
Citation: Saleh, M.; Kovács, E.; Barna,

I.F. Analytical and Numerical Results

for the Transient Diffusion Equation

with Diffusion Coefficient Depending

on Both Space and Time. Algorithms

2023, 16, 184. https://doi.org/

10.3390/a16040184

Academic Editor: Devendra Kumar

Received: 17 February 2023

Revised: 17 March 2023

Accepted: 25 March 2023

Published: 28 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Analytical and Numerical Results for the Transient Diffusion
Equation with Diffusion Coefficient Depending on Both Space
and Time
Mahmoud Saleh 1, Endre Kovács 1,* and Imre Ferenc Barna 2

1 Institute of Physics and Electrical Engineering, University of Miskolc, 3515 Miskolc, Hungary
2 Wigner Research Center for Physics, 1051 Budapest, Hungary
* Correspondence: endre.kovacs@uni-miskolc.hu

Abstract: The time-dependent diffusion equation is studied, where the diffusion coefficient itself
depends simultaneously on space and time. First, a family of novel, nontrivial analytical solutions
is constructed in one space dimension with the classical self-similar Ansatz. Then, the analytical
solution for two different sets of parameters is reproduced by 18 explicit numerical methods. Fourteen
of these time integrators are recent unconditionally stable algorithms, which are often much more
efficient than the mainstream explicit methods. Finally, the adaptive time-step version of some of
these algorithms are created and tested versus widespread algorithms, such as the Runge–Kutta–
Fehlberg solver.

Keywords: diffusion; heat conduction; analytical solution; explicit time integration; unconditionally
stable numerical methods; adaptive step size controllers

1. Introduction

Regular diffusion or regular heat conduction in solid media are among the simplest
transport processes, which can be described by a single linear partial differential equation
(PDE) of space and time. Diffusion means the transport of particles, while heat conduction
means the transport of energy. If x, t ∈ R, and the unknown function (temperature in
the case of heat conduction and concentration in the case of particle diffusion) is denoted
by u: R×R 7→ R; (x, t) 7→ u(x, t) , then the simplest regular diffusion PDE in one space
dimension is

∂u(x, t)
∂t

= D
∂2u(x, t)

∂x2 , u(x, t = 0) = u0(x) (1)

where u0 is usually a given function and D ∈ R is the constant diffusion coefficient. In
the case of heat conduction, D = k/(cρ) is the thermal diffusivity, while c, ρ, and k are
the specific heat, the density, and the heat conductivity of the material, respectively. The
boundary conditions will be discussed in the concrete analytical and numerical examples.

It is clear that for the regular diffusion equation, some analytical solutions exist [1,2],
which can be found in basic textbooks. These solutions have crucial relevance to under-
standing the diffusion process itself. As a second point, these solutions help to test the
properties and performance of old and new numerical methods. Unfortunately, in numer-
ous engineering problems, the properties of the materials, such as the density, diffusivity,
heat conductivity, or specific heat, can widely vary in the system [3] due to natural or
artificial inhomogeneities; therefore, the diffusion coefficients should also have some kind
of spatial and/or temporal dependence.

The Fick–Jacobs equation [2] (p. 68)—which is the most general space-dependent
diffusion equation—can be directly derived based on the Fokker–Planck equation. The
proper derivations were performed by Reguera and Rubi [4] and by Zwanzig [5]. Using
these equations, one can describe single-particle diffusion processes in systems which have

Algorithms 2023, 16, 184. https://doi.org/10.3390/a16040184 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16040184
https://doi.org/10.3390/a16040184
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0439-3070
https://orcid.org/0000-0001-6206-3910
https://doi.org/10.3390/a16040184
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16040184?type=check_update&version=2

Algorithms 2023, 16, 184 2 of 22

spatial inhomogeneities, such as narrow ribbon channels [6]. Such systems are created when
molecules diffuse through carbon nanotubes [7], systems of channels like in zeolites [8], or
even in cell membranes [9]. Diffusion equations with space-dependent and time-dependent
coefficients were also used to model the movement of molecular species in water by Amiri
at al. [10] and Hefny and Tawfik [11], respectively.

Previously, we investigated the regular and irregular diffusion equations [12,13]. For
the regular diffusion equation (such as Equation (1)) with the traveling wave, self-similar,
traveling profile, or with some generalized self-similar trial functions, numerous new types
of analytic solutions were found. These solutions have a much more complicated structure
than the well-known Gaussian (plus an error function in the most general case). Our new
formulas contain Kummer’s or Whittaker functions with quadratic arguments with a new
free parameter which results in a larger variety of solutions. These solutions can have a
drastically different rate of decay than the fundamental Gaussians. We found solutions
which have some oscillatory behavior with a rapid power-law decay both in space and time.

In this work, we modify the PDE (1) to have a diffusion coefficient which is non-
constant in two senses. We introduce a new variable, which is a combination of the
space and time variable: η = x

tβ ∈ R. The diffusion coefficient has the simplest power-

law dependence on this variable:
−
D(η) = Dηm, where D is a constant, whose physical

dimension depends on the concrete value of β and m. Inserting it into the diffusion equation,
we obtain

∂u(x, t)
∂t

= D
∂

∂x

(
ηm ∂u(x, t)

∂x

)
= D

(
mηm−1 ∂η

∂x
∂u(x, t)

∂x
+ ηm ∂2u(x, t)

∂x2

)
(2)

Equations (1) and (2), and similar kinds of equations, are most frequently solved
numerically [14], and several methods are proposed for this purpose. Most of them can be
classified as either explicit or implicit schemes. Both kinds have a major advantage and
a disadvantage compared to one another. The widely used explicit methods, such as the
FTCS (forward time central space), require a fairly short time to execute a time step and
they are easily parallelizable. However, they are unstable, and the solution is expected to
blow up if the time-step size exceeds the so-called CFL (Courant–Friedrichs–Lewy) limit. In
other words, their stability region is limited [15]. In our case, due to the space dependence
of the diffusion coefficient, this limit is rather small, and the stiffness ratio is high. On the
other hand, due to the time dependence of the coefficient, it is changing in time, so using
the traditional explicit methods is very risky.

The stability of the implicit methods is fundamentally better; therefore, they are
considered superior and commonly used by many scientists to solve these and similar
equations [16–18]. However, in each time step, it is required to solve a system of algebraic
equations for which the process is not easily parallelizable. Calculations can be very slow
with large amounts of memory. This is common in multiple dimensions of space when the
matrix has a huge size and is non-tridiagonal. Moreover, with implicit methods, it is much
harder to follow the trend toward increasing parallelization. So, it is shown that explicit
methods can be more efficient even if a small time-step size has to be applied [19]. It is
worth noting that many clever combinations of the explicit and the implicit approaches,
e.g., semi-explicit or semi-implicit methods, are also proposed [20–23]. Nevertheless, they
do not resolve the above-mentioned dilemma of the explicit and implicit methods.

Regarding the above information, it is not baseless to believe that explicit methods,
especially if they have enhanced stability properties (see [24–31] for examples), have an
increasing comparative advantage over the long term. A couple of years ago, we initiated
the development of new explicit methods, which are unconditionally stable, at least for the
linear diffusion or diffusion–reaction equation. Our original publications (see, e.g., [32–34])
investigated the new methods theoretically and tested them with simple analytical as well
as with numerical reference solutions. We have shown that they can provide quite accurate
results significantly faster than the widely used methods, including MATLAB ODE solvers.

Algorithms 2023, 16, 184 3 of 22

In [35], we tested 14 methods in the case of a space-dependent diffusion coefficient. Most of
these algorithms had been proposed by us previously as explicit and stable schemes, but we
also included Dufort–Frankel and other known methods. However, as far as we know, until
now no one tested any of these algorithms when the diffusion coefficient was both space
and time dependent. Moreover, we do not know any work in which unconditionally stable
explicit methods with an order larger than one are used to construct adaptive time-step
size solvers.

The rest of this work is organized as follows. In Section 2, we analytically solve
the investigated equations and present the results. Section 3 describes the discretization
procedure and the numerical schemes used. In Section 4, the tests are performed for two sets
of parameters to see how the methods perform in different situations. Then, in Section 5,
the LNe-type methods are organized into adaptive time-step size solvers and tested against
popular Runge–Kutta solvers. Finally, in Section 6, we summarize our conclusions and
mention future research directions.

