
Citation: Akulich, M.; Savnik, I.;

Krnc, M.; Škrekovski, R. Multiset-Trie

Data Structure. Algorithms 2023, 16,

170. https://doi.org/10.3390/

a16030170

Academic Editor: Frank Werner

Received: 10 December 2022

Revised: 22 February 2023

Accepted: 8 March 2023

Published: 20 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Multiset-Trie Data Structure
Mikita Akulich 1,†, Iztok Savnik 1,2,† , Matjaž Krnc 1,2,3,† and Riste Škrekovski 1,2,3,†,*

1 Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska,
6000 Koper, Slovenia

2 Faculty of Information Studies, 8000 Novo Mesto, Slovenia
3 Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana,

1000 Ljubljana, Slovenia
* Correspondence: skrekovski@gmail.com
† These authors contributed equally to this work.

Abstract: This paper proposes a new data structure, multiset-trie, that is designed for storing and
efficiently processing a set of multisets. Moreover, multiset-trie can operate on a set of sets without
efficiency loss. The multiset-trie structure is a search tree with properties similar to those of a trie. It
implements all standard search tree operations together with the multiset containment operations
for searching sub-multisets and super-multisets. Suppose that we have a set of multisets S and
a multiset X. The multiset containment operations retrieve multisets from S that are either sub-
multisets or super-multisets of X. We present the mathematical analysis of a multiset-trie that gives
the time complexity of the algorithms and the space complexity of the data structure. Further, the
empirical analysis of the data structure is implemented in a series of experiments. The experiments
illuminate the time complexity space of the multiset containment operations.

Keywords: trie data structure; multiset; containment queries

1. Introduction

A multiset is a collection of elements that can have more than one instance. As in the
case of ordinary sets, the ordering of the elements in multisets is not relevant. For example,
multisets {1, 1, 2} and {1, 2, 1} represent the same multiset.

Multisets appear in a wide variety of domains and applications [1]. The index struc-
tures for storing sets of multisets were studied in the area of object-relational database
systems to store, compress and query multiset-valued attributes efficiently [2–5]. The need
to efficiently manage multisets also appears in information retrieval [6–8], where texts are
represented as multisets. In data mining, sets are often used to represent and efficiently
search hypotheses in the knowledge discovery process [9,10]. In the area of expert systems,
multisets are used for the representation and querying of the preconditions of rules [11].
Finally, in recent internet applications, the efficient representations and searches of multisets
(such as user requests and object features) have become essential [12–14] for data cleaning,
information integration, community mining, and entity resolution.

In this paper, we address the problems of storing, indexing, and querying the sets of
multisets. In particular, we deal with the design of an index data structure that provides
an efficient implementation of the multiset containment queries. Let S be an index storing
a set of multisets. For a given input multiset m, a containment query searches for either
sub-multisets or super-multisets of m in S.

Existent indexes for storing a set of multisets are rooted in search trees [15]. The
elements of a search tree can be accessed through keys. This approach is efficient for
checking the membership of individual multisets m in S. However, it is not as efficient for
containment queries. The search based on the containment relation requires access to the
collections C ⊆ S of multisets that are related for a multiset m either by a sub-multiset or a
super-multiset relationship.

Algorithms 2023, 16, 170. https://doi.org/10.3390/a16030170 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16030170
https://doi.org/10.3390/a16030170
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-3994-4805
https://orcid.org/0000-0002-4960-8901
https://orcid.org/0000-0001-6851-3214
https://doi.org/10.3390/a16030170
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16030170?type=check_update&version=2


Algorithms 2023, 16, 170 2 of 28

The existing solutions to the implementation of the containment queries use the
inverted indexes [6,7,16–19], the signature trees [16,20–22], and the B+ trees [19,23]. These
solutions provide a key–value look-up, where a key is an element of a multiset and a value
is a corresponding multiset. The containment operations require multiple key–value index
accesses and also the additional processing of partial results such as the intersection or
union of multisets.

To improve the efficiency of containment operations, we propose a data structure,
multiset-trie, that is designed for storing and processing a finite bounded set of multisets. A
multiset-trie generalizes the set-trie data structure proposed by Savnik [1,24], which was
designed for the storage and processing of a finite bounded set of sets. The set-trie is an
extension of a trie data structure to provide, besides the fast search and retrieval of sets,
also the efficient implementation of the set containment operation. The set-trie is also a
form of the binomial tree [15].

