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Abstract: This paper presents NSGA-PINN, a multi-objective optimization framework for the ef-
fective training of physics-informed neural networks (PINNs). The proposed framework uses the
non-dominated sorting genetic algorithm (NSGA-II) to enable traditional stochastic gradient opti-
mization algorithms (e.g., ADAM) to escape local minima effectively. Additionally, the NSGA-II
algorithm enables satisfying the initial and boundary conditions encoded into the loss function
during physics-informed training precisely. We demonstrate the effectiveness of our framework by
applying NSGA-PINN to several ordinary and partial differential equation problems. In particular,
we show that the proposed framework can handle challenging inverse problems with noisy data.

Keywords: machine learning; data-driven scientific computing; multi-objective optimization

1. Introduction

Physics-informed neural networks (PINNs) [1,2] have proven to be successful in
solving partial differential equations (PDEs) in various fields, including applied mathemat-
ics [3], physics [4], and engineering systems [5–7]. For example, PINNs have been utilized
for solving Reynolds-averaged Navier–Stokes (RANS) simulations [8] and inverse prob-
lems related to three-dimensional wake flows, supersonic flows, and biomedical flows [9].
PINNs have been especially helpful in solving PDEs that contain significant nonlinearities,
convection dominance, or shocks, which can be challenging to solve using traditional
numerical methods [10]. The universal approximation capabilities of neural networks [11]
have enabled PINNs to approach exact solutions and satisfy initial or boundary conditions
of PDEs, leading to their success in solving PDE-based problems. Moreover, PINNs have
successfully handled difficult inverse problems [12,13] by combining them with data (i.e.,
scattered measurements of the states).

PINNs use multiple loss functions, including residual loss, initial loss, boundary loss,
and, if necessary, data loss for inverse problems. The most common approach for training
PINNs is to optimize the total loss (i.e., the weighted sum of the loss functions) using
standard stochastic gradient descent (SGD) methods [14,15], such as ADAM. However,
optimizing highly non-convex loss functions for PINN training with SGD methods can be
challenging because there is a risk of being trapped in various suboptimal local minima,
especially when solving inverse problems or dealing with noisy data [16,17]. Additionally,
SGD can only satisfy initial and boundary conditions as soft constraints, which may limit
the use of PINNs in the optimization and control of complex systems, which require the
exact fulfillment of these constraints.

To meet the above constraints exactly, it may be helpful to use non-gradient methods,
such as evolutionary algorithms (EAs) [18]. These methods are practical alternatives,
particularly when gradient information is unavailable, or a large search space is necessary
to ensure optimal convergence. Evolutionary algorithms typically rely on a population of
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candidate solutions that evolve over time through processes such as selection, mutation, and
crossover. They have been applied successfully to a wide range of optimization problems,
including constrained optimization [19], combinatorial optimization [20], multi-objective
optimization [21] and neural network training [22].

In their paper [23], Rafael Bischof et al. suggest using multi-objective optimization
techniques to train PINNs. They simplify the multi-objective into a single objective via
linear scalarization and employ various methods to balance the different components of
multi-objective optimization. In ref. [24], Bahador Bahmani et al. propose vectorizing each
loss function in PINN and handling each pair of conflicting vectors by projecting one of
the conflicting gradient vectors onto the normal plane of the other gradient vector. The
projection is then used to adjust the descent direction during training. However, to the
best of the authors’ knowledge, no prior research has focused on treating each element of
the PINN loss function as a distinct objective and utilizing multi-objective techniques to
minimize the loss in PINNs.

In this paper, we propose the NSGA-PINN framework, a multi-objective optimization
method for PINN training. Specifically, we treat each part of the PINN loss as an objective
and employ the non-dominated sorting algorithm II (NSGA-II) [21] and SGD methods to
optimize these objectives. Our experimental results demonstrate that the proposed frame-
work effectively helps in escaping the local minima and enables satisfying the system’s
constraints, such as the initial and boundary conditions.

