
Citation: Pester, A.; Sulema, Y.;

Dychka, I.; Sulema, O. Temporal

Multimodal Data-Processing

Algorithms Based on Algebraic

System of Aggregates. Algorithms

2023, 16, 186. https://doi.org/

10.3390/a16040186

Academic Editor: Vangelis

Th. Paschos

Received: 20 December 2022

Revised: 13 March 2023

Accepted: 23 March 2023

Published: 29 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Temporal Multimodal Data-Processing Algorithms Based on
Algebraic System of Aggregates
Andreas Pester 1 , Yevgeniya Sulema 2,*, Ivan Dychka 2 and Olga Sulema 2

1 Faculty of Informatics and Computer Science, The British University in Egypt, Cairo 11837, Egypt
2 Department of Computer Systems Software, Igor Sikorsky Kyiv Polytechnic Institute, 03056 Kyiv, Ukraine;

olga.sulema@pzks.fpm.kpi.ua (O.S.)
* Correspondence: sulema@pzks.fpm.kpi.ua

Abstract: In many tasks related to an object’s observation or real-time monitoring, the gathering
of temporal multimodal data is required. Such data sets are semantically connected as they reflect
different aspects of the same object. However, data sets of different modalities are usually stored and
processed independently. This paper presents an approach based on the application of the Algebraic
System of Aggregates (ASA) operations that enable the creation of an object’s complex representation,
referred to as multi-image (MI). The representation of temporal multimodal data sets as the object’s
MI yields simple data-processing procedures as it provides a solid semantic connection between
data describing different features of the same object, process, or phenomenon. In terms of software
development, the MI is a complex data structure used for data processing with ASA operations. This
paper provides a detailed presentation of this concept.

Keywords: data aggregates; temporal multimodal data; data-processing algorithms

1. Introduction

Humans perceive real-world objects through the multiple senses. Semantic fusion
of multi-type (multimodal) information about the object of observation received using
multi-channel sensing is a natural process for the human brain. Following this natural
principle, many scientific and engineering tasks also require complex semantic descriptions
of an object of study based on the fusion of multimodal data received from multiple devices.

In many cases, the object is supervised over the course of time. Such timewise obser-
vation can help in understanding the dynamics of the object’s behavior and is necessary
in many applications. Then, such a timewise complex description requires a collection of
multimodal data that are obtained from several sensors measuring certain parameters of
the object’s behavior, cameras recording the appearance of the object, etc., over time, not
necessarily received simultaneously. This brings the problem of correct multimodal data
representation based on data synchronization and aggregation.

Another aspect of using multimodality is its employment for object recognition. The
latest advancement in this area concerns multimodal machine learning, which involves
integrating and modeling information from multiple heterogeneous sources of data [1].
However, this approach reveals several challenges related to heterogeneity of the data.

According to [2], the first fundamental challenge is comprehensive data representation
that takes into consideration the complementarity and redundancy of multiple modalities.
The second challenge is multimodal data mapping that enables matching data of different
modalities. The third challenge is data alignment that consists of the necessity to identify
direct relations between elements from different modalities. The fourth challenge is data
fusion, which yields united information of different modalities. The fifth challenge is
co-learning, which consists of transferring knowledge based on different modalities. As
stated in [1], there are even more challenges that include reasoning, generation, and
quantification, along with data representation, alignment, and transference. All these and

Algorithms 2023, 16, 186. https://doi.org/10.3390/a16040186 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16040186
https://doi.org/10.3390/a16040186
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-7278-7349
https://doi.org/10.3390/a16040186
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16040186?type=check_update&version=2

Algorithms 2023, 16, 186 2 of 23

related issues require correct and comprehensive multimodal data representation, which
is key to overcoming challenges related to different aspects of multimodal data analysis
and processing.

The rest of the paper is organized as follows. Section 2 presents a related work review.
Section 3 formulates the requirements of temporal multimodal data processing and explains
the need to employ the Algebraic System of Aggregates (ASA) for the formal specification
of an object. Section 4 explains the basic concepts of the ASA. Section 5 provides a detailed
presentation of the algorithms of operations on aggregates. Section 6 presents the notion of
a multi-image of an object and proposes an algorithm for multi-image formation. Section 7
offers a use case and provides the discussion of ASA operations application for multi-image
formation. Finally, Section 8 concludes the paper.

2. Related Work

There are a number of papers presenting different approaches and views on the task
of data fusion/data aggregation in various contexts.

Jesus et al. [3] formally defined the concept of aggregation, reviewed distributed
data aggregation algorithms, and provided taxonomy of the main aggregation techniques.
Comparing different techniques in their survey, the authors showed that among main data
aggregation classes, the hierarchical-based approach is the cheapest option; the sketch-
based approach could be considered fast but not very precise; the averaging technique
gives a higher level of precision but with a much slower execution, which might not be very
efficient to operate on dynamic networks, although very few approaches would actually be
practical when there are dynamic settings, which presents a challenge for further research
on improvements in the efficiency of dynamic networks.

Ribeiro et al. [4] proposed an algorithm for intelligent information fusion in uncertain
environments, named fuzzy information fusion (FIF), which is based on multi-criteria
decision making and computational intelligence. In this study, data fusion was considered
a process of aggregating data from multiple sources into a single composite with higher
information quality. The authors analyzed various methods of data fusion. While they con-
sidered fuzzy Set theory to be of high applicability, it needs application domain knowledge
for data representation, which makes this method not fully universal and creates room for
further research in this direction.

Oliveira et al. [5] presented an application of the fuzzy information fusion algorithm
for the aggregation of various sources of heterogeneous information to generate value-
added maps. In their work, they used operators from different classes of operators, such as
algebraic, average, and reinforcement, to fuse, e.g., aggregate data. Validation with specific
scenarios allowed authors to compare aggregation operators. The multiplicative FIMICA
operator was identified as the most consistent operator that gave the best classification
outputs for the scenarios used. It shows, however, that for certain use cases, there is
a need for specialized operators that yield efficiently aggregated data depending on a
specific scenario.

Lahat et al. [6] considered data fusion to be “the analysis of several data sets such
that different data sets can interact and inform each other” and studied multimodality as a
form of diversity. In the paper, the authors focused their attention on different aspects of
multimodality, considering it in the context of various applications. They also outlined the
importance of the development of single-set analysis methods for advanced data fusion.

Marinoni et al. [7] considered data fusion in the context of image pre-processing with
relation to transfer learning in remote sensing. In their paper, the authors proposed metrics
that quantify the maximum information extraction performance to be achieved by multi-
modal remote-sensing analysis. Empirical outcomes presented in the paper demonstrated
how the accuracy performance of a standard classifier applied to a multimodal data set
can be improved using the reliability metric. The approach proposed by the authors can be
used to improve multimodal remote-sensing information extraction.

Algorithms 2023, 16, 186 3 of 23

Gaonkar et al. [8] provided a study on advancements in multimodal signal processing.
In the paper, focus was given to multimodal data representation and information fusion. The
authors considered information fusion based on model-agnostic and model-based approaches.

Oliveira et al. [9] focused on the application of data fusion in a decision support system
(DSS). The effectiveness of such a system depends on reliable fusion of data coming from
multiple sources. The paper proposed high-level architecture of the DSS.

As was stated in the Introduction, one of the promising applications of multimodal-
ity is multimodal machine learning (MML). This topic stimulated a number of resent
research works.

Liang et al. [10] discussed the foundational principles in multimodal research and,
in particular, the principle of heterogeneity and the principle of interconnection. The
authors also provided taxonomy of six core challenges in multimodal machine learning
(representation, alignment, reasoning, generation, transference, and quantification) and
gave their comprehensive analysis. They outlined different aspects of these challenges, and
some of them are of particular interest in the context of the research purposes of this paper.
Specifically, modality connections and interconnections, as an essential part of multimodal
models, can show how modalities are related and how their elements interact. There is,
however, a need, which the authors pointed out as one of the future directions, to formally
define the core principles of heterogeneity, connections, and interactions. It requires a
mathematical framework to be able to capture causal, logical, and temporal connections
and interactions, which formulates a mathematical and algorithmic problem to consider.

Guo et al. [11] studied deep multimodal representation learning frameworks, includ-
ing modality-specific representations, joint representation and coordinated representation,
and encoder–decoder framework. They outlined one of the challenges that still exists in
the context of machinery comprehension of information from multiple sensory organs,
which is the heterogeneity gap in multimodal data. Aiming to narrow this gap, the authors
summarized some typical models in deep multimodal representation learning, including
probabilistic graphical models, multimodal autoencoders, deep canonical correlation analy-
sis, generative adversarial networks, and attention mechanisms. Their analysis of different
learning frameworks showed that one of the main disadvantages of existing frameworks
and models is the difficulty of coordinating more than two modalities. It formulates a
practical challenge for further research to overcome the issue of multiple modalities.

Baltrusaitis et al. [2] provided an overview of the recent advances in multimodal
machine learning and presented a summary of applications enabled by multimodal machine
learning. In their work, they introduced taxonomy of multimodal machine learning, which
includes five core challenges: representation, translation, fusion, alignment, and co-learning.
Some of these challenges have already been studied quite well. In contrast, there are a few
more recent ones (e.g., representation and translation), which are now leading the creation
of new multimodal algorithms and are still of interest for further research.

Kline et al. [12] provide a summary of multimodal data fusion applications for solving
medical diagnostics problems. The paper shows how medical data of different modalities
(e.g., text/image, EHR/genomic/time series) recorded and extracted can be used in a
specific use case, giving a firm understanding of the practical importance of multimodal
data processing.

3. Approach and Requirements for Temporal Multimodal Data Processing

In our research, we consider an approach to temporal multimodal data processing
based on the formal specification of the objects under study. For this purpose, we need
a theoretical apparatus to provide the logic of presentation and processing of temporal
multimodal data at the level of mathematics, algorithms, and software, taking into account
such features of this data:

• Multimodality means that the object is determined by a collection of data of a different
nature; the logic of presenting and processing data about the object depends on the
qualitative and quantitative composition of the data set.

Algorithms 2023, 16, 186 4 of 23

• Temporality means that the elements of data collection are ordered by the time of their
receiving; the order of following individual elements of the data sequence affects the
result of processing the entire set of data of the object.

The description of the object and the effective processing of temporal multimodal
data require specific mathematical abstractions and mechanisms to operate them. The
basic requirements for a mathematical apparatus to describe and process data include the
possibility of the following:

1. Presenting a data set as a structure of semantically interconnected elements.
2. Considering the sequence of data set elements when performing logical operations

on them.
3. Reordering elements of the data set.

Let us consider several candidates for a mathematical concept to meet these require-
ments. As the data are temporal, the first possible candidate is the theory of time series
(TTS) [13,14]. The TTS is one of the branches of mathematical statistics that deals with the
analysis of stochastic processes. The TTS enables the analysis of data sequences, as well as
the study of trends, predictions, and other similar data processing. However, time series
do not allow any logical operations of the data elements. Therefore, the TTS cannot be
employed for logical processing of temporal multimodal data.

