = ∑i Xi/m. Since p = E[X] ≈ [Tk]/(

n−1
k−1), we calculate[

T
k

]
−
(

n− 1
k− 1

)
X

in the code to see how well this probabilistic approach performs.

Results

To make our code reproducible, we are using a random seed. The results for n between
7 and 15 and m = 10,000 is included in Table 1. For each n, a random tree T of that order is
generated and [Tk] is estimated for n− 2 ≥ k ≥ d n

2 e.

Table 1. The results of running TreeLearning-Testing_Probabilistic_Approach.ipynb for 7 ≤
n ≤ 15 and m = 10,000. For each n, a random tree T of that order is generated and [Tk] is estimated for
n− 2 ≥ k ≥ d n

2 e.

k = 4 5 6 7 8 9 10 11 12 13

n = 7 0.1120 0.0560

8 −0.0010 −0.3090 0.0203

9 0.0000 0.1536 0.0300

10 0.0000 0.1880 0.2880 0.1880

11 0.0000 −0.7790 −0.3280 −0.1155

12 0.0760 0.3412 −1.1470 0.9275 −0.1740

13 0.1520 −1.9776 −1.2300 2.0180 −0.0444

14 0.0000 −0.5208 −2.4607 2.1055 −0.5224 0.2676

15 −0.4024 1.4715 3.8850 −5.2100 2.4296 −0.1539

One natural question is how the probabilistic approach performs compared to the
exact computation of [Tk]. In Figure 2, the average running times for the probabilistic
approach for estimating and the exact method for computing [Tk] for n − 2 ≥ k ≥ d n

2 e,
for 5 ≤ n ≤ 30, and a random tree T of order n, are visualized. As we see in Figure 2, the
average running times for using the probabilistic approach grows linearly while the exact
computation grows exponentially, and the average running times using exact computation
take over those of the probabilistic approach when n = 25 for 10,000 iterations and n = 27
for 20,000 iterations. The code to reproduce these plots is in the following Python script:
probabilistic_approach–average_running_times.py. Note that the running time for
this Python script is long.

Algorithms 2023, 16, 223 10 of 22

(a) 10,000 Iterations

(b) 20,000 Iterations

Figure 2. Average running times for the probabilistic approach for estimating and the exact method
for computing [Tk], for n− 2 ≥ k ≥ d n

2 e, for 5 ≤ n ≤ 30, and a random tree T of order n.

The Python script probabilistic_approach–uniform_sampling.py on the GitHub
page computes the difference between the exact value of the k-th Stirling number and its
approximation using the probabilistic approach discussed above for 100 trees of order n
uniformly sampled using the Wilson algorithm for n ∈ {7, . . . , 19} and n− 2 ≥ k ≥ d n

2 e.
This Python script returns separate .csv files for each n. On the other hand, the Python
script analysis–probabilistic_approach–uniform_sampling.py computes the mean,
standard deviation, and skewness of these differences for each n and each k. As shown
in the table in the second section of the Supplementary Information, the mean of these
differences stay relatively close to zero and, with the exception of a few extreme values of k,
the skewness of these differences also stay relatively close to zero, indicating symmetric
distributions. Since, in this experiment, we do not scale m along with n and we take uni-

Algorithms 2023, 16, 223 11 of 22

form samples of size 100 for each value of n from the space of tree of order n, the standard
deviations increase as n increases, as expected.

5. Statistical Learning and Enumerative Metrics on Trees

Many interactions between combinatorial analysis and modern machine and statistical
learning techniques have focused on the field of combinatorial optimization [21–23]. These
analyses have both applied learning techniques to generating heuristics or approximate
solutions to difficult combinatorial problems [24–27], as well as motivating interesting
new areas of combinatorial research [28]. Another recent area of interest is Graph Neural
Networks [29,30] which use graph structures to better represent features in modern datasets.
Other techniques that have motivated work between these fields include determinantal
point processes [31–33] and submodular functions [34–36], which have the same property
of providing solutions to difficult problems and providing interesting new avenues of study.
In this paper, we do not consider an optimization approach but rather use the combinatorial
structure reflected in the enumeration of Stirling numbers and other network statistics as
input and training data for classification and regression.

