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Abstract: Novel neural network models that can handle complex tasks with fewer examples than
before are being developed for a wide range of applications. In some fields, even the creation of a few
labels is a laborious task and impractical, especially for data that require more than a few seconds to
generate each label. In the biotechnological domain, cell cultivation experiments are usually done
by varying the circumstances of the experiments, seldom in such a way that hand-labeled data of
one experiment cannot be used in others. In this field, exact cell counts are required for analysis, and
even by modern standards, semi-supervised models typically need hundreds of labels to achieve
acceptable accuracy on this task, while classical image processing yields unsatisfactory results. We
research whether an unsupervised learning scheme is able to accomplish this task without manual
labeling of the given data. We present a VAE-based Siamese architecture that is expanded in a cyclic
fashion to allow the use of labeled synthetic data. In particular, we focus on generating pseudo-
natural images from synthetic images for which the target variable is known to mimic the existence
of labeled natural data. We show that this learning scheme provides reliable estimates for multiple
microscopy technologies and for unseen data sets without manual labeling. We provide the source
code as well as the data we use. The code package is open source and free to use (MIT licensed).

Keywords: Siamese networks; synthetic data; cyclic learning; unsupervised learning; deep learning;
data augmentation; single cell cultivation; bioimage analysis

1. Introduction

Single cell cultivation is one of the most important steps in single cell analysis [1]
and represents an essential means to better understand cell functionality from cellular and
subcellular perspectives for diagnosis and therapy, and microfluidic devices constitute
fast-rising systems for efficient single cell cultivation. However, the analysis of microfluidic
single cell cultivation (MSCC) microscopic images is usually performed manually or sup-
ported by technological aiding systems, but requires the work of human experts because of
the high spatial and temporal resolution and a variety of visual characteristics that make
automation difficult. Flexible image processing pipelines have proven their relevance for
certain setups, but are limited to specific scenarios and partially interactive, as the fully
automated analysis of non-adhesive cells in the presence of the varying light conditions
and various artifacts of microscopic images is challenging [2].

In recent years, the potential of deep convolutional architectures for automated and
flexible image analysis has been demonstrated in this area, but training procedures for
current deep architectures rely, at least partially, on manually labeled training data [3,4]. A
manual procedure is not practical in many applications, creating a demand for effective,
fully automated solutions [5]. Therefore, the particular focus of this work is to eradicate the
human expert requirement for annotations completely.

Henceforth, we will focus on a relevant generic learning task for MSCC image analysis:
the cell count is used as the target variable, which has to be estimated reliably at any
point in time of the experiment and is chosen mainly for two reasons: (1) it allows for the
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extrapolation of other important attributes of the experiment, such as the growth delta over
the last few time segments, as well as the overall growth rate, and (2) as a regression task,
it is known to be especially difficult to be estimated accurately for unsupervised training
methods, i.e., it can be inferred that tasks that are generally considered more simple, such
as classification or segmentation, can also be solved with the methodology presented in
Section 3.

In the following, we will aim for a solution that does not rely on any manually
generated labels. Instead, we will rely on automatically generated artificial labels, i.e., use
“fully automated supervision”. To prevent misunderstandings, unsupervised deep learning
would, in its most exclusive definition, not be able to solve the addressed task, since the
lack of labels means that the regression loss cannot be calculated. Therefore, we refer to
“unsupervised learning” for this task as the absence of manually curated labels for the
experimental data. There needs to be a computable loss on the target variable to achieve
actual training, which, in our case, can explicitly and efficiently be defined, based on the
available symbolic semantics for auxiliary synthetic data.

Even self-training architectures such as Generative Adversarial Networks (GAN) and
Variational Autoencoders (VAE) can only generate losses on predictions and reconstructions
of the data, not on the target variable. The Siamese-like architecture described later will
therefore not only train on natural data, created by the biotechnological experiments,
but also on a collection of synthetic auxiliary data with automatically generated labels
and therefore known ground truth. By training this architecture with a special learning
scheme, it is not only possible to perform regression learning on the target variable, but
also to achieve accuracy that approaches or, in some cases, exceeds the state of the art (see
Section 4).

While our own previous work [4] will serve as a basis for the later comparison of
results, we would like to clarify the differences between that work and this one in terms
of approaches and goals. The novelty of [4] is state of the art accuracy in the domain of
semi-supervised cell counting, achieved by transferring a pre-trained model to another
type of microscopy data. Due to optimizations in the transfer process, the architecture
presented there has also slightly outperformed the previous state of the art. In this work,
we instead focus on unsupervised training with the modification of generating pseudo-
synthetic images from natural images (and vice versa) in order to use the well-trained
regressor that is accustomed to synthetic data representations. The earlier work would not
be able to achieve meaningful regression for the fully unlabeled natural data used in this
work because the loss of the regressor would not be defined for natural data.

Figure 1 shows examples from the MSCC experiments that we address in the following.
It can be seen that lab-on-a-chip technology is used and that the data have a number of
visual aspects that make them difficult for classical image processing solutions and non-
specialized machine learning models to process. Namely, these are as follows:

• Smudges, in some cases larger than cells. Simple background filtering does not work,
as these can move during the experiment.

• Ongoing cell divisions (Figure 1 right), making it unclear in some cases what the actual
correct target variable would be, but giving a meaning to comma values as they can
represent an ongoing division.

• Varying contrast and light conditions.
• Dying, appearance, and vanishing of cells.
• Overpopulation of the cell chamber or the end of an experiment due to escape of the cells.
• Overlapping and close adherence of cells.
• Continuous changes in the cell membrane and inner organelles, changing the orienta-

tion of cells, with variations in shape and perceived size.
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Figure 1. Samples from the data sets of CHO-K1 suspension growth. Bright-field microscopy image
on the right, phase-contrast microscopy image on the left. Smudges on the chip can be seen in the
form of faint, small circles within the fluid solution. The scale bars do not appear in the working data.

In this article, we propose a novel training scheme for a Siamese deep learning model
that can optimally combine information provided by automatically generated synthetic data
and real images such that no manual labeling of natural data is required. The contribution
and novelty of this work are as follows:

• We achieve high prediction preciseness on the target variable where the state of the
art fails to do so.

• We build an effective translation learning pipeline and show, on multiple microscopy
data sets, that this pipeline is stable and reliable throughout this domain.

• We gain additional insight into the inner state of the neural network by performing
translations twice (cycling), leading to critical parts of the architecture to optimize
the network for the domain without overfitting to the specific data, thus contributing
to the understanding of deep neural network representations, especially for Siamese
networks [6].

In the following sections, we first give an overview of the current state of the art in
this research field and take a brief look at previous works in this field of application. In
Section 3, we address the underlying machine learning challenge and present our deep
Siamese network architecture in detail. Then, the details of the proposed learning procedure
are explained and it is analyzed how the unique architecture used affects the learning
procedure. Thereafter, Section 4 contains the evaluation for real data sets and ablation
studies, as well as the comparison to state of the art alternatives and baselines. Lastly, in
Section 5, a discussion followed by a conclusion (see Section 6) completes the contribution.