Two other candidates are the theory of sets (TS) [15] and the theory of multisets
(TMS) [16,17]. Both of them provide flexible mechanisms for the logical processing of data
sets; however, they do not consider the sequence of elements and, accordingly, do not
provide the possibility of ordering the elements in a set of temporal multimodal data.

Thus, neither of the considered theories fully correspond to the needs of temporal
multimodal data processing based on the formal specification of the objects under study.
However, the abovementioned requirements are satisfied by the Algebraic System of Aggre-
gates (ASA) [18,19]. This mathematical concept enables data processing with consideration
of both required data features, namely multimodality and temporality (Table 1).

Table 1. ASA comparison.

Features TTS TS TMS ASA

Ordering yes no no yes
Logical operations no yes yes yes

Fuzziness partly partly partly yes
Data aggregation no no partly yes

Temporality yes no no yes

Let us consider the main provisions and possibilities of the ASA for the presentation
and processing of temporal multimodal data describing an object.

4. Basics Notions of ASA

The ASA [18,19] is an algebraic system whose carrier is a non-empty set of objects,
which we call aggregates.

Definition 1. An aggregate A is an ordered finite collection of elements defined by a tuple of
sets {A} and a tuple of tuples of elements 〈A〉, and the elements aj

i of each tuple of elements〈
aj

i

〉nj
i=1 ∈ 〈A〉 belong to the corresponding set Mj ∈ {A}, j = [1 . . . N], which specifies a

one-to-one relationship between the sequence of sets and the sequence of tuples of elements:

A =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

Mj |
〈

aj
i

〉nj
i=1

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

N

j=1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

{A} | 〈A〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

, (1)

Algorithms 2023, 16, 186 5 of 23

where {A} is a tuple of sets Mj; 〈A〉 is a tuple of tuples of elements
〈

aj
i

〉nj
i=1; and aj

i is a separate
element (value) or a composite element (a tuple of homogeneous values or a tuple of heterogeneous
values), aj

i ∈ Mj.

The defining features of the aggregate, which distinguish this mathematical abstraction
from others, are the following:

• An aggregate is a complex mathematical object, all of whose components are ordered;
• Elements of the tuples can be individual values or tuples of values, and the tuples of

values can consist of both values of the same type and values of different types, while
each tuple contains elements belonging to one set.

According to (1), the elements of the first tuple belong to the first set, the elements
of the second tuple belong to the second set, etc. The sequence of sets in an aggregate
determines how operations on the aggregate are performed. Sets in a tuple of sets can be
repeated; this means that the aggregate includes several tuples consisting of elements of
the same type. In software code, an aggregate can be defined as a data structure presented
in Listing 1.

Listing 1. Interface of a data structure for representing an aggregate.

Aggregate structure:
collection← ordered collection of tuples
length← number of tuples in the aggregate

Initialize Aggregate
define length of the aggregate
create collection of size length
initialize tuples in collection

Insertion (entity)← add an entity, i.e., a set of values from different tuples
Extraction (entity)← delete the specific entity
TupleInsertion (position)← add a new tuple to the specific position in the aggregate
TupleExtraction (position)← delete the specific tuple
AscendingSorting (primaryTuple)← sort tuples in the aggregate by the defined primary

tuple in asceding order
DecendingSorting (primaryTuple)← sort tuples in the aggregate by the defined primary

tuple in descending order
Singling (primatyTuple)← remove all non-unique entities by the defined primary tuple
SetsOrdering (orderOfTuples)← reorder tuples by the defined order

As the order of elements in the aggregate is a crucial point in the ASA, the result of
carrying out operations on aggregates depends on the aggregates’ compatibility.

Definition 2. Aggregates A1 and A2 are called compatible (A1 + A2) if they have the same length,
and the type and sequence of sets in them match, that is, the conditions are met:{

| A1 | = | A2 |
{A1} ≡ {A2}

. (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible.

A1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M2, M3 |
〈

a1,1
1 , a1,1

2 , a1,1
3

〉
,
〈

a1,2
1 , a1,2

2

〉
,
〈

a1,3
1 , a1,3

2 , a1,3
3 , a1,3

4

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M2, M3 |
〈

a2,1
1 , a2,1

2

〉
,
〈

a2,2
1 , a2,2

2 , a2,2
3 , a2,2

4 , a2,2
5

〉
,
〈

a2,3
1 , a2,3

2

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.
(3)

In Figure 1, the color of an element represents data modality (elements of set M1 are
blue, elements of set M2 are brown and elements of set M3 are green), the first value in
the element’s number designates the aggregate (A1 or A2), and the second value in the

Algorithms 2023, 16, 186 6 of 23

element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element
a1,1

1 that belongs to the set M1 from the definition of A1 and the green circle, which contains
the numbers 2-1, represents the element a2,3

1 that belongs to the set M3 from the definition
of A2.

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 25

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates A1 and A2 are called quasi-compatible (A1
.
= A2) if the type and

sequence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled:{

{A1}

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

{A2}
{A1} ∩ {A2} 6= ∅.

(4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-compatible.

A1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M2, M1
3 |
〈

a1,1
1 , a1,1

2 , a1,1
3

〉
,
〈

a1,2
1 , a1,2

2

〉
,
〈

a1,3
1 , a1,3

2 , a1,3
3 , a1,3

4

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M2, M2
3 |
〈

a2,1
1 , a2,1

2

〉
,
〈

a2,2
1 , a2,2

2 , a2,2
3 , a2,2

4 , a2,2
5

〉
,
〈

a2,3
1 , a2,3

2

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.
(5)

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 25

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates A1 and A2 are called incompatible (A1 $ A2), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled:

{A1} ∩ {A2} = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompatible.

A1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1
1, M1

2, M1
3 |
〈

a1,1
1 , a1,1

2 , a1,1
3

〉
,
〈

a1,2
1 , a1,2

2

〉
,
〈

a1,3
1 , a1,3

2 , a1,3
3 , a1,3

4

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M2
1, M2

2, M2
3 |
〈

a2,1
1 , a2,1

2

〉
,
〈

a2,2
1 , a2,2

2 , a2,2
3 , a2,2

4 , a2,2
5

〉
,
〈

a2,3
1 , a2,3

2

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.
(7)

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 25

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Algorithms 2023, 16, 186 7 of 23

Definition 5. Aggregates A1 and A2 are called hiddenly compatible, A1 (+) A2, if both aggregates
have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled:

{A1}

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

{A2}
| A1 | = | A2 | = N
∀Mj ⊂ {Ak},

(8)

where j = [1, . . . , N], k = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible.

A1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M2, M3 |
〈

a1,1
1 , a1,1

2 , a1,1
3

〉
,
〈

a1,2
1 , a1,2

2

〉
,
〈

a1,3
1 , a1,3

2 , a1,3
3 , a1,3

4

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M2, M3, M1 |
〈

a2,1
1 , a2,1

2

〉
,
〈

a2,2
1 , a2,2

2 , a2,2
3 , a2,2

4 , a2,2
5

〉
,
〈

a2,3
1 , a2,3

2

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.
(9)

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 25

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain opera-
tions to them.

5. Algorithms of Operations on Aggregates

The operations on aggregates in the ASA include logical operations, ordering opera-
tions, and arithmetic operations.

5.1. Logical Operations

The logical operations [18] on aggregates are union, intersection, exclusive intersec-
tion, difference, and symmetric difference. The result of any logical operation depends
on the aggregates’ compatibility. For example, the rule for the union operation can be
mathematically defined as follows.

The union of the aggregates A1 and A2 is the aggregate R∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:

1. If A1 + A2, then aggregates A1 and A2 are defined as

A1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M2, . . . , MN |
〈

a1,1
1 , a1,1

2 , . . . , a1,1
n1

1

〉
,
〈

a1,2
1 , a1,2

2 , . . . , a1,2
n1

2

〉
, . . . ,

〈
a1,N

1 , a1,N
2 , . . . , a1,N

n1
N

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M2, . . . , MN |
〈

a2,1
1 , a2,1

2 , . . . , a2,1
n2

1

〉
,
〈

a2,2
1 , a2,2

2 , . . . , a2,2
n2

2

〉
, . . . ,

〈
a2,N

1 , a2,N
2 , . . . , a2,N

n2
N

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

and elements of i-tuple of the aggregate A2 are added to the end of i-tuple of the
aggregate A1:

R∪ = A1 ∪ A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M2, . . . , MN |
〈

a1,1
1 , a1,1

2 , . . . , a1,1
n1

1
, a2,1

1 , a2,1
2 , . . . , a2,1

n2
1

〉
,〈

a1,2
1 , a1,2

2 , . . . , a1,2
n1

2
, a2,2

1 , a2,2
2 , . . . , a2,2

n2
2

〉
, . . . ,

〈
a1,N

1 , a1,N
2 , . . . , a1,N

n1
N

, a2,N
1 , a2,N

2 , . . . , a2,N
n2

N

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.
(10)

2. If A1
.
= A2, then aggregates A1 and A2 are defined as

Algorithms 2023, 16, 186 8 of 23

A1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M1
2, . . . , Mk, . . . , M1

N1 |
〈

a1,1
1 , a1,1

2 , . . . , a1,1
n1

1

〉
,
〈

a1,2
1 , a1,2

2 , . . . , a1,2
n1

2

〉
, . . . ,

〈
a1,k

1 , a1,k
2 , . . . , a1,k

n1
k

〉
, . . . ,〈

a1,N1

1 , a1,N1

2 , . . . , a1,N1

n1
N1

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M2
2, . . . , Mk, . . . , M2

N2 |
〈

a2,1
1 , a2,1

2 , . . . , a2,1
n2

1

〉
,
〈

a2,2
1 , a2,2

2 , . . . , a2,2
n2

2

〉
, . . . ,

〈
a2,k

1 , a2,k
2 , . . . , a2,k

n2
k

〉
, . . . ,〈

a2,N2

1 , a2,N2

2 , . . . , a2,N2

n2
N2

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

(a) elements of the i-tuple of the aggregate A2 are added to the end of the i-tuple of
the aggregate A1, if the elements of these tuples belong to the same i-set;

(b) for all i-tuples whose elements belong to different sets, the tuple of tuples of
aggregate A2 is added to the end of the tuple of tuples of aggregate A1, and the tuple of sets
of aggregate A2 is added to the end of the tuple of sets of aggregate A1, with the exception
of tuples subject to rule (a), which are excluded from the tuple of tuples:

RU = A1 ∪ A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1, M1
2, . . . , Mk, . . . , M1

N1 , M2
2, . . . , M2

N2 |
〈

a1,1
1 , a1,1

2 , . . . , a1,1
n1

1
,

a2,1
1 , a2,1

2 , . . . , a2,1
n2

1

〉
,
〈

a1,2
1 , a1,2

2 , . . . , a1,2
n1

2

〉
, . . . ,

〈
a1,k

1 , a1,k
2 , . . . , a1,k

n1
k

, a2,k
1 , a2,k

2 , . . . , a2,k
n2

k

〉
, . . . ,〈

a1,N1

1 , a1,N1

2 , . . . , a1
n1,N1

N1

〉
,
〈

a2,2
1 , a2,2

2 , . . . , a2,2
n2

2

〉
, . . . ,

〈
a2,N2

1 , a2,N2

2 , . . . , a2,N2

n2
N2

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

(11)

