
Citation: Lindstrom, M.R.; Ding, X.;

Liu, F.; Somayajula, A.; Needell, D.

Continuous Semi-Supervised

Nonnegative Matrix Factorization.

Algorithms 2023, 16, 187. https://

doi.org/10.3390/a16040187

Academic Editors: Aneesha Bakharia,

Khanh Luong and Frank Werner

Received: 15 January 2023

Revised: 21 February 2023

Accepted: 28 February 2023

Published: 30 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Continuous Semi-Supervised Nonnegative Matrix Factorization
Michael R. Lindstrom 1,*, Xiaofu Ding 2, Feng Liu 2, Anand Somayajula 2 and Deanna Needell 2

1 School of Mathematical and Statistical Sciences, The University of Texas Rio Grande Valley,
Edinburg, TX 78539, USA

2 Department of Mathematics, University of California Los Angeles, Los Angeles, CA 90095, USA
* Correspondence: mike.lindstrom@utrgv.edu

Abstract: Nonnegative matrix factorization can be used to automatically detect topics within a corpus
in an unsupervised fashion. The technique amounts to an approximation of a nonnegative matrix as
the product of two nonnegative matrices of lower rank. In certain applications it is desirable to extract
topics and use them to predict quantitative outcomes. In this paper, we show Nonnegative Matrix
Factorization can be combined with regression on a continuous response variable by minimizing
a penalty function that adds a weighted regression error to a matrix factorization error. We show
theoretically that as the weighting increases, the regression error in training decreases weakly. We test
our method on synthetic data and real data coming from Rate My Professors reviews to predict an
instructor’s rating from the text in their reviews. In practice, when used as a dimensionality reduction
method (when the number of topics chosen in the model is fewer than the true number of topics), the
method performs better than doing regression after topics are identified—both during training and
testing—and it retrains interpretability.

Keywords: topic modelling; regression; nonnegative matrix factorization; optimization

1. Introduction

Nonnegative matrix factorization (NMF) is a highly versatile data science technique
with far-reaching applications. It can identify thematic elements, i.e., groups of words that
appear frequently together in a corpus, which together convey a common message [1].
More generally, it can be used to decompose an image into identifiable patterns [2] and as a
general-purpose dimensionality reduction or preprocessing method before applying other
machine learning methods, as has been done in studying various diseases [3,4]. Similar to
singular value decomposition (SVD) [5], NMF provides a low rank factorization. In NMF,
a nonnegative matrix X ∈ Rn×m

≥0 representing a corpus (or other nonnegative dataset) is
factored into a low rank approximation X ≈WH where the inner dimension, r, between W
and H is such that r � m and r � n; however, unlike SVD, there is an additional constraint
that both W and H are nonnegative, i.e., W ∈ Rn×r

≥0 and H ∈ Rr×m
≥0 . This nonnegativity

enforces that the data in X are represented by a nonnegative combination of the dictionary
atoms in the factorization, which lends itself to human interpretability. For example, in
the foundational work [2], Lee and Seung show that NMF, when applied to facial images,
decomposes the images into recognizable parts such as noses, eyes, and mouths.

When applied to a document-term matrix [6] X, where row i of X represents document
i and column j represents the frequencies of word j across the documents, the classical
NMF method amounts to

(W, H) = arg minW∈Rn×r
≥0 ,H∈Rr×m

≥0
||X−WH||2F (1)

where, for A ∈ Rn×m, ||A||F denotes the Frobenius norm of A with ||A||2F = tr(AT A) =

∑n
i=1 ∑m

j=1 |Aij|2. Other variations on the penalty function exist, including the Kullback–
Leibler divergence [7]. After computing W and H, we interpret row j of H as the jth
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topic, its components being the weight of each word in that topic, and row i of W as the
topic-encoding of document i, i.e.,

Xi,: ≈
r

∑
j=1

Wi,j Hj,:.

Throughout this manuscript we make use of “colon notation” where “:“ means the full
range of indices for a row/column, “a:b” indicates a consecutive range of indices from a to
b, etc.

The rest of our paper is organized as follows: the general context to our work and
our main contributions are stated in Section 2; in Section 3, we provide the formulation of
our method, its algorithmic implementation, its theoretical properties, and their proofs; in
Section 4, we provide a proof of concept through synthetic data; in Section 5, we test our
method on a real dataset from Rate My Professors; and finally we conclude our work in
Section 6.