2. Related Work

In the last few years, convolutional deep neural networks have become the state of the
art for image processing that does not require human labor and for the majority of other
computer vision tasks [7]. Especially for the task of counting in images, solutions have
been worked on for over a decade now (see [8]). Applications in the biomedical domain
have become common [9] and cell tracking approaches in images have been an ongoing
field of study in recent years [10]. However, the optimization of such methods is often
time-consuming and remains prone to errors.

Ulman et al. [11] propose a benchmark suite to compare different imaging technologies
and extrapolate the strengths and limitations of different approaches to cell tracking, none
of which have been determined as a final solution on this task, even the ones including
interactions among bioimage analysis experts [12] or the distributed work of manual
labeling [13]. Schmitz et al. [14] show the demand for fleshed out solutions by evaluating
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the currently used state of the art tools as insufficient for heterogeneity studies of the
CHO-K1 mammalian cells that are present in the given data.

In addition, Brent et al. [15] used transfer learning to predict microscope images
between different imaging technologies, but without sufficiently accounting for the wide
variety of cell images and features. The approach by Falk et al. [16] provides one of the
few toolboxes for cell tracking, albeit for adherent rather than suspension cells. It allows
for transfer learning based on given models and novel data, whereby data set enrichment
technologies limit the number of required samples.

In contrast to adherent cell lines, where already reported single cell cultivation stud-
ies [17,18] promise success, we address the more complex scenario of suspension cells
with all their visual characteristics listed above, rendering analysis tools of adherent cells
deficient. Earlier works have overcome some of the challenges, such as sufficient counting
accuracy, by interactive design [19], or detecting overlapping instances in such imagery [20],
but they are not yet sufficient for the unsupervised task at hand. Different contrast and light
conditions have been addressed by Chen et al. [21]. The adherence of cells and overlaps
have been addressed by Xie et al. [22], but additional visual features complicate the process
and reduce the applicability of previous solutions.

Siamese networks have been used for a variety of tasks as they can help to facilitate few-
shot learning or clustering of the data space by generalizing from unlabeled data. This is
done in [23] for genome sequencing and in [24] for text data. These presented architectures
are, however, specific to their domains and not applicable to image processing.

There are also Siamese networks that do work in the image processing domain, such
as [25], but they focus on change detection as a binary segmentation, suitable for tracking
single cells, but not for the regression task at hand. Ref. [26] uses Siamese networks and
data augmentation, similar to our approach, but the training is supervised and addresses a
four-class classification task. In [27], similar data augmentation and Siamese networks were
used and the 20-class classification is closest to the regression task that we address, but the
networks used are non-generative CNNs and the data are not used cyclically, rendering it
not applicable for our work.

Furthermore, there are no deep learning models that easily and efficiently solve
the task, as shown in [3] by comparing the recent state of the art EfficientNet [28] and
classical image processing such as Watershed methods [29], and transfer models such
as BigTransfer [30] are not reliably able to generate good cell counts by transferring a
pretrained model to this domain, as can be seen in our earlier work [4].

Deepak Babu et al. [31] achieved acceptable accuracy for the regression task of crowd
counting, a similar task; however, the training was semi-supervised. More generalized
few-shot and even zero-shot learning has been done by Schönfeld et al. [32] by using
aligned VAEs, achieving high precision, but only on the few-shot tasks, not the zero-shot
ones. In our approach, we will fully focus on the idea of the integration of synthetic
data, which can itself harvest its semantically meaningful generation, to avoid any addi-
tional manual labeling of natural data for training, therefore rendering even these related
results insufficient.

Synthetic data have already been used in [33,34], but for natural scene and text recogni-
tion, or computer vision tasks more generally, mostly natural domains where powerful deep
generative models can build on massive amounts of publicly available data. In contrast,
we are interested in synthetic data that are prone to a reality gap due to the limited avail-
ability of natural data. In semi-supervised learning, models are often enriched by easily
available unlabeled data that describe the underlying input distribution [35]. A view into
when unlabeled data can improve the learning rate has been taken by Göpfert et al. [36],
suggesting the usage of additional unlabeled data, be it synthetic or natural, as beneficial,
confirmed for this case in Section 4. The impact of variability in auxiliary training data on
convolutional networks specifically was tested in [37], but for 3D head reconstruction, not
intrinsically usable in this domain.
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The weight sharing used in our particular learning scheme was used previously to
decrease network sizes and improve test and verification performance [38]. In Section 3.3,
we show details on the specialized usage of this technique for our architecture.

Lastly, Uniform Manifold Approximation and Projection (UMAP) [39] is used to
project the inner state of the network into a two-dimensional representation, allowing us to
obtain a glance at the internal state of the latent representation and insight into how the
data are processed. In Section 6, such a UMAP is discussed for interpretation.

3. Methodology
3.1. Natural Data

Image data applied in this study were obtained by MSCC of mammalian suspension
cells, as introduced before in the literature [40]. The CHO-K1 cells were cultivated in
polydimethylsiloxane (PDMS) glass chips. Perfusion of the device constantly provided
the cultures with nutrients. An automated inverted microscope performed the live cell
imaging, taking images of the relevant positions on-chip every 20 min. The data used in
this work are split into two major parts according to the two microscopy technologies,
namely bright-field microscopy and phase-contrast microscopy, abbreviated as BF and PC,
which were used for the analysis of the architecture. Figure 2 shows example data from
both microscopy technologies after the application of the preprocessing described below.

Figure 2. Samples from the natural data sets after application of various data enrichment techniques,
described below. Phase-contrast technology on the left, bright-field technology on the right. The image
resolution equals the working resolution.

Around 10,000 images were taken over the course of the experiments per microscopy
technology; then, images of empty and fully filled cell chambers were removed, since, for
these, the experiment had not started yet or the outcome of the experiment was already
determined, respectively. In total, 2983 BF images and 3944 PC images remained relevant
for the machine learning task. Around 20% of the data were labeled by hand exclusively
for testing and will from here on be called Nat-L-Te (natural, labeled test data); the other
80 percent remain unlabeled and are used for training and called Nat-U-Tr (natural, unla-
beled training data). The test data were split in half to obtain a verification data set and to
prevent accidental specialized training on the test data over the course of the hyperparame-
ter optimization. During the test data selection process, we ensured that full experimental
runs as well as randomly picked images from the various experiment series were part of
the test and verification data. Table 1 gives an overview over the different types of data
sets used in our work.
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Table 1. Overview of all data sets used. Nat-U-Tr contains natural, unlabeled training data;
Nat-L-Te natural, labeled test data; Syn-L-Tr synthetic, labeled training data, and Syn-L-Te con-
tains synthetic, labeled test data. For reasons described in Section 3.2, synthetic data have been
generated in a 1:1 ratio to natural data. Nat-PC refers to all natural phase-contrast images
(i.e., Nat-L-Te and Nat-U-Tr) and Nat-BF refers to all natural bright-field images, respectively.
Syn-PC and Syn-BF denote the groups of training and test data for phase-contrast and bright-field
data accordingly, and, lastly, Nat and Syn denote the full set of natural and synthetic data.