3. If A1 $ A2, then aggregates A1 and A2 are defined as

A1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1
1, M1

2, . . . , M1
N1 |

〈
a1,1

1 , a1,1
2 , . . . , a1,1

n1
1

〉
,
〈

a1,2
1 , a1,2

2 , . . . , a1,2
n1

2

〉
, . . . ,

〈
a1,N1

1 , a1,N1

2 , . . . , a1,N1

n1
N1

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M2
1, M2

2, . . . , M2
N2 |

〈
a2,1

1 , a2,1
2 , . . . , a2,1

n2
1

〉
,
〈

a2,2
1 , a2,2

2 , . . . , a2,2
n2

2

〉
, . . . ,

〈
a2,N2

1 , a2,N2

2 , . . . , a2,N2

n2
N2

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

the tuple of tuples of aggregate A2 is added at to end of the tuple of tuples of the
aggregate A1, and the tuple of sets of aggregate A2 is added to the end of the tuple of
sets of the aggregate A1:

R∪ = A1 ∪ A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

M1
1, M1

2, . . . , M1
N1 , M2

1, M2
2, . . . , M2

N2 |
〈

a1,1
1 , a1,1

2 , . . . , a1,1
n1

1

〉
,〈

a1,2
1 , a1,2

2 , . . . , a1,2
n1

2

〉
, . . . ,

〈
a1,N1

1 , a1,N1

2 , . . . , a1,N1

n1
N1

〉
,
〈

a2,1
1 , a2,1

2 , . . . , a2,1
n2

1

〉
,〈

a2,2
1 , a2,2

2 , . . . , a2,2
n2

2

〉
, . . . ,

〈
a2,N2

1 , a2,N2

2 , . . . , a2,N2

n2
N2

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.

(12)

The results of applying the union operation to two aggregates with different compati-
bility (Figures 1–3) are shown in Figure 5.

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 25

(a) The results for the compatible aggregates are given in Figure 1.

(b) The results for the quasi-compatible aggregates are given in Figure 2.

(c) The results for the incompatible aggregates are given in Figure 3.

Figure 5. An example of applying the union operation to two aggregates of different compatibility.

This mathematical definition can be presented as the algorithm for finding a result of
the union of two aggregates as shown in Listing 2.

Listing 2: Algorithm of the union operation for two aggregates.

Input: aggregates 𝐴 and 𝐴
Output: aggregate 𝑅

if 𝐴 ≑ 𝐴 then
for 𝑖 = 1: 𝑁 do

for 𝑘 = 1: 𝑛 do 𝑟 = 𝑎 ,
for 𝑘 = (𝑛 + 1): (𝑛 + 𝑛) do 𝑟 = 𝑎 ,

end
else if 𝐴 ≗ 𝐴 then

for 𝑖 = 1: 𝑁 do 〈𝑟 〉 = 〈𝑎 , 〉

for 𝑖 = (𝑁 + 1): (𝑁 + 𝑁) do 〈𝑟 〉 = 〈𝑎 , 〉

else
for 𝑖 = 1: (𝑁 + 𝑁) do

if 〈𝑎 , 〉 and 〈𝑎 , 〉 ∈ 𝑀 then

for 𝑘 = 1: 𝑛 do 𝑟 = 𝑎 ,
for 𝑘 = (𝑛 + 1): (𝑛 + 𝑛) do 𝑟 = 𝑎 ,

else 〈𝑏 〉 = 〈𝑎 , 〉

end
end
for 𝑖 = (𝑁 + 𝑁 + 1): (𝑁 + 𝑁 + 𝑁) 〈𝑟 〉 = 〈𝑏 〉

end
end

Figure 5. An example of applying the union operation to two aggregates of different compatibility.

Algorithms 2023, 16, 186 9 of 23

This mathematical definition can be presented as the algorithm for finding a result of
the union of two aggregates as shown in Listing 2.

Listing 2: Algorithm of the union operation for two aggregates.

Input: aggregates A1 and A2
Output: aggregate R

if A1 + A2 then
for i = 1 : N do

for ki = 1 : n1
i do rki

= a1,i
ki

for ki =
(
n1

i + 1
)

:
(
n1

i + n2
i
)

do rki
= a2,i

ki

end
else if A1 $ A2 then

for i = 1 : N1 do
〈
rki

〉ni
ki=1 =

〈
a1,i

ki

〉
n1

i
ki=1

for i =
(

N1 + 1
)

:
(

N1 + N2) do
〈
rki

〉ni
ki=1 =

〈
a2,i

ki

〉
n2

i
ki=1

else
for i = 1 :

(
N1 + N2) do

if
〈

a1,i
ki

〉
n1

i
ki=1 and

〈
a2,i

ki

〉
n2

i
ki=1 ∈ Mi then

for ki = 1 : n1
i do rki

= a1,i
ki

for ki =
(
n1

i + 1
)

:
(
n1

i + n2
i
)

do rki
= a2,i

ki

else〈
bki

〉n2
i

ki=1 =
〈

a2,i
ki

〉
n2

i
ki=1

end
end
for i =

(
N1 + N2 + 1

)
:
(

N1 + N2 + Nb
)

〈
rki

〉n2
i

ki=1 =
〈
bki

〉n2
i

ki=1
end

end

The intersection of the aggregates A1 and A2 is the aggregate R∩, which contains
components that are common to these aggregates and are ordered according to the rule
defined in [18]. This rule can be presented as the algorithm for finding a result of the
intersection of two aggregates as shown in Listing 3.

The results of the intersection operation applied to the compatible and quasi-compatible
aggregates are shown in Figures 6 and 7, respectively. The elements of the same color
marked with the same border color are equal, for example, a1,1

1 = a1,1
3 = a2,1

2 (blue elements
with the red border) in Figure 6.

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 25

color marked with the same border color are equal, for example, 𝑎 , = 𝑎 , = 𝑎 , (blue
elements with the red border) in Figure 6.

(a) The given compatible aggregates.

(b) The results of the intersection operation.

Figure 6. An example of applying the intersection operation to two compatible aggregates.

(a) The given quasi-compatible aggregates.

(b) The results of the intersection operation.

Figure 7. An example of applying the intersection operation to two quasi-compatible aggregates.

The exclusive intersection of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅 , which
contains only components of the 𝐴 aggregate that are common in these aggregates and
are ordered according to the rule defined in [18]. This rule can be presented as the algo-
rithm for finding a result of the exclusive intersection of two aggregates as shown in List-
ing 4.

Listing 4: Algorithm of the exclusive intersection operation for two aggregates.

Input: aggregates 𝐴 and 𝐴
Output: aggregate 𝑅

if 𝐴 ≑ 𝐴 then
for 𝑖 = 1: 𝑁 do

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∈ 𝐴 𝑟 = 𝑎 ,
end

end
end

else if 𝐴 ≗ 𝐴 then 〈𝑟 〉 = ∅

else
for 𝑖 = 1: 𝑁 do

Figure 6. An example of applying the intersection operation to two compatible aggregates.

Algorithms 2023, 16, 186 10 of 23

Listing 3: Algorithm of the intersection operation for two aggregates.

Input: aggregates A1 and A2
Output: aggregate R

if A1 + A2 then
for i = 1 : N do

for ki = 1 : n1
i do

if a1,i
ki
∈ Ai

2

rki
= a1,i

ki

end
end
for ki =

(
n1

i + 1
)

:
(
n1

i + n2
i
)

do
if a2,i

ki
∈ Ai

1
rki

= a2,i
ki

end
end

end
else if A1 $ A2 then〈

rki

〉n1
i

ki=1 = ∅
else
for i = 1 :

(
N1 + N2) do

if
〈

a1,i
ki

〉
n1

i
ki=1 and

〈
a2,i

ki

〉
n2

i
ki=1 ∈ Mi then

for ki = 1 : n1
i do

if a1,i
ki
∈ Ai

2

rki
= a1,i

ki

end
end
for ki =

(
n1

i + 1
)

:
(
n1

i + n2
i
)

do
if a2,i

ki
∈ Ai

1
rki

= a2,i
ki

end
end

end
end

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 25

color marked with the same border color are equal, for example, 𝑎 , = 𝑎 , = 𝑎 , (blue
elements with the red border) in Figure 6.

(a) The given compatible aggregates.

(b) The results of the intersection operation.

Figure 6. An example of applying the intersection operation to two compatible aggregates.

(a) The given quasi-compatible aggregates.

(b) The results of the intersection operation.

Figure 7. An example of applying the intersection operation to two quasi-compatible aggregates.

The exclusive intersection of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅 , which
contains only components of the 𝐴 aggregate that are common in these aggregates and
are ordered according to the rule defined in [18]. This rule can be presented as the algo-
rithm for finding a result of the exclusive intersection of two aggregates as shown in List-
ing 4.

Listing 4: Algorithm of the exclusive intersection operation for two aggregates.

Input: aggregates 𝐴 and 𝐴
Output: aggregate 𝑅

if 𝐴 ≑ 𝐴 then
for 𝑖 = 1: 𝑁 do

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∈ 𝐴 𝑟 = 𝑎 ,
end

end
end

else if 𝐴 ≗ 𝐴 then 〈𝑟 〉 = ∅

else
for 𝑖 = 1: 𝑁 do

Figure 7. An example of applying the intersection operation to two quasi-compatible aggregates.

The exclusive intersection of the aggregates A1 and A2 is the aggregate R¬, which
contains only components of the A1 aggregate that are common in these aggregates and are
ordered according to the rule defined in [18]. This rule can be presented as the algorithm
for finding a result of the exclusive intersection of two aggregates as shown in Listing 4.

Algorithms 2023, 16, 186 11 of 23

Listing 4: Algorithm of the exclusive intersection operation for two aggregates.

Input: aggregates A1 and A2
Output: aggregate R

if A1 + A2 then
for i = 1 : N do

for ki = 1 : n1
i do

if a1,i
ki
∈ Ai

2

rki
= a1,i

ki

end
end

end
else if A1 $ A2 then

rki

n1
i

ki=1 = ∅
else
for i = 1 : N1 do

if
〈

a1,i
ki

〉
n1

i
ki=1 and

〈
a2,i

ki

〉
n2

i
ki=1 ∈ Mi then

for ki = 1 : n1
i do

if a1,i
ki
∈ Ai

2

rki
= a1,i

ki

end
end

end
end

The results of the exclusive intersection operation applied to the compatible and
quasi-compatible aggregates are shown in Figures 8 and 9, respectively.

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 25

if 〈𝑎 , 〉 and 〈𝑎 , 〉 ∈ 𝑀 then

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∈ 𝐴 𝑟 = 𝑎 ,
end

end
end

end

The results of the exclusive intersection operation applied to the compatible and
quasi-compatible aggregates are shown in Figures 8 and 9, respectively.