2. Relation to Current Work and Contributions

When designing algorithms to handle multiple objectives simultaneously, a weighted
penalty function that combines the multiple objectives is often used [8]. For example,
with LASSO regression [9], one seeks a linear model that also does model selection by
zeroing out parameters that are less significant. This can be done by minimizing a least
squares error with a weighted penalty for the `1-norm of the parameters. Prior authors
have combined NMF with a linear regression procedure to maximize the predictive power
of a classifier [10–12]. This is accomplished through a penalty function that combines NMF
with another objective function—a (semi) supervised approach. Semi-supervised NMF can
also be applied to guide NMF to identify topics with desired keywords [13].

In this paper, we combine NMF with a linear regression model to predict the value
of a continuous response variable. We consider synthetic data along with a real dataset
that pairs written commentary with a real-valued observation. In particular, we use
reviews from the Rate My Professors website [14,15] that include all student comments
for a professor along with the mean rating in [1, 5]. Due to the averaging, the rating is
effectively a continuous variable.

3. Model

We provide the framework for our proposed continuous semi-supervised nonnegative
matrix factorization method (CSSNMF).

3.1. Formulation

We consider having a document-term matrix [6] X ∈ Rn×m
≥0 for n documents with their

associated word frequencies in the m columns—a “bag of words” where each document is
represented only by the frequencies of its words. Each document has a corresponding value
in R so that we can associate with X the vector Y ∈ Rn×1. Put another way: each document
is represented as a row of X, call it x ∈ R1×m

≥0 , which stores the frequencies of each of the
m words within the corpus; then, to each such x there is an observation y ∈ R (and over
n documents, this generates Y ∈ Rn×1). We choose r ∈ N and λ ≥ 0 as hyper-parameters
where r denotes the number of topics and λ is weight put on the regression error.

In the real data that we look at, each row of X will represent the reviews written for
one university instructor, with frequencies of the words in the columns. For each instructor
in the dataset, the mean value of their respective student ratings will be a single component
of Y. From a predictive standpoint, we would like to predict the mean rating of an instructor
based only on the words in their review, i.e., take a vector x ∈ R1×m

≥0 of the word frequencies
and make a prediction ŷ of their mean rating (the hat indicates a prediction). We want
the prediction ŷ to be as close to the true mean rating as possible. The topic modelling
aspect of this is that instead of using the full x vector of dimension m, we approximate
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x as a nonnegative linear combination of r topic vectors (interpretable vectors of word
frequencies). We effectively compress x to a vector w ∈ R1×r

≥0 of dimension r, and we model
the rating as a linear combination of the components of w.

Given W ∈ Rn×r
≥0 , H ∈ Rr×m

≥0 , and θ ∈ R(r+1)×1, we define a penalty function that
combines topic modelling with a linear regression based on the topic representations. The
intuition with the weighting is that as the weight λ increases, topic modelling is still done,
but more and more emphasis is put on producing an accurate regression on Y. We define

F(λ)(W, H, θ; X, Y) = N(W, H; X) + λR(W, θ; Y), where (2)

N(W, H; X) := ||X−WH||2F (3)

R(W, θ; Y) := ||W̃θ −Y||2 (4)

and where W̄ ∈ Rn×(r+1) is given by

W̄ :=


1 W1,1 . . . W1,m
1 W2,1 . . . W2,m
...

...
...

...
1 Wn,1 . . . Wn,m

. (5)

The matrix W̄ with its column of 1s allows for an intercept: given a topic representation
w ∈ R1×r, we predict a value ŷ = θ1 + θ2w1 + . . . + θr+1wr.

When λ > 0, we seek

(W(λ), H(λ), θ(λ)) = arg minW,H,θ F(λ)(W, H, θ; X, Y). (6)

When λ = 0, we define

(W(0), H(0)) = arg minW,H N(W, H; X) (7)

θ(0) = arg minθ R(W(0), θ; Y). (8)

We also impose a normalization constraint, that

∀i,
m

∑
j=1

Hij = 1 (9)

so that the topics have unit length in `1.