Data Set Name No. of
Phase-Contrast Images No. of Bright-Field Images

Nat Nat-PC Nat-BF
Nat-U-Tr 3.152 2.469
Nat-L-Te 792 514

Syn Syn-PC Syn-BF
Syn-L-Tr 3.152 2.469
Syn-L-Te 792 514

We crop and rotate all images to center the cultivation chamber. Further data aug-
mentation beyond this preprocessing is described in Section 3.2. We place our focus on
the larger data set called Nat-PC from here on. It contains more experimental samples and
the biological processes covered are more diverse. In addition, phase-contrast microscopy
is more popular, and we will nonetheless show that our method also works reliably on
the smaller Nat-BF data set, although the variations in cell positions, numbers, and sizes
are lower in this data set and therefore the quality of these images is lower in terms of
machine learning, similar to what might be the case for entirely different types of cells,
such as plant cells.

To make the best use of the poor amount of experimental data, the following enrich-
ment techniques are applied to the data. Flips along both image axes are followed by a
random crop up to the edges of the cell chamber, not cropping away cells, except for the
entrance tunnel, where precise cell detection is not required. The crop does complicate
cell detection, as cells may be in positions where only the chamber rim and the outside of
the chamber would be without the crop, but it proved necessary to allow cells to appear
anywhere on the images to ensure uniform detection success that is barely affected by the
position of the cells within an image. Then, a random rotation of 90◦ is performed and a
randomly generated noise map is multiplied by a small weighting factor and applied to
the image to simulate more fluctuation in the cells’ visuals, since occasionally there are
dead cells in the experimental data that do not change in appearance for multiple images.
All augmentations are reapplied to the original data for every epoch of training with seed
consistency to ensure reproducibility.

3.2. Synthetic Data

We propose a novel learning scheme in Section 3.3.2 that deals with synthetic data
with known ground truth (i.e., the cell count) and a Siamese architecture that can abstract
from the fact that the auxiliary data are synthetic. In addition to the common data set
enrichment, generating proxy data allows us to create a wide variety of synthetic samples,
which are inspired by the natural data, but not limited by their amount or variety.

By enriching the training procedure with synthetic data, we extinguish the need
for natural labeled data. Synthetic data are easily obtained in this setting because the
architecture does not require that the images are rendered realistically in all respects, such
as morphological details. The 128 × 128 working resolution of the architecture makes the
synthetic data generation undemanding, while maintaining sufficient intricacy of visual
features such as overlapping (see Figure 3 left). For the specialized training procedure
described below, we do not need to synthetically create images that are indistinguishable
from natural ones, unlike current data augmentation schemes, such as proposed in the



Algorithms 2023, 16, 205 7 of 22

work [41]. This would require a considerate amount of engineering [37], i.e., human expert
labor, exactly what we aim to mitigate. We rely merely on modeling simple ellipsoidal
shapes to embody cells, ignoring details of the texture and the intricate morphology of
real suspension cells. We imposed this limitation on ourselves to suggest that the learning
procedure presented below should also work with other types of image data and is neither
tailor-made for exactly these microscopy technologies nor requires extensive manual work
to generate the most realistic synthetic data possible. In Section 3.3, we show that this
approach is adequate for training our architecture described.

Figure 3. Examples of synthetic data. Syn-PC imagery on the left, Syn-BF imagery on the right.
Backgrounds were generated by averaging over natural, nearly empty chamber images (including
smudges) and cells are approximated by simple geometric ellipses, but given some of the intricate
visual characteristics of natural cells, such as overlapping and differing luminosity, while factors
that explicitly only hinder the architecture, such as cells escaping through the chamber funnels and
complex visual features such as the inner organelles of cells, have not been recreated.

We ensured that the distribution of cell counts in the auxiliary data was sufficiently
close, but not necessarily identical to that of the natural data sets. This allows for an
unlimited amount of labeled training data, with only the processing time being the limiting
factor for the potential to use enormous amounts of proxy data, not the availability of
such. One problem remains, however, which is how to actually improve the regression
performance on natural data. Using a large ratio of synthetic data compared to natural
data would entail a separation of the two types of data in the inner representation of the
network, resulting in high accuracy on the synthetic data, but low accuracy on the natural
data (see Section 4). To prevent this separation, two major functionalities are proposed and
have been implemented, described in more detail in the following paragraph.

The auxiliary data generator is highly adjustable and produces imagery with a given
distribution of cells. As background images, we calculate the mean of the first 20% of data
from the experimental series, expecting cell counts to be low and cells to be scattered, so that
the background has no visible natural cells in it. The generator takes control of the overlaps,
brightness, and blurriness of the cells’ inner organelles as well as their membranes, the
contrast with the background, a range of possible cell sizes, counts, and crop values, as well
as the ellipsoidal deformation range as parameters. All these can be chosen by hand within
the code package, or the default values can be used. Combined, these operations can be
used to imitate most of the intricate features of the real data, such as ongoing divisions
of cells, by requesting a small overlap along with noisy cell boundaries. Smudges, as
in Figure 2, are not included because they are a confounding factor and are assumed to
only hinder the training process. The cells have been given a roughly circular shape to
approximately match the shape of the natural cells. To generate cells, positions are sampled
randomly from the valid space, taking the parameter of possible overlaps into account, and



Algorithms 2023, 16, 205 8 of 22

are then randomly stretched, deformed, made noisy, and so on according to the chosen
parameters; then, brightness fluctuation and Gaussian filters of varying strengths are added
to increase the variety of cells in the data. This geometric form can easily be adjusted if
natural cells in other data sets have different shape characteristics or when other camera
setups produce different ambiences.

This data are generated fully automatically based on simple algorithmic principles
and, as a baseline, a ratio between synthetic and natural data of 1:1 is used, since larger
amounts increase the training time almost linearly, while the performance improves only
with diminishing returns in our experiments. More details on this are given in Section 4.
The imagery is produced algorithmically with seed consistency and can therefore be
reproduced similarly to the data enrichment on the natural data and can be generated in an
arbitrary amount.

3.3. Architecture and Learning Scheme
3.3.1. Architecture

Our aim is to provide reliable cell counting for the microscopic imaging of suspension
cells, and since the experimental data are limited in their amount and without annotations,
we assemble a novel learning scheme for the Twin-VAE architecture previously introduced
by us to overcome these limitations.