2. Analytical Solution

To solve the PDE (2), we use the well-known reduction technique, where we define
a new variable η = x

tβ ∈ R, which is a combination of the spatial and temporal vari-
able. Then, we try to find the solution u(x, t) with the self-similar Ansatz in the form of
u(x, t) = t−α f

(
x/tβ

)
, where α and β are arbitrary real constants, and f (η) is the shape

function with existing first and second continuous derivatives with respect to η. Evaluating
the first temporal and second spatial derivative of this Ansatz and substituting these back
to the PDE (2) yields

−αt−α−1 f (η)− βηt−α−1 f ′(η) = D
(

mηm−1t−βt−α−β f ′(η) + ηmt−α−2β f ′′
)

(3)

where prime means derivation in respect to the reduced variable η. To complete the
reduction mechanism, the explicit presence of the time variable has to be eliminated. From
this requirement, we arrive at the following constraints for the parameters, α = arbitrary
real number, β = 1/2, while m remains an arbitrary real parameter. Now, we have the
ordinary differential equation (ODE) for f (η)

f (η) = e
η−m+2

4D(m−2)

[
c1√

η
·M 4α−1

2m−4 , m−1
2m−4

(
η2−m

2D(m− 2)

)
+

c2√
η
·W 4α−1

2m−4 , m−1
2m−4

(
η2−m

2D(m− 2)

)]
(4)

where M and W are the Whittaker functions [36,37]. There is a connection to the former
results, which can be seen if one checks the following formulas which express the Whittaker
functions [36] in terms of the Kummer functions M and U:

Mκ,µ(z) = e−
z
2 zµ+ 1

2 M
(

µ− κ +
1
2

, 1 + 2µ; z
)

, Wκ,µ(z) = e−
z
2 zµ+ 1

2 U
(

µ− κ +
1
2

, 1 + 2µ; z
)

(5)

Due to the exponential factor in Equation (5), the Whittaker functions have a quicker
decay than the Kummer functions. The shape functions for some parameter values are
presented in Figure 1. The time development of the function u for two given parameter sets
are shown in Figures 2 and 3. It can be shown with a careful parameter analysis that for
negative values of α, the solutions have an exponential growth at large time and spatial
coordinates which may be considered non-physical; thus, we exclude them from further
numerical investigations. Diffusion processes where the concentration or the number of
particles explodes violate energy and matter conservation laws. On the other hand, for
some values of the parameters and variables, the values of u can be complex, which may
be considered non-physical. We also note that because our analytical solution is valid on
the whole real axis, the boundary conditions need to be specified only when the analytical
solution is going to be reproduced by numerical methods.

Algorithms 2023, 16, 184 4 of 22

Algorithms 2023, 16, x FOR PEER REVIEW 4 of 23

some values of the parameters and variables, the values of u can be complex, which may
be considered non-physical. We also note that because our analytical solution is valid on
the whole real axis, the boundary conditions need to be specified only when the analytical
solution is going to be reproduced by numerical methods.

Figure 1. The solution of Equation (3) with D = 1; 𝛼 = 1/2; c1 = 1; c2 = 0: the black, red, blue, and
green lines are for (m = 0; 1/2; 1; 5/2).

Figure 2. The solution 𝑢(𝑥,   𝑡) of Equation (2) with the shape function Equation (4) for 𝐷 = 1 ,  𝑚 =2.4 ,  𝛼 = 3.1 ,  𝑐 = 0 ,  𝑐 = 5.96 ⋅ 10  , 𝑥 ∈ 0.055 ,  0.355  ,   𝑡 ∈ 0.5 ,  1.5  .

Figure 1. The solution of Equation (3) with D = 1; α = 1/2; c1 = 1; c2 = 0: the black, red, blue, and
green lines are for (m = 0; 1/2; 1; 5/2).

Algorithms 2023, 16, x FOR PEER REVIEW 4 of 23

some values of the parameters and variables, the values of u can be complex, which may
be considered non-physical. We also note that because our analytical solution is valid on
the whole real axis, the boundary conditions need to be specified only when the analytical
solution is going to be reproduced by numerical methods.

Figure 1. The solution of Equation (3) with D = 1; 𝛼 = 1/2; c1 = 1; c2 = 0: the black, red, blue, and
green lines are for (m = 0; 1/2; 1; 5/2).

Figure 2. The solution 𝑢(𝑥,   𝑡) of Equation (2) with the shape function Equation (4) for 𝐷 = 1 ,  𝑚 =2.4 ,  𝛼 = 3.1 ,  𝑐 = 0 ,  𝑐 = 5.96 ⋅ 10  , 𝑥 ∈ 0.055 ,  0.355  ,   𝑡 ∈ 0.5 ,  1.5  . Figure 2. The solution u(x, t) of Equation (2) with the shape function Equation (4) for
D = 1 , m = 2.4 , α = 3.1 , c1 = 0, c2 = 5.96× 10−13, x ∈ [0.055, 0.355], t ∈ [0.5, 1.5].

Algorithms 2023, 16, 184 5 of 22Algorithms 2023, 16, x FOR PEER REVIEW 5 of 23

Figure 3. The solution 𝑢(𝑥,   𝑡) of Equation (2) with the shape function Equation (4) for 𝐷 = 1 ,  𝑚 =7.2 ,  𝛼 = 11.4 ,  𝑐 = 0 ,  𝑐 = 0.0042 , 𝑥 ∈ 0.48 ,  0.73  ,   𝑡 ∈ 0.9 ,  1.5  .

In our numerical experiments, we always choose 𝐷 = 1,  𝑐 = 0 and set the value of 𝑐 to be a normalization constant. It means that we are going to numerically reproduce
the following reference solution: 𝑢(𝑥, 𝑡) = 𝑡 𝑓    =   𝑐 ⋅ e 

√⁄() ⋅ 𝑊 ,  √⁄() . (6)

In Figures 2 and 3, we present 3D plots of this u function for those two cases, which
will be reproduced numerically in the latter sections. Note that in the second case, the u
function on the left boundary is first decreasing from positive to negative values and then
increasing to reach positive values again; the numerical methods should follow this non-
trivial behavior.

3. The Procedure of the Numerical Solution
3.1. The Spatial and Temporal Discretization

We consider the case of heat conduction because the concepts of the following dis-
cretization process are better established in this case. Let us discretize the time variable
uniformly, which means 𝑡 ∈ 𝑡 ,  𝑡fin , and 𝑡 = 𝑡 + 𝑛ℎ ,  𝑛 = 1, . . . ,  𝑇 ,  ℎ𝑇 = 𝑡fin − 𝑡 .

On the interval 𝑥 ∈ 𝑥  ,  𝑥 = 𝑥 + 𝐿 ⊂ ℝ, we construct an equidistant spatial grid: 𝑥 = 𝑥 + 𝑗𝛥𝑥 ,  𝑗 = 0, . . . ,  𝑁 ,  𝑁𝛥𝑥 = 𝐿.

The parameters 𝑡 , 𝑥 , etc., will be given when the concrete examples are presented.
If the physical properties of the heat-conducting media depend on space, the follow-

ing PDE is used:

Figure 3. The solution u(x, t) of Equation (2) with the shape function Equation (4) for
D = 1, m = 7.2, α = 11.4, c1 = 0, c2 = 0.0042, x ∈ [0.48, 0.73], t ∈ [0.9, 1.5].

In our numerical experiments, we always choose D = 1, c1 = 0 and set the value of
c2 to be a normalization constant. It means that we are going to numerically reproduce the
following reference solution:

u(x, t) = t−α f
(

x
tβ

)
= c2

√
t

1
2−2α

x
·e

(x/
√

t)2−m

4(m−2) ·W 4α−1
2m−4 , m−1

2m−4

(

x/
√

t
)2−m

2(m− 2)

 (6)

In Figures 2 and 3, we present 3D plots of this u function for those two cases, which
will be reproduced numerically in the latter sections. Note that in the second case, the
u function on the left boundary is first decreasing from positive to negative values and
then increasing to reach positive values again; the numerical methods should follow this
nontrivial behavior.

3. The Procedure of the Numerical Solution
3.1. The Spatial and Temporal Discretization

We consider the case of heat conduction because the concepts of the following dis-
cretization process are better established in this case. Let us discretize the time variable
uniformly, which means t ∈

[
t0, tfin], and

tn = t0 + nh , n = 1, ..., T , hT = tfin − t0

On the interval x ∈ [x0 , xN = x0 + L] ⊂ R, we construct an equidistant spatial grid:

xj = x0 + j∆x , j = 0, ..., N , N∆x = L

The parameters t0, x0, etc., will be given when the concrete examples are presented.

Algorithms 2023, 16, 184 6 of 22

If the physical properties of the heat-conducting media depend on space, the following
PDE is used:

c(x)ρ(x)
∂u
∂t

=
∂

∂x

(
k(x)

∂u
∂x

)
(7)

For simplicity, we consider c(x, t) ≡ 1 and ρ(x, t) ≡ 1 in this work, and all the space
and time dependence of the diffusivity will be incorporated into the conductivity k(x, t).
When the outer differentiation with respect to x is executed at the right-hand side of (7),
the term k(x) must also be differentiated, which implies that an extra drift term with
∂u/∂x appears, such as in Equation (2). We avoid this by discretizing the function k and
simultaneously ∂u/∂x in Equation (7). The usual central difference formula is employed
to obtain

∂u
∂t

∣∣∣∣
xi ,tn

=
1

∆x

[
k
(

xi +
∆x
2

, tn
)

u(xi + ∆x)− u(xi)

∆x
+ k
(

xi −
∆x
2

, tn
)

u(xi − ∆x)− u(xi)

∆x

]
We now move from node variables to cell variables. It means that ui is the approxima-

tion of the average temperature of cell i, by its value at the cell center. Furthermore, ki,i+1 is
the heat conductivity between cell i and its (right) neighbor, estimated by its value at the
border of the cells. Now, the previous formula will have the form

dui
dt

=
1

∆x

(
kn

i,i+1
ui+1 − ui

∆x
+ kn

i,i−1
ui−1 − ui

∆x

)
Because we are in one spatial dimension, we consider the cross-section area of the

system as unity. Now, the heat capacity of the cell is the same as the volume and can
be given as Ci = Vi = ∆x. The thermal resistances at the n-th time level are calculated
as follows:

Rn
i, i+1 =

∆x
kn

i,i+1
=

∆x

D
(

xi,i+1/
√

tn
)m , i = 1, . . . , N − 1

Now, we have the equation for the time derivative of each cell variable:

dui
dt

=
ui−1 − ui
Rn

i, i−1Ci
+

ui+1 − ui
Rn

i, i+1Ci
(8)

which can be written into a matrix form

d
→
u

dt
= M

→
u (9)

where the system matrix M is N × N dimensional and depends on the time variable. More
details about this way of discretization (for the case of the time-independent case but more
space dimensions) can be found, e.g., in [33].