Remark 1 (Sum of Topic Representations). If X ≈WH is normalized so its rows sum to 1 then
it is also the case that ∀i, ∑r

j=1 Wij ≈ 1 by noting that Xij = ∑r
k=1 Wik Hkj and summing over j.

When λ = 0, θ has no effect upon F(λ) and we first perform regular NMF over W and
H and, as a final step, we choose θ to minimize the regression error. In other words, if
λ = 0, we do NMF first and then find the best θ given the already determined weights for
each document. It seems intuitive, however, that the regression could be improved if θ and
W both were being influenced by the regression to Y, which is what our method aims to
do when λ > 0. From a practical perspective, if λ ↑ ∞, then the regression error becomes
dominant and we may expect the topics as found in H to be less meaningful. In Section 3.2,
we state some theoretical properties of our method as it is being trained.

Once H(λ) and θ(λ) are known, we can make predictions for the response variable
corresponding to a document. This amounts to finding the best nonnegative topic encoding
w ∈ R1×r

≥0 for the document and using that encoding in the linear model—see Section 3.3.

Remark 2 (Uniqueness). Using our established notation, we remark that if X∗ = WH and
Y∗ = θ1 + Wθ2:(r+1), then X∗ = W̃H̃ and Y∗ = θ1 + W̃ θ̃, where W̃ = WS, H̃ = S−1H, and
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θ̃ = S−1θ2:(r+1) for any invertible S ∈ Rr×r with SW and S−1H both having all entries nonnega-
tive. Thus, uniqueness of an optima, if it exists, can only be unique up to matrix multiplications.

3.2. Theoretical Results

We present two important behaviors of CSSNMF with regard to increasing λ and its
effect upon predicting the response variable.

Proposition 1 (Regression Error with Nonzero λ). For λ ≥ 0, let W(λ), H(λ), θ(λ) be a unique
(as per Remark 2) global minimum to Equations (6)–(9) . Then R(W(λ), θ(λ)) ≤ R(W(0), θ(0).

Theorem 1 (Weakly Decreasing Regression Error). Let 0 ≤ λ1 < λ2 be given where W(λi),
H(λi), θ(λi) are the unique (as per Remark 2) global minimizers of Equations (6)–(9) for i = 1, 2.
Then R(W(λ2), θ(λ2); Y) ≤ R(W(λ1), θ(λ1); Y).

Remark 3. Proposition 1 and Theorem 1 are based on obtaining a global minimum. In practice, we
may only find a local minimum.

Proposition 1 and Theorem 1 are statements pertaining to training the model. Assum-
ing we have the optimal solutions, Proposition 1 tells us that the regression error for λ > 0
is no worse than the regression error with λ = 0 and could, in fact, be better. Thus, the
intuition that selecting topics while paying attention to the regression error is practical.
Then Theorem 1 says that the regression error is weakly monotonically decreasing as λ
increases. In practical application, we find the error strictly monotonically decreases.

Before proceeding to algorithmic procedures, we prove Proposition 1 and Theorem 1.

Proof of Proposition 1. If λ > 0 then

F(λ)(W(λ), H(λ), θ(λ); X, Y) ≤ F(λ)(W(0), H(0), θ(0); X, Y) =⇒

N(W(λ), H(λ); X) + λR(W(λ), θ(λ); Y) ≤ N(W(0), H(0); X) + λR(W(0), θ(0); Y)

=⇒

λ(R(W(λ), θ(λ); Y)− R(W(0), θ(0); Y)) ≤ N(W(0), H(0); X)− N(W(λ), H(λ); X)

≤ 0.

The first inequality comes from how (W(λ), H(λ), θ(θ)) are defined by Equation (6). The
final inequality comes from how (W(0), H(0)) are defined as minimizers in Equation (7).

Since we first assumed λ > 0, we obtain R(W(λ), θ(λ); Y) ≤ R(W(0), θ(0); Y). Finally, if
λ = 0, then there is equality with R(W(λ), θ(λ); Y) = R(W(0), θ(0); Y).