The rest of the paper is organized as follows. First, in Section 2, we provide a brief
introduction to the following background information: PINN, SGD method, and NSGA-II
algorithm. Then, in Section 3, we describe our proposed NSGA-PINN method. In Section 4,
we present the experimental results using the inverse ODE problem and PDE problems
to study the behavior of NSGA-PINN. We also test the robustness of our method in the
presence of noisy data. Our results are discussed in Section 5. Finally, we conclude the
paper in Section 6.

2. Background

In this section, we describe the physics-informed neural networks (PINNs) framework,
the stochastic gradient descent (SGD) method, and non-dominated sorting algorithm-II
(NSGA-II).

2.1. Physics-Informed Neural Networks

In our work, we consider computing data-driven solutions to partial differential
equations (PDEs) of the general form

ut +N [u : λ] = 0, x ∈ Ω, t ∈ [0, T] (1)

Here, u represents the solution of the PDE, Ω ⊂ Rd represents the spatial domain, and
N [:] denotes a differential operator.

The goal of PINN is to learn a parametric surrogate uθ with trainable parameters θ
that approximates the solution u. To achieve this goal, a neural network is constructed, and
the total loss function of PINN is minimized. The total loss function consists of several
components: residual loss, initial loss, boundary loss, and data loss, i.e,

Ltotal = w fLres + wgLics + wjLbc + whLdata. (2)

We use the coefficients w to balance the loss terms. Each loss term is calculated by applying
the L2 approximation [25]. In particular, Lres denotes the residual loss, which is the
difference between the exact value of the PDE and the predicted value from the PINN deep
neural network (DNN):
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Lres =
1

Nr

Nr

∑
i=1
||uθ(xr

i )− u(xr
i )||2 (3)

In the above, we only considered the problem in the spatial domain for the sake of simplicity.
Extending it to the temporal domain is straightforward. Moreover, uθ(xr

i ) represents the
output value of the PINN DNN on a set of Nr points sampled within the spatial domain Ω.
This can be computed using automatic differentiation methods [26]. On the other hand,
u(xr

i ) denotes the true solution of the PDE.
The initial or boundary loss represents the difference between the true solution and

the predicted value from the PINN DNN at the initial or boundary condition. For instance,
the boundary loss (for a given boundary condition h) at a set of Nb boundary points xb

i is
defined as follows:

Lbc =
1

Nb

Nb

∑
i=1
||uθ(xb

i )− h(xb
i )||2 (4)

Furthermore, if we tackle inverse problems and have a set of Nd experimental data points
yd

i , we can calculate the data loss using the PDE equation as follows:

Ldata =
1

Nd

Nd

∑
i=1
||uθ(xd

i )− yd
i ||2 (5)

As shown in Equation (2), the loss value of a physics-informed neural network (PINN) is
calculated as a simple linear combination with soft constraints. In this paper, we consider
each part of the loss as an objective as shown in Figure 1.

Figure 1. Physical-informed neural network structure diagram.

2.2. Stochastic Gradient Decent

Stochastic gradient descent (SGD) and its variants, such as ADAM, are the most
commonly used optimization methods for training neural networks (NN). SGD uses mini-
batches of data, which are subsets of data points randomly selected from the training
dataset. This injects noise into the updates during neural network training, enabling the
exploration of the non-convex loss landscape. The optimization problem for SGD can be
written as follows:
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θ∗ = arg min
θ
L(θ; T ). (6)

This paper focuses on a variant of SGD known as the adaptive moment estimates (ADAM)
optimizer. ADAM is the most popular and fastest method used in deep learning. The
optimizer requires only first-order gradients and has very little memory requirement. It
results in effective neural network (NN) training and generalization.

However, applying SGD methods to PINN training presents inevitable challenges. For
complex non-convex PINN loss functions, SGD methods can get stuck in a local minimum,
particularly when solving inverse problems with PINNs or dealing with noisy data.

2.3. NSGA-II Algorithm

In our work, we employ the NSGA-II algorithm, renowned for its efficiency and elitism,
to tackle multi-objective optimization problems with speed and accuracy. The NSGA-II is
used to search for good solutions when the solutions is convinced to lie somewhere is a
space of possible candidate solutions—the search space [27]. With the properties of a fast
nondominated sorting procedure (requires O(MN2) computations), an elitist strategy to
preserve the population density and a simple yet efficient constraint-handling method, we
utilize NSGA-II to deal with multi-objective problem in PINN.