(a) The given compatible aggregates.

(b) The result the exclusive intersection operation.

Figure 8. An example of applying the exclusive intersection operation to two compatible aggregates.

(a) The given quasi-compatible aggregates.

(b) The result the exclusive intersection operation.

Figure 9. An example of applying the exclusive intersection operation to two quasi-compatible ag-
gregates.

The difference of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅\, which contains com-
ponents of the 𝐴 aggregate that are not present in the 𝐴 aggregate and are ordered ac-
cording to the rule defined in [18]. This rule can be presented as the algorithm for finding
a result of the difference of two aggregates as shown in Listing 5.

Listing 5: Algorithm of the difference operation for two aggregates.

Input: aggregates 𝐴 and 𝐴
Output: aggregate 𝑅

if 𝐴 ≑ 𝐴 then
for 𝑖 = 1: 𝑁 do

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∉ 𝐴 𝑟 = 𝑎 ,
end

Figure 8. An example of applying the exclusive intersection operation to two compatible aggregates.

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 25

if 〈𝑎 , 〉 and 〈𝑎 , 〉 ∈ 𝑀 then

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∈ 𝐴 𝑟 = 𝑎 ,
end

end
end

end

The results of the exclusive intersection operation applied to the compatible and
quasi-compatible aggregates are shown in Figures 8 and 9, respectively.

(a) The given compatible aggregates.

(b) The result the exclusive intersection operation.

Figure 8. An example of applying the exclusive intersection operation to two compatible aggregates.

(a) The given quasi-compatible aggregates.

(b) The result the exclusive intersection operation.

Figure 9. An example of applying the exclusive intersection operation to two quasi-compatible ag-
gregates.

The difference of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅\, which contains com-
ponents of the 𝐴 aggregate that are not present in the 𝐴 aggregate and are ordered ac-
cording to the rule defined in [18]. This rule can be presented as the algorithm for finding
a result of the difference of two aggregates as shown in Listing 5.

Listing 5: Algorithm of the difference operation for two aggregates.

Input: aggregates 𝐴 and 𝐴
Output: aggregate 𝑅

if 𝐴 ≑ 𝐴 then
for 𝑖 = 1: 𝑁 do

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∉ 𝐴 𝑟 = 𝑎 ,
end

Figure 9. An example of applying the exclusive intersection operation to two quasi-compatible aggregates.

Algorithms 2023, 16, 186 12 of 23

The difference of the aggregates A1 and A2 is the aggregate R\, which contains compo-
nents of the A1 aggregate that are not present in the A2 aggregate and are ordered according
to the rule defined in [18]. This rule can be presented as the algorithm for finding a result
of the difference of two aggregates as shown in Listing 5.

Listing 5: Algorithm of the difference operation for two aggregates.

Input: aggregates A1 and A2
Output: aggregate R

if A1 + A2 then
for i = 1 : N do

for ki = 1 : n1
i do

if a1,i
ki

/∈ Ai
2

rki
= a1,i

ki

end
end

end
else if A1 $ A2 then

for i = 1 : N do〈
rki

〉n1
i

ki=1 =
〈

a1,i
ki

〉
n1

i
ki=1

end
else
for i = 1 : N1 do

if
〈

a1,i
ki

〉
n1

i
ki=1 and

〈
a2,i

ki

〉
n2

i
ki=1 ∈ Mi then

for ki = 1 : n1
i do

if a1,i
ki

/∈ Ai
2

rki
= a1,i

ki

end
end

else〈
rki

〉n1
i

ki=1 =
〈

a1,i
ki

〉
n1

i
ki=1

end
end

The result of the difference operation applied to the compatible, quasi-compatible, and
incompatible aggregates is shown in Figures 10–12, respectively.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 25

end
end

else if 𝐴 ≗ 𝐴 then
for 𝑖 = 1: 𝑁 do 〈𝑟 〉 = 〈𝑎 , 〉

end
else
for 𝑖 = 1: 𝑁 do

if 〈𝑎 , 〉 and 〈𝑎 , 〉 ∈ 𝑀 then

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∉ 𝐴 𝑟 = 𝑎 ,
end

end
else 〈𝑟 〉 = 〈𝑎 , 〉

end
end

The result of the difference operation applied to the compatible, quasi-compatible,
and incompatible aggregates is shown in Figures 10–12, respectively.

(a) The given compatible aggregates.

(b) The results of the difference operation.

Figure 10. An example of applying the difference operation to two compatible aggregates.

(a) The given quasi-compatible aggregates.

(b) The results of the difference operation.

Figure 11. An example of applying the difference operation to two quasi-compatible aggregates.

Figure 10. An example of applying the difference operation to two compatible aggregates.

Algorithms 2023, 16, 186 13 of 23

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 25

end
end

else if 𝐴 ≗ 𝐴 then
for 𝑖 = 1: 𝑁 do 〈𝑟 〉 = 〈𝑎 , 〉

end
else
for 𝑖 = 1: 𝑁 do

if 〈𝑎 , 〉 and 〈𝑎 , 〉 ∈ 𝑀 then

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∉ 𝐴 𝑟 = 𝑎 ,
end

end
else 〈𝑟 〉 = 〈𝑎 , 〉

end
end

The result of the difference operation applied to the compatible, quasi-compatible,
and incompatible aggregates is shown in Figures 10–12, respectively.

(a) The given compatible aggregates.

(b) The results of the difference operation.

Figure 10. An example of applying the difference operation to two compatible aggregates.

(a) The given quasi-compatible aggregates.

(b) The results of the difference operation.

Figure 11. An example of applying the difference operation to two quasi-compatible aggregates. Figure 11. An example of applying the difference operation to two quasi-compatible aggregates.

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 25

(a) The given quasi-compatible aggregates.

(b) The result the difference operation.

Figure 12. An example of applying the difference operation to two incompatible aggregates.

The symmetric difference of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∆, which con-
tains components of the aggregate 𝐴 that are not in the aggregate 𝐴 and components
of the aggregate 𝐴 that are not in the aggregate 𝐴 , and are ordered according to the rule
defined in [18]. This rule can be presented as the algorithm for finding a result of the sym-
metric difference of two aggregates as shown in Listing 6.

Listing 6: Algorithm of the symmetric difference operation for two aggregates.

Input: aggregates 𝐴 and 𝐴
Output: aggregate 𝑅

if 𝐴 ≑ 𝐴 then
for 𝑖 = 1: 𝑁 do

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∉ 𝐴 𝑟 = 𝑎 ,
end

end
for 𝑘 = (𝑛 + 1): (𝑛 + 𝑛) do

if 𝑎 , ∉ 𝐴 𝑟 = 𝑎 ,
end

end
end

else if 𝐴 ≗ 𝐴 then
for 𝑖 = 1: 𝑁 do 〈𝑟 〉 = 〈𝑎 , 〉

end
for 𝑖 = 1: (𝑁 + 1): (𝑁 + 𝑁) do 〈𝑟 〉 = 〈𝑎 , 〉

end
else

for 𝑖 = 1: (𝑁 + 𝑁) do

if 〈𝑎 , 〉 and 〈𝑎 , 〉 ∈ 𝑀 then

Figure 12. An example of applying the difference operation to two incompatible aggregates.

The symmetric difference of the aggregates A1 and A2 is the aggregate R∆, which
contains components of the aggregate A1 that are not in the aggregate A2 and components
of the aggregate A2 that are not in the aggregate A1, and are ordered according to the
rule defined in [18]. This rule can be presented as the algorithm for finding a result of the
symmetric difference of two aggregates as shown in Listing 6.

The results of the symmetric difference operation applied to the compatible, quasi-
compatible, and incompatible aggregates are shown in Figures 13–15, respectively.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 25

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∉ 𝐴 𝑟 = 𝑎 ,
end

end

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∉ 𝐴 𝑟 = 𝑎 ,
end

end
else 〈𝑟 〉 = 〈𝑎 , 〉

〈𝑏 〉 = 〈𝑎 , 〉

end
end
for 𝑖 = (𝑁 + 1): (𝑁 + 𝑁) do 〈𝑟 〉 = 〈𝑏 〉

end
end

The results of the symmetric difference operation applied to the compatible, quasi-
compatible, and incompatible aggregates are shown in Figures 13–15, respectively.

(a) The given compatible aggregates.

(b) The results of the symmetric difference operation.

Figure 13. An example of applying the symmetric difference operation to two compatible aggre-
gates.

(a) The given quasi-compatible aggregates.

(b) The results of the symmetric difference operation.

Figure 13. An example of applying the symmetric difference operation to two compatible aggregates.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 25

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∉ 𝐴 𝑟 = 𝑎 ,
end

end

for 𝑘 = 1: 𝑛 do
if 𝑎 , ∉ 𝐴 𝑟 = 𝑎 ,
end

end
else 〈𝑟 〉 = 〈𝑎 , 〉

〈𝑏 〉 = 〈𝑎 , 〉

end
end
for 𝑖 = (𝑁 + 1): (𝑁 + 𝑁) do 〈𝑟 〉 = 〈𝑏 〉

end
end

The results of the symmetric difference operation applied to the compatible, quasi-
compatible, and incompatible aggregates are shown in Figures 13–15, respectively.

(a) The given compatible aggregates.

(b) The results of the symmetric difference operation.

Figure 13. An example of applying the symmetric difference operation to two compatible aggre-
gates.

(a) The given quasi-compatible aggregates.

(b) The results of the symmetric difference operation.

Figure 14. An example of applying the symmetric difference operation to two quasi-compatible aggregates.

Algorithms 2023, 16, 186 14 of 23

Listing 6: Algorithm of the symmetric difference operation for two aggregates.

Input: aggregates A1 and A2
Output: aggregate R

if A1 + A2 then
for i = 1 : N do

for ki = 1 : n1
i do

if a1,i
ki

/∈ Ai
2

rki
= a1,i

ki

end
end
for ki =

(
n1

i + 1
)

:
(
n1

i + n2
i
)

do
if a2,i

ki
/∈ Ai

1
rki

= a2,i
ki

end
end

end
else if A1 $ A2 then

for i = 1 : N1 do〈
rki

〉n1
i

ki=1 =
〈

a1,i
ki

〉
n1

i
ki=1

end
for i = 1 :

(
N1 + 1

)
:
(

N1 + N2) do〈
rki

〉n2
i

ki=1 =
〈

a2,i
ki

〉
n2

i
ki=1

end
else

for i = 1 :
(

N1 + N2) do

if
〈

a1,i
ki

〉
n1

i
ki=1 and

〈
a2,i

ki

〉
n2

i
ki=1 ∈ Mi then

for ki = 1 : n1
i do

if a1,i
ki

/∈ Ai
2

rki
= a1,i

ki

end
end
for ki = 1 : n2

i do
if a2,i

ki
/∈ Ai

1
rki

= a2,i
ki

end
end

else〈
rki

〉n1
i

ki=1 =
〈

a1,i
ki

〉
n1

i
ki=1〈

bki

〉n2
i

ki=1 =
〈

a2,i
ki

〉
n2

i
ki=1

end
end
for i =

(
N1 + 1

)
:
(

N1 + N2) do〈
rki

〉n2
i

ki=1 =
〈
bki

〉n2
i

ki=1
end

end

Algorithms 2023, 16, x FOR PEER REVIEW 16 of 25

Figure 14. An example of applying the symmetric difference operation to two quasi-compatible ag-
gregates.

