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Abstract: Maintenance processes are of high importance for industrial plants. They have to be
performed regularly and uninterruptedly. To assist maintenance personnel, industrial sensors moni-
tored by distributed control systems observe and collect several machinery parameters in the cloud.
Then, machine learning algorithms try to match patterns and classify abnormal behaviors. This
paper presents a new deep learning model called stranded-NN. This model uses a set of NN mod-
els of variable layer depths depending on the input. This way, the proposed model can classify
different types of emergencies occurring in different time intervals; real-time, close-to-real-time, or
periodic. The proposed stranded-NN model has been compared against existing fixed-depth MLPs
and LSTM networks used by the industry. Experimentation has shown that the stranded-NN model
can outperform fixed depth MLPs 15–21% more in terms of accuracy for real-time events and at least
10–14% more for close-to-real-time events. Regarding LSTMs of the same memory depth as the NN
strand input, the stranded NN presents similar results in terms of accuracy for a specific number of
strands. Nevertheless, the stranded-NN model’s ability to maintain multiple trained strands makes it
a superior and more flexible classification and prediction solution than its LSTM counterpart, as well
as being faster at training and classification.

Keywords: classification algorithms; Industry 4.0; industrial maintenance systems; industrial IoT;
deep learning; deep neural networks; recurrent neural networks

1. Introduction

The rapid evolution of Industry 4.0 [1], accompanied by the enormous amount of data
collected from various sensors, devices, machines, or embedded systems, is increasing the
research and industrial communities’ needs for intelligent systems, and eventually will lead
us to the arrival of the Industry 5.0 era. Until now, the ancestor of Industry 5.0, the digital
Industry 4.0, has benefited from the use of the Industrial Internet of Things (IIoT), Big Data,
cloud computing, and Augmented Reality, which will be followed by the exploitation of the
encapsulated knowledge via Artificial Intelligence [2] and more precisely through machine
learning and deep learning techniques.

Gathering data from a set of IIoT sensors necessitates a suitable control unit. Hence,
two main systems appear in the industry, decentralized control systems (DCS) and pro-
grammable logic controllers (PLC). Furthermore, the storage and analysis of the collected
Big Data [3] require distributed database management systems (DBMS) as a unified data
point of origin, implementing artificially intelligent logic and cloud services. Taking into
account the gathered industrial sensory data, it is unquestionable that much knowledge
is encapsulated in them. The extraction of patterns, correlations, and outliers included in
these collections are tasks which humans can hardly process. Consequently, automated, in-
genious, and highly productive practices are in great demand to exceed human limitations
while decreasing engine failure and increasing productivity.
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The appearance of machinery component malfunctions and critical events are two
mandatory scenarios frequently revealed in an industrial environment. Therefore, the
operation status of several delicate machinery parts, such as pumps, compressors, and
robotic arms, must be kept under surveillance, predominantly when they work under
high temperatures, pressures, or/and strict performance indices defined by manufacturing
requirements [4]. Focusing on decision making, machine learning (ML) techniques and,
more precisely, data mining [5] and regression [6], are broadly used [7,8], leading to
robustness in industrial maintenance, detecting the majority of possible faults through
pattern recognition and triggering a proper alert.

Deep and machine learning algorithm operationalization is different from traditional
algorithm deployment. Therefore, thoroughly evaluating machine learning algorithms
before production is an important validation of their correct operation. Such validation
includes formal reasoning over all possible inputs or property checking that all industrial
responses/ behavioral requirements are captured via formal methods [9,10], and their
practical implementations over appropriate representational languages or tools [9,11]. The
verification of the strict implementation of operations and their response using validation
tools should also be addressed. Model checking, model-based testing using formal opera-
tional test scenarios, and design by refinement and abstract interpretation during training
and validation will lead to robust deep learning models [11].

There are three state-of-the-art categories of algorithms for industrial maintenance
and machinery operations:

Classical ML or deterministic methods: This category includes algorithms such as linear
regression, fuzzy control, threshold control, proportional integral derivative (PID) control,
support vector machines (SVM), decision trees, random forest, etc. These algorithms are
currently in use by most modern industries and machinery maintenance software for
classification and regression purposes. Nevertheless, their appliance is of a specific use and
targets maintenance cases, with different hyperparameter values for each case that requires
accurate calibration;
Narrow depth ML methods: This category includes ML networks of limited depth and
techniques of targeted patterns detection. Gradient boosting networks such as LightGBM,
and neural networks of limited and fixed depth are corresponding methods of this category.
This category of algorithms focuses on the pattern detection of time-invariant decisions or
specific decisions applicable to time series of measurements of minimal memory capabilities
(real-time detection);
Deep learning methods: This category includes classification or regression algorithms,
capable of variable patterns detection, that can apply to either time streams or irregular
time intervals of sensory data and provide the detection of erratic patterns, either real-
time, close-to-real-time, or periodic. This category includes convolutional neural networks
(CNNs), long short-term memory networks (LSTMs), and neural networks of variable
depth based on input. This paper focuses on this network category for detecting machinery
operation abnormalities.

This paper focuses on the oil refinery industry containing compressors and pumps
processing flammable gases and liquids. Attributes influencing an engine’s proficiency are
temperature, pressure, and vibrations resulting from its operation. As a result, the examined
machine’s temperature for compressors and pump acceleration sensor measurements are
used as data inputs. A new intelligent failure classification algorithm called the stranded-
NN model is presented by the authors. This algorithm utilizes different layers of neurons
based on sampling processes over the input sensory data streams. The generated model
is used to detect different classes of industrial emergencies based on input time-depth of
sensory measurements and can be utilized for either periodic preventive maintenance cases
or real-time and close-to-real-time malfunction machinery events.

The proposed stranded-NN model maintains separate neural network models trained
for each input data sampling process (called data batch), received accordingly as a time
series input. Then, depending on the type of data classification process (real-time, close-
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to-real-time, periodic maintenance), different outcomes can be detected. All these neural
networks are stored and retrained as a joined model entity. The paper’s structure is as
follows. Section 2 outlines the related work for industrial maintenance for critical events
and maintenance. In Section 3, the proposed stranded-NN algorithm is presented; in
Section 3.1 the stranded-NN is tested and compared to existing LSTM networks; Section 4
follows the discussion of the results and, finally, Section 5 outlines the most important
findings using the stranded-NN algorithm.