As we discussed earlier, the k-th Stirling number of the first kind (for fixed k), global
closeness centrality, and global betweenness centrality for trees exhibit a similar property
in that their values varies between two extremes which are realized at paths and stars.
In other words, for any tree T on n vertices and any integer n ≥ k ≥ d n

2 e,[
Sn

k

]
≤
[

T
k

]
≤
[

Pn

k

]
,

Ccls(Pn) ≤ Ccls(T) ≤ Ccls(Sn),

and
Cbtw(Pn) ≤ Cbtw(T) ≤ Cbtw(Sn).

Based on these observations, we use statistical learning tools and use Stirling numbers
of the first kind for trees as predictors to make predictions about members of random
sets of trees, both in the training and testing stages. It is assumed that trees in both the
training and testing sets have a fixed number of vertices and there is the same number of
trees in both training and testing sets. Moreover, we use both classification and regression
algorithms to address this problem.

We will use three separate datasets while using statistical learning methods. The first
dataset consists of all non-isomorphic trees of order 12, of which there are 551, using the
networkx.nonisomorphic_trees function. First, we classify these trees by evenly dividing
the associated evaluation-based total ordering into two classes and identifying the class
containing Pn and Sn as “path-like” and “star-like”, respectively. We then evenly split the
trees into a train and test set at random. For reproducibility purposes, we use a random
seed in our code.

In the second dataset, using a random seed, we generate 500 non-isomorphic trees of
order 18 using the networkx.nonisomorphic_trees function. Again, we classify them as
“path-like” and “star-like” by evenly dividing the associated evaluation-based total ordering.
Note that a tree might be misclassified as opposed to its class if we used the complete list
of non-isomorphic trees of order 18, but we expect the number of such misclassifications to
be low. Again, we evenly divide these 500 trees into a train and test set at random. Because
we can generate a separate test set, we will not be using cross-validation and out-of-bag
error estimation in our code. Lastly, in the third dataset, we generate 500 trees of order 18
sampled uniformly from the space of such trees.

We use the following classifiers from scikit-learn library [37] in Python:

• DecisionTreeClassifier
• ExtraTreeClassifier
• BaggingClassifier

Algorithms 2023, 16, 223 12 of 22

• RandomForestClassifier
• ExtraTreesClassifier
• SVC (Support Vector Classification)

For DecisionTreeClassifier, ExtraTreeClassifier, RandomForestClassifier, and ExtraTreesClas-
sifier, we used both Gini and entropy criteria, which are measures of node impurity when
fitting these models. We also used Minimal Cost-Complexity Pruning in these models.
And to compare methods based on their performance on train and test sets, we use the
following classification metrics: accuracy_score, confusion_matrix, matthews_corrcoef,
and classification_report.

To estimate Stirling numbers of the first kind for trees, we will use the following
regression models from scikit-learn library [37]:

• LinearRegression
• Ridge
• Lasso
• ElasticNet
• PolynomialFeatures (for degree 2 regression)
• SGDRegressor (Stochastic Gradient Descent)
• DecisionTreeRegressor
• ExtraTreeRegressor
• RandomForestRegressor
• ExtraTreesRegressor
• BaggingRegressor
• SVR (Support Vector Regression)

To measure how these methods perform on train and test sets, we use the following
regression metrics: r2_score, explained_variance_score, and mean_squared_error.

5.1. Results
5.1.1. Classification

The results for tree-based and support vector classification methods with closeness,
betweenness, and [Tk] for n− 1 ≥ k ≥ d n

2 e+ 1 as predictors for all non-isomorphic trees of
order n = 12, for a sample of size 500 of non-isomorphic trees of order n = 18 generated
randomly using networkx.nonisomorphic_trees, and for a sample of size 500 of trees of
order n = 18 sampled uniformly from the space of all such trees using Wilson’s algorithm
are in the tables in the Supplementary Information. In this experiment, the response is class,
i.e., whether a tree is “star-like” or “path-like”. These results are computed by running
the code in the Jupyter notebooks in our GitHub repository. As shown in the tables in
the third and fourth sections of the Supplementary Information, tree-based classifiers
(decision tree, extra tree, bagging, random forest, and extra trees) individually perform
comparably on train and test sets so do support vector classifiers (linear and quadratic
SVC). Additionally, across these methods, we also see comparable performances on test
sets and train sets, separately, which suggests that trained models generalized nicely to
unseen data, regardless of the method used. Here we are considering both accuracy scores
and Matthews’ correlation.