The architecture circumvents the problem of differences in the appearance of auxiliary
and real data by separating the data input for training according to their origin, but requires
that the model creates a tightly coupled joint inner representation to avoid high training
losses. This is realized by modifying a Variational Autoencoder (VAE), duplicating the
outer layers of the encoder and decoder, accounting for the two data sets. Therefore, the
weights of the inner layers of both encoder and decoder are shared, as well as the semantic
bottleneck in between (see Figure 4). We decided to choose this architecture for the reasons
mentioned in Section 2.

The specialized encoders consist of four two-dimensional convolutional layers with
kernel sizes of 5 and strides of 2. They are initialized with an orthogonal basis [42]. In
between layers, leaky rectified linear units (LReLUs) with a leakiness of 0.2 and a dropout
of 0.1 have been added. The channels used for the convolutions in the encoders in order
are 32, 64, 128, and 256. The weight-shared encoder contains a single two-dimensional
convolutional layer with the same remaining attributes but 512 channels. It is followed by
the bottleneck, consisting of three layers of fully connected neurons. The layer sizes are 512,
256, and 512, each with the same dropout as before. The weight-shared decoder therefore
also has 512 channels and uses a two-dimensional transposed convolutional operator layer
with identical strides and kernel sizes as above, followed by a batch normalization over
a four-dimensional input and another LReLU with the same leakiness. The decoders
designed for specific data each consist of a total of five layers with kernel sizes 5, 5, 5, 2,
6, and strides of 2, 2, 2, 1, 2, following the convention of a smaller second to last kernel
followed by a large last kernel. Then, we include the same LReLUs and a sigmoidal
activation function at the end.

The representation in the latent space is not only fed to to the weight-shared de-
coder, but also to a three-layer fully connected network of neurons as a regressor. The
sizes of the layers are 256 and 128 and lastly 1. Linear layers and a dropout of 0.2 are
used for the regressor. The rectified Adam (RAdam) [43] optimizer worked best for the
training procedure.
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Figure 4. Visualization of the Siamese-Cycle-VAE (SC-VAE) architecture. The blue elements represent
synthetic data handling, yellow elements depict natural data handling. Green elements are shared by the
two VAEs and contain the inner representation of the cell imagery; purple elements result in an estimation
for the cell count. The example images that are outlined are samples from the data sets on the left, with
their respective results shown on the right. The translated images outlined with color transitioning have
been generated from the opposite data type and are of particular interest, as well as the blue and yellow
arrows pointing from right to left that indicate the reuse of decoded images. The examples at the very top
left and bottom right are of the utmost importance, since they show the conversion of a synthetic image
to a natural-looking one, which can then be used as a labeled pseudo-natural image for training of the
regressor with natural-looking images.

One of the VAEs works on proxy data, and we will refer to it as VAE-syn, while the
other one processes natural data (VAE-nat). The differing visual features of proxy and real
data are accounted for in the separated layers, while the weight-shared encoder and decoder
rely on and enforce a similar representation of the determinant image characteristics. In
addition to auto-encoding, the architecture works on data with known labels in a supervised
manner by the addition of a three-layer fully connected neural network regression model
for the actual cell counting, based on the shared representation of the VAEs.

3.3.2. Learning Scheme

For images x of either natural or synthetic type t ∈ {n, s}, the VAEs are able to generate
reconstruction losses Rec(x, y) from reconstructed images y of their decoder. Ct

Rec are hand-
crafted weighting factors to balance the different reconstruction costs. Choosing these
weights to be large results in better reconstruction but worse regression. However, proper
reconstruction quality is required to fabricate well-trained encoders, thus demanding the
factors to not be too low. The loss for the reconstructions is defined as

RECloss(x, t) = Cn
Rec · Rec(xn, yn) + Cs

Rec · Rec(xs, ys) (1)

For synthetic data with cell counts l from 1 to 30, we can also generate a regression
loss Reg(xs, l). However, Reg(xn, l) cannot be calculated usually, since l is not known for
these. In Section 4, our ablation studies show that this is insufficient for effective regression
on natural data. The internal representations of the two types of images are naturally being
separated in the bottleneck, precisely what VAEs are usually known and used for, resulting
in high precision for synthetic data, but nearly arbitrary cell counts for natural data.
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The specialized architecture allows an additional learning scheme to generate a loss for
pseudo-natural data. This is done by encoding synthetic data in their specialized encoder,
but decoding them with the decoder designed for natural data. This translation works both
ways and will result in images xs→n and xn→s.

This new type of data can now be used in the natural pipeline, creating new recon-
struction losses Rec(xs→n, ys→n), which can be used to train the according encoder and
decoder, especially enriching the data available for the natural pipeline immensely.

These images will be called translated or cycled images from here on and they expand
the usable image types to t ∈ {n, s, s → n, n → s}. Examples of translated images
and a pipeline of their generation can be seen in Figure 4. Cycled images also generate
reconstruction losses, which are defined as

REC-Tloss(x, t) = Cn→s
Rec · Rec(xn→s, yn→s) + Cs→n

Rec · Rec(xs→n, ys→n) (2)

These images do not exactly resemble natural images and are distinguishable from
them by the human eye, but they are actually close enough in their relevant characteristics
to natural images that when designing the learning scheme in the way described below, they
are not distinguished as fake natural images by the architecture, a beneficial circumstance
that allows the simulation of labeled natural data and shared representations, which
becomes more clear when taking a look at the UMAP of the internal representation later in
Section 4.3.

This process also leads us to translated natural images, for which the label is known,
and therefore allows for the generation of the regression loss Reg(xs→n, l) 6= 0. This way,
we can train the full regression pipeline for natural data, without any labeled natural data
at all. Henceforth, we refer to this process as translation learning.

Furthermore, we can translate the same images again, leading to two new types
of images yet again t ∈ {xs→n→s, xn→s→n}, which should appear near-identical to the
original reconstruction y. We first designed this difference to be a loss as well, but we later
omitted this training step for hyperparameter optimization, as it did not improving the
accuracy on cell counts significantly while adding another step of the more demanding
image backpropagation to the pipeline. However, we still create these bilateral translations
for specialized top-performing models (see Table 2) and for reasons mentioned below. Since
the cycling of data through the different types is what allows the architecture to perform
a regression task on unlabeled natural data, we call it Siamese-Cycle-VAE or SC-VAE for
short, and variants with enabled bilateral learning cycles will be called SC-VAE-B from
here on.

Table 2. Evaluation of all baselines and SC-VAE on the data sets Nat-PC, Nat-BF, Syn-PC and Syn-BF.
For each method and data set, we report the mean absolute (MAE), the mean relative error (MRE),
and the accuracy. Ultimately, only performance on natural data (Nat) is important, but we also report
the performance on synthetic data (Syn) to provide further context. We use an upward arrow ↑ to
indicate that higher is better; a downward arrow ↓means lower is better. The best results achieved
per category are marked in bold, (ss) denotes a semi-supervised method, (u) an unsupervised method.