Like EAs, NSGA-II mainly consists of a parent population and genetic operators such
as crossover, mutation, and selection parts. Additionally, to solve multi-objective problems,
the NSGA-II algorithm uses non-dominated sorting to assign a front value to each solution
and calculates the density of each solution in the population using crowding distance. It
then uses crowded binary selection to choose the best solutions based on front value and
density value. We use these functions in our NSGA-PINN method, and we will explain
them in detail in Section 3.

3. The NSGA-PINN Framework

This section describes the proposed NSGA-PINN framework for multi-objective
optimization-based training of a PINN.

3.1. Non-Dominated Sorting

The proposed NSGA-PINN utilizes non-dominated sorting (see Algorithm 1 for more
detailed information) during PINN training. The input P can consist of multiple objective
functions, or loss functions, depending on the problem setting. For a simple ODE problem,
these objective functions may include a residual loss function, an initial loss function, and
a data loss function (if experimental data are available and we are tackling an inverse
problem). Similarly, for a PDE problem, the objective functions may include a residual loss
function, a boundary loss function, and a data loss function.

In the EAs, the solutions refer to the elements in the parent population. We randomly
choose two solutions in the parent population p and q; if p has a lower loss value than
q in all the objective functions, we define p as dominating q. If p has at least one loss
value lower than q, and all others are equal, the previous definition also applies. For each
p element in the parent population, we calculate two entities: (1) domination count np,
which represents the number of solutions that dominate solution p, and (2) Sp, the set
of solutions that solution p dominates. Solutions with a domination count of np = 0 are
considered to be in the first front. We then look at Sp and, for each solution in it, decrease
their domination count by 1. The solutions with a domination count of 0 are considered to
be in the second front. By performing the non-dominated sorting algorithm, we obtain the
front value for each solution [21].
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Algorithm 1: Non-dominated sorting.

inputs: P;
for p ∈ P do

n = [] ; // set of points be dominated by other points
S = [] ; // set of points dominate other points
for q ∈ P do

if p < q then
Sp = Sp ∪ {q} ; // q is dominated by p

else if q < p then
np = np + 1

if np = 0 then
prank = 1;
F1 = F1 ∪ {p} ; // assign p to the first front

i = 1;
while Fi 6= ∅ do

Q = ∅ ; // used to store the members of the next front
for p ∈ Fi do

for q ∈ Sp do
nq = nq − 1;
if nq = 0 then

qrank = i + 1;
Q = Q ∪ {q} ; // q is in the next front

i =i+1;
Fi = Q;

3.2. Crowding-Distance Calculation

In addition to achieving convergence to the Pareto-optimal set for multi-objective
optimization problems, it is important for an evolutionary algorithm (EA) to maintain a
diverse range of solutions within the obtained set. We implement the crowding-distance
calculation method to estimate the density of each solution in the population. To do this,
first, sort the population according to each objective function value in ascending order. Then,
for each objective function, assign infinite distance values to the boundary solutions, and
assign all other intermediate solutions a distance equal to the absolute normalized difference
in function values between two adjacent solutions. The overall crowding-distance value
is calculated as the sum of individual distance values corresponding to each objective.
A higher density value represents a solution that is far away from other solutions in
the population.

3.3. Crowded Binary Tournament Selection

The crowded binary tournament selection, explained in more detail in Algorithm 2,
was used to select the best PINN models for the mating pool and further operations. Before
implementing this selection method, we labeled each PINN model so that we could track
the one with the lower loss value. The population of size n was then randomly divided into
n/2 groups, each containing two elements. For each group, we compared the two elements
based on their front and density values. We preferred the element with a lower front value
and a higher density value. In Algorithm 2, F denotes the front value and D denotes the
density value.
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Algorithm 2: Crowded binary tournament selection.