2. Related Work

Industrial maintenance levels are mainly identified by monitoring parameters during
operation using sensors. Different operation responses can be determined according to the
measurement probing, variability, or limits set by the machinery manufacturers. Usually,
the industrial concentrators receive a series of time-framed measurements per machine.
Then, these measurements are split into measurement intervals called measurement batches
and are driven to a detection model as input. Existing detection models include classifiers
or regressors. The size of the measurement batches as model inputs signifies the model’s
detection-monitoring granularity. For this reason, based on the data input and sensor
probing intervals, we have different types of machinery monitoring cases:

Real-time critical events include sensory measurements of precise machinery operations.
The sensory input in such cases is of multiple sensors of the same locality measuring
different machinery parameters per second, setting the detection response interval to
no more than a few minutes (1–3 min);

Close-to-real-time events include sensory measurements where the malfunction detection
can be extended to a few minutes’ response due to the extended intervals of measure-
ment acquisition or degraded sensors’ accuracy. In such cases, the detection response
intervals can be of a few minutes (3–15 min);

Periodic maintenance events or checks include batches of sensory measurements of hourly
or daily intervals (15 min/30 min/hourly/daily). Such detection tests can be automat-
ically performed during operation or post-processing. These are targeted maintenance
checks that detect deviations or malfunctioning patterns concerning past machinery
operational behavior.

Following this categorization that requires different handling approaches per event
type, the authors set real-time events of short observation intervals that require immediate
actions and periodic long term observation intervals for planning future maintenance tasks.
The following subsections summarize the existing methods used for each type.

2.1. Problem of Critical Events Detection

With rapid advances in information and communication technology, log files, which
are time records of the occurrence of various types of events, are commonly available at both
machine and system levels in industrial enterprises. For example, the service department of
most manufacturers keeps a record of after-sales service provided for products during the
warranty period. These records contain the occurrence of malfunction/failure events and
the corresponding repair actions taken on the products over time. Many modern machines
are numerically controlled by on-board computers, and various events such as machine
activities, critical failures, operator/user actions, and job status are recorded in real-time
during machine operation. For example, for hardware handling equipment, we can receive
an event log containing various types of events, such as battery status, accident occurrences,
internal communication errors between subsystems, etc. [12].

By modeling the relationship between the precursor events and the critical event, we
could predict the occurrence of the critical event when we observe the precursor events.
Another example is that, by analyzing the service records of a particular product, we can
find the frequency of occurrence of certain failure modes and the possible relationship
between different failure modes. For example, two different failure types may be related
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because of an underlying physical connection between the two failure types or because these
two failure modes are caused by a common root cause. Information about the relationship
between events, when combined with the ability to accurately predict critical events, is
very useful in identifying the root causes of failures and in designing optimal preventive
maintenance policies that can reduce unexpected machine downtime and maintenance
costs. Thus, the establishment of a method of modeling and predicting events based on the
event log can be particularly valuable in industrial practice.

Deterministic solutions for industrial maintenance and critical events detection focus
on using thresholds or PID (proportional integral derivative) controllers coefficients or
fuzzy rules and parameters. Unfortunately, such approximations are insufficient due to
their static nature, resulting in their inability to capture patterns even among the same
machines. Furthermore, fuzzy logic techniques [13,14], e.g., using Gaussian models, are
still deterministic, sometimes lacking rules and physical interpretation. However, it can
perform adequately in sensory responses with no annotated output feedback [15]. On
the other hand, other methods, such as linear or non-linear regression models [6], are
limited in performance due to their absence or the static use of data processing depth
and the appliance of uniform pre-processing methods towards the input sensory data or
equipment [16].

Significant progress has been made recently in machine learning and artificial intelli-
gence [17,18]. Many new general data-driven modeling approaches have been developed,
among which deep learning methods have proven themselves quite flexible and strong.
Deep learning is a general method of approximating nonlinear functions that uses a neural
network framework, which can learn, from data, the relationship between high-dimensional
inputs and output. The effectiveness of deep learning comes from its flexible structure.
Recent advances in stochastic gradient descent (SGD) optimization and GPU-based parallel
computing enable very large-scale deep learning models, thus enhancing the flexibility and
efficiency of deep learning models. Narrow depth networks, specifically MLPs, are also
used in industrial maintenance focusing on real-time event detection. The authors of [19]
present two MLPs of one and four hidden layers accordingly for predicting gas turbine
and compressor decay states. Orru et al. present an MLP model for predicting potential
machinery faults [20]. Massaro et al. suggest an MLP model using the temperature of
two milk production lines as input, providing an alerts classifier [21]. Finally, Ullah et al.
proposed an MLP classifier for thermal conditions of power substations [22].

Towards events detection using deep learning approaches, the authors of [23] pro-
posed a long short-term memory (LSTM) model to achieve extreme event forecasting by
working on time series to solve anomaly detection problems, budget planning, and optimal
resource allocation, among others. A plethora of studies on LSTMs can be found on the
web and the literature, such as [24], a study where a method is proposed to solve the
problem of predictive pump maintenance based on sensory data. Moreover, the study
of [25] describes the definition of an LSTM model for turbofan engine maintenance on
NASA’s dataset. Man and Zhou [26] presented a mixed model for hard failure predictions
where both degradation signals and time-to-event data are given. The authors of [27] also
propose an IIoT framework for productive maintenance that uses LSTM networks to extract
productivity and maintenance features.