(a) The given quasi-compatible aggregates.

(b) The results of the symmetric difference operation.

Figure 15. An example of applying the symmetric difference operation to two incompatible aggre-
gates.

5.2. Ordering Operations
The ordering operations [19] on aggregates are sets ordering, sorting, singling, ex-

traction, and insertion.
Sets ordering is an ordering operation that reorders the tuple of sets and the corre-

sponding tuple of tuples of the aggregate 𝐴, according to the given hiddenly compatible
aggregate 𝐴 , which consists of any arbitrary elements, including dummy ones, as shown
in Figure 16. The result of sets ordering is the aggregate 𝐴⊨ = 𝐴 ⊨ 𝐴 .

(a) The original aggregate.

(b) The given template aggregate with dummy element Ø in
each tuple.

(c) The results of the sets ordering operation.

Figure 16. An example of applying the sets ordering operation.

The sets ordering operation can be fulfilled according to the algorithm in Listing 7.

Listing 7: Algorithm of the sets ordering operation.

Input: aggregates 𝐴 and 𝐴
Output: aggregate 𝑅

while not ordered do 𝑗 = 1
for 𝑖 = 1: 𝑁 do

if 〈𝑎 〉 ∈ 𝑀 then 〈𝑟 〉 = 〈𝑎 〉 𝑗 = 𝑗 + 1
if 𝑗 𝑁 then

sets are ordered
end

end
end

Figure 15. An example of applying the symmetric difference operation to two incompatible aggregates.

Algorithms 2023, 16, 186 15 of 23

5.2. Ordering Operations

The ordering operations [19] on aggregates are sets ordering, sorting, singling, extrac-
tion, and insertion.

Sets ordering is an ordering operation that reorders the tuple of sets and the corre-
sponding tuple of tuples of the aggregate A, according to the given hiddenly compatible
aggregate AT , which consists of any arbitrary elements, including dummy ones, as shown
in Figure 16. The result of sets ordering is the aggregate A� = A � AT .

Algorithms 2023, 16, x FOR PEER REVIEW 16 of 25

Figure 14. An example of applying the symmetric difference operation to two quasi-compatible ag-
gregates.

(a) The given quasi-compatible aggregates.

(b) The results of the symmetric difference operation.

Figure 15. An example of applying the symmetric difference operation to two incompatible aggre-
gates.

5.2. Ordering Operations
The ordering operations [19] on aggregates are sets ordering, sorting, singling, ex-

traction, and insertion.
Sets ordering is an ordering operation that reorders the tuple of sets and the corre-

sponding tuple of tuples of the aggregate 𝐴, according to the given hiddenly compatible
aggregate 𝐴 , which consists of any arbitrary elements, including dummy ones, as shown
in Figure 16. The result of sets ordering is the aggregate 𝐴⊨ = 𝐴 ⊨ 𝐴 .

(a) The original aggregate.

(b) The given template aggregate with dummy element Ø in
each tuple.

(c) The results of the sets ordering operation.

Figure 16. An example of applying the sets ordering operation.

The sets ordering operation can be fulfilled according to the algorithm in Listing 7.

Listing 7: Algorithm of the sets ordering operation.

Input: aggregates 𝐴 and 𝐴
Output: aggregate 𝑅

while not ordered do 𝑗 = 1
for 𝑖 = 1: 𝑁 do

if 〈𝑎 〉 ∈ 𝑀 then 〈𝑟 〉 = 〈𝑎 〉 𝑗 = 𝑗 + 1
if 𝑗 𝑁 then

sets are ordered
end

end
end

Figure 16. An example of applying the sets ordering operation.

The sets ordering operation can be fulfilled according to the algorithm in Listing 7.

Listing 7. Algorithm of the sets ordering operation.

Input: aggregates A and AT
Output: aggregate R

while not ordered do
j = 1
for i = 1 : N do

if
〈

ai
ki

〉
ni
ki=1 ∈ MT

j then〈
rki

〉ni
ki=1 =

〈
ai

ki

〉
ni
ki=1

j = j + 1
if j > N then

sets are ordered
end

end
end

end

The sets ordering operation has an important practical value that can be discovered
through the following theorem and its corollary.

Theorem 1. The theorem on compatibility.
If Â1 = A1 � A2 and Â2 = A2 � A1, then Â1 + A2 and Â2 + A1 for ∀ A1, ∀ A2, such as
A1(+) A2.

Proof of Theorem 1. Let us consider two arbitrary hiddenly compatible aggregates A1 and
A2, i. e., A1(+) A2, and apply the sets ordering operation to these aggregates in two ways
as follows:

1. Â1 = A1 � A2;
2. Â2 = A2 � A1.

Let us consider the aggregates Â1 and A2. As Â1 is the result of applying the sets
ordering operation, then by Definition 11, the result of its application to the given hiddenly
compatible aggregates A1 and A2 is the aggregate Â1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

{A2} |
〈

aj
i

〉nj
i=1

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

N
j=1, where〈

aj
i

〉nj
i=1 ∈ 〈A1〉, ˆ〈A1〉 ≡ 〈A1〉, which means Â1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

{A2} | 〈A1〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.

Algorithms 2023, 16, 186 16 of 23

According to Definition 1, the aggregate A2 can be presented as A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

{A2} | 〈A2〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.
According to Definition 5, two aggregates are hiddenly compatible if {A1}

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

{A2},
| A1 | = | A2 | = N and ∀Mj ⊂ {Ak}, j = [1, . . . , N], k = [1, 2].

Then, Â1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

{A2} | 〈A1〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

, A2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

{A2} | 〈A2〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

, | Â1 | = | A2 | = N.
According to Definition 2, the aggregates Â1 and A2 are compatible because | Â1 | = | A2 |

and
{

Â1
}
≡ {A2}, which we would have to prove.

The compatibility of the aggregates of A1 and Â2 can be proved analogously. �

Remark 1. The corollary of Theorem 1.
The practical significance of applying the sets ordering operation to hiddenly compatible aggregates
A1 and A2 is that the components of one aggregate (A1) can be rearranged according to the sequence
of the components of the second aggregate (A2); therefore, as a result of applying the sets ordering
operation, the hiddenly compatible aggregates become compatible.

The sorting operation [19] yields a new (sorted) sequence of elements of a certain tuple
named the primary tuple. The result of applying the sorting operation to an aggregate A is
an aggregate A↑ = A ↑ ak (for ascending sorting) or A↓ = A ↓ ak (for descending sorting)
in all tuples, in which the elements are reordered according to the new ordering of the
indices of the elements of the sorted primary tuple ak. If some tuple is shorter than the
primary tuple, it is appended by a dummy element and is then sorted. If some tuple is
longer than the primary one, the elements with indices that exceed the largest index in
the primary tuple, are not sorted (remain on their positions). An example of the result of
sorting operation is given in Figure 17.

Algorithms 2023, 16, x FOR PEER REVIEW 17 of 25

end

The sets ordering operation has an important practical value that can be discovered
through the following theorem and its corollary.

Theorem 1. The theorem on compatibility.
If 𝐴 = 𝐴 ⊨ 𝐴 and 𝐴 = 𝐴 ⊨ 𝐴 , then 𝐴 ≑ 𝐴 and 𝐴 ≑ 𝐴 for ∀ 𝐴 , ∀ 𝐴 , such as 𝐴 (≑) 𝐴 .

Proof of Theorem 1. Let us consider two arbitrary hiddenly compatible aggregates 𝐴
and 𝐴 , i. e., 𝐴 (≑) 𝐴 , and apply the sets ordering operation to these aggregates in two
ways as follows:

1. 𝐴 = 𝐴 ⊨ 𝐴 ;
2. 𝐴 = 𝐴 ⊨ 𝐴 .

Let us consider the aggregates 𝐴 and 𝐴 . As 𝐴 is the result of applying the sets
ordering operation, then by Definition 11, the result of its application to the given hid-

denly compatible aggregates 𝐴 and 𝐴 is the aggregate 𝐴 = 𝐴 | 𝑎 , where 𝑎 ∈ ⟨𝐴 ⟩, 𝐴 ≡ ⟨𝐴 ⟩, which means 𝐴 = ⟦ 𝐴 |⟨𝐴 ⟩⟧.
According to Definition 1, the aggregate 𝐴 can be presented as 𝐴 = ⟦ 𝐴 |⟨𝐴 ⟩⟧.
According to Definition 5, two aggregates are hiddenly compatible if 𝐴 ≢𝐴 , |𝐴 | = |𝐴 | = 𝑁 and ∀𝑀 ⊂ 𝐴 , 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
Then, 𝐴 = ⟦ 𝐴 |⟨𝐴 ⟩⟧, 𝐴 = ⟦ 𝐴 |⟨𝐴 ⟩⟧, 𝐴 = |𝐴 | = 𝑁.
According to Definition 2, the aggregates 𝐴 and 𝐴 are compatible because 𝐴 =|𝐴 | and 𝐴 ≡ 𝐴 , which we would have to prove.
The compatibility of the aggregates of 𝐴 and 𝐴 can be proved analogously. □

Remark 1. The corollary of Theorem 1.
The practical significance of applying the sets ordering operation to hiddenly compatible aggregates 𝐴 and 𝐴 is that the components of one aggregate (𝐴) can be rearranged according to the se-
quence of the components of the second aggregate (𝐴); therefore, as a result of applying the sets
ordering operation, the hiddenly compatible aggregates become compatible.

The sorting operation [19] yields a new (sorted) sequence of elements of a certain tu-
ple named the primary tuple. The result of applying the sorting operation to an aggregate 𝐴 is an aggregate 𝐴↑ = 𝐴 ↑ �̄� (for ascending sorting) or 𝐴↓ = 𝐴 ↓ �̄� (for descending
sorting) in all tuples, in which the elements are reordered according to the new ordering
of the indices of the elements of the sorted primary tuple �̄� . If some tuple is shorter than
the primary tuple, it is appended by a dummy element and is then sorted. If some tuple
is longer than the primary one, the elements with indices that exceed the largest index in
the primary tuple, are not sorted (remain on their positions). An example of the result of
sorting operation is given in Figure 17.

(a) The original aggregate.

(b) The results of the sorting operation.

Figure 17. An example of applying the sorting operation. Figure 17. An example of applying the sorting operation.

The sorting operation can be realized using any appropriate sorting algorithm [20],
including the one shown in Listing 8.

Listing 8: Algorithm of the ascending sorting operation.