Multiset-trie provides a space-efficient representation of a set of multisets and efficient
multiset containment operations. As in the case of set-trie, the ordering of the elements
in multiset-trie is not relevant for the representation of multisets. As a consequence,
the efficiency of the multiset containment operations is obtained by selecting the specific
ordering of multiset elements. This ordering can be exploited for the efficient search in a
multiset-trie.

The multiset-trie is an n-ary tree data structure. Each multiset in a multiset-trie is
represented by a path from the root to a leaf node. Multiset elements are symbols from an
alphabet. Each symbol from the alphabet is represented by a node at a certain level of the
multiset-trie. The node stores the multiplicity of an element in a multiset.

A multiset-trie is also a kind of search tree. Similar to a trie, it uses common prefixes
for a shared data representation. Unlike the compact prefix tree [25], the multiset-trie
does not support path compression. However, the absence of path compression makes the
multiset-trie a perfectly height-balanced tree. Moreover, when multiset-trie is full, it forms
a complete n-ary tree.

Contributions. The main contributions of this paper are as follows. First, a multiset-trie
is a novel data structure for storing and querying a set of multisets that provides efficient
multiset containment operations.

Second, a mathematical model is developed to analyze the complexity of multiset
containment operations. In particular, we estimate the size of a subtree traversed by a
containment query and give an insight into the time complexity of containment queries.

In addition to the mathematical analysis, the size of a subtree visited by a multiset
containment query is also the central focus of the empirical analysis. We carefully designed
the experiments to unravel the main features of the search space. We observe how the
number of visited nodes depends on various parameters, such as the density of the tree
and the ordering of multiset elements.

Finally, the mathematical as well as empirical analyses show the influence of ordering
the elements of multisets on the efficiency of storing and processing multisets. We show
that the ordering, which is based on the frequencies of the multiset elements, can speed up
the multiset containment queries by orders of magnitude.

Paper organization. The paper is organized as follows. In the following Section 2, we
present the multiset-trie data structure in detail. Section 3 presents the operations of the
multiset-trie. These include the basic operations of search trees and multiset containment
operations. The algorithms are presented in detail using pseudocode.

The description of multiset-trie operations is followed by the mathematical analysis
of their complexity in Section 4. The main assumption is that multisets are constructed
uniformly at random with bounded cardinality. By using probabilistic tools, we describe
the time complexity of the algorithms and the space complexity of the structure.

In Section 5, we present an empirical study of the multiset-trie. Synthetic and real-
world data sets are used in experiments that are designed to study the performance of
multiset containment operations. Further, the multiset-trie is empirically compared to



Algorithms 2023, 16, 170 3 of 28

the inverted index in a separate experiment. The experiments highlight the methods for
optimizing a multiset-trie.

The related work is reviewed in Section 6. This section describes a set-trie data
structure, the inverted indexes, the signature indexes, and the multisets in relational
database systems. Finally, the concluding remarks and the future work are presented in
Section 7.

2. Multiset-Trie Data Structure

Let Σ be a set of distinct symbols that define an alphabet, and let σ be the cardinality
of Σ. The multiset-trie data structure stores multisets that are composed of symbols from
the alphabet Σ. It provides the basic tree data structure operations, such as insert, delete,
and search, together with multiset containment operations for searching sub-multisets and
super-multisets, which will be discussed in the next section in greater detail.

A multiset ignores the ordering of its elements by definition, which allows us to define
a bijective mapping φ : Σ→ I, where I is the set of integers {1, 2, 3, . . . , σ}. In this way, we
obtain the indexing of elements from the alphabet Σ, so we can work directly with integers
rather than with specific symbols from Σ.

The multiset-trie is an n-ary tree-based data structure with the properties of the trie.
A node in multiset-trie always has degree n, i.e., n children. Some of the children may be
Null (non-existing), but the number of Null children can be at most n− 1. All the children
of a node, including the Null children, are labeled from left to right with labels cj, where
j ∈ {0, 1, . . . , n− 1}. Every pair of child nodes u and v that share the same parent node
have different labels.