inputs: N;
mating pool = [];
divide solutions into the N/2 array each array has 2 elements;
while sizeof (mating pool) 6= N do

for ele in arr do
if Fele[0] < Fele[1] then

mating pool← Fele[0] ; // select element with lower front value
else if Fele[0] = Fele[1] then

if Dele[0] > Dele[1] then
mating pool← Fele[0] ; // select element with higher density
value

else if Dele[0] < Dele[1] then
mating pool← Fele[1]

else
mating pool← random(ele[0], ele[1])

else
mating pool← random(ele[0], ele[1])

3.4. NSGA-PINN Main Loop

The main loop of the proposed NSGA-PINN method is described in Algorithm 3.
The algorithm first initializes the number of PINNs to be used (N) and sets the maximum
number of generations (α) to terminate the algorithm. Then, the PINN pool is created
with N PINNs. For each loss function in a PINN, N loss values are obtained from the
network pool. When there are three loss functions in a PINN, 3N loss values are used as the
parent population. The population is sorted based on non-domination, and each solution
is assigned a fitness (or rank) equal to its non-domination level [21]. The density of each
solution is estimated using crowding-distance sorting. Then, by performing a crowded
binary tournament selection, PINNs with lower front values and higher density values are
selected to be put into the mating pool. In the mating pool, the ADAM optimizer is used to
further reduce the loss value. The NSGA-II algorithm selects the PINN with the lowest loss
value as the starting point for the ADAM optimizer. By repeating this process many times,
the proposed method helps the ADAM optimizer escape the local minima. Figure 2 shows
the main process of the proposed NSGA-PINN framework.

Algorithm 3: Training PINN by NSGA-PINN method.

Hyper-parameters: parent population N and max generation number α;
count = 0 ;
Initialize the parent set S: the parent set has a number of N neural networks.;
while count < α do

f 1← res(nn) for nn in S;
f 2← ics(nn) for nn in S;
f 3← data(nn) for nn in S;
Rt = Pt ∪Qt ;
Fi = non dominated sorting(f1,f2,f3) ;
crowding distance sorting(Fi);
mating pool← crowded binary selection(Fi,≺n);
Qt ← ADAM optimizer (mating pool(i));
count = count + 1;
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Figure 2. NSGA-PINN structure diagram.

4. Numerical Experiments

This section evaluates the performance of physics-informed neural networks (PINN)
trained with the proposed NSGA-PINN algorithm. We tested our framework on both
the ordinary differential equation (ODE) and partial differential equation (PDE) problems.
Our proposed method is implemented using the PyTorch library. For each problem, we
compared the loss values of each component of the PINN trained with the NSGA-PINN
algorithm to the loss values obtained from the PINN trained with the ADAM method,
using the same neural network structure and hyperparameters. To test the robustness of
the proposed NSGA-PINN algorithm, we added noise to the experimental data used in
each inverse problem.

4.1. Inverse Pendulum Problem

The algorithm was first used to train PINN on the inverse pendulum problem without
noise. The pendulum dynamics are described by the following initial value problem (IVP):

θ̇(t) = ω(t) (7)

ω̇(t) = −k sin θ(t)

where the initial condition is sampled as follows (θ(0), ω(0)) = (θ0, ω0) ∈ [−π, π]× [0, π]
and the true parameter unknown parameter k = 1.0.

Our goal is to approximate the mapping using a surrogate physics-informed neural
network: θ0, ω0, t 7→ θ(t), ω(t). For this example, we used a neural network for PINN
consisting of 3 hidden layers and 100 neurons in each layer. The PINN training loss for the
neural network is defined as follows:

L = Lres + Lics + Ldata. (8)

To determine the total loss in this problem, we add the residual loss, initial loss, and data
loss. We calculate the data loss using the mesh data ts, which ranges from 0 to 1 (seconds)
with a step size of 0.01. We fit these data onto the ODE to determine the data loss value
accurately. For this problem, we set the parent population to 20 and the maximum number
of generations to 20 in our NSGA-PINN.
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In the course of our experiment, we tested various methods, which are illustrated
in Figure 3.

Figure 3. Inverse pendulum problem: Group of figures from left to right columns show each loss
value by using different training method .