Method MAE (Syn) ↓ MRE (Syn) ↓ Acc. (Syn) ↑ MAE (Nat) ↓ MRE (Nat) ↓ Acc. (Nat) ↑

PC (phase-contrast microscopy)

EfficientNet (ss) 4.987 79.4% 5.0% 1.67 25.12% 23.4%
BiT (ss) N/A N/A N/A 2.32 29.7% 25.4%

Twin-VAE (ss) 0.09 0.68% 68.2% 0.60 5.92% 57.8%
Transfer Twin-VAE (ss) 0.15 0.43% 85.0% 0.66 6.46% 53.7%

Dual Transfer Twin-VAE (ss) 0.12 0.43% 85.0% 0.58 5.56% 58.7%
Watershed (u) 0.94 18.0% 24.0% 1.66 29.0% 23.1%

C-VAE (u) 0.24 2.65% 54.2% 1.03 19.1% 28.9%
S-VAE (u) 0.09 0.53% 76.3% 2.64 41.2% 11.6%
SC-VAE (u) 0.11 0.83% 66.1% 0.49 5.16% 61.7%
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Table 2. Cont.

Method MAE (Syn) ↓ MRE (Syn) ↓ Acc. (Syn) ↑ MAE (Nat) ↓ MRE (Nat) ↓ Acc. (Nat) ↑

SC-VAE-B (u) 0.10 0.81% 67.9% 0.48 5.12% 61.8%

BF (bright-field microscopy)

EfficientNet
(ss) 6.502 67.1% 4.5% 1.13 17.2% 33.9%

BiT (ss) N/A N/A N/A 1.79 22.45% 38.7%
Twin-VAE (ss) 0.48 4.27% 60.1% 0.68 7.6% 53.2%
Transfer

Twin-VAE (ss) 0.40 3.87% 66.6% 0.52 5.47% 60.7%

Dual Transfer
Twin-VAE (ss) 0.35 3.73% 66.8% 0.51 5.43% 60.8%

Watershed (u) 1.92 39.0% 2.0% 2.39 32.0% 32.0%
C-VAE (u) 0.67 5.72% 50.8% 1.96 21.8% 26.3%
S-VAE (u) 0.33 3.66 % 67.3% 2.09 34.2% 18.6%
SC-VAE (u) 0.41 3.88% 62.5% 0.60 7.1% 56.6%

SC-VAE-B (u) 0.39 3.77% 62.6% 0.56 6.51% 58.7%

As mentioned above, we also generate pseudo-synthetic data xn→s from natural data
(blue arrow in Figure 4). Since, for these pseudo-data, annotations are unknown, they can-
not be used to train the regression process, but they can be used for two different purposes.

The first is balancing out the encoders and decoders, since, with the learning scheme
described above, the synthetic pipeline will go through more training steps than the natural
one, although this is the one that should be especially well-trained, as the minimization of
regression losses on natural data is the actual goal of this learning scheme. In this way, the
natural training pipeline can also be trained on many more cell arrangements than the few
that natural images provide, since even with a multitude of data augmentation techniques,
the generalization of encoding and decoding can be improved by this step (see Section 4).

Secondly, the decodings of translated synthetic images yn→s can be used as stability
checks of the latent space for the different types of data. Badly decoded pseudo-synthetic
images imply a larger than wanted differentiation of natural and synthetic images in the
bottleneck. More on this is given in Section 4.1.

Considering the loss functions, let r(x) be the estimated cell count and l remain the
label. The mean-squared error (MSE) ||r(x) − l||2 and the binary cross-entropy (BCE)
−l · log(r(x)) + (1− l) · log(1− r(x)) yielded similar results as in our previous works, and
both resulted in more precise cell counts than common alternatives; therefore, extensive
testing has been done with both, but ultimately the MSE was chosen as the default, since it is
easier to find appropriate coefficients for the different types of losses due to the diminishing
nature of MSE. The weight factors determine the importance of the counting accuracy and
change over the course of the training procedure, since deriving accurate cell counts on
natural data from synthetic and translated data requires preceding training of the encoders
and decoders. The associated REGloss(x, y) term is defined as

REGloss(x, l, t) = Cs,l
Reg · Reg(xs, l) + Cs→n,l

Reg · Reg(xs→n, l) (3)

When using BCE, the decoder loss factors decays over time with a decaying rate of
3× 10−5 per epoch. This is necessary because the BCE does not decrease significantly dur-
ing training, but needs to diminish over time to increase the importance of low regression
losses Reg(x, l).

Since it is beneficial for the prevention of overfitting to generate latent vectors that
are sufficiently close to a normal distribution, we aim for homogeneous representations
of synthetic and natural data in the embedding space of the architecture by applying a
regularization cost DKL, which is applied in the form of the Kullback–Leibler divergence
(KLD) of the standard VAE [44]. This loss will also ensure that the inner representations of
natural, synthetic, and both types of cycled data stay similar, allowing us to use the special
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training procedure described above. This cost is applied for natural, synthetic, and both
types of translated data and is defined as follows:

KLDloss(x, t) = Cn,n→s
DKL

· DKL(xn,n→s) + Cs,s→n
DKL

· DKL(xs,s→n) (4)

All coefficient factors have to be chosen mindfully, balancing the main target of
punishing incorrect cell counts on natural data and relaxing the importance of details in
visual reconstruction, but not undervaluing the KLD at the same time. Doing so can make
the training procedure unstable, while applying very large regularization costs hinders the
learning process and slows it down. To minimize the number of hyperparameters that have
to be optimized by hand, the weighting factors for the DKL losses have been grouped and a
Bayesian optimization [45] in the form of a Gaussian process regressor [46] was used to
quickly find baseline values for the most important hyperparameters, such as the learning
rate and the loss weight factors.

We combine these losses to form our overall SCVAEloss(x, l, t), use the coefficients of the
different terms to balance the impacts between natural, synthetic, and both types of translated
images, and handle input images with missing cell counts by fixing Cn,l

Reg = Cn→s,l
Reg = 0:

SCVAEloss(x, l, t) = RECloss(x, t) + REC-Tloss(x, t) + REGloss(x, l, t) + KLDloss(x, t) (5)

3.3.3. Baselines

For the evaluation in the upcoming section, several baselines have been gathered, to
enable a meaningful comparison with the state of the art. The first baseline is a widely
practiced classical computer vision pipeline. First, the input images are cropped to only
contain the cell chamber, and are then blurred with an averaging kernel-based filter; then, a
thresholding filter is applied, followed by a watershed segmentation [29]. The regions of
the segmented image are counted and used as a cell estimation. In order to find suitable
parameters for this learning scheme, an exhaustive grid search was performed for each
data set BF and PC. The code repository contains the best hyperparameters found. We refer
to this pipeline as Watershed in the following.