In Figure 3, we compare between train and test R2 scores and explained variance
scores (EVS) between different tree-based classification methods based on Gini and entropy
criteria with and without pruning for a sample of size 500 of trees of order n = 18 sampled
uniformly from the space of all such trees using Wilson’s algorithm. As we see in Figure 3,
pruning does not lead to a severe decrease in test R2 scores and EVS and in some methods
we see an increase in these scores. Of course, pruning leads to a decrease in train R2 score
and EVS, but the trade-off is that the resulting models are trees with less depth, fewer
nodes, and less complexity and the same level of test performance. Moreover, using the
two different sampling methods for trees of order n = 18, does not lead to a difference in
results. In Figures A2 and A3, we do a similar comparison for all non-isomorphic trees of

Algorithms 2023, 16, 223 13 of 22

order n = 12 and for a sample of size 500 of non-isomorphic trees of order n = 18 generated
randomly using networkx.nonisomorphic_trees.

To compute the results for closeness, betweenness, and Stirling numbers of the first
kind for trees as sole predictors, one may run the code in the Jupyter notebooks in our
GitHub repository.

Figure 3. Train and test R2 and explained variance scores between different tree-based classification
methods based on Gini and entropy criteria with and without pruning using all predictors for
500 trees of order n = 18 sampled uniformly.

5.1.2. Regression

For regression and tree-based regression methods, we use log10(P(T; 2, 1)), closeness,
betweenness, and class as predictors for all non-isomorphic trees of order n = 12, for a
sample of size 500 of non-isomorphic trees of order n = 18 generated randomly using
networkx.nonisomorphic_trees, and for a sample of size 500 of trees of order n = 18
sampled uniformly from the space of all such trees using Wilson’s algorithm, respectively,
to predict [Tk] for n− 1 ≥ k ≥ d n

2 e+ 1. These results are computed by running the code in
the Jupyter notebooks in our GitHub repository.

In Figures 4 and 5, we compare between train and test R2 scores and explained variance
scores (EVS) between different regression and tree-based regression methods (with and
without pruning), respectively, for a sample of size 500 of trees of order n = 18 sampled
uniformly from the space of all such trees using Wilson’s algorithm. As we see in Figure 4,
pruning does not lead to a severe decrease in test R2 score and EVS and in some methods
an increase in these scores. Of course, pruning leads to a decrease in train R2 and EVS,
but the trade-off is that the resulting models are trees with less depth, fewer nodes, and less
complexity and the same level of test performance. Moreover, excluding log10(P(T; 2, 1)) as
one of the predictors severely affects the performance of these models on train and test sets.
Please note that the values in these plots are those between−0.5 and 1; specifically, values less
than −0.5 are not included. In Figures A2, A3, A4, and A5, we do a similar comparison for all
non-isomorphic trees of order n = 12 and for a sample of size 500 of non-isomorphic trees
of order n = 18 generated randomly using networkx.nonisomorphic_trees. Using the two
different sampling methods for trees of order n = 18, does not lead to a difference in results.

Algorithms 2023, 16, 223 14 of 22

(a) All Predictors

(b) Subsets of predictors

Figure 4. Train and test R2 scores and explained variance scores (EVS) between different regression
methods and with log10(P(T; 2, 1)), closeness, betweenness, and class as predictors for 500 trees of
order n = 18 sampled uniformly.

Algorithms 2023, 16, 223 15 of 22

(a) All predictors

(b) Subsets of predictors

Figure 5. Train and test R2 scores and explained variance scores (EVS) between different tree-based
regression methods based on Gini and entropy criteria with and without pruning and log10(P(T; 2, 1)),
closeness, betweenness, and class as predictors for 500 trees of order n = 18 sampled uniformly.