Another origin of collected industrial data events is in the form of event log files, such
as systems’ profiles and maintenance notes. Huang et al. [12] proposed a Deep Learning
technique based on recurrent neural networks (RNN) that are able to predict critical events
trained on event logs. Yuan et al. [28] proposed a statistical model of event logs for the
problem of system failure prediction. One significant drawback of deep learning methods is
that it is hard to train them on embedded systems in real-time due to underlying hardware
limitations (DCS or PLCs). Nevertheless, deep learning models can be uploaded and used
for prediction purposes [29]. In this case, pre-trained models are uploaded to the cloud and
are assumed to be automated periodical upgrades. Consequently, “tiny” ML [30] methods
are gaining more and more popularity due to their low needs for resources, e.g., memory.
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2.2. Problem of Industrial Maintenance

As the Industrial Internet of Things (IIoT) technology develops rapidly, companies
have the ability to observe the health of engine components and manufactured systems
through the collection of signals from sensors. According to the results of IIoT sensors,
companies can build systems to predict component conditions. Practically, the components
are required to be serviced or replaced before the end of their life while performing the
work assigned to them. Predicting the life state of a part is so important for industries that
intend to grow in a fast-paced technological environment. Recent studies on predictive
maintenance help industries to create an alert before parts fail. By detecting component
failures, companies have the opportunity to keep their operations efficient while reducing
their maintenance costs by repairing components in advance. Since maintenance directly
affects productivity and service quality, optimized maintenance is the key factor for organi-
zations to allow them to generate more revenue and remain competitive in the growing
industrialized world. With the help of a well-designed predictive system to understand the
current state of an engine, components could be taken out of service before a malfunction
occurs. With the help of inspection, effective maintenance extends component life, improves
equipment availability, and keeps components in good condition while reducing costs.
Real-time data collected from sensors are an excellent resource for components’ live-cycle
modeling. Markov chain models [31], survival analysis for machinery lifespans [32], ML
optimization algorithms [33], and various machine learning approaches have been applied
to model predictive maintenance [34].

For solving the prediction task, machine learning (ML) technology is increasingly
being used. However, the state of recent research is not well posed and there is a lack of
adoption of up-to-date models for pre-processing and training [16]. The incorporation of
the uniform use of ML algorithms for Industry 4.0 classification detection and prediction
processes is also at risk. The authors of [35] propose the use of long short term memory
(LSTM) networks to predict the current state of a motor. The LSTM model deals with
sequential input data. The training process of LSTM networks is performed on a large-scale
data processing engine with high performance. Since the huge amount of data flow into the
prediction model, Apache Spark, which offers a distributed clustering environment, has
been used. The output of the LSTM network decides the current life state of the components
and offers alerts for components before their end of life. To predict the current state of
any system unit, condition-based maintenance (CBM) has been proposed. According to
Jardine et al. [36], CBM recommends actions based on the information collected by the system.
The main objectives of CBM are to avoid unnecessary maintenance actions and to recommend
maintenance actions if an anomaly is detected. Estimating the remaining useful lifetime (RUL)
with high accuracy is crucial to developing an effective CBM strategy. RUL could be predicted
by collecting signals with sensors located in relevant units of the system.

Furthermore, the use of deep learning RNNs and, more specifically, LSTM is consid-
ered significant for the prediction of machinery’s remaining useful life [37]. Jain et al. [38]
developed artificial neural networks (ANN) to predict RUL under unknown initial wear.
Jain et al. [38] proposed an ANN-based approach to more accurately predict the RUL of
high-speed milling cutters. The proposed model was built based on temporal statistical
characteristics. Sateedh et.al proposed a new approach for RUL estimation called meta
cognitive regression neural network (McRNN) for function approximation. McRNN uses
extended Kalman filters (EKF) to find the optimal training of network parameters [39].
Finally, Porotsky and Bluvband developed a new model for parameter optimization con-
trol based on the cross validation process to solve the question in the 2012 IEEE PHM
Conference Challenge Competition, and their solution was awarded the “Winner from
Industry” [40]. In addition, Heimes developed a data-driven algorithm to predict RUL [41].

3. Materials and Methods

Introducing a unified deep learning model of a standardized output response and
variable input that can cover critical cases and maintenance is crucial. That is because
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existing approaches pose data input length limitations and can explicitly perform only
during specific time frames. For this reason, the authors proposed a new multi dimensional
neural network model that can accept variable sensory measurements as batch model
input and respond adequately to this variance by dynamically altering the number of
layers and trained parameters. This proposed merged entity of NNs is then available for
either retraining, classification, prediction, or even creating other NNs of different input
sizes. The stranded-NN algorithm has been evaluated using temperature readings from
a compressor stages used by the Hellenic petroleum Industry in Thessaloniki, Greece,
as well acceleration measurements for pump motors provided by the Machinery Fault
Database (MaFaulDa) [42]. To compare our results with existing RNNs, our stranded-NN
algorithm results have been compared with the results provided by existing LSTM network
implementations [24]. In the following subsection, the proposed stranded-NN model is
described in detail.

3.1. Proposed Stranded-NN Model

The authors proposed a new NN model for detecting semi-critical or critical machinery
errors during operation. The proposed stranded-NN model includes a series of different
NN strands (different neural networks of arbitrary depth). Each strand comprises a set of
NN layers with layer depth depending on the input and specific rules. The data input of the
model is a time series of sensory measurement data. The data output of the model is a set
of classes that determine the criticality of the event. Our proposed model was constructed
using the tensorflow keras framework [43,44].

Let us assume an m number of time-series sensory machinery measurements. Given
model input as a 1D array of (m, 1), where measurements are from different sensors of
a specific machinery location or operation, si, where 1 < i ≤ m. All measurements are
entered as a chronological order stream. The stranded-NN is structured from different
neural network sub-models, each capable of accepting a specific data input size of batch
size (m, 1). The following equation determines each model strand depth of hidden layers q:

q =

{
2 2 ≤ m ≤ 32
int(log2(m))− 3 m > 32,

(1)

where int(x) corresponds to taking the integer part of the value x and m is the number of
sensory batch observations. If the number of intervals collected measurements m ≤ 32,
then the instantiated NN-strand for this case is a model of two hidden layers L|64|16| of 64
and 16 perceptrons accordingly. For probing intervals of more than 32 measurements, the
strand depth of q hidden layers is according to Equation (1). The number of neurons nn
per ith layer is defined as nn = 2n neurons/layer. The sum of trainable parameters p, for
each strand, is defined by Equation (2).

p =


26 + 24 2 ≤ m ≤ 32

q

∑
i=1

2q′−i m > 32,
(2)

where q is the total number of hidden layers calculated by Equation (1), and q′ = int(log2(m)),
signifying the number of perceptrons of the first hidden layer. The input batches of each
NN-strand enter its first hidden layer with the maximum number of perceptrons, and as
they progress layer by layer, the number of neurons per layer is reduced by a power of
two. The minimum number of neurons at the last hidden layer is always 24 = 16. That
means that the maximum number of classes Cmax that can be introduced per strand can be
no more than 16. For the NN-strand neurons, the ReLU activation function is used, and the
soft-max activation function’s output layer applies for the detection class selection.