The numerical methods examined in this work can be used in the case of different types
of boundary conditions, e.g., Dirichlet, Neumann, and periodic. Because we reproduce the
above given analytical solutions, we always use Dirichlet boundary conditions, but the
concrete details will be given later.

3.2. The Applied 18 Numerical Algorithms

All the 18 numerical algorithms are already known. However, all of them (except
perhaps the RK4) are generalized to the case of a space- and time-dependent diffusion
coefficient for the first time here. Let us present immediately the formulas which are applied
for Equation (8) or (9), as well as the references where the readers can find more details
about them. We note that 14 of the used formulas are collected and applied in our previous

Algorithms 2023, 16, 184 7 of 22

paper [35] for the case when D depends only on space but not on time. The following
two quantities will be extensively used:

rn
i =

h
Ci

(
1

Rn
i, i−1

+
1

Rn
i, i+1

)
and An

i =
h
Ci

(
un

i−1
Rn

i, i−1
+

un
i+1

Rn
i, i+1

)
, i = 1, . . . , N, n = 0, . . . , T

The quantity rn
i is similar to the mesh ratio r = Dh

∆x2 , which is usually used in the case
of Equation (1). The quantity An

i will convey information to the cell i from its neighbors.
We will frequently employ the modified theta-formula:

un+1
i =

(1− ri θ)un
i + Ai

1 + ri (1− θ)
, θ ∈ [0, 1] (10)

which is thoroughly introduced and described in [38].
1. The so-called unconditionally positive finite difference (UPFD) method is developed

by Chen-Charpentier and Kojouharov [39] for the linear diffusion–advection–reaction
equation. In our case, the new values of the cell variables can be obtained from Equation (10)
by the θ = 0 substitution:

un+1
i =

un
i + An

i
1 + rn

i
(11)

2. The simplest among our methods is the constant neighbor (CNe) algorithm [32].
The following formula is used:

un+1
i = un

i ·e− rn
i +

An
i

rn
i

(
1− e− rn

i

)
(12)

3. The two-stage CpC method [40] uses the CNe formula twice. The first stage is a
fractional time step with length h/2, where the new predictor values of u are calculated
as follows:

upred
i = un

i e− rn
i /2 +

An
i

rn
i

(
1− e− rn

i /2
)

Note that in the second term on the r. h. s., the factor 1
2 cancels out from the fraction.

The new values of the A quantities are calculated using these predictor values

Anew
i =

h
Ci

 upred
i−1

Rn
i, i−1

+
upred

i+1
Rn

i, i+1

 (13)

and then, at the second stage, these are used in the full-length corrector step. The function
values at the end of the time step are

un+1
i = un

i ·e−rn
i +

Anew
i
rn

i

(
1− e− rn

i

)
Note that the resistances are taken into account only at the beginning of the time step,

and they are updated only when a new time step begins. This tactic will be used in the case
of the next methods, which are based on the so-called linear-neighbor approximation.

4. The linear-neighbor (LNe or LNe2) algorithm [32] consists of two stages. The first
stage is actually a full predictor time step with the CNe scheme to calculate the upred

i values.
Using them, we can calculate new Anew

i values:

Anew
i =

h
Ci

 upred
i−1

Rn
i, i−1

+
upred

i+1
Rn

i, i+1

 (14)

Algorithms 2023, 16, 184 8 of 22

Now, the corrector step uses the following formula:

un+1
i = un

i e− rn
i +

(
An

i −
Anew

i − An
i

rn
i

)
1− e− rn

i

rn
i

+
Anew

i − An
i

rn
i

(15)

5–6. Based on the corrector values in Equation (15), one can first recalculate Anew
i

again, and then repeat (15) to obtain new corrector values. This three-stage scheme is called
the LNe3 method [32], which is still second order, but it is usually more accurate than the
LNe2. If one repeats the corrector step again based on the LNe3 values to further improve
the accuracy, a four-stage formula arises, which is abbreviated as LNe4.

7. The CLL algorithm [41] is a modification of the LNe3 algorithm in order to achieve
third-order temporal convergence. For this purpose, it uses fractional time steps during the
first and second stages. Generally, the length at the first stage is h1 = ph, 2

3 ≤ p < 2, but at
the second stage it is always h2 = 2h/3. In the first stage, the CNe formula is employed to
calculate new predictor values:

uC
i = un

i e− prn
i +

An
i

rn
i

(
1− e− prn

i

)
(16)

In the second stage, we use formulas similar to (15) but with an h2 = 2h/3 time-
step size to obtain the first corrector values. The new Anew

i values are calculated as in

Equation (14), i.e., AC
i = h

Ci

(
uC

i−1
Rn

i, i−1
+

uC
i+1

Rn
i, i+1

)
. Using these the corrector step is as follows:

un+1
i = un

i e− 2rn
i /3 +

(
An

i −
AC

i − An
i

prn
i

)
1− e− 2rn

i /3

rn
i

+
AC

i − An
i

rn
i

(17)

In the third stage, a full time step is taken with the LNe formula:

un+1
i = un

i e− rn
i +

(
An

i −
ACL

i − An
i

2rn
i /3

)
1− e− rn

i

rn
i

+
ACL

i − An
i

2rn
i /3

(18)

where ACL
i = h

Ci

(
uCL

i−1
Rn

i, i−1
+

uCL
i+1

Rn
i, i+1

)
. In Section 4, we take p = 2

3 , but in Section 5 we try p = 1

as well.
8. The CCL algorithm [42] is very similar to the CLL, but at the second stage the

CNe formula is used. So, the first stage is the same as in (16), where, for stability reasons,
1
3 ≤ p ≤ 0.949 and p 6= 2

3 should hold. We set p = 1
3 and obtain the first- and second-

stage formulas:

uC
i = un

i e− rn
i /3 +

An
i

rn
i

(
1− e− rn

i /3
)

and uCC
i = un

i e− 2rn
i /3 +

AC
i

rn
i

(
1− e− 2rn

i /3
)

Then, after the calculation of ACC
i = h

Ci

(
uCC

i−1
Rn

i, i−1
+

uCC
i+1

Rn
i, i+1

)
, a full time step is taken with

the LNe formula at the third stage:

un+1
i = un

i e−rn
i +

(
An

i −
ACC

i − An
i

2rn
i /3

)
1− e−rn

i

rn
i

+
ACC

i − An
i

2rn
i /3

Algorithms 2023, 16, 184 9 of 22

9. The two-stage pseudo-implicit (PI) method is published in [38]. It is considered
here with parameters p = 1

2 and θ1 = 0 at the first stage and θ2 = 1
2 at the second stage.

The following first- and second-stage formulas must be applied for each cell:

Stage 1 : upred
i =

un
i + An

i /2
1 + rn

i /2
, Stage 2 : un+1

i =
(1− ri/2)un

i + Anew
i

1 + ri/2

where Anew
i is calculated exactly as in Equation (13). One can see that there is a stage with

a half time step for the predictor values and then the second stage with a full time step for
the corrector values.

Let us now focus on the odd–even hopscotch schemes. A bipartite spatial grid, in
which all the nearest neighbors of the odd cells are even and vice versa, is required to
apply any of them. There are four different stencils, more precisely spatial and temporal
structures, of the used hopscotch-type methods, which are displayed in Figure 4. Only one
odd and one even cell is displayed in the case of each method in the figure. The stages
are symbolized by colored rectangles. Those boxes which belong to the repeating units
are surrounded by dashed red lines. For example, the asymmetric hopscotch structure
(ASH) consists of two half and one full time steps. The calculation starts with a half-sized
time step (yellow rectangle with the number ‘1’ inside) being taken for the odd cells using
the initial values. Then, a full time step is taken for the even cells (green box), and then a
halved third timestep (blue rectangle) closes the repeating unit of the calculation, which
is surrounded by a dashed red line. The golden rule is that the most recent values of
the neighbors ui±1 always have to be used when an Ai is calculated (for example, in the
theta-formula) to obtain the new value of ui. This assures stability and, at the same time,
quite quick convergence. At the next points, we give the concrete formulas with which
the structures can be filled. In the case of the theta-formula, we just give the value of the
parameter θ.

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 23

CC CC
1 1

2 / 3 2 / 3

n
in i ii

n n
n n n i i
i i i n n n

i i i

r
r A A A Aeu e A

r r r
u

−
−+ − −−+ − +

= .

9. The two-stage pseudo-implicit (PI) method is published in [38]. It is considered
here with parameters 1

2p = and 1 0θ = at the first stage and 12 2θ = at the second
stage. The following first- and second-stage formulas must be applied for each cell:

pred / 2
1

:
/ 2

 1 n
i

n n
i i

i
u A

Sta ug
r

e
+

=
+

,
() new

1 2
1

:
/ 2
1 / 2

i

i

n
i in

i
r u A

Stag ue
r

+ − +
=

+
,

where new
iA is calculated exactly as in Equation (13). One can see that there is a stage

with a half time step for the predictor values and then the second stage with a full time
step for the corrector values.