Proof of Theorem 1. Note that if λ1 = 0, then Theorem 1 already applies, so we assume
0 < λ1 < λ2. We have that

F(λ1)(W(λ1), H(λ1), θ(λ1); X, Y) ≤ F(λ1)(W(λ2), H(λ2), θ(λ2); X, Y) =⇒

λ1

(
R(W(λ1), θ(λ1); Y)− R(W(λ2), θ(λ2); Y)

)
≤

N(W(λ2), H(λ2); X)− N(W(λ1), H(λ1); X). (10)

We also have

λ2

(
R(W(λ2), θ(λ2); Y)− R(W(λ1), θ(λ1); Y)

)
≤

N(W(λ1), H(λ1); X)− N(W(λ2), H(λ2); X). (11)
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Adding Equations (10) and (11) together,

(λ1 − λ2)R(W(λ1), θ(λ1); Y) + (λ2 − λ1)R(W(λ2), θ(λ2); Y) ≤ 0

which, upon dividing by λ2 − λ1 > 0, directly gives

R(W(λ2), θ(λ2); Y) ≤ R(W(λ1), θ(λ1); Y).

3.3. Algorithm

Our minimization approach is iterative and based on the alternating nonnegative least
squares [16] approach. Due to the coupling of NMF and regression errors, other approaches
such as multiplicative or additive updates [17] are less natural. Each iteration consists
of: (1) holding H and θ fixed while optimizing each row of W separately (nonnegative
least squares); (2) holding W and θ fixed while optimizing each column of H separately
(nonnegative least squares); and finally (3) holding W and H fixed while optimizing over θ.
The error is nondecreasing between iterations and from one optimization to the next. We
now derive and justify this approach (Algorithm 1) in increasing complexity of cases.

Algorithm 1: Overall CSSNMF algorithm.

Input : A matrix X ∈ Rn×m
≥0 ,

a vector Y ∈ Rn×1,
a positive integer r ∈ N,
a scalar λ ≥ 0,
a relative error tolerance τ > 0, and
a maximum number of iterations maxIter.

Output : Minimizers of Equations (6)–(9) : nonnegative matrix W ∈ Rn×r
≥0 ,

nonnegative matrix H ∈ Rr×m
≥0 , and

vector θ ∈ R(r+1)×1.
1 relErr = ∞, err = ∞
2 Elementwise, W ∼ Uni f ([0, ||X||∞)), H ∼ Uni f ([0, ||X||∞)),

θ ∼ Uni f ([0, ||X||∞)).
3 iter = 0
4 while relErr > τ and iter < maxIter do
5 W ← newW as per Algorithm 2
6 H ← newH as per Algorithm 3
7 θ ← newθ as per Algorithm 4
8 Normalize W, H, and θ as per Algorithm 5
9 errTemp = F(λ)(W, H, θ; X, Y)

10 if err < ∞ then
11 relErr ← |err− errTemp|/err
12 end if
13 err ← errTemp
14 iter ← iter + 1
15 end while
16 return W, H, θ
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Algorithm 2: Updating W.

Input : A matrix X ∈ Rn×m
≥0 ,

a vector Y ∈ Rn×1,
a matrix W ∈ Rn×r

≥0 ,
a matrix H ∈ Rr×m

≥0 ,
and a scalar λ ≥ 0.

Output : A new value for W.
1 θ̄ = (θ2, . . . , θr+1)

T

2 X̄ =
[

X |
√

λ(θ1 −Y)
]

3 W̄ =
[

H |
√

λθ̄
]

4 for i← 1 . . . n do
5 Wi,: ← arg minw∈R1×r

≥0
||X̄i,: − wH̄||2

6 end for
7 return W

Algorithm 3: Updating H.

Input : A matrix X ∈ Rn×m
≥0 ,

a matrix W ∈ Rn×r
≥0 , and

a matrix H ∈ Rr×m
≥0 .

Output : A new value for H.
1 for j← 1 . . . m do
2 H:,j ← arg minh∈Rr×1

≥0
||X:,j −Wh||2

3 end for
4 return H

Algorithm 4: Updating θ.

Input : A vector Y ∈ Rn×1, and
a matrix W ∈ Rn×r

≥0
Output : A new value for θ.

1 e = (1, 1, . . . , 1)T ∈ Rn×1

2 W̄ =
[
e | W

]
3 return W̄+Y

Algorithm 5: Normalization process.

Input : A matrix W ∈ Rn×r
≥0 ,

a matrix H ∈ Rr×m
≥0 , and

a vector θ ∈ R(r+1)×1.
Output : New values for W, H, and θ.