Algorithms 2023, 16, 223 16 of 22

In Figure 5, we see that pruning leads to an almost zero difference between R2 score
and EVS; for the exact values, see in the tables the fifth through seventh sections of the
Supplementary Information. This indicates that the mean of residuals is almost zero. We
also see that a difference between R2 score and EVS only exists in decision tree and extra
tree without pruning.

To compute the results for closeness, betweenness, and class together as predictors and
[Tk] for n− 1 ≥ k ≥ d n

2 e+ 1 as a response, one may run the code in the Jupyter notebooks in
our GitHub repository.

6. Discussion and Conclusions

As computing Stirling numbers for arbitrary graphs is a difficult problem in general,
we have focused here on developing and expanding methods in the case of trees of a fixed
order, where it is tractable to design algorithms that can help inform the general case. These
approaches can then be applied to approximation problems for denser graphs, estimating
lower bounds by computing on sampled spanning trees. Our probabilistic methods for
approximating Stirling numbers are also intrinsically interesting, and extending these
approaches beyond the current setting is a promising avenue for future work. One potential
weakness and limitation of the current formulation of these methods is the lack of a bound
on the variance, which, as expected, does appear to grow with n, as shown in Table 1.
Finally, our computational experiments with modern learning methods allow us to quantify
the previously observed interpolation structure of trees and connect our combinatorial
work to this broader class of methods. One avenue for future work is to use interpretable
learning methods to directly observe which components of the graphs are best informing
the statistical results as this is a limitation of the methods used in the current work. The
success of these experiments suggests that statistical learning methods can be applied to a
broad class of combinatorial problems in graph theory, whose solutions can be too difficult
or computationally taxing to obtain using exact methods. It also serves to demonstrate
that these types of combinatorial objects have detectable structures that allow us to exploit
different statistical learning techniques, including others not considered here.

Author Contributions: Both authors have contributed equally to all aspects of this paper. All authors
have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Replication code and data for this paper are available at https://github.
com/drdeford/Computational_Experiments_on_Stirling_Numbers_of_Uniform_Trees (accessed on
12 April 2023).

Acknowledgments: The second author would like to thank the Washington State University Depart-
ment of Mathematics and Statistics and College of Arts and Sciences for their support.

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/drdeford/Computational_Experiments_on_Stirling_Numbers_of_Uniform_Trees
https://github.com/drdeford/Computational_Experiments_on_Stirling_Numbers_of_Uniform_Trees

Algorithms 2023, 16, 223 17 of 22

Appendix A. Detailed Figures

(a) All Predictors, n = 12

(b) All Predictors, n = 18

Figure A1. Train and test R2 and explained variance scores between different tree-based classification
methods based on Gini and entropy criteria with and without pruning.

Algorithms 2023, 16, 223 18 of 22

(a) All predictors, n = 12

(b) All predictors, n = 18

Figure A2. Train and test R2 scores and explained variance scores (EVS) between different regression
methods and with log10(P(T; 2, 1)), closeness, betweenness, and class as predictors.

Algorithms 2023, 16, 223 19 of 22

(a) Subsets of predictors, n = 12

(b) Subsets of predictors, n = 18

Figure A3. Train and test R2 scores and explained variance scores (EVS) between different regression
methods and with log10(P(T; 2, 1)), closeness, betweenness, and class as predictors.

Algorithms 2023, 16, 223 20 of 22

(a) All predictors, n = 12

(b) All predictors, n = 18

Figure A4. Train and test R2 scores and explained variance scores (EVS) between different tree-
based regression methods based on Gini and entropy criteria with and without pruning and with
log10(P(T; 2, 1)), closeness, betweenness, and class as predictors.

Algorithms 2023, 16, 223 21 of 22

(a) Subsets of predictors, n = 12

(b) Subsets of predictors, n = 18

Figure A5. Train and test R2 scores and explained variance scores (EVS) between different tree-
based regression methods based on Gini and entropy criteria with and without pruning and with
log10(P(T; 2, 1)), closeness, betweenness, and class as predictors.