Let us now focus on the odd–even hopscotch schemes. A bipartite spatial grid, in
which all the nearest neighbors of the odd cells are even and vice versa, is required to
apply any of them. There are four different stencils, more precisely spatial and temporal
structures, of the used hopscotch-type methods, which are displayed in Figure 4. Only
one odd and one even cell is displayed in the case of each method in the figure. The stages
are symbolized by colored rectangles. Those boxes which belong to the repeating units
are surrounded by dashed red lines. For example, the asymmetric hopscotch structure
(ASH) consists of two half and one full time steps. The calculation starts with a half-sized
time step (yellow rectangle with the number ‘1’ inside) being taken for the odd cells using
the initial values. Then, a full time step is taken for the even cells (green box), and then a
halved third timestep (blue rectangle) closes the repeating unit of the calculation, which
is surrounded by a dashed red line. The golden rule is that the most recent values of the
neighbors 1iu ± always have to be used when an iA is calculated (for example, in the
theta-formula) to obtain the new value of ui. This assures stability and, at the same time,
quite quick convergence. At the next points, we give the concrete formulas with which the
structures can be filled. In the case of the theta-formula, we just give the value of the pa-
rameter θ.

Figure 4. Hopscotch-type space-time structures. The time elapses from the top (t = 0) to the bot-
tom.

10. Original odd–even hopscotch method (OOEH, [43]): Stage 1: 𝜃 = 1, Stage 2: 𝜃 = 0.
11. Reversed odd–even hopscotch algorithm (RH, [34]), uses the same structure as

the OOEH. Stage 1: 𝜃 = 0, Stage 2: 𝜃 = 1.
12. OEH-CNe method: OOEH structure, CNe formula in each stage with the golden

rule mentioned above.

Figure 4. Hopscotch-type space-time structures. The time elapses from the top (t = 0) to the bottom.

10. Original odd–even hopscotch method (OOEH, [43]): Stage 1: θ = 1, Stage 2: θ = 0.
11. Reversed odd–even hopscotch algorithm (RH, [34]), uses the same structure as the

OOEH. Stage 1: θ = 0, Stage 2: θ = 1.
12. OEH-CNe method: OOEH structure, CNe formula in each stage with the golden

rule mentioned above.
13. Shifted-hopscotch (SH, [33]): Stage 1 (yellow box in Figure 4): θ = 0, Stages 2–4

(green boxes): θ = 1
2 , Stage 5 (blue box): θ = 1.

14. Asymmetric-hopscotch (ASH, [44]): Stage 1 (yellow box), θ = 0, Stage 2: θ = 1
2 ,

Stage 3: θ = 1.

Algorithms 2023, 16, 184 10 of 22

15. Leapfrog-hopscotch (LH, [45]): Stage 0 (yellow box): θ = 0. Intermediate and last
stages (green and blue boxes): θ = 1

2 .
16. Leapfrog-hopscotch-CNe (LH-CNe, [45]): CNe formula at all stages with the

appropriate time-step size.
17. The Dufort–Frankel (DF) explicit two-step method [46] (p. 313) is an old but

non-traditional algorithm which was constructed for the diffusion equation for which it is
unconditionally stable. In our case, it has the formula:

un+1
i =

(
1− rn

i
)
un−1

i + 2An
i

1 + rn
i

The r. h. s. of the formula contain values of u at two time levels, so we need two
initial conditions, the second one calculated by another algorithm. We employ the UPFD
Scheme (11) for this purpose.

18. For comparison purposes, we use the so-called classical version of the fourth-order
Runge–Kutta (RK4) method [47] (p. 737). If we apply it to our spatially discretized system,
we have

k1
i = An

i − rn
i un

i , then A1
i =

h
Ci

(
un

i−1 + k1
i−1/2

Rn
i, i−1

+
un

i+1 + k1
i+1/2

Rn
i, i+1

)

k2
i = A1

i − rn
i

(
un

i + k1
i /2
)

, then A2
i =

h
Ci

un
i−1 + k2

i−1/2

Rn+ 1
2

i, i−1

+
un

i+1 + k2
i+1/2

Rn+ 1
2

i, i+1

k3
i = A2

i − rn+ 1
2

i

(
un

i + k2
i /2
)

, then A3
i =

h
Ci

un
i−1 + k3

i−1

Rn+ 1
2

i, i−1

+
un

i+1 + k3
i+1

Rn+ 1
2

i, i+1

and finally

k4
i = A3

i − rn+ 1
2

i

(
un

i + k3
i

)
, and un+1

i = un
i +

(
k1

i + 2k2
i + 2k3

i + k4
i

)
/6

With the exception of the UPFD, OOEH, DF, and RK4, all the methods were created by
our research group. The verifications and almost always the analytical proofs are presented
in the original papers, but several truncation errors are given in [48]. The UPFD and the
CNe methods have been shown to have first-order convergence in the time-step size, CCL
and CLL are third order, RK4 is obviously fourth order, and all other schemes are second
order. All methods (except RK4, of course) are unconditionally stable for the linear heat
or diffusion equation. This means that the CFL restrictions do not apply in their case. We
underline once again that in the big camp of explicit methods, unconditional stability is not
the rule but the exception.

Note that the CNe, CpC, LNe, LNe3, LNe4, OOEH-CNe, and LH-CNe schemes
are not simply stable, but their error is strictly limited by the maximum and minimum
principles [49] (p. 87). This is a direct consequence of the fact that any new un+1

i value is
the convex combination of the already known un

i , un
i−1, un

i+1, etc., values, which excludes
the increase in any unphysical oscillations even for extremely large time-step sizes. On
the other hand, as the reader will see later, this favorable property limits the speed of
convergence of these algorithms, often resulting in rather poor accuracies for small and
medium time-step sizes. Specifically, they significantly (in the case of very large time-step
sizes, tremendously) underestimate the speed of the heat- or particle-transfer process,
which can be perceived as a kind of ‘negative’ dissipation error.

Algorithms 2023, 16, 184 11 of 22

4. Numerical Results with Fixed Time-Step Sizes

This section investigates the numerical error, for example, how it decreases with the
time-step size h. First, we run the simulation for all 18 methods for a very large and fixed h
and calculate the error. Then, this procedure is repeated with smaller and smaller time-step
sizes until the minimal error values are obtained. The magnitude of the error is calculated
as follows:

Error = max
1<i<N

∣∣∣uanalytic
i

(
tfin
)
− unum

i

(
tfin
)∣∣∣

which means the usual L∞ error, i.e., the largest absolute difference between the analytical
and the numerical solution at the final time tfin, is considered. Because some data about
the running times of the examined methods for fixed time-step sizes can be found in our
original publications, we do not measure the running times here, only in Section 5 with
adaptive time-step sizes.

The system matrix M has only negative eigenvalues. Let us denote the smallest
(largest) absolute value eigenvalues by λMIN (λMAX). The CFL limit for the explicit Euler
method can be analytically calculated as hEE

CFL = |2/λMAX|, and for the higher-order RK
method, this limit is only slightly larger [50]. On the other hand, the stiffness ratio of the
problem can be defined as the ratio λMAX/λMIN.

To perform the numerical calculations, the software MATLAB has been used, and
the command kummerU has been used to calculate the Kummer U function (confluent
hypergeometric function of the second kind). Because the calculation of the values of the
boundary conditions for a given time point is orders of magnitude more time-consuming
than performing the steps of the numerical schemes for all the nodes of the grid, we applied
a trick to minimize the running time. The boundary conditions have been calculated only
in 4000 time points, and a linear interpolation between the two appropriate times of the
pre-calculated boundary values has been used to evaluate the boundary conditions at the
actual time of the simulation. Of course, we always checked that the error due to this
approximation is always much smaller than the errors of the numerical algorithms at the
intermediate space points.

4.1. Experiment 1 with Small Value of Parameter m

In this experiment, the following parameters are used:

m = 2.4 , α = 3.1 , c2 = 5.96× 10−13 , N = 1000 , x0 = 0.055 , ∆x = 3× 10−4, t0 = 0.5, tfin = 1.5 (19)

The CFL limit is increasing from hEE
CFL
(
t0) = 2.4× 10−7 to hEE

CFL
(
tfin) = 9.0× 10−7 and

the stiffness ratio is decreasing from 4.1× 106 to 2.6× 106. The errors as a function of the
time-step size are presented in a log-log diagram in Figure 5. The errors cannot decrease
below the residual error (from space discretization), which is visible in the bottom left
of the figure, because we employ a fixed space step size and only reduce the time-step
size. The RK4 method is unstable for large and medium time-step sizes, and therefore it
is visible only at the bottom left side of the figure. Two groups of the stable methods are
clearly distinguishable: the slowly and the quickly converging algorithms. This latter one
consists of the OOEH, RH, SH, ASH, DF, and LH methods, and the remaining 11 converge
more slowly. In our paper [48], we explained the reasons for this behavior based on
the truncation errors. Note that a slowly converging algorithm does not mean that it is
useless, because it can possess other useful properties, such as the previously mentioned
minimum–maximum principle.

Algorithms 2023, 16, 184 12 of 22Algorithms 2023, 16, x FOR PEER REVIEW 12 of 23

Figure 5. Maximum errors as a function of the time-step size for Experiment 1. The numerical order
of convergence of the algorithms are the slopes of the error curves.