Input: aggregate A and primary tuple
〈

ap
kp

〉
np

kp=1
Output: aggregate R

for kp = 1 : np do
for km = 1 :

(
np − k

)
do

swapped is false
if ap

km
> ap

km+1 do
for i = 1 : N do

ri
km

= ai
km+1

ri
km+1 = ai

km

end
swapped is true

end
end
if swapped is false

break loop
end

end

Algorithms 2023, 16, 186 17 of 23

The extraction operation removes a certain element from the primary tuple of an
aggregate. The result of extraction of the element a1

m from the aggregate A is the aggregate
An = A n a1

m in all tuples, from which the elements with index m are removed.
An example of the result of the extraction operation for m = 2 is given in Figure 18.

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 25

The sorting operation can be realized using any appropriate sorting algorithm [20],
including the one shown in Listing 8.

Listing 8: Algorithm of the ascending sorting operation.

Input: aggregate 𝐴 and primary tuple 〈𝑎 〉

Output: aggregate 𝑅
for 𝑘 = 1: 𝑛 do

for 𝑘 = 1: 𝑛 − 𝑘 do
swapped is false
if 𝑎 𝑎 do

for 𝑖 = 1: 𝑁 do 𝑟 = 𝑎 𝑟 = 𝑎

end
swapped is true

end
end
if swapped is false

break loop
end

end

The extraction operation removes a certain element from the primary tuple of an ag-
gregate. The result of extraction of the element 𝑎 from the aggregate 𝐴 is the aggregate 𝐴⋉ = 𝐴 ⋉ 𝑎 in all tuples, from which the elements with index 𝑚 are removed.

An example of the result of the extraction operation for 𝑚 = 2 is given in Figure 18.

(a) The original aggregate.

(b) The result of the extraction operation.

Figure 18. An example of applying the extraction operation.

The extraction operation can be fulfilled according to the algorithm in Listing 9.

Listing 9: Algorithm of the extraction operation.

Input: aggregate 𝐴, number of set 𝑘 and position of element 𝑚
Output: aggregate 𝑅

for 𝑖 = 1: 𝑁 do
for 𝑘 = 1: (𝑚 − 1) do 𝑟 = 𝑎
for 𝑘 = 𝑚: (𝑛 − 1) do 𝑟 = 𝑎

end

Figure 18. An example of applying the extraction operation.

The extraction operation can be fulfilled according to the algorithm in Listing 9.

Listing 9: Algorithm of the extraction operation.

Input: aggregate A, number of set k and position of element m
Output: aggregate R

for i = 1 : N do
for ki = 1 : (m− 1) do rki

= ai
ki

for ki = m : (ni − 1) do rki
= ai

ki+1
end

The insertion operation adds a given element to the known position in the primary
tuple of an aggregate. The result of insertion of the element a1

m to the aggregate A is the
aggregate Ao = A o a1

m in all tuples (except the primary one), to which dummy elements
with index m are added.

An example of the result of insertion of a new element x to the second position of the
primary tuple is shown in Figure 19, where the indices of the shifted elements remain as
they numerated in the original tuple for explanatory purposes.

Algorithms 2023, 16, x FOR PEER REVIEW 19 of 25

The insertion operation adds a given element to the known position in the primary
tuple of an aggregate. The result of insertion of the element 𝑎 to the aggregate 𝐴 is the
aggregate 𝐴⋊ = 𝐴 ⋊ 𝑎 in all tuples (except the primary one), to which dummy elements
with index 𝑚 are added.

An example of the result of insertion of a new element 𝑥 to the second position of
the primary tuple is shown in Figure 19, where the indices of the shifted elements remain
as they numerated in the original tuple for explanatory purposes.

(a) The original aggregate.

(b) The results of the insertion operation.

Figure 19. An example of applying the insertion operation.

The insertion operation can be fulfilled according to the algorithm in Listing 10.

Listing 10: Algorithm of the insert operation.

Input: aggregate 𝐴, number of set 𝑘 and position of element 𝑚
Output: aggregate 𝑅

for 𝑖 = 1: 𝑁 do
for 𝑘 = 1: (𝑚 − 1) do 𝑟 = 𝑎

end
if 𝑘 = 𝑖 then 𝑟 = 𝑎
else 𝑟 = ∅
end
for 𝑘 = 𝑚: 𝑛 do 𝑟 = 𝑎

end
end

The singling operation removes the duplicate values that are located next to each
other from the primary tuple of the aggregate; elements with the same indices as those of
the removed duplicates in the primary tuple are simultaneously removed in all other tu-
ples.

An example of the result of the singling operation is given in Figure 20. Elements of
the same color marked with the same border color are equal.

(a) The original aggregate.

(b) The results of the singling operation.

Figure 20. An example of applying the singling operation.

Figure 19. An example of applying the insertion operation.

The insertion operation can be fulfilled according to the algorithm in Listing 10.

Listing 10: Algorithm of the insert operation.

Input: aggregate A, number of set k and position of element m
Output: aggregate R

for i = 1 : N do
for ki = 1 : (m− 1) do

rki
= ai

ki

end
if k = i then

rm = ak
m

else
rm = ∅

end
for ki = m : ni do

rki+1 = ai
ki

end
end

Algorithms 2023, 16, 186 18 of 23

The singling operation removes the duplicate values that are located next to each other
from the primary tuple of the aggregate; elements with the same indices as those of the
removed duplicates in the primary tuple are simultaneously removed in all other tuples.

An example of the result of the singling operation is given in Figure 20. Elements of
the same color marked with the same border color are equal.

Algorithms 2023, 16, x FOR PEER REVIEW 19 of 25

The insertion operation adds a given element to the known position in the primary
tuple of an aggregate. The result of insertion of the element 𝑎 to the aggregate 𝐴 is the
aggregate 𝐴⋊ = 𝐴 ⋊ 𝑎 in all tuples (except the primary one), to which dummy elements
with index 𝑚 are added.

An example of the result of insertion of a new element 𝑥 to the second position of
the primary tuple is shown in Figure 19, where the indices of the shifted elements remain
as they numerated in the original tuple for explanatory purposes.

(a) The original aggregate.

(b) The results of the insertion operation.

Figure 19. An example of applying the insertion operation.

The insertion operation can be fulfilled according to the algorithm in Listing 10.

Listing 10: Algorithm of the insert operation.

Input: aggregate 𝐴, number of set 𝑘 and position of element 𝑚
Output: aggregate 𝑅

for 𝑖 = 1: 𝑁 do
for 𝑘 = 1: (𝑚 − 1) do 𝑟 = 𝑎

end
if 𝑘 = 𝑖 then 𝑟 = 𝑎
else 𝑟 = ∅
end
for 𝑘 = 𝑚: 𝑛 do 𝑟 = 𝑎

end
end

The singling operation removes the duplicate values that are located next to each
other from the primary tuple of the aggregate; elements with the same indices as those of
the removed duplicates in the primary tuple are simultaneously removed in all other tu-
ples.

An example of the result of the singling operation is given in Figure 20. Elements of
the same color marked with the same border color are equal.

(a) The original aggregate.

(b) The results of the singling operation.

Figure 20. An example of applying the singling operation. Figure 20. An example of applying the singling operation.

The singling operation can be fulfilled according to the algorithm in Listing 11.

Listing 11: Algorithm of the singling operation.

Input: aggregate A
Output: aggregate R

m = 2
while not all found do

for k1 = m : n1 do
if a1

k1
= a1

k1−1 then
m = k1
break loop

end
all found

end
for i = 1 : N do

extract ai
m

end
end

6. Multi-Image Notion and Formation Algorithm

The multi-image concept [21] is an essential part of the approach presented in this
paper as it enables the required formal description of the sequences of multimodal data
about the object under study.

Definition 6. A multi-image is a non-empty aggregate specified as:

I =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, M1, . . . , MN | 〈t1, . . . , tτ〉,
〈

a1
1, . . . , a1

n1

〉
, . . . ,

〈
aN

1 , . . . , aN
nN

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

(13)

where T is a set of time values; τ ≥ nj, j ∈ [1, . . . , N].

From a practical point of view, multi-image refers to a structure of consolidated
temporal multimodal data sets that describe different aspects of the same object. Let us
formulate an algorithm that enables the formation of multi-image for an arbitrary object
described through several temporal multimodal data sets.

The inputs to the algorithm of the object’s multi-image formation are temporal data
sets and the data type (modality) of each set. The algorithm consists of seven steps. The
result of the algorithm is multi-image, presented in the form of an ordered collection of
temporal multimodal data.

The first step of the algorithm is the formalization of the object’s multi-image data
structure. This step is performed according to the requirements for the object’s description.

Algorithms 2023, 16, 186 19 of 23

Multi-image can be defined mathematically, according to (13), or in any other way that
allows a researcher to unambiguously specify the sequence of data sets and their modality.

At the second step of the algorithm, multi-image specification is decomposed into a
set of specifications of partial multi-images as seen in (14).

Ij =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mj |
〈

t1, . . . , tτj

〉
,
〈

a1, . . . , anj

〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

(14)

where T is the set of time values; Mj is the set of data values of j-modality; τj, nj ∈ N; τj ≥ nj;
j ∈ [1, . . . , N]; and N is the number of data sets.

At the third step, data are obtained. The procedure for receiving data involves deter-
mining the method (protocol, format) of data transmission, determining the time period
for data transmission, establishing a connection with the data source and receiving data in
a specified way and in a specified format.

At the fourth step, the data of each modality are prepared to form the corresponding
partial multi-image. A partial multi-image is an aggregate that includes two tuples of
elements, namely a tuple of time values and a tuple of elements of a certain modality.
Elements are individual values or ordered sets of values (homogeneous or heterogeneous).
Data preparation, which is performed at this step, consists of determining (detecting) time
values in the set of data obtained at the previous stage. This procedure can be either trivial
when the data format requires explicit presentation of time values for the temporal data
component, or complex when the time values are presented in an implicit form or are
ambiguous. A method for detecting hidden or ill-defined time values must be developed
for each specific data format.

At the fifth step, partial multi-images are combined into a single multi-image. The
multi-image merging procedure includes two actions: normalization and uniting.

1. Normalization of partial multi-images (a normalized multi-image (normalized tuple)
is a multi-image (tuple) to the elements of which dummy elements are added; a
dummy element is a value that is absent in the tuple before its normalization; an
empty element ∅ can be used as a dummy element; at other steps of the multi-image
processing, dummy elements are ignored):

Îj = Ij o
(
〈∅〉E

j
i

k=1 � aj
nj

)
=

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mj | 〈ti〉
τj
i=1, 〈〈aj

ij
〉nj

ij=1, 〈∅〉E
j
i

l=1〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

=

=

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mj | 〈ti〉
τj
i=1,

〈
âj

ij

〉nj+Ej
i

ij=1

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

(15)

where o is the insertion operation; Ej
i is the number of dummy elements; Ej

i =(
∑N

j=1 τj

)
− nj; âj

ij
is an element of a normalized tuple; and j ∈ [1, . . . , N].