The stranded-NN model accepts different time series sensory measurements over time
(m) as input. Then, according to the m value, it automatically generates fully-connected
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hidden layers of perceptrons. For example, let us assume that a piece of monitoring
equipment has a set of k = 16 temperature sensors, transmitting data every dt = 30 s.
In order to perform real-time malfunction detection every Tp = 3 min, a time series of
sensory measurements needs to be created to form a measurement data input batch of
m = k · Tp

dt = 96 measurement values. This batch of measurements needs to be annotated to
an operational class. For the input value of m = 96, the stranded-NN algorithm generates a
model of three hidden layers (L64

1 − L32
2 − L16

3 ), where 64, 32, 16 is the number of perceptrons
for each layer. Then, the last layer is connected, collecting L3 for the classification output
i classes layer. For close-to-real-time detection of 10 min intervals, a batch of the total
size of m = 16 · 20 = 320 measurements data needs to be annotated (classified). For
this batch input, the stranded-NN algorithm generates a model of five hidden layers
(L256

1 − L128
2 − L64

3 − L32
4 − L16

2 ), where 256, 128, 64, 32, 16 is the number of perceptrons per
layer accordingly. In real-time cases where the number of monitoring equipment sensors is
limited (for example, k = 2 temperature sensors), small batch values (for example, m = 12)
are used. The stranded-NN algorithm cannot generate enough hidden layers for such small
values. That is why a threshold value of m = 32 was added in order for the stranded-NN
algorithm to be able to generate at least a two hidden layer model (L64

1 − L16
2 ) of 64 and 16

perceptrons per layer accordingly.
In order to eliminate degraded gradients, L1 regularization is performed over the

cross entropy loss function in each hidden layer, according to Equation (3):

MLF = − 1
N

N

∑
n=1

K

∑
i=1

pni · log2yni + λ
l

∑
k=1
|Wk|, (3)

where MLF is the modified loss function for the NN layer, N is the number of samples, K is
the number of detection classes, pni is the indicator value that the sample n belongs to class
i, yni is the probability that the strand associates the nth input with class i, and ∑l

k=1 |Wk|
is the sum of the layer absolute weight values. Parameter λ is set to 0.005 as derived by
experimentation for all model strands. Table 1 summarizes the hyperparameters accessible
for each strand and their tuned values.

Table 1. Hyperparameters tuning per strand of the stranded-NN model.

Hyperparameter Description Tuned Value

q Number of hidden layers per
strand 2 ≤ q ≤ 12

λ L1 regularization parameter 0.005

pdrop
Drop probability of dropout

layers
0.05 ≤ pdrop ≤ 0.1

mmax
Maximum number of input

measurements per batch 4096

λt Learning rate parameter 10−4 ≤ λt ≤ 0.01

λd
Learning rate decrease

coefficient 0.2

ns
Number of stranded model

strands 2 ≤ ns ≥ 32

Cmax
Maximum number of

outputs—detection classes 16

Epochs Number of train epochs 20–80
Batchsize Batch size of train data 32, 64, 128, 256, 512

To eliminate over-fitting issues, especially for datasets with a limited number of batch
data, dropout layers can be introduced among layers as follows:

• For even numbers of q, a dropout layer can be inserted after every even layer depth;
• For odd numbers of q, a dropout layer can be inserted after every odd layer depth

after the first hidden layer.
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The use of dropout layers for the model is not obligatory. Nevertheless, in cases of
over-fitting, dropouts can be set uniformly across all strands of the stranded-NN network if
requested. The drop probability of each layer can be determined via fine-tuning experimen-
tation to minimize catastrophic drops. As a guideline from the authors’ experimentation,
the drop probability may be a randomly set value per layer between 0.05 and 0.1. For values
above 0.1, significant losses and accuracy degradation were observed. The stranded-NN
model can be used with or without including dropout layers. For big data input cases, the
use of dropouts is not recommended.

To limit the number of constructed layers, as the value of batch measurements m
increases, a layer limit was set, such as q ≤ 12. The value of m = 4096 measurements per
input batch was set as a measurements’ threshold value to cover even the cases of periodic
checks. Nevertheless, it is considered a hyper-parameter by the stranded model. It can
be altered if more frequent sensory probing is performed (less than 10 s) or a big set of
sensory observations is collected per machinery asset (more than 128 observations per
real-time interval).

During the per-strand training process of the stranded-NN model, the Adam solver
was used with the categorical cross entropy as a loss function. The learning rate parameter
λt, which defines the per-strand weight adjustments over the loss function, was initially
set to 0.01 for all model strands. If, while training, the strand validation loss decreases
between epochs, then the λt is decreased by a learning rate decrease factor λd = 0.2. This is
performed until the λt parameter reaches the value of 10−4. Below, further λt decreases,
triggered by validation loss decays, do not contribute significantly to the NN weights.

The stranded-NN model is a collection of NN-strands, which can be used for either
training or classification based on the input measurements batch size. Figure 1 illustrates the
stranded model training and prediction process flow. At the initialization of the NN strands,
the description configuration file is parsed, and the initial NN strands are generated and
attached to the model. Upon first strand creation, the model is stored with initial weights
using a separate model file per NN strand using the HDF5 data format. Upon successful
model storage, the model select command can select a specific NN strand of specified data
input and model depth. The stranded-NN algorithmic process includes the following steps
for both models training and predictions:

Data Preprocessing: The data pre-processing step includes arranging the data input
streams to 1D (n, 1) arrays, where n is the corresponding model strand input (stranded
model input batch size). The data pre-processing also includes transforming the annotated
outputs to binary 1D vectors with sizes equal to the stranded model classes. After the
pre-processing, the stranded model initialization occurs, which involves either the creation
of the stranded model and its corresponding strands or the stranded model load (load of
strands’ weights).
Step 1—Training: In this step, the selected strand is trained using the appropriate sensory
batch as data input. The model uses a configurable batch size and epoch values per selected
strand for the training process. The train data split ratios to validation, and testing sets are
also configurable. The default value of 0.1 (10% of the training dataset) was used for the
validation set. The default value of 0.2 (20% of the training dataset) was used for strand
evaluation. The training data set input batches were also shuffled prior to training. Since
the sensory measures were in chronological order for all input batches and were classified
as a batch, the shuffling process did not affect the order of the time intervals (batch size)
that we wanted to have a classification outcome.
Any number can be used between 20–80 epochs for the training process epochs. However,
the authors selected the size of 40 epochs, 10 epochs above the learning rate reduction ini-
tialization to be considered during the training process (fine tuning of trainable parameters).
Regarding the training and evaluation batch input sizes, an arbitrary number between
16− 512 can be selected. No significant accuracy or loss changes were detected from the
batch size variations in the reported range, as reported by our experimentation.
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Step 2—Classification: In this step, the classification-class selection response of the selected
strand is calculated using appropriate sensory batched data as input.
Step 3—Store NN strands: Upon training, the new model strand weights are stored in
the new model file in the NN-model strand directory. Additionally, the strand model
evaluation results regarding loss and accuracy are stored in the stranded-NN model’s
output results file.
Step 4—Prediction vector output: If requested, the predictions of the output layer can be
separately stored before the appliance of the soft-max activation function. This output
vector is called a regression or predictions vector. It can be used in order to have the
unregulated output of the strand as an input to other algorithmic output correlation,
similarity, or regression processes.

Data pre-processing

Model Init

Model
Exists?

Load NN
strands

Yes

Create NN
strands

No

NN
strands

description

Strand
selection

Step 1: Train

Step 3:
Store NN
strands

Sensory
Data Input
batch

Strand
selection

Step 2: Classification
Sensory
Data Input
batch

Step 4:
Prediction

vector

Figure 1. Strand-NN model training and prediction process.

According to Table A1, the maximum number of trainable strand parameters is 15.3 M
(4096 inputs per time interval), and the maximum size for this strand is 61.5 MB. Since
multiple strands can co-exist in a stranded model, the total stranded model size varies as a
cumulative sum of strands’ train parameters and sizes. The following section puts to the
test the stranded-NN using two distinct evaluation IIoT scenarios. The model results are
then compared to existing MLP [19,20,45] and LSTM implementations [27,37,46].
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4. Experimental Scenarios

To evaluate their proposed stranded-NN model, the authors experimented with two
different datasets:

Stranded-NN implementation using compressor temperature data. A temperature dataset,
provided by two sets of the 1402 compressor of the Hellenic petroleum company. Each
set includes a series of four temperature sensors (a total of eight temperature measure-
ments/minute).
Stranded-NN implementation using pumps axial acceleration data. The measurements
of normal and imbalanced pump cases are provided by the Mafaulda dataset [42]. The
sensors used include three industrial accelerometers in the radial, axial, and tangential
directions and a triaxial accelerometer (a total of six measurements per second).
All sensors were coupled to the pump’s axis. The pump was 250 W (0.33 Hp) with a 16 mm
axis diameter and 520 mm of axis length, and a coupling bearings distance of 390 mm. A
total of six measurements were provided by the accelerometers every 5 s. In addition, the
measurement data of fixed rotational pump speeds of 737 rpm were used to simplify the
problem further. Furthermore, it is hard to distinguish pump vibrations using vibration
sensors at the pump’s mounting plate at such low rotation speeds. The acceleration data
unit of measure was m/s2.

For Scenario I, of compressor temperatures, a stranded-NN model has been con-
structed with strands of data inputs n = 16, 48, 80 and no dropout layers for real-time
classification (see Figure A1 at Appendix A.1), signifying a batch of measurements of 1 min
for n = 16, 3 min for n = 48 and 5 min for n = 80. For close-to-real-time measurement,
strands of data inputs n = 160, 480, 960 were used for 10, 30, and 60 min accordingly (see
Figure A2 at Appendix A.2).

For Scenario II of pump acceleration measurements, a stranded-NN model was con-
structed with strands of data inputs n = 12, 30, 60 and no dropout layers for real-time
classification (see Figure A3 at Appendix B.1) and strands for data inputs n = 150, 300, 600
for close-to-real-time classification (see Figure A4 at Appendix B.2).

For both scenarios, the annotated data use five classes, indicating maintenance emer-
gencies or critical machinery operations. The first class indicates normal behavior. The
second class indicates close-to-normal machinery behavior that needs future maintenance
attendance. The third class indicates stressed behavior that requires persistent monitoring
and/or immediate maintenance. The fourth class indicates critical alert behavior that
requires response actions, while the fifth class represents catastrophic cases that will stress
the equipment beyond its intended use, as defined by machine specifications.

4.1. Scenario I: Training and Evaluating Compressor Temperatures

Given a big dataset with millions of paired (temperature, alert) values produced by a
set of sensors (Figure 2), it is mandatory to annotate each temperature Ti to one of the five
characteristic classes according to Table 2. Once the dataset was annotated, then it is split
into a training set (80%) and a testing set (20%).

Table 2. Annotation process of a given set of temperature values Ti, correlated to a given alert
threshold (in the temperature case alert = 60 ◦C).

Class State Range of Temperature Ti

0 Normal 0 ≤ Ti < 0.25 ∗ alert
1 Low-Risk 0.25 ∗ alert ≤ Ti < 0.5 ∗ alert
2 Caution 0.5 ∗ alert ≤ Ti < 0.75 ∗ alert
3 Critical 0.75 ∗ alert ≤ Ti < alert
4 Danger alert ≤ Ti

The constructed annotated dataset contains 7,439,584 temperature samples, and the
number of samples per class is described in Table 3. To this point, it should be mentioned
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that, unluckily for the majority of classes {0, 1, 2, 3}, data are collected, and class 4, related
to measurements above the alert threshold, lacks real data. The experimental results follow.

Figure 2. Temperature sensors grouped by alert thresholds. Sets 3 and 7 contain 8 sensors each,
which are related to alert = 60 ◦C.

Table 3. Number of temperature samples per class.