As a second baseline, we fine-tuned a pre-trained state of the art deep convolution
neural network, specifically a variant of EfficientNet [28]. We replace the last layer of the
pre-trained network with a fully connected layer that outputs a single value, and train
it to predict the cell count for a given input image. We apply the same hyperparameter
optimization as for our own method, and generate the same data augmentation. Since Effi-
cientNet is a variable architecture that comes in different sizes, referred to as EfficientNet-B0,
EfficientNet-B1, and so on, we evaluated EfficientNet-B0 through EfficientNet-B3 and found
that the smallest variant EfficientNet-B0 performed best, while larger variants performed
progressively worse. We considered to instead use EfficientNetV2 [47], but our preliminary
results showed that the same performance degradation applies to its larger variants as well,
and since EfficientNet-B0 outperformed the smallest EfficientNetV2-S variant, we retained
it and refer to this fine-tuned convolutional neural network as EfficientNet hereafter.

As a third baseline, we compare a state of the art transfer learning model from
Kolsenikov et al. called BiT, which produces highly accurate classification results on
Cifar-100 and similar data sets in a few-shot learning case of 1 to 10 examples per class. BiT
consists of the classical ResNet [48] architecture, but with very long pre-training times on
large image sets and a custom hyperrule that determines the training time and learning rate
during transfer depending on the size of the new data set. Changes to the hyperrule were
tested, but did not cause any significant improvement in accuracy; therefore, the values
provided by the authors were used. BiT is given all the natural and synthetic training data
per epoch, so it can come up with meaningful cell counts on natural data by abstracting
from the labeled synthetic data. We valued the possible cell counts from 1 to 30 as classes,
to account for the difference in training methodology.
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In addition, we compare our own previous work Twin-VAE (see [3]) and its alterations
Transfer Twin-VAE and Dual Transfer Twin-VAE (see [4]). These are based on the same
architecture, but perform semi-supervised learning techniques for which the same data
are used, albeit with partial annotations on the natural training data of 5–10%. Although
this circumstance should allow for higher accuracy on the counting task, the optimized
pipeline and cyclic data reuse of the new Siamese-Cycle-VAE is able to keep up with and
in some cases even outperform its predecessors, despite not being given any manual labels
at all. More on this is given below.

Lastly, ablation studies are done to ensure and show that the specific architectural de-
tails and principles of the learning scheme are helpful and optimize the training procedure
and therefore the accuracy on the regression task. One study will be called C-VAE from
here on. In this alteration of the network, there are no specialized Siamese encoders and
decoders, but the cyclic structure is kept. C-VAE should still be able to make meaningful cell
predictions, albeit that the abstraction between natural and synthetic data has to happen in
the inner layers of the VAE. The cyclic structure and the difference between original and
reconstructed images can still help the architecture to enrich the data in a more extensive
way than classical data augmentation alone can. The second study is called S-VAE. Here,
the Siamese architecture is kept, but we omit the cycling and do not use the reconstructed
image data as new input, but merely as reconstruction loss, as in the standard VAE. As there
are no labels on the natural data and there is no translated pseudo-natural imagery with
labels either, the regressor lacks a loss to meaningfully train for this type of data directly,
but could possibly abstract from the differentiation between natural and synthetic data in
the latent space and still achieve adequate accuracy on cell counting.

4. Results

As for the hyperparameter choices, the best results were achieved with decoder loss
factors Cn

Rec = 1× 102 and Cs
Rec = 2× 102, with the higher loss on synthetic data accounting

for the higher image variety of these images, while Cn→s
Rec = Cs→n

Rec = 5× 101 resulted in
the lowest reconstruction losses. While not mandatory to minimize, a degradation in the
deconstruction loss of translated images is almost always coupled with lower regression
losses. The regressor loss factors for synthetic data Cs

Reg and pseudo-natural data Cs→n
Reg are

both set to 5 and should inversely account for the ratio between the according types of data.
The KLD factor CDKL = 1 yields the best results for the larger data set Nat-PC, while slightly
larger factors work better for Nat-BF, constraining the inner representations of synthetic,
natural, and translated images to be coupled tightly. Faster convergence was observed for
smaller KLD factors, but the learning scheme tended to separate more between data types,
resulting in better reconstructions but poorer regressions. Figure 5 shows the combined
losses and indicates convergence.

In addition, a soft weight decay of 2× 10−5 per epoch, a constant learning rate of
0.75× 10−5, and delaying the start of the regressor by 25 epochs are used to achieve the
following results. Batch sizes of 128 for both types of microscopy imagery work best and
the training runs for up to 20,000 epochs, as there are no significant improvements after this.
Ablation studies with more synthetic data relative to natural data have been done as well.
In general, the architecture appears to converge faster when measured by epochs, but when
taking the increase in training batches per epoch into account and therefore measuring
by the number of computations, the training speed is marginally lower in all cases, so we
retain the 1:1 ratio.
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Figure 5. Visualization of the combined losses of SC-VAE top-performing model during training with
regularly applied tests, in this case of Nat-PC. It can be seen that after 20,000 epochs, convergence is
imminent, but has not fully been reached. Accuracy on cell counts does not improve significantly
after this point; only image reconstruction quality does. Since the primary goal is not to diminish
the reconstruction and normalization losses to zero, but rather to balance out the different losses, the
combined loss can only indirectly be interpreted as a convergence indicator. Nevertheless, larger and
faster descents in the combined loss still resemble well-trained models, even if this is insufficient as a
sole indicator of such.

4.1. Comparison

We present the results of our method and the comparative baselines in Table 2. The
mean relative error (MRE) is a normalized error, taking the ground truth into account, i.e.,
in high cell count images, small absolute deviations do not increase the error as much as
they do for low cell count images. When interpreting experimental results as a biological
expert, in most cases, this is the more meaningful indication over the mean absolute error
(MAE), which serves as the typical indicator in terms of a regression task. The bilateral
alteration SC-VAE-B that uses fully cycled images (back and forth) results in marginal but
reliable improvements, assimilating representations in the latent space, and should be
considered our top candidate.

Our SC-VAE consistently outperforms the other state of the art methods Watershed, BiT,
and EfficientNet by a wide margin. SC-VAE and its alteration SC-VAE-B correctly estimate
around 62 % of the cell counts for the Nat-PC data set, and their predictions differ on average
by only 0.5 cells from the true cell counts of the images, and they achieve approximately
5.1 % MRE. For the smaller Nat-BF data set, SC-VAE-B accomplishes 0.56 MAE, 6.5 % MRE,
and 58.7 % accuracy. While Dual Transfer Twin-VAE achieves slightly better results for
these data, they are attained by semi-supervised training, commonly not even compared to
unsupervised methods. As such, Siamese-Cycle-VAE holds up against semi-supervised
training methods and even exceeds them the case of the larger Nat-PC data set, making it
suitable for reliable cell counting with various microscopy techniques.

Moreover, we see that Siamese-Cycle-VAE performs well across the entire range of
cell counts in Nat-PC and Nat-BF. By contrast, Watershed and EfficientNet struggle with
images that contain few cells, which is the most important range of cell counts for biological
tasks, such as estimating the growth rate.