Algorithms 2023, 16, 223 22 of 22

References
1. Barghi, A.; DeFord, D.R. Ranking Trees Based on Global Centrality Measures. Discret. Appl. Math. 2022, Submitted.
2. Jerrum, M. Two-dimensional monomer-dimer systems are computationally intractable. J. Stat. Phys. 1987, 48, 121–134. [CrossRef]
3. Valiant, L.G. The complexity of computing the permanent. Theor. Comput. Sci. 1979, 8, 189–201. [CrossRef]
4. Liu, P. A tree distinguishing polynomial. Discret. Appl. Math. 2021, 288, 1–8. [CrossRef]
5. Barghi, A. Stirling numbers of the first kind for graphs. Australas. J. Comb. 2018, 70, 253–268.
6. DeFord, D.R. Seating rearrangements on arbitrary graphs. Involv. A J. Math. 2014, 7, 787–805. [CrossRef]
7. Honsberger, R. In Pólya’s Footsteps; Vol. 19, The Dolciani Mathematical Expositions; Miscellaneous Problems and Essays; Mathematical

Association of America: Washington, DC, USA, 1997; pp. xii+315.
8. Kennedy, R.; Cooper, C. Variations on a 5× 5 seating rearrangement problem. Math. Coll. 1993, Fall–Winter, 59–67.
9. Otake, T.; Kennedy, R.E.; Cooper, C. On a seating rearrangement problem. Math. Inform. Q. 1996, 52, 63–71.
10. Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1, 215–239. [CrossRef]
11. Freeman, L.C. A set of measures of centrality based on betweenness. Sociometry 1977, 40, 35–41. [CrossRef]
12. Borgatti, S.P. Centrality and network flow. Soc. Netw. 2005, 27, 55–71. [CrossRef]
13. Wilson, D.B. Generating Random Spanning Trees More Quickly Than the Cover Time. In Proceedings of the Twenty-eighth

Annual ACM Symposium on Theory of Computing, STOC ’96, Philadelphia, PA, USA, 22–24 May 1996; pp. 296–303. [CrossRef]
14. Jerrum, M.; Sinclair, A.; Vigoda, E. A Polynomial-Time Approximation Algorithm for the Permanent of a Matrix with Nonnegative

Entries. J. ACM 2004, 51, 671–697. [CrossRef]
15. Jerrum, M.R.; Valiant, L.G.; Vazirani, V.V. Random generation of combinatorial structures from a uniform distribution. Theor.

Comput. Sci. 1986, 43, 169–188. [CrossRef]
16. Jerrum, M. Counting, Sampling and Integrating: Algorithms and Complexity; Birkhauser: Basel, Switzerland, 2003.
17. Kasteleyn, P. Graph theory and crystal physics. In Graph Theory and Theoretical Physics; Harary, F., Ed.; Academic Press: New York,

NY, USA, 1967; pp. 43–110.
18. Kuperberg, G. An exploration of the permanent-determinant method. Electron. J. Combin. 1998, 5, 46, 34. [CrossRef] [PubMed]
19. Ellis-Monaghan, J.; Moffatt, I. Handbook of the Tutte Polynomial and Related Topics; Chapman & Hall: London, UK, 2022.
20. Dong, F.M.; Teo, K.L. Chromatic Polynomials and Chromaticity of Graphs; World Scientific: Singapore, 2005.
21. Yang, X.; Wang, Z.; Zhang, H.; Ma, N.; Yang, N.; Liu, H.; Zhang, H.; Yang, L. A Review: Machine Learning for Combinatorial

Optimization Problems in Energy Areas. Algorithms 2022, 15, 205. [CrossRef]
22. Mazyavkina, N.; Sviridov, S.; Ivanov, S.; Burnaev, E. Reinforcement learning for combinatorial optimization: A survey. Comput.

Oper. Res. 2021, 134, 105400. [CrossRef]
23. Bengio, Y.; Lodi, A.; Prouvost, A. Machine learning for combinatorial optimization: A methodological tour d’horizon. Eur. J.