Nodes that have equal height in a multiset-trie form a level. The height of a multiset-
trie is always σ + 1 if at least one multiset is in the structure. The height of the root node
(the first level) is defined to be 1. Levels in multiset-trie are enumerated by their height, i.e.,
a level Li has height i. The connection between level height in a multiset-trie and symbols
from alphabet Σ is defined as follows. A level Li, where i ∈ {1, 2, . . . , σ} represents a
symbol s ∈ Σ, such that φ−1(i) = s. The last level Lσ+1 does not represent any symbol and
is named the leaf level (LL for short).

Since every level, except LL, represents a symbol from Σ, we can define a transition
between nodes that are located at different levels in a multiset-trie. Consider two nodes
u, v in a multiset-trie at levels Li, Li+1, respectively, where i ∈ {1, 2, . . . , σ}. Let a node u be
a parent node of a node v and consequently a node v be a child node of a node u. Suppose
that a child node v is not Null and has a label cj, where j ∈ {0, 1, . . . , n− 1}. Then, the path
u→ v represents a symbol s ∈ Σ with multiplicity j, such that φ−1(i) = s. Such a transition
u→ v is called a path of length 1 and is allowed if and only if a node v is not Null and u is a
parent node of a node v. If a node v has label c0, then the path u→ v represents a symbol
with the multiplicity 0 respectively, i.e., an empty symbol.

We define a complete path to be the path of length σ in a multiset-trie with the endpoints
at the root node (the first level) and LL. Thus, a multiset m is inserted into a multiset-trie
if and only if there exists a complete path in a multiset-trie that corresponds to m. Note
that every complete path in a multiset-trie is unique. Therefore, the multisets that share
a common prefix in a multiset-trie can have a common path of length at most σ− 1. The
complete path that passes through nodes labeled by c0 on all levels represents an empty
multiset or an empty set. Thus, any multiset m that is composed of symbols from Σ with
maximum multiplicity not greater than n− 1 can be represented by a complete path in a
multiset-trie.

An example of a multiset-trie data structure with σ = 2 and Σ = I = {1, 2} (i.e.,
the mapping φ is an identity mapping) is shown in Figure 1. In the figure, which stores
elements of {∅, {1, 1, 2}, {1, 2, 2}, {2}, {1, 2}, {2, 2}}, the degree of a node is set to be n = 3,
so the maximal multiplicity of an element in a multiset is n− 1 = 2.



Algorithms 2023, 16, 170 4 of 28

Root

c0 c1 c2

c0

c1 c2

c1

c1

c2

L1

L2

LL

Figure 1. Example of multiset-trie structure containing multisets ∅, {1, 1, 2}, {1, 2, 2}, {2}, {1, 2},
{2, 2}. The Null children are omitted.

Let a pair (Li, cj) represent a node with label cj at a level Li. The pair (L1, cj) is
equivalent to (L1, root), since the first level has the root node only. According to Figure 1,
we can extract the inserted multisets as follows:

(L1, root)→ (L2, c0)→ (LL, c0) = {10, 20} = ∅

(L1, root)→ (L2, c0)→ (LL, c1) = {10, 21} = {2}
(L1, root)→ (L2, c0)→ (LL, c2) = {10, 22} = {2, 2}
(L1, root)→ (L2, c1)→ (LL, c1) = {11, 21} = {1, 2}
(L1, root)→ (L2, c1)→ (LL, c2) = {11, 22} = {1, 2, 2}
(L1, root)→ (L2, c2)→ (LL, c1) = {12, 21} = {1, 1, 2}

where ek represents an element e with multiplicity k.

3. Multiset-Trie Operations

Let M be a multiset-trie and let M be a set of multisets that are inserted into the
multiset-trieM. We define a type Multiset in order to use it as a representation of a multiset.
The type Multiset is an array m of constant length σ, where the i-th cell represents the
element φ−1(i) from Σ with multiplicity m[i]. From now on, we agree that the first cell of
an array has index 1. Let us give an example of a Multiset instance with σ = 2 :

Multiset Instance of type Multiset

{1, 1, 2} ∼= 2 1
1 2

The operations supported by the multiset-trie data structure are as follows.