In Figure 6, one can see the analytical u function at the initial and final time, as well
as the numerical solution at the final time in the case of two methods, namely the CCL
and the LH methods, for those time-step sizes when they start to produce a solution which
may be acceptable in some engineering applications. Moreover, in Figure 7, we also plot-
ted the time development of the maximum errors of all but the RK4 schemes for a fixed
time-step size ℎ = 2 ⋅ 10 .

Figure 5. Maximum errors as a function of the time-step size for Experiment 1. The numerical order
of convergence of the algorithms are the slopes of the error curves.

In Figure 6, one can see the analytical u function at the initial and final time, as well as
the numerical solution at the final time in the case of two methods, namely the CCL and
the LH methods, for those time-step sizes when they start to produce a solution which may
be acceptable in some engineering applications. Moreover, in Figure 7, we also plotted the
time development of the maximum errors of all but the RK4 schemes for a fixed time-step
size h = 2× 10−4.

4.2. Experiment 2 with Large Value of Parameter m

In this experiment, the following parameters are used:

m = 7.2 , α = 11.4 , c2 = 0.0042 , N = 500 , x0 = 0.48 , ∆x = 5× 10−4 , t0 = 0.9 , tfin = 1.5 (20)

Because the value of m is larger, the diffusion coefficient depends on the x and t
variables more strongly. The CFL limit is increasing from hEE

CFL
(
t0) = 8.65 × 10−7 to

hEE
CFL
(
tfin) = 5.44× 10−6 and the stiffness ratio is decreasing from 1.16× 106 to 4.86× 105.

The errors as a function of the time-step size are presented in a log-log diagram in Figure 8.
In Figure 9, one can see the analytical u function at the initial and final time, as well as
the numerical solution at the final time in the case of the CCL and the LH methods. In
Figure 10, we again plotted the time development of the maximum errors of all but the
RK4 schemes for a fixed time-step size h = 10−3.

Algorithms 2023, 16, 184 13 of 22Algorithms 2023, 16, x FOR PEER REVIEW 13 of 23

Figure 6. The variable u as a function of x in the case of the initial function u0, the analytical solution
at the final time, the CCL algorithm for ℎ = 10 , and the LH algorithm for ℎ = 0.0013 in the case
of small value of m (Experiment 1). It is worth emphasizing again that for these time-step sizes,
explicit Runge–Kutta algorithms are unstable.

Figure 7. The time development of the errors, i.e., the absolute difference between the analytical
solution and that of the stable numerical methods, for ℎ = 2 ⋅ 10 as a function of time.

4.2. Experiment 2 with Large Value of Parameter m

Figure 6. The variable u as a function of x in the case of the initial function u0, the analytical solution
at the final time, the CCL algorithm for h = 10−5, and the LH algorithm for h = 0.0013 in the case of
small value of m (Experiment 1). It is worth emphasizing again that for these time-step sizes, explicit
Runge–Kutta algorithms are unstable.

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 23

Figure 6. The variable u as a function of x in the case of the initial function u0, the analytical solution
at the final time, the CCL algorithm for ℎ = 10 , and the LH algorithm for ℎ = 0.0013 in the case
of small value of m (Experiment 1). It is worth emphasizing again that for these time-step sizes,
explicit Runge–Kutta algorithms are unstable.

Figure 7. The time development of the errors, i.e., the absolute difference between the analytical
solution and that of the stable numerical methods, for ℎ = 2 ⋅ 10 as a function of time.

4.2. Experiment 2 with Large Value of Parameter m

Figure 7. The time development of the errors, i.e., the absolute difference between the analytical
solution and that of the stable numerical methods, for h = 2× 10−4 as a function of time.

Algorithms 2023, 16, 184 14 of 22

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 23

In this experiment, the following parameters are used: 𝑚 = 7.2 ,  𝛼 = 11.4 ,  𝑐 = 0.0042 ,  𝑁 = 500 , 𝑥 = 0.48 ,  𝛥𝑥 = 5 ⋅ 10  ,  𝑡= 0.9 ,  𝑡fin = 1.5  (20)

Because the value of m is larger, the diffusion coefficient depends on the x and t var-
iables more strongly. The CFL limit is increasing from ℎ (𝑡) = 8.65 ⋅ 10 to ℎ 𝑡fin = 5.44 ⋅ 10 and the stiffness ratio is decreasing from 1.16 ⋅ 10 to 4.86 ⋅ 10 .
The errors as a function of the time-step size are presented in a log-log diagram in Figure
8. In Figure 9, one can see the analytical u function at the initial and final time, as well as
the numerical solution at the final time in the case of the CCL and the LH methods. In
Figure 10, we again plotted the time development of the maximum errors of all but the
RK4 schemes for a fixed time-step size ℎ = 10 .

Figure 8. Maximum errors as a function of the time-step size for parameter set (20) (Experiment 2). Figure 8. Maximum errors as a function of the time-step size for parameter set (20) (Experiment 2).

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 23

Figure 9. The variable u as a function of x in the case of the initial function u0, the analytical solution
at the final time, the CCL algorithm for ℎ = 1.2 ⋅ 10 , and the LH algorithm for ℎ = 0.0016 in the
case of large value of m (Experiment 2).

Figure 10. The time development of the errors, i.e., the absolute difference between the analytical
solution and that of the stable numerical methods, for 310h −= as a function of time.

Figure 9. The variable u as a function of x in the case of the initial function u0, the analytical solution
at the final time, the CCL algorithm for h = 1.2× 10−5, and the LH algorithm for h = 0.0016 in the
case of large value of m (Experiment 2).

Algorithms 2023, 16, 184 15 of 22

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 23

Figure 9. The variable u as a function of x in the case of the initial function u0, the analytical solution
at the final time, the CCL algorithm for ℎ = 1.2 ⋅ 10 , and the LH algorithm for ℎ = 0.0016 in the
case of large value of m (Experiment 2).

Figure 10. The time development of the errors, i.e., the absolute difference between the analytical
solution and that of the stable numerical methods, for 310h −= as a function of time.

Figure 10. The time development of the errors, i.e., the absolute difference between the analytical
solution and that of the stable numerical methods, for h = 10−3 as a function of time.

5. Numerical Results with Adaptive Time-Step Sizes

In this section, we introduce and design several adaptive time-step controllers to
solve the system in Equation (8). When adaptive step-size controllers are designed, there
are three important factors: the method for advancing the solution in each time step, the
approach of estimating the local error in each time step, and the strategy which changes the
size of the time step [51]. For advancing the solution, three methods have been used here to
design the controllers, which are the LNe3, CLL, and Runge–Kutta methods. For estimating
the local error, one needs the values of the function u calculated in two different ways but at
the same time level. However, most of the examined algorithms do not automatically serve
two different approximations of the unknown function. The LNe3 and the CLL methods
are among those very few which do, so embedded formulas can be designed based on
them, as will be explained for each method later.

The strategy for changing the time-step size can be briefly explained here. Let us
assume that we applied an explicit scheme of order q with time-step size hpresent to the
system in Equation (8) for advancing the solution from un to un+1. Assume that we used
some approach for estimating the local error during that time step and let us denote the
calculated local error by LE. The norm of the error estimation can be written as follows [52]
(p. 26):

errn+1 = max
{

|LE|
AbsTol + |un+1|RelTol

}
(21)

where AbsTol and RelTol are the relative and the absolute tolerances which can be specified
by the user. The used nomenclatures hide the fact that LE and un+1 are vectors because

Algorithms 2023, 16, 184 16 of 22

they are applied to a system of ODEs instead of a single ODE. Using the calculated norm
errn+1, we can change the time-step size using the following formula [53]:

hnew = min
(

fmax, max
(

fmin, fsβn+1
))

hpresent (22)

where βn+1 is a function of the norm of the error estimation errn+1, and that function
depends on the type of the controller. The safety factor is taken as fs = 0.9 while the
factors fmax and fmin are chosen to be 5 and 0.1, respectively [54] (p. 168). In the case of
the elementary controller, which we are using in this paper, the function can be written
as follows:

βn+1 =
(

errn+1
)−1

q (23)

If errn+1 ≤ 1, we accept the time step, and the solution is advanced with un+1
i , and the

time step will be modified by Equation (22). If errn+1 > 1, we reject both the time step and
the solution un+1

i , and we repeat the calculations with a new time step calculated again by
Equation (22).

Now, we will illustrate the approaches for calculating the local error estimation for
each method.

The LNe3 method
As we introduced in Section 3, the LNe3 method consists of three stages. In the first

stage, we use the CNe scheme while the LNe scheme is used in the second and third stages.
All three stages provide values of the unknown function u at the end of the actual time
step. It means that there are three possibilities to compare these values with one another
in order to estimate the local error. The first possibility means that the difference between
the numerical solutions calculated in the first and second stages is used as a local error
estimator as follows:

LEC1L2 =
∣∣∣ûn+1 − un+1

∣∣∣ (24)

where ûn+1 and un+1 are the solutions calculated by Equations (12) and (15), respectively.
The indices C1 and L2 in the last nomenclature LEC1L2 refer to the stages used to estimate the
local error. Now, we substitute LEC1L2 and un+1 into Equation (21) to obtain the norm of the
local error estimation. Considering the previous calculations and Equations (22) and (23),
an adaptive time-step controller is constructed, and it is denoted by ALNe3-C1L2. The
local error can be estimated based on the first and third stages as well. Repeating the same
step as in the previous lines, another adaptive time-step controller is obtained, and it is
denoted by ALNe3-C1L3. The third possibility is when the local error is estimated based
on the first and the third stages and the applied controller will be denoted by ALNe3-L2L3.