2. Uniting the normalized partial multi-images:

IU =
N
U

j=1
Îj =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, M1, . . . MN | 〈〈ti〉
τj
i=1〉

N
j=1, 〈âi1〉

n1+E1
i

i1=1 , . . . 〈âiN 〉
nN+EN

i
iN=1

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

(16)

At the sixth step, the multi-image obtained at the previous stage is sorted by the tuple
of time values:

IS = I ↑ t =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, M1, . . . MN | 〈〈tσ〉
τj
σ=1〉

N
j=1, 〈âσ1〉

n1+E1
i

σ1=1 , . . . 〈âσN 〉
nN+EN

i
σN=1

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

, (17)

where σ and σj are indices specifying the order of the elements in the sorted tuple and
j ∈ [1, . . . , N].

At the seventh step, the sorted multi-image obtained at the previous step is singled by
a tuple of time values:

Algorithms 2023, 16, 186 20 of 23

I = IS ‖ t =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, M1, . . . MN | 〈tσ〉
(

N
∑

j=1
τj)−δ

σ=1 , 〈âσ1〉
n1+E1

i −δ

σ1=1 , . . . , 〈âσN 〉
nN+EN

i −δ

σN=1

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

, (18)

where δ is the number of discarded time value duplicates.
The obtained I is the final multi-image that represents the consolidated data describing

different aspects of the object under study.

7. Discussion

Let us consider a use case in the area of healthcare that demonstrates the practical use
of the proposed approach of multimodal data processing (Figure 21).

The healthcare use case assumes that the data describing the patient’s health status can
be obtained from multiple sources, including medical investigation devices (MRI scanners,
CT scanners, ECG machines, etc.), manual medical measurement tools and devices (pulse
oximeters, thermometers, sphygmomanometers, etc.), test systems (e.g., blood testing),
and medical documentation records (treatment events). Data sets collected from these
sources are temporal multimodal and semantically interconnected as they describe different
features of the same object that is a patient’s organism. The multi-image concept and ASA
operations can be employed to consolidate such a compound data collection and implement
the logic of its processing.

Algorithms 2023, 16, x FOR PEER REVIEW 22 of 25

The healthcare use case assumes that the data describing the patient’s health status
can be obtained from multiple sources, including medical investigation devices (MRI
scanners, CT scanners, ECG machines, etc.), manual medical measurement tools and de-
vices (pulse oximeters, thermometers, sphygmomanometers, etc.), test systems (e.g.,
blood testing), and medical documentation records (treatment events). Data sets collected
from these sources are temporal multimodal and semantically interconnected as they de-
scribe different features of the same object that is a patient’s organism. The multi-image
concept and ASA operations can be employed to consolidate such a compound data col-
lection and implement the logic of its processing.

Let us consider an example which demonstrates the formation of multi-image from
several timewise data sequences according to the algorithm proposed in Section 6 and the
algorithms of the ASA operations presented in Section 5.

Suppose that the patient’s blood pressure readings (systolic and diastolic), pulse rate,
and oxygen saturation level are being measured several times a day. A pair of blood pres-
sure values 𝑎 (), 𝑎 () are to be received from the sphygmomanometer, and the
values of pulse rate 𝑎 and oxygen saturation level 𝑎 are to be received from a
pulse oximeter. The number of measurements conducted by the sphygmomanometer is 𝑛 ; the number of measurements conducted by the pulse oximeter is 𝑛 .

Figure 21. An example of temporal multimodal data processing context.

As a result of patient health parameters monitoring, the following multi-image must
be obtained: 𝐼 = 𝑇, 𝑀 (,), 𝑀 , 𝑀 |〈𝑡 〉 , 〈 𝑎 (), 𝑎 () 〉 , 〈𝑎 〉 , 〈𝑎 〉 .

According to the algorithm of multi-image formation, the received data are repre-
sented as two partial multi-images—a partial multi-image 𝐼 containing values received
from the first device (sphygmomanometer) and a partial multi-image 𝐼 containing val-
ues received from the second device (pulse oximeter): 𝐼 = 𝑇, 𝑀 (,) |〈8: 30, 12: 05,16: 10, 21: 00〉, 〈(160,78), (172,81), (155,76), (158,75)〉 , 𝐼 = 𝑇, 𝑀 , 𝑀 |〈8: 30, 15: 08, 21: 00〉, 〈63,75,66〉, 〈95,98,96〉 .

Figure 21. An example of temporal multimodal data processing context.

Let us consider an example which demonstrates the formation of multi-image from
several timewise data sequences according to the algorithm proposed in Section 6 and the
algorithms of the ASA operations presented in Section 5.

Suppose that the patient’s blood pressure readings (systolic and diastolic), pulse rate,
and oxygen saturation level are being measured several times a day. A pair of blood
pressure values

(
apress(s)

i , apress(d)
i

)
are to be received from the sphygmomanometer, and

the values of pulse rate apulse
i and oxygen saturation level asatur

i are to be received from a
pulse oximeter. The number of measurements conducted by the sphygmomanometer is n1;
the number of measurements conducted by the pulse oximeter is n2.

As a result of patient health parameters monitoring, the following multi-image must
be obtained:

I =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mpress(s,d), Mpulse, Msatur | 〈ti〉n1+n2
i=1 ,

〈(
apress(s)

i , apress(d)
i

)n1

i=1

〉
,
〈

apulse
i

〉
n2
i=1,

〈
asatur

i
〉n2

i=1

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.

Algorithms 2023, 16, 186 21 of 23

According to the algorithm of multi-image formation, the received data are represented
as two partial multi-images—a partial multi-image I1 containing values received from the
first device (sphygmomanometer) and a partial multi-image I2 containing values received
from the second device (pulse oximeter):

I1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mpress(s,d) | 〈8 : 30, 12 : 05, 16 : 10, 21 : 00〉,
〈
(160, 78), (172, 81), (155, 76), (158, 75)〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

I2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mpulse, Msatur | 〈8 : 30, 15 : 08, 21 : 00〉, 〈63, 75, 66〉, 〈95, 98, 96〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.

To obtain the multi-image, these partial multi-images must be properly merged. For
this purpose, at first, we need to normalize these partial multi-images, i.e., apply the
insertion operation and add dummy elements to the end of the tuple of blood pressure
values and to the beginning of both the tuple of heart rate values and the tuple of oxygen
saturation level values:

Î1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mpress(s,d) | 〈8 : 30, 12 : 05, 16 : 10, 21 : 00〉, 〈(160, 78), (172, 81), (155, 76), (158, 75),∅,∅,∅〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

,

Î2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mpulse, Msatur | 〈8 : 30, 15 : 08, 21 : 00〉, 〈∅,∅,∅,∅, 63, 75, 66〉, 〈∅,∅,∅,∅, 95, 98, 96〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.

After normalization, we apply the union operation to the normalized aggregates:

IU = Î1 ∪ Î2 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mpress(s,d), Mpulse, Msatur | 〈 8 : 30, 12 : 05, 16 : 10, 21 : 00, 8 : 30,
15 : 08, 21 : 00〉, 〈(160, 78), (172, 81), (155, 76), (158, 75),∅,∅,∅〉,〈

∅,∅,∅,∅, 63, 75, 66〉, 〈∅,∅,∅,∅, 95, 98, 96〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.

Next, we need to sort the obtained multi-image IU by the time tuple using the corre-
sponding ASA operation:

IS = IU ↑ 〈ti〉n1+n2
i=1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mpress(s,d), Mpulse, Msatur | 〈 8 : 30, 8 : 30, 12 : 05, 15 : 08, 16 : 10,
21 : 00, 21 : 00〉, 〈(160, 78),∅, (172, 81),∅, (155, 76), (158, 75),∅〉,〈

∅, 63,∅, 75,∅,∅, 66〉, 〈∅, 95,∅, 98,∅,∅, 96〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.

The tuples are now ordered, but they include duplicate time values. To remove them,
we apply the singling operation:

I = IS ‖ 〈ti〉n1+n2
i=1 =

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 24

Figure 3. An example of two incompatible aggregates.

A special case of incompatibility is hidden compatibility.

Definition 5. Aggregates 𝐴 and 𝐴 are called hiddenly compatible, 𝐴 (≑) 𝐴 , if both aggre-
gates have the same set of sets, but their ordering is different, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴|𝐴 | = |𝐴 | = 𝑁∀𝑀 ⊂ 𝐴 , (8)

where 𝑗 = [1, … , 𝑁], 𝑘 = [1, 2].
For example, the aggregates defined by formulas (9) and illustrated by Figure 4 are

hiddenly compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (9)

Figure 4. An example of two hiddenly compatible aggregates.

Hiddenly compatible aggregates can be made compatible by applying certain oper-
ations to them.

5. Algorithms of Operations on Aggregates
The operations on aggregates in the ASA include logical operations, ordering opera-

tions, and arithmetic operations.

5.1. Logical Operations
The logical operations [18] on aggregates are union, intersection, exclusive intersec-

tion, difference, and symmetric difference. The result of any logical operation depends on
the aggregates’ compatibility. For example, the rule for the union operation can be math-
ematically defined as follows.

The union of the aggregates 𝐴 and 𝐴 is the aggregate 𝑅∪, which contains elements
of the tuples that belong to both aggregates and are ordered in the following way:
1. If 𝐴 ≑ 𝐴 , then aggregates 𝐴 and 𝐴 are defined as

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

𝐴 = 𝑀 , 𝑀 , … , 𝑀 | 𝑎 , , 𝑎 , , … , 𝑎 , , 𝑎 , , 𝑎 , , … , 𝑎 , , … , 𝑎 , , 𝑎 , , … , 𝑎 , ,

and elements of i-tuple of the aggregate 𝐴 are added to the end of i-tuple of the
aggregate 𝐴 :

T, Mpress(s,d), Mpulse, Msatur | 〈 8 : 30, 12 : 05, 15 : 08, 16 : 10, 21 : 00〉,
〈(160, 78) , (172, 81),∅, (155, 76), (158, 75)〉, 〈63,∅, 75,∅, 66〉, 〈95,∅, 98,∅, 96〉

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 24

|𝐴 | = |𝐴 |𝐴 ≡ 𝐴 . (2)

For example, the aggregates defined by (3) and illustrated by Figure 1 are compatible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (3)

In Figure 1, the color of an element represents data modality (elements of set 𝑀 are
blue, elements of set 𝑀 are brown and elements of set 𝑀 are green), the first value in
the element’s number designates the aggregate (𝐴 or 𝐴), and the second value in the
element’s number is an ordering number of the element in the tuple belonging to a certain
set. For example, the blue circle, which contains the numbers 1-1, represents the element 𝑎 , that belongs to the set 𝑀 from the definition of 𝐴 and the green circle, which con-
tains the numbers 2-1, represents the element 𝑎 , that belongs to the set 𝑀 from the
definition of 𝐴 .

Figure 1. An example of two compatible aggregates.