Based on our observations, we found that the ADAM optimizer did not yield better
results after 400 epochs, as the loss value remained in the scale of 1× 10−2. We also tried the
NSGA-II algorithm for PINN, which introduced some diversity to prevent the algorithm
from getting stuck at local minima, but the loss value was still around 4.0. Ultimately,
we implemented our proposed NSGA-PINN algorithm to train PINN on this problem,
resulting in a significant improvement with a loss value to the scale of 1× 10−5.

To gain a clear understanding of the differences in loss values between optimization
methods, we collected numerical loss values from our experiment. For the NSGA and
NSGA-PINN methods, loss values were calculated as the average since they are obtained
using ensemble methods through multiple runs. Our observations presented in Table 1
revealed that the total loss value of PINN trained with the traditional ADAM optimizer
decreased to 1.935× 10−4. However, by training with the NSGA-PINN method, the loss
value decreased even further to 6.55× 10−5, indicating improved satisfaction with the
initial condition constraints.

Table 1. Inverse pendulum problem: Each loss value from NN trained by using different train-
ing methods.

Methods Residual Loss Initial Loss Data Loss Total Loss

ADAM 0.00013 3.24× 10−5 3.11× 10−5 1.935× 10−4

NSGA 0.12 2.67 4.10 6.89
NSGA-PINN 3.94× 10−5 1.21× 10−5 1.41× 10−5 6.55× 10−5

In Figure 4, we compare the predicted angle and velocity state values to the true
values to analyze the behavior of the proposed NSGA-PINN method. The top figure shows
how accurately the predicted values match the true values, illustrating the successful
performance of our algorithm. At the bottom of the figure, we observe the predicted value
of the parameter k, which agrees with the true value of k = 1. This result was obtained
after running our NSGA-PINN algorithm for three generations.
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Figure 4. Inverse pendulum problem: the top figure shows the comparison between the true value
with the predicted value from PINN trained by NSGA-PINN method. The figure on the bottom
shows the prediction of constant value k.

4.2. Inverse Pendulum Problem with Noisy Data

In this section, we introduce Gaussian noise to the experimental data collected for the
inverse problem. The noise was sampled from the Gaussian distribution:

P(x) =
1

σ
√

2π
e−(x−µ)2

/
2σ2

(9)

For this experiment, we chose to set the mean value (µ) to 0 and the standard deviation of
the noise (σ) to 0.1. As depicted in Figure 5, we trained the PINN model using the ADAM
optimizer. However, we encountered an issue where the loss value failed to decrease after
400 epochs. This suggested that the optimizer had become stuck in a local minimum, which
is a common problem associated with the ADAM optimizer when presented with noise.

Figure 5. Inverse pendulum problem with data noise: Group of figures from left to right columns
show each loss value by using different training method with noisy data.
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To address this issue, we implemented the proposed NSGA-PINN method, resulting in
significant improvements. Specifically, by increasing the diversity of the NSGA population,
we were able to escape the local minimum and converge to a better local optimum, where
the initial condition constraints were more effectively satisfied.

By examining Table 2, we can see a clear numerical difference between the two
methods. Specifically, the table shows that the PINN trained by the ADAM method has a
total loss value of 0.017, while the PINN trained by the proposed NSGA-PINN method has
a total loss value of 0.0133.

Table 2. Inverse pendulum problem with data noise: each loss value from NN trained by different
training methods with noisy data.

Methods Residual Loss Initial Loss Data Loss Total Loss

ADAM 0.0028 0.0028 0.0114 0.017
NSGA-PINN 0.0010 0.0011 0.0112 0.0133

Finally, in Figure 6, we quantify uncertainty using an ensemble of predictions from
our proposed method. This ensemble allows us to compute the 95% confidence interval,
providing a visual estimate of the uncertainty. To calculate the mean value, we averaged
the predicted solutions from an ensemble of 100 PINNs trained by the NSGA-PINN algo-
rithm. Our observations indicate that the mean is close to the solution, demonstrating the
effectiveness of the proposed method. When comparing the predicted trajectory from the
PINN trained with the NSGA-PINN algorithm to the one trained with the ADAM method,
we found that the NSGA-PINN algorithm yields results closer to the real solution in this
noisy scenario.