1 S ∈ Rr×1
≥0 a vector of row sums of H.

2 S← diag(S)
3 W ←WS.
4 H ← S−1H.
5 θ2:(r+1) ← S−1θ2:(r+1).
6 return W, H, and θ.
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W and H fixed.

If W and H are given and only θ can vary, then Equation (2) is minimized when
||W̄θ −Y||2 is minimized. If W̄ has full rank or is overdetermined, this happens when the
error, W̄θ −Y, is orthogonal to the column span of W̄ or that

θ = (W̄TW̄)−1W̄TY. (12)

When W̄ is underdetermined or has full rank, we require W̄θ = Y with ||θ||minimized
(for uniqueness) whereby

θ = W̄T(W̄W̄T)−1Y. (13)

See Algorithm 4. Thus, when W̄ does not have full rank, the solution is θ = W̄+Y
where W̄+ is the pseudoinverse of W̄. See [18] for a discussion of pseudoinverses. In
applications, we only expect to see overdetermined systems because the number of topics r
should be less than the number of documents n.

W and θ fixed.

If W and θ are given and only H can change, then minimizing Equation (2) requires
minimizing N(W, H; X). We can expand this error term out in the columns of H:

N(W, H; X) = ||X−WH||2F

=
m

∑
j=1
||(X−WH):,j||2

=
m

∑
j=1
||X:,j −WH:,j||2.

Because columnwise the terms of the sum are independent, we can minimize each
column H:,j of H separately to minimize the sum, i.e.,

H:,j = arg minh∈Rr×1
≥0
||X:,j −Wh||2, j = 1, 2, . . . , m, (14)

as given in Algorithm 3.

H and θ fixed.

When H and θ are fixed, then Equation (2) can be written out as

F(λ) = ||X−WH||2F + λ||W̄θ −Y||2

=
n

∑
i=1
||(X−WH)i,:||2 + λ

n

∑
i=1

(W̄θ −Y)2
i

=
n

∑
i=1
||Xi,: −Wi,: H||2 +

n

∑
i=1

(√
λ(θ1e + Wi,: θ̄ −Y)

)2

i
(15)

where e = (1, 1, . . . , 1)T ∈ Rn×1 and θ̄ = (θ2, . . . , θr+1)
T ∈ Rr×1. Defining matrices

X̄ =
[

X |
√

λ(θ1e−Y)
]

(16)

H̄ =
[

H |
√

λθ̄
]

(17)

we can rewrite Equation (15) as

F(λ) =
n

∑
i=1
||X̄i,: −Wi,: H̄||2,
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which can be minimized through

Wi,: = arg minw∈R1×r
≥0
||X̄i,: − wH̄||2, i = 1, 2, . . . , n. (18)

This is precisely Algorithm 2.

For our optimizations and linear algebra, we used Numpy [19] and SciPy [20]. The
nonnegative least squares routine employs an active set method to solve the least squares
minimization problem with inequality constraints [21]. The active set method amounts
to gradually building up the set of active constraints (those for which their not being
enforced in the unconstrained problem would result in constraint violation or equality, i.e.,
a regression variable with a nonnegativity constraint being less than or equal to 0) and
then optimizing over the passive set (all variables not in the active set) once identified with
equality constraints on the active set [22]. This method can also be parallelized [23].

In addition to the steps outlined within these algorithms, we employed two additional
modifications: (1) we defined ε = 10−10, and any entries in H less than ε were replaced by
ε (otherwise on some occasions, the W update step would fail); and (2) the minimizations
at times yielded worse objective errors than already obtained and, when this happened, we
did not update to the worse value.

As noted with other NMF routines, we might not reach a global minimizer [24]. In
practice, the minimization should be run repeatedly with different random initializations
to find a more ideal local minimum.

From an application standpoint, we wish to run the model on documents it has not
been trained on. Algorithm 6 stipulates how a prediction takes place. We first find the
best nonnegative decomposition of the document, a vector in R1×m, into the topic basis,
projecting to r−dimensions. With the representation in topic-coordinates, we then use the
linear model.

Algorithm 6: Prediction process.

Input : A matrix H ∈ Rr×m
≥0 ,

a vector θ ∈ R(r+1)×1,
and a vector x ∈ R1×m.

Output : Model prediction for response variable, ŷ.
1 Compute w = arg minw∈R1×r

≥0
||wH − x||2.