1. INSERT(M, m): inserts a multiset m intoM if m 6∈ M;
2. SEARCH(M, m): returns true if a multiset m ∈ M for a givenM, and returns false otherwise;
3. DELETE(M, m): returns true if a multiset m was successfully deleted fromM, and

returns false otherwise (in case m 6∈ M);
4. SUBMSETEXISTENCE(M, m, dev): returns true if there exists a x ∈ M for a givenM

such that x ⊆ m and |x[i]−m[i]| ≤ dev for 1 ≤ i ≤ σ, and returns false otherwise;
5. SUPERMSETEXISTENCE(M, m, dev): returns true if there exists a x ∈ M for a givenM

such that x ⊇ m and |x[i]−m[i]| ≤ dev for 1 ≤ i ≤ σ, and returns false otherwise;
6. GETALLSUBMSETS(M, m, dev): returns the set of multisets {x ∈ M : x ⊆ m ∧ |x[i]−

m[i]| ≤ dev} for a givenM, where 1 ≤ i ≤ σ;
7. GETALLSUPERMSETS(M, m, dev): returns the set of multisets {x ∈ M : x ⊇ m ∧

|x[i]−m[i]| ≤ dev} for a givenM, where 1 ≤ i ≤ σ.

The parameter dev is used to specify the maximal deviation in the multiplicity of
multiset containment operations. It is utilized to limit the search in multiset containment
queries to the sub-multisets and super-multisets that are the closest to the input multiset m.
In addition, we use dev for the implementation of a multiset similarity search that, given m,
retrieves fromM all sub-multisets or super-multisets that are similar to m with respect to
the deviation dev.



Algorithms 2023, 16, 170 5 of 28

In the following subsections, we will present each operation of the multiset-trie data
structure separately.

Firstly, we would like to describe some notations that will be used. The multiset-trie
data structure is a recursive data structure. Hence, any subtree of a multiset-trieM is again
a multiset-trie. This fact allows us to use the root node of a multiset-trie as its representative.
Thus, the notationM will be used instead ofM.root to refer to the root node ofM. Non-
existing or Null nodes in multiset-trie will be marked as Null and existing nodes at the level
LL will be marked as accepting nodes. The array slicing operation will be used as follows.
For a given array a, a[i :] represents the array obtained from a by taking only the cells from
index i until the last cell.

3.1. Insert

The procedure INSERT(M, m) inserts a new instance m of type Multiset into multiset-
trieM. If the complete path already exists, then the procedure leaves the structure un-
changed. Otherwise, it extends partially existing paths or creates a new complete path. The
procedure does not return any result. The pseudocode for procedure INSERT is presented
in Algorithm 1.

Algorithm 1 Procedure INSERT

1: procedure INSERT(M, m)
2: currentNode←M
3: for i = 1 to σ do
4: if child cm[i] of currentNode is Null then
5: create new child cm[i] of currentNode

6: currentNode← cm[i]

7: mark currentNode as accepting

3.2. Search

The function SEARCH(M, m) checks if the complete path corresponding to a given
multiset m exists in the structureM. The function returns true if the multiset m exists in
M, and returns false otherwise. The function SEARCH is presented in Algorithm 2.

Algorithm 2 Function SEARCH

1: function SEARCH(M, m)
2: currentNode←M
3: for i = 1 to σ do
4: if child cm[i] of currentNode is Null then
5: return False
6: currentNode← cm[i]

7: return True

3.3. Delete

Function DELETE(M, m) searches for the complete path that corresponds to m in order
to remove it. If the path cannot be found, the function immediately returns false. During
the search, the function keeps track of the number of children for every node. It marks the
nodes that have more than one child as parent nodes and remembers the label of the child,
which is a potential node where the subtree will be cut to remove the multiset. The parent
node is needed to perform a removal because the multiset-trie is an explicit data structure.
When the search is completed, the function removes the subtree of the last found parent
node and returns true. In such a way, after deletion, all the prefixes for other multisets are
preserved inM and m is removed. The function DELETE is presented in Algorithm 3.



Algorithms 2023, 16, 170 6 of 28

Algorithm 3 Function DELETE

1: function DELETE(M, m)
2: currentNode←M
3: parent← currentNode
4: position← 1
5: for i = 1 to σ do
6: if child cm[i] of currentNode is Null then
7: return False
8: numChildren← 0
9: for j = 0 to n− 1 do

10: if child cj of currentNode is not Null then
11: numChildren← numChildren + 1
12: if numChildren is not 1 then
13: parent← currentNode
14: position← i
15: currentNode← cm[i]

16: child cm[position] of parent← Null
17: return True

3.4. Sub-Multiset and Super-Multiset Existence

The functions SUBMSETEXISTENCE and SUPERMSETEXISTENCE are symmetrical in the
following sense. Let a multiset m represent the borderline inM defined by a path from the
root to a leaf following the elements from m. The operation SUBMSETEXISTENCE searches
the left part ofM and the operation SUPERMSETEXISTENCE the right part ofM.