Figure 6. Inverse pendulum problem with data noise: The figure shows the comparing of the result
from PINN trained by NSGA-PINN method and ADAM method with noisy input data.

4.3. Burgers Equation

This experiment uses the Burgers equation to study the effectiveness of the proposed
NSGA-PINN algorithm on a PDE problem. The Burgers equation is defined as follows:

du
dt

+ u
du
dx

= v
d2u
dx2 , x ∈ [−1, 1], t ∈ [0, 1] (10)

u(0, x) = − sin(πx)

u(t,−1) = u(t, 1) = 0

Here, u is the PDE solution, Ω = [−1, 1] is the spatial domain, and v = 0.01/π is the
diffusion coefficient.

The nonlinearity in the convection term causes the solution to become steep, due to
the small value of the diffusion coefficient v. To address this problem, we utilized a neural
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network for PINN, which consisted of 8 hidden layers with 20 neurons each. The hyperbolic
tangent activation function was used to activate the neurons in each layer. We sampled
100 data points on the boundaries and 10,000 collocation data points for PINN training.

For the proposed NSGA-PINN method, the original population size was set to 20 neu-
ral networks, and the algorithm ran for 20 generations. The loss function in the Burgers’
equation can be defined as follows:

L = Lu + Lb + Lics. (11)

Here, the total loss value is the combination of the residual loss, the initial condition loss,
and the boundary loss.

We can observe the effectiveness of the proposed NSGA-PINN algorithm by examining
the loss values depicted in Figure 7 and Table 3. In particular, Table 3 compares the loss
values of PINNs trained by the NSGA-PINN algorithm and the traditional ADAM method.
Noticeably, the loss value trained by the NSGA-PINN framework is 3.746× 10−5, which is
much lower than the traditional ADAM method, which has the loss value as 0.0003.

Figure 7. Burgers equation: group of figures from left to right columns show each loss value by using
different training method.

Table 3. Burgers equation: Comparison of the loss value from NN trained by ADAM method and
NSGA-PINN method for Burgers equation.

Methods Residual Loss Boundary Loss Total Loss

ADAM 0.0002 9.4213× 10−5 0.0003
NSGA-PINN 2.89× 10−5 8.56× 10−6 3.746× 10−5

Finally, Figure 8 displays contour plots of the solution to Burgers’ equation. The
top figure shows the result predicted using the proposed NSGA-PINN algorithm. The
bottom row compares the exact value with the values from the proposed algorithm and the
ADAM method at t = 0.25, 0.50, and 0.75. Based on this comparison, both the NSGA-PINN
algorithm and the ADAM method predict values that are close to the true values.
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Figure 8. Burgers equation: the top panel shows the contour plots of the solution of the Burgers
equation. The lower figure shows the comparison of the exact value with the predicted value at
different time point.

We show the error contour plot for the Burgers equation in Figure 9 to visualize the
accuracy of the predicted solution.

Figure 9. Burgers equation: error contour plots.

4.4. Burgers Equation with Noisy Data

In this experiment, we evaluate the effectiveness of the NSGA-PINN algorithm when
applied to noisy data and the Burgers equation. We compare the results obtained from
the proposed algorithm with those obtained using the ADAM optimization algorithm. To
simulate a noisy scenario, Gaussian noise is added to the experimental/input data. We
sample the noise from a Gaussian distribution with a mean value (µ) of 0.0 and a standard
deviation (σ) of 0.1.
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We analyze the effectiveness of the proposed NSGA-PINN method with noisy data.
Specifically, Figure 10 and Table 4 illustrate the corresponding loss values. It is worth
noting that, while the PINN trained with ADAM no longer improves after 5000 epochs
and reaches a final loss value of 0.0526, training the PINN with the proposed algorithm for
20 generations results in a reduced total loss of 0.0061.

Figure 10. Burgers equation with data noise: the left column shows the residual loss. The right
column shows the boundary loss.

Table 4. Burgers equation: Comparison of the loss value from NN trained by ADAM method and
NSGA-PINN method for Burgers equation with noisy data.