2 Compute ŷ = θ1 + wθ2:(r+1).
3 return ŷ

An implementation of our algorithm can be found on our BitBucket repository, ac-
cessed on 21 February 2023.

4. Synthetic Datasets

In our synthetic data, we generate a matrix X that has nonnegative factors W and H,
but we add noise. We also generate a response vector Y given as the matrix–vector product
W̄θ with noise. We investigate four items: (1) that the method does in fact work to decrease
the objective function; (2) whether the regression errors decrease with increasing λ; (3) the
effects of overfitting; and (4) the model robustness to noise.

4.1. Generating Synthetic Data

Our synthetic data generation can be summarized as follows:

1. We fix values of n = 100, m = 40, M = 20, and r = 4.
2. We then define ηx = ηy = 4.
3. We pick X ∈ Rn×r such that each entry is ∼ Uni f ([0, M)). We likewise choose

H ∈ Rr×m.

https://bitbucket.org/3k1m/cssnmf/src/master/
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4. We set X = WH.
5. We pick θ ∈ R(r+1)×1 such that each element is ∼ Uni f ([−M/2, M/2)).
6. We set Y = W̄θ.
7. We perturb X with noise ∼ DX and Y with noise ∼ DY.
8. Any negative X-entries are set to 0.

We consider two different forms for DX and DY:

• Being elementwise ∼ N (0, η2
x) and ∼ N (0, η2

y) or
• Being elementwise ∼ Uni f ([0, ηx)) and ∼ Uni f ([0, ηy)).

Note that in the synthetic data, the true number of topics is r = 4. In testing our
synthetic data, we run Algorithm 1 where τ = 10−4 and maxIter = 100. We use 70% of the
data for training and 30% for testing.

4.2. Investigation

We confirm that the error in the objective function F(λ) decreases with each iteration
of Algorithm 1 in Figure 1—done with Gaussian noise.

With the regression error being the mean squared prediction error, from Figure 2,
we see the regression error in the training does tend to decrease with λ. (There are a few
small exceptions, which we believe stem from randomizations leading to an assortment
of different local optima.) The overall scale of the testing errors gets smaller as r goes
from 1 to 4 and then stays steady or even gets slightly worse as r increases from 4. Indeed,
r = 4 is the “correct” synthetic value. Given the noise as either Gaussian or uniform, the
variances of N (0, η2

y), η2
y , and Uni f ([0, ηy)), η2

y/12, serve as loose estimates for the best
possible testing loss (the loss could very well be higher as noise is added to the matrix X as
well). When the training errors are smaller than this estimate, it suggests overfitting.

Figure 1. Illustration of decreasing objective function at r = 3 topics for λ ∈ {0} ∪ {10i/2|i ∈
Z∩ [−2, 2]}.

To study robustness with noise, we allow the level Gaussian noise to vary in the
problem and evaluate the regression error on testing data. To ensure each noise level
starts with the same ground truth, we start with unperturbed X and Y (as per Section 4.1
with ηx = ηy = 0) and compute matrices and vectors with the same size as X and Y with
elementwise N (0, 1) entries. Then, for each level of noise under investigation, we scale
these unit normal distributions by a noise level η ∈ {0, 4, 8, 12, 16, 20} and examine the
testing error as the λ varies with r = 3 (rank below true rank), r = 4 (correct rank), and
r = 5 (number of chosen topics above correct rank). Figure 3 illustrates the results. The
noise is handled well with r = 3 in that a higher λ does tend to improve the testing error;
however, at higher noise levels η, it seems suitable minima are harder to find when λ is
large. With r = 4 and r = 5, the testing does not benefit with increasing λ at any noise level.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n)

Figure 2. Regression errors with varying regression weight λ with different numbers of topics r
for Gaussian noise (a–g) and uniform noise (h–n). The λ values used are the set {0} ∪ {10i/2|i ∈
Z ∩ [−8, 8]}. For each λ and r, fifty trials were run and the regression errors corresponding to the
best overall objective function F(λ) were recorded. Points with λ > 0 for which the regression error
exceeds 1.5 times the regression error at λ = 0 are not displayed. The dashed horizontal line is the
estimated minimal mean regression error. The dashed vertical line is the transition point between a
linear and logarithmic x-scale.
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Taken together, we anticipate that CSSNMF will perform well provided the number of
topics chosen does not exceed the true number of topics in the dataset (difficult to assess).
We expect that the optimal predictions on unseen data should occur at a λ large enough
that the testing errors have decreased and plateaued. In Figure 2, we see that for large λ,
when overfitting is an issue, the testing performance is seldom better than where λ = 0
(classical NMF and then regression) and, in fact, is often much worse.