Class Number of Samples

0 50,248
1 3,077,880
2 4,291,731
3 19,725
4 0

4.2. Scenario I: Experimental Results

In order to compare the performance of the proposed stranded-NN model against a
real-time model and a close-to-real-time model, the MLP Classifier and the LSTM model
were selected, respectively. In the case of the MLP classifier, several hidden layers along
with a set of number of units per hidden layer were tested and the most representative
models are presented in Table 4. Additionally, the LBFGS optimizer was used with a
parameter alpha = 10−5. The maximum number of iterations was set equal to 10,000. From
the experimental results, it is obvious that the MLP classifier presents a maximum accuracy
of 0.753 at its deep MLP (100-layers, 20-perceptrons) representative model, with a significant
loss value of 4.53. It is also worth mentioning that an MLP (10-layers, 4-perceptrons) model is
outperformed in terms of 3.9% accuracy by the MLP (100, 20) model.
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Table 4. Evaluation of different in size trained MLP models on temperature data for the real-time case.

Real-Time

No of Hidden Layers No of
Perceptrons/Layer Loss Accuracy

2 7 5.12 0.678
3 7 4.94 0.724
5 7 5.34 0.626
10 4 4.96 0.723
25 20 4.82 0.734
50 20 4.67 0.741

100 20 4.53 0.753

The architecture of the LSTM model consists of two LSTM layers with an equal number
of units (nc), while it produces an output layer for the class prediction, as is depicted in
Figure A5. Table A2 in Appendix D highlights the number of units per LSTM layer, along
with the number of trainable parameters and the corresponding model sizes in KB. From
Table A2, the 16–16 and 60–60 LSTM models were selected as representatives of real-time
and close-to-real-time cases, based on the number of trainable parameters with respect to
the stranded-NN model (see Table A1 in the Appendix D). Table 5 presents the results in
terms of accuracy and loss of the most representative LSTM variations depending on the
underlying memory size (nc× 2) and the Timestep resulting in their corresponding losses
and accuracies.

Table 5. Evaluation of different memory cell sizes (nc× 2) for the LSTM model on temperature data
for the real-time and close-to-real-time cases, where nc is the number of units per LSTM layer.

Real-Time Close-to-Real-Time

Memory
Size (nc × 2) Timestep Loss Accuracy Loss Accuracy

16× 2 200 0.116 0.952 - -
60× 2 1000 - - 0.124 0.940

Table 6 presents an extensive search for the best parametrization of the proposed
stranded-NN model, with and without dropout layers. Lastly, Table 7 summarizes the
performance of the three compared models, resulting into a proof that the proposed model
performs fairly close to the LSTM performance, with a slight superiority of the LSTM model
in the close-to-real-time cases, while both models outperform the MLP. Taking into consid-
eration the fact that the collected temperature measurements lack a high jitter value and are
of uniform variation, it is unquestionable that a more complicated dataset must be chosen
to further investigate the performance of stranded-NN and LSTM; thus, their performance
on the MaFaulda vibration dataset is presented in the next experimental section.

Table 6. Evaluation of different input sizes for the stranded-NN model on temperature data for the
real-time and close-to-real-time cases and with dropout layers (in parentheses).

Real-Time Close-to-Real-Time

Input Size Loss Accuracy Loss Accuracy

16 0.295 (0.353) 0.929 (0.887) - -
48 0.174 (0.566) 0.951 (0.807) - -
80 0.128 (0.377) 0.954 (0.848) - -

160 - - 0.311 (0.365) 0.892 (0.862)
480 - - 0.671 (0.771) 0.866 (0.826)
960 - - 1.81 (3.299) 0.386 (0.583)
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Table 7. Evaluation of the trained stranded-NN, LSTM, and MLP models on temperature data for
both real-time and close-to-real-time cases. In the case of the MLP and stranded-NN models, the best
performances are selected, according to Tables 4 and 6, respectively.

Real-Time Close-to-Real-Time

Model Loss Accuracy Loss Accuracy

Stranded-NN 0.128 0.954 0.311 0.892
LSTM 0.116 0.952 0.124 0.940
MLP 4.53 0.753 - -

4.3. Scenario II: Training and Evaluating Industrial Pump Vibrations

In the case of vibration measurements, the Mafaulda dataset was used. The constructed
annotated dataset for the pump’s rotation contains 1,500,000 acceleration samples (six
measurements per sample). The applied load on the pump axis was modeled by appropriate
Relative Centrifugal Force (RFC), applied on the pump axis of 6 g for class 1, 10 g for class
2, 20 g for class 3, and 30–35 g for class 4. Class 0 indicates normal operation (no RFC
appliance). The relation between RFC and rotation speed (RPMs) is given by Equation (4).

Vr =

√
Fg

1.118 · r · 105, (4)

where Vr is the axis rotation speed in revolutions per minute (RPMs), Fg is the RFC force
expressed in g, and r is the rotational radius. Once the dataset is annotated, it is split into a
training set (80%) and a testing set (20%). Table 8 presents the number of samples per class,
each with six accelerations measurements, two for each axis of reference X, Y, Z accordingly.

Table 8. Number of vibration samples per class.

Class Description Number of Samples

0 Normal behavior 250,000
1 6 g RFC 250,000
2 10 g RFC 250,000
3 20 g RFC 250,000
4 30, 35 g RFC 500,000

4.4. Scenario II: Experimental Results

In this section, cross-comparison between the proposed stranded-NN model and the
LSTM model are described. Since MLP performed significantly worse than both the other
two models in the previous experiment, it is not taken into consideration. Tables 9 and 10
present the performances of two representative parametrizations of the LSTM model and
three of the proposed models, respectively, for real-time and close-to-real-time cases.

Table 9. Evaluation of different memory sizes (nc× 2) for the LSTM model on MaFaulDa vibration
data [42] for the real-time and close-to-real-time cases, where nc is the number of units per LSTM layer.

Real-Time Close-to-Real-Time

Memory
Size (nc × 2) Timestep Loss Accuracy Loss Accuracy

12× 2 200 0.419 0.790 - -
16× 2 200 0.306 0.839 - -
60× 2 1000 - - 1.593 0.280

150× 2 1000 - - 1.187 0.397
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Table 10. Evaluation of different input sizes for the stranded-NN model on vibration data for the
real-time and close-to-real-time cases.