The ablation C-VAE that feeds all data through the same encoder and decoder results
in accuracy on synthetic data that is inferior to the other methods, even more so for the
important accuracy on natural data. By using the reconstructed images as new input,
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the learning scheme resembles the optimized scheme of SC-VAE in such a way that visual
intricacy on natural data is simplified, but not on the same level as SC-VAE..

S-VAE, on the other hand, worked best on synthetic data, especially so for Nat-BF,
but for both types of microscopy data, the MRE and accuracy on the natural data are far
from the results from SC-VAE. No translated natural data are generated by S-VAE, which
is missing the regression loss for natural data completely. Cell counts on natural data are
not random since there is still the shared encoder to unify the two types of data, but since
accuracies differ vastly between natural and synthetic data, the S-VAEs encoder fails to do
so because of a missing incentive.

4.2. Image Reconstruction and Representation

An analysis of the reconstruction abilities of Siamese-Cycle-VAE is useful to ensure
that the shared representation is meaningful, even though our main aim is automatic cell
counting, not perfect image reconstruction.

During the training of Siamese-Cycle-VAE, the image inputs are processed by their
respective encoder, followed by the general, weight-shared encoder, represented in the
bottleneck of the architecture; they are then processed by the shared decoder and finally
reconstructed by their specialized decoder accordingly (see Figure 4). The same is true
for auxiliary data and both types of translated pseudo-imagery. To ensure that the actual
regressive task works as intended for natural images, it must be able to benefit from
synthetic data representations in the latent space, so the learned representation must be
shared by the four types of data.

This can be verified by encoding natural images with their appropriate encoder,
but performing the decoding with the decoder that is designed and trained for auxiliary
images, the counterpart to the opposite conversion, which is done in every epoch of training.
Minimal changes in the stages of the images that are converted back and forth indicate the
close coupling of the representations. The closer the different data types are transformed
into the latent space, the greater the potential gain for regression on natural data. Moreover,
the conversion makes this fact interpretable on a visual level.

We show examples of perfect translations in Figure 6. For these samples, a natural
image is encoded and then decoded as a synthetic image. The number of cells remains
unchanged, and the position and size of the cells are also maintained. However, the overall
appearance is simplified: Siamese-Cycle-VAE learned to remove noise and to break down
the reconstruction to the essentials. Even the very large smudge on the left natural image
has not been reconstructed; although it will cause an increased loss in the reconstruction,
the weighting of the loss factors makes it more acceptable to forfeit image reconstruction
precision in favor of the regression. On the right side, it can be seen that the output does
indeed appear more similar to natural data than the synthetic input does, while fine details
such as the noisy borders are not recreated.

The ongoing cell division shown in Figure 7 is a prime example to understand how
Siamese-Cycle-VAE works. The membrane of the bottom right cell is not fully enclosed
and there is no overlap, since a fine bright border of the underlying cell would be seen
through the top cell. However, two cell cores can clearly be seen and a human expert would
presumably count this situation as two cells, which is exactly what Siamese-Cycle-VAE
does. The prediction of 9.65 instead of 10 can be understood as uncertainty and a slightly
earlier stage of the division would have arguably led to a slightly smaller prediction, which,
when rounded, would be the correct cell count again. The effect of simplified visuals also
happens in these non-translated reconstructions; the smudges on the Nat-BF sample are
clearly fainter and, in the left image, even the high-contrast dead cell residue on the left is
not recreated. This clearly indicates that even when Siamese-Cycle-VAE does not predict
the cell count perfectly in an image, the comparison between the original and reconstructed
image is useful to understand where an error occurs.
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Figure 6. Examples of translations used for cycling. From left to right: natural image, according
translated image from natural to synthetic, synthetic image, according translated image from synthetic
to natural. Compositions stay the same but the visual style has been transferred. The translated
images can now be used in the encoder designed for the type of data that they are imitating and
thereby serves a special purpose for each of the two translations: enriching the VAEs process of
encoding and decoding with unseen data, which is especially helpful for the natural coders due to
the limited availability of natural data (syn→ nat), and allowing the regressor that is well trained to
handle synthetic data to count cells in translated natural data (nat→ syn).

Figure 7. Examples of synthetic-looking reconstructions of a natural images. The reconstructions
are to the right of their natural counterparts. The composition of cells stays the same, positions are
near identical, cell sizes are preserved, and smudges are not recreated, or, if so, they are very faint,
semantically not impacting the regression task too much, since it learns to extract the encoding of
large, high-contrast cell boundaries. When rounded to full numbers, the cell counts of 10 on the left
and 4 on the right match exactly. Without rounding, on the left side, the predicted cell count is too
low by 0.35. This can be interpreted semantically as the ongoing cell division that happens in the
bottom right of the image.

4.3. Shared Representation

Siamese-Cycle-VAE’s ability to translate back and forth between natural and synthetic
images illustrates the semantically shared representation of all four types of data learned
by the autoencoder. Below, we visualize this shared representation. Because each image
is encoded as a 256-dimensional vector, we need to reduce the dimensionality to do so.
Uniform Manifold Approximation and Projection (UMAP) [39] has established itself as the
state of the art for nonlinear dimensionality reduction. It computes a topology-preserving
embedding that can be used for semantic interpretations of representations. In the result-
ing embedding (see Figure 8), we see that synthetic and natural data occupy the same
space, and we can even observe that both types of translated images also lie on the same
projection space.

Therefore, UMAP is unable to separate the latent representations of the different
types of data and this allows us to visually understand what is meant by tightly coupled
representations. UMAPs are non-parametric; therefore, the axis and scale have no meaning
other than the preserving of relations. Since we can observe that, along the main axis, the
cell count has been chosen as the most mandatory factor, it is the main determining factor in
the latent space, providing perfect conditions for a well-functioning regressor, since images
are represented vastly differently, dependent on the number of cells that they include.
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Figure 8. Embedding of the trained representations, determined via UMAP. Illustrated are natural,
labeled test samples (red circles); unlabeled test samples (grey); synthetic samples (blue), and both
types of translated images, syn → nat (green) and nat → syn (yellow). Cell counts are separated
by brightness, with darker dots indicating low cell counts and brighter dots indicating a high cell
count. Since UMAPs are non-parametric, axis and scale have no meaning, but relations are preserved.
Since dots become visibly brighter from left to right and this is the main axis along which the dots are
separated, UMAP has determined this direction to be the most important and it directly corresponds
to cell counts. Simultaneously, natural and auxiliary images do not become separated. If this were
the case, it would contradict a truly shared representation between the different types of data.

It can be seen that data that have been translated from synthetic to natural (green) tend
to encapsulate the synthetic data (blue); this is more so the case for the natural data that
are translated to synthetic (yellow), which encapsulate the original natural data (red and
gray). This can be interpreted as semantic coverage, which means that, for every possible
natural, unlabeled data point, there are labeled data points nearby, demanding only minor
abstractions of the regressor to be able to achieve a meaningful cell prediction.