(a) (b) (c)

(d) (e) (f)

Figure 3. Regression errors at various noise levels η with varying regression weight λ. The true
number of topics is r = 4. The top row, (a–c), depicts the training errors, and the bottom row, (d–f),
depicts the testing errors. The first column, (a,d), is for a low rank approximation r = 3, the second
column, (b,e), is for an approximation of correct rank r = 4, and the third column, (c,f), is for when
the number of topics used r = 5 is larger than the true number of topics. For each λ, η, and r, fifty
trials were run, and the regression errors corresponding to the best overall objective function F(λ)

were recorded. Points with λ > 0 for which the regression error exceeds 1.5 times the regression
error at λ = 0 are not displayed. The dashed vertical line is the transition point between a linear and
logarithmic x-scale.

5. Rate My Professors Dataset

Here we study our method on real data [15] coming from Rate My Professors where
for each instructor in the dataset, all corresponding student comments are combined to
generate a written narrative and we have the instructor’s rating (mean of all responses).

5.1. Pre-Processing

The corpus was first processed via term frequency–inverse document frequency (TF-
IDF) [25] with the TfidfVectorizer class in Python’s scikit learn package [26]. We used ar-
guments min_df=0.01, max_df=0.15, stop_words=’english’, norm=‘l1’, lowercase=True.
We found the ratings were not balanced: there were 57 on the interval [1, 2), 235 on the
interval [2, 3), 494 on the interval [3, 4), and 629 on the interval [4, 5]. To balance the dataset,
we extracted only a random subset of 57 reviews in each interval (all ratings on [1, 2) were
used). Overall, we obtained a corpus matrix X that was 228× 1635. The open right-end of
the intervals ensures data are not duplicated.

5.2. Choice of Topic Number and Regression Weight

We did not know the true number of topics in the dataset and chose topics of
r = 1, 3, 5, 7, 9, and 11, with λ ∈ {0} ∪ {102i/3|i ∈ [−12, 0] ∩ Z}. We present the re-
sults for 11 topics that gave the best results. See Figure 4. We note that, for large enough
λ, the testing error outperforms the testing error for λ = 0. The optimal point was at
λ = 10−2/3 ≈ 0.215.
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We comment that it is generally difficult to know precisely where the testing error will
be minimized, only that, based on observations of the synthetic data, the testing error is
often better than the λ = 0 case after the training error has dropped. We speculate that the
level of noise in this dataset results in the testing errors not dropping below ≈ 0.75.

.
Figure 4. Errors in training and validation on Rate My Professor dataset with r = 11 topics. Points
with λ > 0 for which the regression error exceeds 1.5 times the regression error at λ = 0 are not
displayed. The dashed vertical line is the transition point between a linear and logarithmic x-scale.

5.3. Prediction

We examine the rating prediction by plotting histograms of predicted ratings where
the true ratings were in [1, 2], [2, 3], [3, 4], and [4, 5]—the closed intervals are used here.
Figure 5 depicts these histograms along with the mean predicted rating and true rating.
The predictions are often within range, and the mean predicted values are very close to
the true means over each interval. We can also see the general predictive strength in the
scatterplot of actual vs. predicted ratings in Figure 6.

These results suggest the model is able to identify topics and associated θ-weights so
as to generate predictions that are consistent with true ratings. For example, in the case
where ratings are in [1, 2], we see the peak of the predictions is around 2, not exceeding 4,
with some predictions as low as −2; then, in the case of ratings in [4, 5], the model peaks
around 3.5 and makes some predictions above 7. There is a clear capacity for the topics to
shift the predictions.
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(a) (b)

(c) (d)

Figure 5. Histograms of the predicted mean rating for various ranges of true ratings ([1, 2] in (a),
[2, 3] in (b), [3, 4] in (c), and [4, 5] in (d)). The vertical dashed lines represent the mean values. The
predicted and true means are as follows: 2.206 and 1.543 for ratings in [1, 2], 3.233 and 2.529 for
ratings in [2, 3], 3.594 and 3.593 for ratings in [3, 4] (the lines are indistinguishable), and 4.576 and
4.494 for ratings in [4, 5].