The CLL method
The CLL method consists of three stages. The first stage uses the CNe scheme with

time-step length ph, while the second step uses the LNe scheme with time-step length 2
3 h.

If we take p = 2
3 in the first stage, then an error estimation can be made as in Equation (24),

where ûn+1 is calculated by Equation (16), considering that p = 2
3 , while un+1 is calculated

by Equation (17). Substituting Equation (24) into Equation (21), and then considering
Equations (22) and (23), an adaptive controller can be implemented, and it will be denoted
by ACLL-C1L2. If p = 1, another local error estimation can be considered as follows:

LEC1L3 =
∣∣∣ûn+1 − un+1

∣∣∣ (25)

where ûn+1 is calculated by Equation (16), taking p = 1, while un+1 is calculated by Equa-
tion (18). Substituting Equation (25) into Equation (21), and then considering Equations (22)
and (23), an adaptive controller will be implemented, and it will be denoted by ACLL-C1L3.

Runge–Kutta Cash–Karp Method RKCK
Because it is a well-known method, and explained in detail in [55] (p. 717), we think

that it is not necessary to describe the tedious processes of implementing the method. The

Algorithms 2023, 16, 184 17 of 22

local error estimation in Equation (16.2.6) and the fourth-order solution in Equation (16.2.5)
in [55] can be plugged into our equation (21) to obtain the norm of the local error estimation.
Again, using Equations (22) and (23), the Runge–Kutta Cash–Karp is obtained, and it is
denoted by RKCK.

Runge–Kutta–Fehlberg Method
Plenty of references discussed and implemented this method. Here, we will refer

to [56], where the authors show how to estimate the local error using Equation (5.55) in that
reference. The numerical solution generated by Equation (5.53), along with the local error
estimated by Equation (5.55) in that reference, can be substituted into our Equation (21)
to obtain the norm of the error estimation. That norm can be used to adapt the time-step
size using Equation (22), resulting in the so-called Runge–Kutta–Fehlberg 4(5), or RKF45
method, and it will be referred to as RKF in our paper.

Two numerical experiments are conducted to check the performance of these adaptive
controllers and to compare their performances. The numerical computations are carried out
using the MATLAB R2020b software on a desktop computer Intel Core (TM) i11-11700F.

5.1. Experiment 1 with Adaptive Solvers

In this experiment, the parameters listed in Equation (19) are used. The errors as a
function of the running time are presented in a log-log diagram in Figure 11. From the
figure, it is evident that the adaptive LNe3 controllers and the adaptive CLL controllers are
significantly faster than the RKF and RKCK when the desired accuracy is not very high. The
RKF and RKCK can achieve the same accuracy as the adaptive LNe and the adaptive CLL
families with the same running time, only when the error is 1.4× 10−6. However, none of
the adaptive controllers can go beyond this accuracy due to the space discretization error. It
does indeed look like the error, in the case of the RKF and RKCK, is relatively independent
of the running time. According to our previous experience, this is not uncommon behavior
in the case of explicit adaptive solvers, if the method used for designing the controller is
only conditionally stable, such as some of the built-in ODE solvers of MATLAB [45].

5.2. Experiment 2 with Adaptive Solvers

In this experiment, the parameters listed in Equation (20) are used. Figure 12 shows
the errors as a function of the running time in a log-log diagram. This experiment shows
that the adaptive LNe controllers and the adaptive CNe controllers are again faster than
controllers designed based on the Runge–Kutta method. As we mentioned previously, the
CFL limit is changing with respect to time, and it can be calculated for the explicit Euler
method as hEE

CFL = |2/λMAX|. That limit was calculated in this experiment at six selected
points in time as follows:

time point ∈
{

t0 + i
(

t f in − t0
)}

, i ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}

We plotted this limit as a function of time with a dashed blue line in Figure 13. At
approximately the same level of accuracy, when the produced error was of order 10−4, the
history of the time-step size was also registered for each adaptive controller in order to
check if they can follow the trend of the hEE

CFL. Figure 13 shows that the LNe3 controllers and
CLL controllers could roughly follow the trend of the CFL limit. It means that they could
detect the changes in the CFL limit and modify the step size. The Runge–Kutta controllers
could follow the general trend, but they suffer from a fluctuating step size. The zoomed
area of Figure 13 shows the behavior of the time-step size of the RKCK during a very short
time (0.06% of the total time). On other hand, the time-step size in the case of the adaptive
LNe3-L2L3 remained roughly constant. The reason behind the fluctuation in the case of
the RK solvers is the conditional stability: when the time-step size h is below the CFL limit
(which is slightly larger for RK4 than for the first-order explicit Euler), the error is very
small, and the time-step size is increased. When the time-step size exceeds the stability
limit, errors are starting to be amplified exponentially. This exponential increase can be

Algorithms 2023, 16, 184 18 of 22

very slow at the beginning if h is still close to the limit, which may yield a further time-step
size elevation. Once the increasing error is detected, h is suddenly decreased to let the
errors diffuse away. Then, the errors will be very small again; thus, the cycle starts again.
This fluctuation is time-consuming and therefore undesirable. It is among the reasons why
adaptive Runge–Kutta controllers are slower than the other solvers in our experiments.

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 23

5.1. Experiment 1 with Adaptive Solvers
In this experiment, the parameters listed in Equation (19) are used. The errors as a

function of the running time are presented in a log-log diagram in Figure 11. From the
figure, it is evident that the adaptive LNe3 controllers and the adaptive CLL controllers
are significantly faster than the RKF and RKCK when the desired accuracy is not very
high. The RKF and RKCK can achieve the same accuracy as the adaptive LNe and the
adaptive CLL families with the same running time, only when the error is 1.4 × 10 .
However, none of the adaptive controllers can go beyond this accuracy due to the space
discretization error. It does indeed look like the error, in the case of the RKF and RKCK,
is relatively independent of the running time. According to our previous experience, this
is not uncommon behavior in the case of explicit adaptive solvers, if the method used for
designing the controller is only conditionally stable, such as some of the built-in ODE
solvers of MATLAB [45].

Figure 11. The 𝐿 errors as a function of the running times in Experiment 1.

5.2. Experiment 2 with Adaptive Solvers
In this experiment, the parameters listed in Equation (20) are used. Figure 12 shows

the errors as a function of the running time in a log-log diagram. This experiment shows
that the adaptive LNe controllers and the adaptive CNe controllers are again faster than
controllers designed based on the Runge–Kutta method. As we mentioned previously, the
CFL limit is changing with respect to time, and it can be calculated for the explicit Euler
method as EE

CFL MAX 2 /h λ= . That limit was calculated in this experiment at six selected
points in time as follows:

time  point ∈ 𝑡 +𝑖(𝑡 − 𝑡) ,  𝑖 ∈ 0, 0.2, 0.4, 0.6, 0.8, 1 .

Figure 11. The L∞ errors as a function of the running times in Experiment 1.Algorithms 2023, 16, x FOR PEER REVIEW 19 of 23

Figure 12. The 𝐿 errors as a function of the running times in Experiment 2.

We plotted this limit as a function of time with a dashed blue line in Figure 13. At
approximately the same level of accuracy, when the produced error was of order 10 ,
the history of the time-step size was also registered for each adaptive controller in order
to check if they can follow the trend of the ℎCFL

EE . Figure 13 shows that the LNe3 controllers
and CLL controllers could roughly follow the trend of the CFL limit. It means that they
could detect the changes in the CFL limit and modify the step size. The Runge–Kutta con-
trollers could follow the general trend, but they suffer from a fluctuating step size. The
zoomed area of Figure 13 shows the behavior of the time-step size of the RKCK during a
very short time (0.06% of the total time). On other hand, the time-step size in the case of
the adaptive LNe3-L2L3 remained roughly constant. The reason behind the fluctuation in
the case of the RK solvers is the conditional stability: when the time-step size h is below
the CFL limit (which is slightly larger for RK4 than for the first-order explicit Euler), the
error is very small, and the time-step size is increased. When the time-step size exceeds
the stability limit, errors are starting to be amplified exponentially. This exponential in-
crease can be very slow at the beginning if h is still close to the limit, which may yield a
further time-step size elevation. Once the increasing error is detected, h is suddenly de-
creased to let the errors diffuse away. Then, the errors will be very small again; thus, the
cycle starts again. This fluctuation is time-consuming and therefore undesirable. It is
among the reasons why adaptive Runge–Kutta controllers are slower than the other solv-
ers in our experiments.

Figure 12. The L∞ errors as a function of the running times in Experiment 2.

Algorithms 2023, 16, 184 19 of 22Algorithms 2023, 16, x FOR PEER REVIEW 20 of 23

Figure 13. The time-step size as a function time for the examined solvers.

6. Discussion and Summary
We studied the non-steady-state linear diffusion equation in the situation when the

diffusion coefficient varies on the spatial and temporal coordinate at the same time. We
have created a family of new analytical solutions using a similarity transformation, which
is highly nontrivial, because the solution function is a combination of the two Whittaker
functions.