Another way to ensure meaningful representations and condensed information in the
bottleneck of the Siamese-Cycle-VAE architecture is to sample images from noise vectors
and check two aspects of them: first, they should show deceptive images that could be
reconstructions from real data of their type, and, secondly, slight changes to the random
vectors should result in similar but not identical images. Both behaviors can be observed
in Figure 9; therefore, the latent representation contains information in a semantically
meaningful way.

The distribution of the UMAP also suggests that certain areas of the latent space serve
to represent a determinable number of cells. We tested this and found that there are indeed
areas in the latent space that lead to the reconstruction of low cell counts, and, within
the local area, all reconstructions result in low cell counts, while other areas can be found
that represent the presence of high cell counts in input images, and this is exactly what is
reconstructed by the decoders, when the latent space is sampled in this area.
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Figure 9. Samples generated from the latent space by inputting noise vectors and deconstructing them
with the natural (row 1) and synthetic (row 3) decoder. Appropriate cell imagery can be reconstructed
from these; consequently, the latent space meaningfully represents the important information of
possible input images for this domain. Adding and subtracting tiny amounts to and from these
vectors results in semantically similar images (row 2) with often only one cell more or less, where
the cells are slightly larger or smaller and have changed position slightly, while samples from a
completely different part of the latent space yield completely different images.

5. Discussion

We now discuss the limitations of this architecture and state possible revisions to
overcome them. During analysis, we found that for very small cells in the natural data,
only subpar precision is achieved. Since the working resolution of the architecture is
128 × 128 pixels, these cells are barely visible in the downscaled versions of the images and
can therefore not yield low error estimations. In future work, the working resolution could
be doubled per axis, which requires new layers in the specialized encoders and decoders,
but leaves the rest of the architecture unchanged. Alternatively, local crops of quarters of
the images could be used, allowing a quasi-double resolution by answering the question of
cell count with the sum of 4 quarters.

Large and high-contrast light reflections can also be problematic for satisfactory re-
gression. When scaling down an image such as the phase-contrast microscopy on the left in
Figure 1, the smaller reflections are merely a single bright pixel in the working resolution,
too small to impact the cell count. When these reflections are larger, as with the one on
the very left, it can lead to quite high reconstruction losses and cause the architecture to
replicate these, although they should be filtered out and ignored. To overcome this, a step
in the image preprocessing could be added that seeks this effect and dims the affected
area. More elegantly, the reconstruction loss could be capped with local maximums, so that
the high deviations that derive from this are not fully accounted for in the training of the
network. Further, although the proxy image generator is merely auxiliary content for this
work, currently, new microscopy imagery makes it obligatory to find appropriate parame-
ters for the generator, accounting for cell sizes, border brightness, etc. A more sophisticated
generator could be able to algorithmically generate auxiliary data automatically from given
natural data.

Due to the different types of network parts present in the architecture and the resulting
loss of Equation (5), it can be difficult to understand the importance of optimization of the
different parts of the composite loss. Forcing better reconstructions by setting the according
weight factors to high numbers may bring the disadvantage of worse regression, but this is
not necessary, because, to some extent, better reconstructions will also help to ensure that
the existence of cells is represented in the latent space, which is a major requirement for the
regressor to achieve high accuracy.
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The amount of hand-crafting meta-parameters could be reduced by the more extensive
use of meta-learning systems, such as a modified regressor for the Gaussian process that
we used, to enable the creation of a simple tool that users of a complete solution can
utilize for cell counting during live cell imaging experiments. Thus far, alternating between
automated meta-learning and hand-crafting with multiple parallel runs with different
meta-parameter choices has been utilized to find good parameters quickly.

Implementations for the real-time, continuous estimation of cell counts in experiment
monitoring would be a practical way to make this architecture and its learning scheme easily
usable for biologists. Despite these limitations, with SC-VAE, it is possible to outperform
state of the art alternatives, sometimes by a wide margin, and it can compete with its
semi-supervised predecessor.

Surprising findings were that the weight factors of the KLD loss in Equation (4) can be
quite low and therefore hinder the learning process from ensuring shared representations
only very little, only if the parameters of the other losses are chosen well. We are inconclusive
regarding what makes them well chosen, but the parameters that we found allow a very
high loss factor for regression, especially for translated pseudo-natural images, without
the representations becoming separated or the loss or the architecture becoming unstable,
a common outcome in other literature when weighing the loss of the main task as too
high and devaluing the loss of indirect tasks or those only achievable late in sequential
learning schemes.

We will now conclude the contribution and summarize our findings.

6. Conclusions

With our specialized learning scheme, we created a basis for automated cell counting
in the domain of microfluidic cell cultivations, and we presented a workflow for the
unsupervised image recognition of mammalian suspension cells, obtained by live cell
imaging. The auxiliary data generator presented delivers arbitrary amounts of synthetic
microscopy imagery and, with only minor adjustments, can also generate images for
entirely different types of cells and microscopy technologies. SC-VAE demands only rough
similarity between synthetic and natural data, omitting the laborious task of replicating the
intricate visual details of the natural data. The presented technique operates independently
of the actual cell sizes of the organism being studied, and the adaptation to, e.g., elongated
bacterial cells or plant cells can be done easily.

In Section 1, we mentioned that the manual procedure of labeling such imagery
by human experts is not feasible and requires automation. We overcome this issue by
delivering an end-to-end solution that is usable not only by experts, requires no hand-
labeled data at all, and still competes with semi-supervised state of the art solutions that
do require manual labels. We also present an innovative means of gaining insights into the
latent spaces of these type of Siamese networks by comparing cycled images, i.e., images
converted back and forth, to their original counterparts and by translating natural data to
pseudo-synthetic data to particularly ensure the stability of the internal representations
and a meaningful latent space distribution from which we can sample freely, in such a way
that is understandable to the human eye.

The Siamese-Cycle-VAE architecture helps us to understand what requirements exist
for the presence, quantity, and quality of natural data in the image processing domain,
specifically related to an unsupervised regression task.

Moreover, we show that our specialized learning scheme grants SC-VAE the ability to
abstract from the fact that data are synthetic by ensuring that all elements of the architecture
that tend to discriminate between different types of data are vastly overruled by elements
that do not tend to do so. Only due to the novel learning scheme that we present, it is
possible to generate a meaningful loss without any labeled original data.

We encourage future learning methods and architectures in other domains but with
similar research questions and obstacles, especially the lack of labeled data, to adapt the
general idea of this machine learning scheme and architecture in the future, albeit with
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different types of difficulties, especially for those cases where the generation of auxiliary
data cannot be directly coupled to a target variable or classification, i.e., domains where the
full coverage of possible natural data by synthetic data is not trivial.
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