Methods Residual Loss Boundary Loss Total Loss

ADAM 0.0045 0.0481 0.0526
NSGA-PINN 0.0001 0.006 0.0061

Finally, Figure 11 shows the results of the PINN trained by the NSGA-PINN method
with noisy data. The top figure shows a smooth transition over space and time. The
lower figures compare the true value with the predicted value for the PINN trained by
the proposed method and the traditional ADAM optimization algorithm. The results
demonstrate that the prediction from a PINN trained by NSGA-PINN approaches the true
value of the PDE solution more closely.

We show the error contour plot for the Burgers equation with noisy data in Figure 12
to visualize the accuracy of the predicted solution.

4.5. Test Survival Rate

In this final experiment, we conducted further tests to verify the feasibility of our
algorithm. Specifically, we calculated the survival rate between each generation to deter-
mine if the algorithm was learning and using the learned results as a starting point for the
next generation.

The experiment consisted of the following steps: First, we ran the total NSGA-PINN
method 50 times. Then, for each run, we calculated the survival rate between each genera-
tion using the following formula:

S = Qi/Pi. (12)

Here, Qi represents the number of offspring from the previous generation, and Pi represents
the number of parent population in the current generation. Finally, to obtain relatively
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robust data that represent the trend of survival rate, we calculate the average value of
survival rate between each generation as the algorithm progresses.

Figure 13 shows that the survival rate increases as the algorithm progresses. The
survival rate of the first two generations is approximately 50%, but by the end of the
algorithm, it improves to 73%. This indicates that our algorithm is progressively learning
as subsequent generations are generated, which significantly enhances PINN training.

Figure 11. Burgers equation with data noise: the top panel shows the contour plots of solution of the
Burgers equation. The lower figure shows the comparison of the exact value with the predicted value
at different time points.

Figure 12. Burgers equation with data noise: Error contour plots.
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Figure 13. Survival rate between each generation.

5. Discussion

The experimental results in the previous section showed promising outcomes for
training PINNs using the proposed NSGA-PINN method. As described in Section 3, when
solving the inverse problem using the traditional ADAM optimizer, the algorithm became
trapped in a local optimum after running for 400 epochs. However, by using the NSGA-
PINN method, the loss value continued to decrease, and the predicted solution was very
close to the true value. Additionally, when dealing with noisy data, the traditional ADAM
optimizer had difficulty learning quickly and making accurate predictions. On the other
hand, the proposed NSGA-PINN algorithm learned efficiently and converged to a better
local optimum for generalization purposes.

However, the main drawback of the proposed method is that it requires an ensemble
of neural networks (NNs) during training. Consequently, the proposed NSGA-PINN incurs
a larger computational cost than traditional stochastic gradient descent methods. Therefore,
reducing the computational cost of NSGA-PINN is a goal for our future work. For instance,
some of the training computational cost could be mitigated by using parallelization. Addi-
tionally, we will attempt to derive effective methods for finding the best trade-off between
NSGA and ADAM.

More specifically, in our future work, we will focus on balancing the parent population
(N), max generation number (α), and number of epochs used in the ADAM optimizer.
These values are manually initialized in the proposed method. The parent population
determines the diversity in the algorithm, and we ideally want high diversity. The max
generation number determines the total learning time. Increasing this time allows the
algorithm to continue learning from previous generations, but it may lead to overfitting if
the number is too large. Note that there is a trade-off between the max generation number
and the epoch number used in the ADAM optimizer. A higher generation number allows
the NSGA algorithm to perform better, helping the ADAM optimizer escape the local
optima, but this comes at a higher computational cost. Meanwhile, increasing the number
of epochs used in the ADAM optimizer helps the model decrease the loss value quickly,
but it reduces the search space and may lead to the algorithm becoming trapped in the
local minima.

6. Conclusions

In this paper, we proposed a novel multi-objective optimization method called NSGA-
PINN for training physics-informed neural networks. Our approach involves using the
non-dominated sorting genetic algorithm (NSGA) to handle each component of the training
loss in PINN. This allows us to achieve better results in terms of inverse problems, noisy
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data, and satisfying constraints. We demonstrated the effectiveness of NSGA-PINN by
applying it to several ordinary and partial differential equation inverse problems. Our
results show that the proposed framework can handle challenging noisy scenarios.
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