Figure 6. Scatterplot of Rate My Professor ratings: actual mean rating vs. predicted mean rating.

5.4. Topics Identified

It is important that the method not only have predictive power, but also produce
interpretable topics. We now look at the 11 topics with their associated θ-weights. We find

θ = (2.39909812, 2.82948873,−2.21028471, 1.83876976,−4.77504984,

− 3.86467795, 3.46353642, 0.03914383, 3.26619842,−5.51595505,

4.15317532, 3.90733652)T.

Note that θ1 ≈ 2.4 suggests that for a set of reviews with no topics, the average rating
would be around 2.4—this suggests it is the presence of positive/negative topics that
raise/lower the rating.
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In Figures 7 and 8, we plot the words in the topics associated with positive and nega-
tive ratings. The topics are interpretable. For positive topics, we find Topic 10 (suggestive
of extra credit), Topic 6 (suggestive of being inspiring), Topic 8 (suggestive of being ap-
proachable/brilliant), and Topic 11 (suggestive of being nice/enjoyable class) and words
such as “recommend” in a couple of them. A few words seem out of place, such as “hate”
in Topic 11, but that can be explained by some positive reviews having phrases such as “i
hated chemistry in high school and after taking her class i don t [sic] hate chem as much.”
Among the negative topics, we see Topic 4 (being horrible) and Topic 5 (being unfair).

As a whole, the topics are consistent with intuitive notions of what would be asso-
ciated with higher or lower ratings. It is also interesting to look at the θ-topic weights
quantitatively. For example, Topic 2 (mentioning rants and sarcasm) and Topic 4 (suggestive
of being harder and failing students) contribute negatively to the score, but being a harder
teacher seems to contribute more negatively to the rating than ranting. To elaborate more:
because the row sums of the corpus matrix X and those of the topic matrix H sum to 1,
we have that the sum of the topic weights for each document are approximately 1 as per
Remark 1. All topics exist on the “same scale” within a document (roughly in [0, 1]) and
must roughly sum to 1; therefore, the sizes of the weights in θ for each topic can be ordered
by their positive/negative contributions.

The fact that instructor difficulty has a negative effect on rating and the easiness has
a positive effect has been found in another study [27] that looked at Rate My Professors
data on instructor easiness and overall quality ratings. It is also interesting that many of
the “dimensions” detected through our study, such as being approachable/nice (niceness),
being hard/easy (difficulty), and being inspiring, were dimensions naturally identified
by other scholars [28] who analyzed Rate My Professors data by hand through reading
comments and classifying key phrases within the comments. In this latter study, however,
each dimension could be positive or negative, depending on how it was used.

Figure 7. Topics with positive θ-weights. The θ-weight is given as the topic weight. The strength of
each word is given numerically beside each of the top 10 words.

Figure 8. Topics with negative θ−weights. The θ−weight is given as the topic weight. The strength
of each word is given numerically beside each of the top 10 words.
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6. Conclusions and Future Work

We have developed CSSNMF as a means to combine NMF with regression on a
continuous response variable. We accomplished this by minimizing an objective function
that combines an NMF error with a weighted regression error. We have shown that the
regression error in training is weakly decreasing with the regression error weight and that,
in practical applications, the error strictly decreases. The topics identified can outperform
the quantitative accuracy of topics formed through NMF alone while retaining a high
degree of interpretability (as found with real data). The method is robust to noise and
tends to perform best on new data when there is a dimensionality reduction, i.e., when the
number of topics fit for is fewer than the true number of topics.

We expect that our methods can be applied to very large datasets as our algorithmic
steps involve hierarchical alternating nonnegative least squares [16], which could even be
handled in parallel [29] (with or without parallel nonnegative least squares), and a least
squares problem (Equation (12)) with a small r× r matrix to invert.

Although our analysis focused on the case of linear regression, incorporating nonlin-
earities would be of interest. We also noted the challenge in choosing the appropriate λ
given only training data. A more theoretical understanding of when testing errors drop
substantially could be explored, but this may be dataset-specific.
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