Real-Time Close-to-Real-Time

Input Size Loss Accuracy Loss Accuracy

12 0.425 0.792 - -
30 0.396 0.823 - -
60 0.310 0.859 - -

150 - - 0.858 0.652
300 - - 0.917 0.640
600 - - 0.898 0.647

Table 11 summarizes the obtained results, signifying the absolute superiority of the
proposed stranded-NN model against the corresponding ones of the LSTM model in both
real-time and close-to-real-time cases. As shown in the summary Table for the real-time case
(see Table 11), of stranded-NN with batch size 60, the stranded-NN slightly outperforms
the LSTM (16 × 2) real-time model by 2.32% in terms of accuracy, even if LSTM maintains
a slightly smaller loss. For close-to-real-time cases, the representative stranded-NN model
with a batch input size of 150 values significantly outperforms the LSTM (150× 2) model by
39% in terms of accuracy and 27.7% in terms of loss. It also outperforms the corresponding
close to real time LSTM (60 × 2 × 1000) model in terms of size and parameters (see
Tables A1 and A2 in the Appendix D, total trainable parameters and sizes of LSTM and
stranded-NN models), by 57% in terms of accuracy and 46% in terms of loss.

Table 11. Summary evaluation table of the trained stranded-NN and LSTM models on vibration data
for real-time and close-to-real-time cases.

Real-Time Close-to-Real-Time

Model Loss Accuracy Loss Accuracy

Stranded-NN 0.310 0.859 0.858 0.652
LSTM 0.306 0.839 1.187 0.397

5. Discussion of the Results

The proposed stranded-NN model can carry several strands and selectively train
and predict using one of its strands, as mentioned. The strand n parameter is mainly
determined by the number of time-sequential measurements used by the strand as data
inputs, mentioned as input batch size. The n value also defines the number of hidden layers
and parameters created for each strand. Based on this n value, the authors can differentiate
strands for real-time detection (small n values), close-to-real-time detection (medium n
values), and periodic maintenance detection (high n values). For long strands, the stranded-
NN model may face gradient elimination issues. A series of batch normalization layers
need to be introduced to deal with such issues. The authors also identified the maximum
number of layers for their stranded model where such a normalization process requires
l = 10–12 layers.

The experimental results have shown that the stranded-NN model significantly out-
performs the best MLP (100, 20) model of 100 layers and 20 perceptrons/layer. That is at
least double the number of layers and parameters than the real-time NN strands. Moreover,
for real-time cases, stranded-NN outperforms the MLP (100, 20) model by 15–21% in terms
of accuracy and by at least 10–14% for close-to-real-time events. That is, when building
very deep MLP NNs, the vanishing gradients problem starts to appear. Furthermore, the
use of random dropout layers at the stranded-NN model reduces, as expected, the model’s
accuracy by 2–8%. However, it still maintains a better performance footprint than its MLP
counterpart. Dropout layers in the stranded-NN models are recommended only in cases
of over-fitting or due to limited training datasets. LSTM models with a small number of
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cells (2, 4, 6) were not taken into account for real-time cases. Only LSTMs with 12–16 cells
were considered real-time models, because they maintain the same number of trainable
parameters with their corresponding real-time strands of the stranded-NN model (see
Appendix D, Tables A1 and A2). Taking the previous into account, for the close-to-real-time
cases, the LSTM models with 42–80 cells were considered. Therefore, post-processing
periodic maintenance processes can utilize LSTMs of 80 cells and above.

The experimental results of the stranded-NN model and LSTM model for real-time
results have shown that the stranded-NN models slightly outperform the corresponding
LSTM models by 2–3%. Nevertheless, for close-to-real-time cases, the corresponding LSTM
models fail significantly, by at least 39% in terms of accuracy (39–57%) and 27% in terms of
loss (27–46%). The use of high periodic intervals in the LSTM models, especially for sensory
measurements that vary over time, causes LSTM models to fail significantly as predictors
or classifiers. Even if more cells are used, the outcome results are still disappointing. This
is, of course, not the case for small time interval annotated measurements, where LSTM
models perform well. Furthermore, the LSTM model requires significantly more time to train
concerning stranded-NN model strands. From the authors experimentation with close-to-
real-time detections, the authors also faced one case in Scenario I where the LSTM (60) model
presented 4% better accuracy results than the best close-to-real-time stranded-NN (160) model.
Nevertheless, this case has been considered as an over-fitting one, due to the threshold-based
data annotation. Scenario II experimentation has proven that, for all cases, the LSTM presents
significantly less accuracy than the close-to-real-time stranded-NN models.

The authors have also experimented by deploying their MLP LSTM and stranded-NN
implementations in an Industrial Shields PLC data collector [47]. That is, an industrial
automation component and concentrator device, capable of real-time online training and
detection. This PLC component includes a 64bit, 1.5 GHz Broadcom BCM2711, Quad-core
Cortex-A72 (ARM v8) SoC with 4 GB of RAM. Table 12 presents the training execution time
results of the three algorithms using a fixed-size dataset of 7,439,584 temperature samples
as input. Detection times have not been taken into account since the classification processes
per sample are fast enough for all algorithms, close to 8.14× 10−4 s for the LSTM model,
3.19× 10−6 s for the MLP model, and 3.23× 10−4 s for the stranded-NN model.

Table 12. Execution time of training processes of the stranded-NN, LSTM models on an Industrial PLC.

Model Train-Time/Epoch (min) No. Train Data

MLP (100, 20) 20.5–23.1 7,439,584
Stranded-NN (80) 0.38–0.51 7,439,584

Stranded-NN (160) 0.75–1.2 7,439,584
LSTM (16) 10.95–12.41 7,439,584
LSTM (60) 18.48–20.74 7,439,584

The training performance results from Table 12 show that the LSTM (16) model requires
at least 26 times more training time, and the MLP (100) 44 times more training time, than
the best selected real-time stranded-NN model (80). In terms of accuracy, the stranded-NN
model significantly outperforms the MLP model by 21.3% in terms of accuracy and slightly
outperforms the LSTM (16) model by 2.6%. That is, the stranded-NN model can perform
real-time detections adequately at the edge industrial concentrators, as well as re-train its
model in significantly less time, in the presence of new annotated data streams. Regarding
close-to-real-time industrial maintenance processes, the LSTM (60) model presents 5.1% better
accuracy results than the best close-to-real-time stranded-NN (160) model. However, LSTM
(60) training times with the industrial edge concentrator devices are 20 times longer than with
the stranded-NN (160) model; that is, the training effort is significantly more.