A total of 18 explicit numerical algorithms have been used to reproduce this new
analytical solution. Of them, 17 are explicit and unconditionally stable schemes which are
recently invented, with the exception of 3 methods. The last one is the classical 4th-order
Runge–Kutta method, which is only conditionally stable, and therefore it cannot be used
with most of the time-step sizes applied in our experiments. According to our findings,
the leapfrog-hopscotch scheme usually has the best performance, but the Dufort–Frankel,
the original odd–even hopscotch, and the shifted and the asymmetric hopscotch can also
be very accurate for much larger time-step sizes than the stability limit for the RK4
method. On the other hand, the LNe3 or LNe4 method is recommended if unconditional
positivity is required. The LNe3 and the CLL algorithms have been successfully organized
into embedded-type adaptive step size solvers, which severely outperform the standard

Figure 13. The time-step size as a function time for the examined solvers.

6. Discussion and Summary

We studied the non-steady-state linear diffusion equation in the situation when the
diffusion coefficient varies on the spatial and temporal coordinate at the same time. We have
created a family of new analytical solutions using a similarity transformation, which is highly
nontrivial, because the solution function is a combination of the two Whittaker functions.

A total of 18 explicit numerical algorithms have been used to reproduce this new
analytical solution. Of them, 17 are explicit and unconditionally stable schemes which are
recently invented, with the exception of 3 methods. The last one is the classical 4th-order
Runge–Kutta method, which is only conditionally stable, and therefore it cannot be used
with most of the time-step sizes applied in our experiments. According to our findings, the
leapfrog-hopscotch scheme usually has the best performance, but the Dufort–Frankel, the
original odd–even hopscotch, and the shifted and the asymmetric hopscotch can also be
very accurate for much larger time-step sizes than the stability limit for the RK4 method.
On the other hand, the LNe3 or LNe4 method is recommended if unconditional positivity
is required. The LNe3 and the CLL algorithms have been successfully organized into
embedded-type adaptive step size solvers, which severely outperform the standard RKF
and RKCK solvers. Recall that a lot of efforts have been made to improve traditional solvers

Algorithms 2023, 16, 184 20 of 22

by the so-called PI and PID controllers [57,58]. The main goal of those controllers is to
reduce the fluctuating behavior of the time-step size. The LNe3 and the CLL-based adaptive
controllers could change the time-step size smoothly using only the elementary controller
without any need to implement the PI controller. We consider this as another advantage
of these methods. We can state that if the CFL limit is decreasing, the advantage of all the
unconditionally stable explicit algorithms are increasing, and they can give results with
acceptable accuracy much faster than the standard explicit methods. Therefore, we advise
academics and engineers who still use the explicit RK solvers to solve linear diffusion or
heat conduction equations to shift to an explicit but stable method.

In the near future, we are turning our attention to nonlinear diffusion problems. We
already started to investigate diffusion equations in which the diffusion coefficient depends
on the concentration. We are also interested in diffusion–reaction equations with different
nonlinear reaction terms. Different Ansatzes will be applied to obtain novel analytical
solutions, and then some of the efficient methods (especially the LH) will be adapted to
these cases. We point out that some of our techniques have already been used to solve
Fisher’s equation [34] or the deterministic KPZ equation successfully; therefore, we are
optimistic about the success of this research direction.

Author Contributions: Conceptualization, methodology, E.K. and I.F.B.; supervision and resources,
E.K.; analytical investigation and the related visualization, I.F.B.; software, E.K. and M.S.; numerical
investigation and the related visualization, M.S.; writing—original draft preparation, E.K. and I.F.B.;
writing—review and editing, E.K. and M.S. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Lienhard, J.H.L., IV.; Lienhard, J.H. A Heat Transfer Textbook, 4th ed.; Phlogiston Press: Cambridge, MA, USA, 2017;

ISBN 9780971383524.
2. Jacobs, M.H. Diffusion Processes; Springer: Berlin/Heidelberg, Germany, 1935; ISBN 978-3-642-86414-8.
3. Yu, H.; Yao, L.; Ma, Y.; Hou, Z.; Tang, J.; Wang, Y.; Ni, Y. The Moisture Diffusion Equation for Moisture Absorption of Multiphase

Symmetrical Sandwich Structures. Mathematics 2022, 10, 2669. [CrossRef]
4. Reguera, D.; Rubí, J.M. Kinetic equations for diffusion in the presence of entropic barriers. Phys. Rev. E 2001, 64, 061106. [CrossRef]
5. Zwanzig, R. Diffusion past an entropy barrier. J. Phys. Chem. 1992, 96, 3926–3930. [CrossRef]
6. Wolfson, M.; Liepold, C.; Lin, B.; Rice, S.A. A comment on the position dependent diffusion coefficient representation of structural

heterogeneity. J. Chem. Phys. 2018, 148, 194901. [CrossRef]
7. Berezhkovskii, A.; Hummer, G. Single-File Transport of Water Molecules through a Carbon Nanotube. Phys. Rev. Lett. 2002, 89,

064503. [CrossRef] [PubMed]
8. Kärger, J.; Ruthven, D.M. Diffusion in Zeolites and other Microporous Solids; Wiley: New York, NY, USA, 1992; ISBN 0-471-50907-8.
9. Hille, B. Ion Channels of Excitable Membranes, 3rd ed.; Oxford University Press Inc.: New York, NY, USA, 2001; ISBN 9780878933211.
10. Amiri, S.; Mazaheri, M.; Gilan, N.B. Introducing a new method for calculating the spatial and temporal distribution of pollutants

in rivers. Int. J. Environ. Sci. Technol. 2021, 18, 3777–3794. [CrossRef]
11. Hefny, M.M.; Tawfik, A.M. The Fate of Molecular Species in Water Layers in the Light of Power-Law Time-Dependent Diffusion

Coefficient. Symmetry 2022, 14, 1146. [CrossRef]
12. Mátyás, L.; Barna, I.F. General Self-Similar Solutions of Diffusion Equation and Related Constructions. Rom. J. Phys. 2022, 67, 101.
13. Barna, I.F.; Mátyás, L. Advanced Analytic Self-Similar Solutions of Regular and Irregular Diffusion Equations. Mathematics 2022,

10, 3281. [CrossRef]
14. Savović, S.; Djordjevich, A. Numerical solution of the diffusion equation describing the flow of radon through concrete SEQ

CHAPTER. Appl. Radiat. Isot. 2008, 66, 552–555. [CrossRef] [PubMed]
15. Jejeniwa, O.A.; Gidey, H.H.; Appadu, A.R. Numerical Modeling of Pollutant Transport: Results and Optimal Parameters.

Symmetry 2022, 14, 2616. [CrossRef]
16. Kumar, V.; Chandan, K.; Nagaraja, K.V.; Reddy, M.V. Heat Conduction with Krylov Subspace Method Using FEniCSx. Energies

2022, 15, 8077. [CrossRef]

http://doi.org/10.3390/math10152669
http://doi.org/10.1103/PhysRevE.64.061106
http://doi.org/10.1021/j100189a004
http://doi.org/10.1063/1.5025921
http://doi.org/10.1103/PhysRevLett.89.064503
http://www.ncbi.nlm.nih.gov/pubmed/12190588
http://doi.org/10.1007/s13762-020-03096-y
http://doi.org/10.3390/sym14061146
http://doi.org/10.3390/math10183281
http://doi.org/10.1016/j.apradiso.2007.08.018
http://www.ncbi.nlm.nih.gov/pubmed/17976999
http://doi.org/10.3390/sym14122616
http://doi.org/10.3390/en15218077

Algorithms 2023, 16, 184 21 of 22

17. Mbroh, N.A.; Munyakazi, J.B. A robust numerical scheme for singularly perturbed parabolic reaction-diffusion problems via the
method of lines. Int. J. Comput. Math. 2021, 99, 1139–1158. [CrossRef]

18. Fteiti, M.; Ghalambaz, M.; Sheremet, M.; Ghalambaz, M. The impact of random porosity distribution on the composite metal
foam-phase change heat transfer for thermal energy storage. J. Energy Storage 2023, 60, 106586. [CrossRef]

19. Essongue, S.; Ledoux, Y.; Ballu, A. Speeding up mesoscale thermal simulations of powder bed additive manufacturing thanks to
the forward Euler time-integration scheme: A critical assessment. Finite Elements Anal. Des. 2022, 211, 103825. [CrossRef]

20. Beuken, L.; Cheffert, O.; Tutueva, A.; Butusov, D.; Legat, V. Numerical Stability and Performance of Semi-Explicit and Semi-
Implicit Predictor–Corrector Methods. Mathematics 2022, 10, 2015. [CrossRef]

21. Ji, Y.; Xing, Y. Highly Accurate and Efficient Time Integration Methods with Unconditional Stability and Flexible Numerical
Dissipation. Mathematics 2023, 11, 593. [CrossRef]

22. Fedoseev, P.; Pesterev, D.; Karimov, A.; Butusov, D. New Step Size Control Algorithm for Semi-Implicit Composition ODE Solvers.
Algorithms 2022, 15, 275. [CrossRef]

23. Ndou, N.; Dlamini, P.; Jacobs, B.A. Enhanced Unconditionally Positive Finite Difference Method for Advection–Diffusion–
Reaction Equations. Mathematics 2022, 10, 2639. [CrossRef]

24. Appadu, A.R. Performance of UPFD scheme under some different regimes of advection, diffusion and reaction. Int. J. Numer.
Methods Heat Fluid Flow 2017, 27, 1412–1429. [CrossRef]

25. Karahan, H. Unconditional stable explicit finite difference technique for the advection-diffusion equation using spreadsheets.
Adv. Eng. Softw. 2007, 38, 80–86. [CrossRef]

26. Sanjaya, F.; Mungkasi, S. A simple but accurate explicit finite difference method for the advection-diffusion equation. J. Phys.
Conf. Ser. 2017, 909, 012038. [CrossRef]

27. Pourghanbar, S.; Manafian, J.; Ranjbar, M.; Aliyeva, A.; Gasimov, Y.S. An Efficient Alternating Direction Explicit Method for
Solving a Nonlinear Partial Differential Equation. Math. Probl. Eng. 2020, 2020, 9647416. [CrossRef]

28. Harley, C. Hopscotch method: The numerical solution of the Frank-Kamenetskii partial differential equation. Appl. Math. Comput.
2010, 217, 4065–4075. [CrossRef]

29. Al-Bayati, A.Y.; Manaa, S.A.; Al-Rozbayani, A.M. Comparison of Finite Difference Solution Methods for Reaction Diffusion
System in Two Dimensions. AL-Rafidain J. Comput. Sci. Math. 2011, 8, 21–36. [CrossRef]

30. Nwaigwe, C. An Unconditionally Stable Scheme for Two-Dimensional Convection-Diffusion-Reaction Equations. Available
online: https://www.researchgate.net/publication/357606287_An_Unconditionally_Stable_Scheme_for_Two-Dimensional_
Convection-Diffusion-Reaction_Equations (accessed on 27 February 2023).