Definition 3. Aggregates 𝐴 and 𝐴 are called quasi-compatible (𝐴 ≐ 𝐴) if the type and se-
quence order of the sets in them partially coincide, while there is no requirement for the equality of
the lengths of these aggregates, i.e., the conditions are fulfilled: 𝐴 ≢ 𝐴𝐴 ∩ 𝐴 ∅. (4)

For example, the aggregates defined by (5) and illustrated by Figure 2 are quasi-com-
patible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (5)

Figure 2. An example of two quasi-compatible aggregates.

Definition 4. Aggregates 𝐴 and 𝐴 are called incompatible (𝐴 ≗ 𝐴), if the type and sequence
of the sets in them do not match, that is, the condition is fulfilled: 𝐴 ∩ 𝐴 = ∅. (6)

For example, the aggregates defined by (7) and illustrated by Figure 3 are incompat-
ible. 𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉 ,𝐴 = 𝑀 , 𝑀 , 𝑀 |〈𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , , 𝑎 , 〉, 〈𝑎 , , 𝑎 , 〉 . (7)

.

As a result, we obtain a multi-image I that contains data from two independent but
semantically interconnected examinations of the patient. This consolidated data structure
can be used for further data processing.

This simple example demonstrates that the ASA offers operations which consider both
data features defined in Section 3: multimodality (logical operations allow us to implement
any logic for modality-wise data processing) and temporality (ordering operations enable
timewise data processing). This principle of the proposed approach is valid for any data
type because according to Definition 1, an aggregate can include both separate elements
and composite elements (homogeneous or heterogeneous values).

The mathematical approach introduced in the ASA is implemented in the domain-
specific programming language ASAMPL [22–24].

8. Conclusions

Algorithms for performing operations of the Algebraic System of Aggregates (ASA)
are proposed in the paper. A feature of this algebraic system is the consideration of the
sequence of elements (tuples, aggregates) when performing operations, including brand-
new ordering operations. The properties of the ASA make it possible to use it for the

Algorithms 2023, 16, 186 22 of 23

formal description of objects under observation and for the development of methods for
processing temporal multimodal data.

An algorithm for creating an object’s multi-image is also proposed in the paper. The
input data for this algorithm are separate sets of temporal data. The algorithm consists
of seven steps, which include the formation of the multi-image data structure of the
object under study, decomposition of the multi-image specification into a set of partial
multi-image specifications, obtaining and preparing separate data sets, combining partial
multi-images into a single multi-image, sorting the multi-image, and thinning the sorted
multi-image by tuple time values. The result of algorithm execution is a multi-image of an
object containing synchronized and aggregated sequences of temporal multimodal data
characterizing this object.

The proposed mathematical approach can be used for a formal description of digital
models in various tasks, including a digital twin design, semantic model construction,
and temporal multimodal data aggregation and processing. The mathematical concepts
offered by the ASA can also be employed for the consolidation of data for multimodal data
processing in multimodal machine learning tasks. Further work should aim to increasing
the efficiency of the proposed algorithms.

Author Contributions: Conceptualization, A.P. and Y.S.; methodology, Y.S. and I.D.; software, O.S.;
validation, A.P., Y.S. and I.D.; writing—original draft preparation, Y.S. and O.S.; writing—review and
editing, A.P. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Morency, L.-P.; Liang, P.P.; Zadeh, A. Tutorial on Multimodal Machine Learning. In Proceedings of the 2022 Conference of the

North American Chapter of the Association for Computational Linguistics: Human Language Technologies: Tutorial Abstracts,
Seattle, WA, USA, 10–15 July 2022; Association for Computational Linguistics: Stroudsburg, PA, USA, 2022; pp. 33–38.

2. Baltrušaitis, T.; Ahuja, C.; Morency, L.-P. Multimodal Machine Learning: A Survey and Taxonomy. IEEE Trans. Pattern Anal. Mach.
Intell. 2019, 41, 423–443. [CrossRef] [PubMed]

3. Jesus, P.; Baquero, C.; Almeida, P.S. A Survey of Distributed Data Aggregation Algorithms. IEEE Commun. Surv. Tutor. 2015,
17, 381–404. [CrossRef]

4. Ribeiro, R.A.; Falcão, A.; Mora, A.; Fonseca, J.M. FIF: A fuzzy information fusion algorithm based on multi-criteria decision
making. Knowl.-Based Syst. 2014, 58, 23–32. [CrossRef]

5. Oliveira, D.; Martins, L.; Mora, A.; Damásio, C.; Caetano, M.; Fonseca, J.; Ribeiro, R.A. Data fusion approach for eucalyptus trees
identification. Int. J. Remote Sens. 2021, 42, 4087–4109. [CrossRef]

6. Lahat, D.; Adali, T.; Jutten, C. Multimodal Data Fusion: An Overview of Methods, Challenges, and Prospects. Proc. IEEE 2015,
103, 1449–1477. [CrossRef]

7. Marinoni, A.; Chlaily, S.; Jutten, C. Addressing Reliability of Multimodal Remote Sensing to Enhance Multisensor Data Fusion
and Transfer Learning. In Proceedings of the International Geoscience and Remote Sensing Symposium (IGARSS 2020), Waikoloa,
HI, USA, 26 September 2020; pp. 3896–3899. [CrossRef]

8. Gaonkar, A.; Chukkapalli, Y.; Raman, P.J.; Srikanth, S.; Gurugopinath, S. A Comprehensive Survey on Multimodal Data Repre-
sentation and Information Fusion Algorithms. In Proceedings of the 2021 International Conference on Intelligent Technologies
(CONIT), Hubli, India, 25–27 June 2021; pp. 1–8. [CrossRef]

9. Oliveira, J.P.; Lourenço, M.; Oliveira, L.; Mora, A.; Oliveira, H. A Data Fusion of IoT Sensor Networks for Decision Support in
Forest Fire Suppression. In Internet of Things. Technology and Applications. IFIPIoT 2021; Camarinha-Matos, L.M., Heijenk, G.,
Katkoori, S., Strous, L., Eds.; IFIP Advances in Information and Communication Technology; Springer: Cham, Switzerland, 2022;
Volume 641. [CrossRef]

10. Liang, P.P.; Zadeh, A.; Morency, L.-P. Foundations and Recent Trends in Multimodal Machine Learning: Principles, Challenges,
and Open Questions. arXiv 2023, arXiv:2209.03430. [CrossRef]

11. Guo, W.; Wang, J.; Wang, S. Deep Multimodal Representation Learning: A Survey. IEEE Access 2019, 7, 63373–63394. [CrossRef]
12. Kline, A.; Wang, H.; Li, Y.; Dannis, S.; Hutch, M.; Xu, Z.; Wang, F.; Cheng, F.; Luo, Y. Multimodal machine learning in precision

health: A scoping review. Npj Digit. Med. 2022, 5, 171. [CrossRef] [PubMed]
13. Wei, W. Time Series Analysis; Pearson Addison Wesley: San Francisco, NY, USA, 2006; 614p.
14. Hannan, E.J. Multiple Time Series; John Wiley and Sons: Hoboken, NJ, USA, 2009; 535p.

http://doi.org/10.1109/TPAMI.2018.2798607
http://www.ncbi.nlm.nih.gov/pubmed/29994351
http://doi.org/10.1109/COMST.2014.2354398
http://doi.org/10.1016/j.knosys.2013.08.032
http://doi.org/10.1080/01431161.2021.1883198
http://doi.org/10.1109/JPROC.2015.2460697
http://doi.org/10.1109/IGARSS39084.2020.9323681
http://doi.org/10.1109/CONIT51480.2021.9498415
http://doi.org/10.1007/978-3-030-96466-5_7
http://doi.org/10.48550/arXiv.2209.03430
http://doi.org/10.1109/ACCESS.2019.2916887
http://doi.org/10.1038/s41746-022-00712-8
http://www.ncbi.nlm.nih.gov/pubmed/36344814

Algorithms 2023, 16, 186 23 of 23

15. Fraenkel, A.A.; Bar-Hillel, Y.; Levy, A. Foundations of Set Theory; Elsevier: Hoboken, NJ, USA, 1973; 415p.
16. Petrovsky, A.B. Structuring techniques in multiset spaces. In Multiple Criteria Decision Making; Springer: Berlin/Heidelberg,

Germany, 1997; pp. 174–184.
17. Petrovsky, A.B. Multiattribute sorting of qualitative objects in multiset spaces. In Multiple Criteria Decision Making in New

Millennium; Springer: Berlin/Heidelberg, Germany, 2001; pp. 124–131.
18. Dychka, I.A.; Sulema, Y.S. Logical Operations in Algebraic System of Aggregates for Multimodal Data Representation and

Processing. Sci. J. KPI Sci. News 2018, 6, 44–52. [CrossRef]
19. Dychka, I.A.; Sulema, Y.S. Ordering Operations in Algebraic System of Aggregates for Multi-Image Data Processing. Sci. J. KPI

Sci. News 2019, 1, 15–23. [CrossRef]
20. Knuth, D. The Art of Computer Programming, Volume 3: Sorting and Searching, 2nd ed.; Addison-Wesley: Boston, MA, USA, 1998;

ISBN 0-201-89685-0. Available online: https://dl.acm.org/doi/10.5555/280635 (accessed on 15 March 2023).
21. Pester, A.; Sulema, Y. Multimodal Data Representation Based on Multi-Image Concept for Immersive Environments and Online Labs

Development; Advances in Intelligent Systems and Computing; Springer: Cham, Switzerland, 2021. [CrossRef]
22. Sulema, Y. ASAMPL: Programming Language for Mulsemedia Data Processing Based on Algebraic System of Aggregates. In

Interactive Mobile Communication Technologies and Learning. IMCL 2017; Advances in Intelligent Systems and Computing; Auer, M.,
Tsiatsos, T., Eds.; Springer: Cham, Switzerland, 2018; Volume 725. [CrossRef]

23. Peschanskyi, D.; Budonnyi, P.; Sulema, Y.; Andres, F.; Pester, A. Temporal Data Processing with ASAMPL Programming Language
in Mulsemedia Applications. In Artificial Intelligence and Online Engineering. REV 2022; Lecture Notes in Networks and Systems;
Auer, M.E., El-Seoud, S.A., Karam, O.H., Eds.; Springer: Cham, Switzerland, 2023; Volume 524. [CrossRef]

24. ASAMPL Compiler and Library. Available online: https://github.com/orgs/Asampl-development-team/repositories (accessed
on 15 March 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.20535/1810-0546.2018.6.151546
http://doi.org/10.20535/kpi-sn.2019.1.157245
https://dl.acm.org/doi/10.5555/280635
http://doi.org/10.1007/978-3-030-52575-0_17
http://doi.org/10.1007/978-3-319-75175-7_43
http://doi.org/10.1007/978-3-031-17091-1_48
https://github.com/orgs/Asampl-development-team/repositories

	Introduction
	Related Work
	Approach and Requirements for Temporal Multimodal Data Processing
	Basics Notions of ASA
	Algorithms of Operations on Aggregates
	Logical Operations
	Ordering Operations

	Multi-Image Notion and Formation Algorithm
	Discussion
	Conclusions
	References