6. Conclusions

This paper presents a new deep learning algorithm including several arbitrary NN
models, called strands, as a single learning entity. Each strand accepts different batches of
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data input. Each stranded-NN model has been designed to require adequate layers and
perceptrons, achieving similar detection accuracies commonly used by the industry deep
learning models over a time series of sensory data, such as the LSTM models. The authors
also classified two significant maintenance categories: industrial real-time detection events
of immediate response and periodic industrial maintenance checks. The proposed stranded-
NN algorithm’s detection time depth can be implemented using different NN models for
real-time and close-to-real-time data intervals (called batches) for real-time detection events
and elongated periodic intervals for periodic control and maintenance tasks.

For real-time and close-to-real-time classification cases, the authors compared their
stranded-NN classification model accuracies to existing models, such as deep MLPs and
LSTMs of various cell sizes; that is, using sensory data of compressor temperature sets and
pump annotated axial acceleration measurements. From the authors’ experimentation, the
stranded-NN model significantly outperformed its counterpart MLP models and performed
as well as LSTM models for real-time detections (small size of annotated data input batches).
The stranded-NN models significantly outperformed their LSTM counterparts for close-to-
real-time events. Furthermore, it presented significantly less training time than the LSTM and
MLP models if implemented as detectors in the edge industrial data concentrators, offering
fast model re-training capabilities in the presence of new annotated data.

The authors set the extended evaluation of their proposed stranded-NN algorithm and
representative models for periodic industrial maintenance tasks as future work; that is, ex-
perimenting with more than hourly or daily time series of sensory annotated measurements
as data input. Furthermore, due to the accuracy variations of LSTM models towards close-
to-real-time events, also focusing on improving the accuracies of their stranded-NN models,
further testing must be performed to provide a robust solution for periodic maintenance.
However, the authors do not exclude, and even set as future work, the use and experi-
mentation of LSTM model strands for periodic events classifications and predictions. That
is, LSTM models were included as strands in their proposed stranded-NN model, if they
managed to outperform stranded-NN periodic models since their elongated re-training
times may not significantly affect or delay the generation of predictions if implemented in
industrial edge devices.
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Abbreviations
The following abbreviations are used in this manuscript:

CBM Condition Based Maintenance
CNN Convolutional neural networks
DCS Distributed Control System
DL Deep Learning
IIoT Industrial Internet of Things
LBFGS Limited-memory Broyden–Fletcher–Goldfarb–Shanno optimizer algorithm
LightGBM Light Gradient Boosting Machine
LSTM Long Short Term Memory
ML Machine Learning
MLP Multi Layer Perceptron
PID Proportional Integral Derivative
PLC Programmable Logic Controller
RFC Relative Centrifugal Force
RNN Recurrent Neural Networks
RPM Revolutions Per Minute
SVM Support Vector Machine

Appendix A. Scenario-I Stranded-NN Model Structure

Appendix A.1. Stranded-NN Model Strands for Real-Time Classification

(a)

(b)
(c)

Figure A1. Stranded -NN model implementation for real-time temperature measurements of In-
dustrial compressors: (a) input size of 16 measurements, 16 × Tp temperature inputs, (b) input
size of 48 measurements, 16× 3Tp temperature inputs, (c) input size of 80 measurements, 16× 5Tp

temperature inputs.
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Appendix A.2. Stranded-NN Model Strands for Close-to-Real-Time and Periodic Classification

(a)

(b)

(c)

Figure A2. Stranded-NN model implementation for close-to-real-time and periodic temperature
measurements of Industrial compressors: (a) input size of 160 measurements, 16× 10Tp temperature
inputs, (b) input size of 480 measurements, 16 × 30Tp temperature inputs, (c) input size of 960
measurements, 16× 60Tp temperature inputs.

Appendix B. Scenario-II Stranded-NN Model Structure

Appendix B.1. Stranded-NN Model Strands for Real-Time Classification

(a) (b)

(c)

Figure A3. Stranded-NN model implementation for real-time axial acceleration of Industrial pumps:
(a) input size of 12 measurements, 6× 2Tp acceleration inputs, (b) input size of 30 measurements,
6× 5Tp acceleration inputs, (c) input size of 60 measurements, 6× 10Tp acceleration inputs.
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Appendix B.2. Stranded-NN Model Strands for Close-to-Real-Time and Periodic Classification

(a)

(b)

(c)

Figure A4. Stranded-NN model implementation for close-to-real-time axial acceleration of
Industrial pumps: (a) input size of 150 measurements, 6× 25Tp acceleration inputs, (b) input size
of 300 measurements, 6× 50Tp acceleration inputs, (c) input size of 600 measurements/6× 100Tp

acceleration inputs.

Appendix C. Scenario-I and II LSTM Model Structure

Figure A5. LSTM architecture for given timestep and number of units (nc) per LSTM layer.



Algorithms 2023, 16, 202 20 of 22

Appendix D. Scenario I and II Stranded-NN Strands and LSTM Model Sizes and
Trainable Parameters

Table A1. Strand sizes in KB and trainable parameters of the NN-strands over batch input sizes.

No of Measurements Batch Input No of Trainable
Parameters/Strand NN-Strand Size (KB)

(12, 1) 1957 29.1
(30, 1) 3109 33.86
(60, 1) 3621 38.61

(150, 1) 46,789 221.11
(300, 1) 186,693 785.15
(600, 1) 745,541 9028.3
(1024, 1) 2,799,173 11,240.9
(2048, 1) 11,190,853 44,810.7
(4096, 1) 15,383,109 61,579.6

Table A2. Two-layers LSTM model’s size, trainable parameters of the LSTM and size in KB.

Units for Two LSTM Layers No of Trainable Parameters LSTM Size (KB)

12–12 1957 36.7
16–16 3366 42.08
24–24 7350 57.40
30–30 11,346 75.05
42–42 21,930 116.76
60–60 44,286 206.72

150–150 272,706 1120.02
300–300 1,085,206 4370.22
600–600 4,330,806 17,353.08
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