Oper. Res. 2021, 290, 405–421. [CrossRef]
24. Karimi-Mamaghan, M.; Mohammadi, M.; Meyer, P.; Karimi-Mamaghan, A.M.; Talbi, E.G. Machine learning at the service of

meta-heuristics for solving combinatorial optimization problems: A state-of-the-art. Eur. J. Oper. Res. 2022, 296, 393–422. [CrossRef]
25. Castaneda, J.; Neroni, M.; Ammouriova, M.; Panadero, J.; Juan, A.A. Biased-Randomized Discrete-Event Heuristics for Dynamic

Optimization with Time Dependencies and Synchronization. Algorithms 2022, 15, 289. [CrossRef]
26. Caro, G.A.D.; Maniezzo, V.; Montemanni, R.; Salani, M. Machine learning and combinatorial optimization, editorial. OR Spectr.

2021, 43, 603–605. [CrossRef]
27. Barrett, T.D.; Parsonson, C.W.F.; Laterre, A. Learning to Solve Combinatorial Graph Partitioning Problems via Efficient Exploration.

arXiv 2022, arXiv:cs.LG/2205.14105.
28. Wagner, A.Z. Constructions in combinatorics via neural networks. arXiv 2021, arXiv:math.CO/2104.14516.
29. Wu, Z.; Pan, S.; Chen, F.; Long, G.; Zhang, C.; Yu, P.S. A Comprehensive Survey on Graph Neural Networks. IEEE Trans. Neural

Netw. Learn. Syst. 2021, 32, 4–24. [CrossRef] [PubMed]
30. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and

applications. AI Open 2020, 1, 57–81. [CrossRef]
31. Ghosh, S.; Rigollet, P. Gaussian determinantal processes: A new model for directionality in data. Proc. Natl. Acad. Sci. USA 2020,

117, 13207–13213. [CrossRef]
32. Borodin, A. Determinantal point processes. arXiv 2009, arXiv:math.PR/0911.1153.
33. Kulesza, A.; Taskar, B. Determinantal Point Processes for Machine Learning; Now Publishers Inc.: Hanover, MA, USA, 2012.
34. Dughmi, S. Submodular Functions: Extensions, Distributions, and Algorithms. A Survey. arXiv 2011, arXiv:cs.DS/0912.0322.
35. Bilmes, J. Submodularity In Machine Learning and Artificial Intelligence. arXiv 2022, arXiv:cs.LG/2202.00132.
36. Bach, F. Learning with Submodular Functions: A Convex Optimization Perspective. Found. Trends Mach. Learn. 2013, 6, 145–373.

[CrossRef]
37. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/BF01010403
http://dx.doi.org/10.1016/0304-3975(79)90044-6
http://dx.doi.org/10.1016/j.dam.2020.08.019
http://dx.doi.org/10.2140/involve.2014.7.787
http://dx.doi.org/10.1016/0378-8733(78)90021-7
http://dx.doi.org/10.2307/3033543
http://dx.doi.org/10.1016/j.socnet.2004.11.008
http://dx.doi.org/10.1145/237814.237880
http://dx.doi.org/10.1145/1008731.1008738
http://dx.doi.org/10.1016/0304-3975(86)90174-X
http://dx.doi.org/10.37236/1384
http://www.ncbi.nlm.nih.gov/pubmed/37048206
http://dx.doi.org/10.3390/a15060205
http://dx.doi.org/10.1016/j.cor.2021.105400
http://dx.doi.org/10.1016/j.ejor.2020.07.063
http://dx.doi.org/10.1016/j.ejor.2021.04.032
http://dx.doi.org/10.3390/a15080289
http://dx.doi.org/10.1007/s00291-021-00642-z
http://dx.doi.org/10.1109/TNNLS.2020.2978386
http://www.ncbi.nlm.nih.gov/pubmed/32217482
http://dx.doi.org/10.1016/j.aiopen.2021.01.001
http://dx.doi.org/10.1073/pnas.1917151117
http://dx.doi.org/10.1561/2200000039

	Introduction
	Mathematical Preliminaries
	Exact Computations
	Probabilistic Approach
	Statistical Learning and Enumerative Metrics on Trees
	Results
	Classification
	Regression

	Discussion and Conclusions
	Detailed Figures
	References