31. Savović, S.; Drljača, B.; Djordjevich, A. A comparative study of two different finite difference methods for solving advection–
diffusion reaction equation for modeling exponential traveling wave in heat and mass transfer processes. Ric. Mat. 2021, 71,
245–252. [CrossRef]

32. Kovács, E. A class of new stable, explicit methods to solve the non-stationary heat equation. Numer. Methods Partial. Differ.
Equations 2020, 37, 2469–2489. [CrossRef]

33. Nagy, A.; Saleh, M.; Omle, I.; Kareem, H.; Kovács, E. New Stable, Explicit, Shifted-Hopscotch Algorithms for the Heat Equation.
Math. Comput. Appl. 2021, 26, 61. [CrossRef]

34. Saleh, M.; Kovács, E.; Nagy, Á. New stable, explicit, second order hopscotch methods for diffusion-type problems. Math. Comput.
Simul. 2023, 208, 301–325. [CrossRef]

35. Saleh, M.; Kovács, E.; Barna, I.F.; Mátyás, L. New Analytical Results and Comparison of 14 Numerical Schemes for the Diffusion
Equation with Space-Dependent Diffusion Coefficient. Mathematics 2022, 10, 2813. [CrossRef]

36. Olver, F.W.J.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: New
York, NY, USA, 2011; ISBN 978-0-521-14063-8. Volume 66.

37. Wikipedia. Whittaker Function. Available online: https://en.wikipedia.org/wiki/Whittaker_function (accessed on 27 February 2023).
38. Jalghaf, H.K.; Kovács, E.; Majár, J.; Nagy, Á.; Askar, A.H. Explicit Stable Finite Difference Methods for Diffusion-Reaction Type

Equations. Mathematics 2021, 9, 3308. [CrossRef]
39. Chen-Charpentier, B.M.; Kojouharov, H.V. An unconditionally positivity preserving scheme for advection–diffusion reaction

equations. Math. Comput. Model. 2013, 57, 2177–2185. [CrossRef]
40. Kovács, E.; Nagy, Á.; Saleh, M. A Set of New Stable, Explicit, Second Order Schemes for the Non-Stationary Heat Conduction

Equation. Mathematics 2021, 9, 2284. [CrossRef]
41. Kovács, E.; Nagy, Á.; Saleh, M. A New Stable, Explicit, Third-Order Method for Diffusion-Type Problems. Adv. Theory Simulations

2022, 5, 2100600. [CrossRef]
42. Kovács, E.; Nagy, Á. A new stable, explicit, and generic third-order method for simulating conductive heat transfer. Numer.

Methods Partial. Differ. Equations 2022, 39, 1504–1528. [CrossRef]
43. Gourlay, A.R.; Mcguire, G.R. General Hopscotch Algorithm for the Numerical Solution of Partial Differential Equations. IMA J.

Appl. Math. 1971, 7, 216–227. [CrossRef]
44. Saleh, M.; Kovács, E. New Explicit Asymmetric Hopscotch Methods for the Heat Conduction Equation. Comput. Sci. Math. Forum

2021, 2, 22.
45. Nagy, Á.; Omle, I.; Kareem, H.; Kovács, E.; Barna, I.F.; Bognar, G. Stable, Explicit, Leapfrog-Hopscotch Algorithms for the

Diffusion Equation. Computation 2021, 9, 92. [CrossRef]

http://doi.org/10.1080/00207160.2021.1954621
http://doi.org/10.1016/j.est.2022.106586
http://doi.org/10.1016/j.finel.2022.103825
http://doi.org/10.3390/math10122015
http://doi.org/10.3390/math11030593
http://doi.org/10.3390/a15080275
http://doi.org/10.3390/math10152639
http://doi.org/10.1108/HFF-01-2016-0038
http://doi.org/10.1016/j.advengsoft.2006.08.001
http://doi.org/10.1088/1742-6596/909/1/012038
http://doi.org/10.1155/2020/9647416
http://doi.org/10.1016/j.amc.2010.10.020
http://doi.org/10.33899/csmj.2011.163605
https://www.researchgate.net/publication/357606287_An_Unconditionally_Stable_Scheme_for_Two-Dimensional_Convection-Diffusion-Reaction_Equations
https://www.researchgate.net/publication/357606287_An_Unconditionally_Stable_Scheme_for_Two-Dimensional_Convection-Diffusion-Reaction_Equations
http://doi.org/10.1007/s11587-021-00665-2
http://doi.org/10.1002/num.22730
http://doi.org/10.3390/mca26030061
http://doi.org/10.1016/j.matcom.2023.01.029
http://doi.org/10.3390/math10152813
https://en.wikipedia.org/wiki/Whittaker_function
http://doi.org/10.3390/math9243308
http://doi.org/10.1016/j.mcm.2011.05.005
http://doi.org/10.3390/math9182284
http://doi.org/10.1002/adts.202100600
http://doi.org/10.1002/num.22943
http://doi.org/10.1093/imamat/7.2.216
http://doi.org/10.3390/computation9080092

Algorithms 2023, 16, 184 22 of 22

46. Hirsch, C. Numerical Computation of Internal and External Flows, Volume 1: Fundamentals of Numerical Discretization; Wiley: Hoboken,
NJ, USA, 1988.

47. Chapra, S.C.; Canale, R.P. Numerical Methods for Engineers, 7th ed.; McGraw-Hill Science/Engineering/Math: New York, NY,
USA, 2015.

48. Nagy, Á.; Majár, J.; Kovács, E. Consistency and Convergence Properties of 20 Recent and Old Numerical Schemes for the Diffusion
Equation. Algorithms 2022, 15, 425. [CrossRef]

49. Holmes, M.H. Introduction to Numerical Methods in Differential Equations; Springer: New York, NY, USA, 2007; ISBN 978-0387-30891-3.
50. Iserles, A. A First Course in the Numerical Analysis of Differential Equations; Cambridge University Press: Cambridge, MA, USA,

2009; ISBN 9788490225370.
51. Shampine, L.F.; Watts, H.A. Comparing Error Estimators for Runge-Kutta Methods. Math. Comput. 1971, 25, 445–455. [CrossRef]
52. Ritschel, T. Numerical Methods of Solution of Differential Equations; Technical University of Denmark: Kongens Lyngby, Den-

mark, 2013.
53. Fekete, I.; Conde, S.; Shadid, J.N. Embedded pairs for optimal explicit strong stability preserving Runge–Kutta methods. J. Comput.

Appl. Math. 2022, 412, 114325. [CrossRef]
54. Hairer, E.; Nørsett, S.P.; Wanner, G. Solving Ordinary Difference Equations 1—Nonstiff Problems; Springer: Berlin/Heidelberg,

Germany, 1993; ISBN 978-3-540-56670-0.
55. Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes 3rd Edition: The Art of Scientific Computing, 3rd ed.;

Cambridge University Press: Cambridge, MA, USA, 2007; Volume 1, ISBN 0521880688.
56. Atkinson, K.E.; Han, W.; Stewart, D. Numerical Solution of Ordinary Differential Equations; Wiley: Hoboken, New Jersey, USA, 2011;

ISBN 9781118164495.
57. Söderlind, G.; Wang, L. Adaptive time-stepping and computational stability. J. Comput. Appl. Math. 2006, 185, 225–243. [CrossRef]
58. Gustafsson, K. Control Theoretic Techniques for Stepsize Selection in Explicit Runge-Kutta Methods. ACM Trans. Math. Softw.

1991, 17, 533–554. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/a15110425
http://doi.org/10.1090/S0025-5718-1971-0297138-9
http://doi.org/10.1016/j.cam.2022.114325
http://doi.org/10.1016/j.cam.2005.03.008
http://doi.org/10.1145/210232.210242

	Introduction
	Analytical Solution
	The Procedure of the Numerical Solution
	The Spatial and Temporal Discretization
	The Applied 18 Numerical Algorithms

	Numerical Results with Fixed Time-Step Sizes
	Experiment 1 with Small Value of Parameter m
	Experiment 2 with Large Value of Parameter m

	Numerical Results with Adaptive Time-Step Sizes
	Experiment 1 with Adaptive Solvers
	Experiment 2 with Adaptive Solvers

	Discussion and Summary
	References