The function SUBMSETEXISTENCE(M, m, dev) checks if there exists a multiset x inM,
that satisfies the condition x ⊆ m and |x[i]−m[i]| ≤ dev, where 1 ≤ i ≤ σ. The function
starts with searching for an exact match x = m inM, since m ⊆ m by definition of sub-
multiset inclusion. If an exact match is not found inM, the function uses multiset-trie
to find the closest (the largest) sub-multiset of m inM by decreasing the multiplicity of
elements in m. The parameter dev is used to limit a maximal deviation of multiplicity for
a particular element in x with respect to m. At every level, the function tries to proceed
with the largest possible multiplicity of an element that is provided by m. However, when
the function reaches some level where it meets a Null node and cannot go further using
the path provided by m, it decreases the multiplicity of an element that corresponds to
a current level with respect to the specified maximal deviation. Thus, the function can
decrease the multiplicity of an element or eventually skip it in order to find the closest
x ⊆ m. The function SUBMSETEXISTENCE is presented in Algorithm 4.

Algorithm 4 Function SUBMSETEXISTENCE

1: function SUBMSETEXISTENCE(M, m, dev)
2: currentNode←M
3: if currentNode is accepting then
4: return True
5: for i = m[1] down to max(0, m[1]− dev) do
6: if child ci of currentNode is not Null then
7: if SUBMSETEXISTENCE(ci, m[2 :], dev) then
8: return True
9: return False

The function SUPERMSETEXISTENCE(M, m, dev) checks if there exists super-multiset
x of a given multiset m inM, such that condition |x[i]− m[i]| ≤ dev is satisfied, where
1 ≤ i ≤ σ. Symmetrically to the function SUBMSETEXISTENCE, the function SUPERMSETEX-
ISTENCE searches first for an exact match x = m inM. If such x does not exist inM, then
the function searches on the right side of the borderline representing an exact match of m



Algorithms 2023, 16, 170 7 of 28

inM. Since we would like to find the closest (the smallest) super-multiset, we increase the
multiplicity of elements in m at every level of (M) starting with the multiplicities of m. The
function SUPERMSETEXISTENCE is presented in Algorithm 5.

Algorithm 5 Function SUPERMSETEXISTENCE

1: function SUPERMSETEXISTENCE(M, m, dev)
2: currentNode←M
3: if currentNode is accepting then
4: return True
5: for i = m[1] to min(n− 1, m[1] + dev) do
6: if child ci of currentNode is not Null then
7: if SUPERMSETEXISTENCE(ci, m[2 :], dev) then
8: return True
9: return False

3.5. Get All Sub-Multisets and Get All Super-Multisets

The algorithms for functions GETALLSUBMSETS and GETALLSUPERMSETS are based
entirely on algorithms for SUBMSETEXISTENCE and SUPERMSETEXISTENCE functions that do
not terminate on the first existing sub/super-multiset, but store the results and continue the
procedure until all existing sub/super-multisets inM are found and stored. The functions
GETALLSUBMSETS and GETALLSUPERMSETS are presented in Algorithms 6 and 7, respectively.

In order to record a multiset during multiset-trie traversal, we use the variable x in
the algorithms. It is an empty array of size σ where we store multiplicities of elements
at each level as we traverse the tree. The variable result is used as a container for storing
sub-multisets of m found during traversal. Both variables x and result are presented as
global; however, they could be passed to the recursive function as parameters.

Algorithm 6 Function GETALLSUBMSETS

1: result← empty container
2: x ← empty array of size σ
3: function GETALLSUBMSETS(M, m, dev)
4: currentNode←M
5: if currentNode is accepting then
6: add copy of x to result
7: for i = m[1] down to max(0, m[1]− dev) do
8: if child ci of currentNode is not Null then
9: x[1]← i

10: GETALLSUBMSETS(ci, m[2 :], dev)

Algorithm 7 Function GETALLSUPERMSETS

1: result← empty container
2: x ← empty array of size σ
3: function GETALLSUPERMSETS(M, m, dev)
4: currentNode←M
5: if currentNode is accepting then
6: add copy of x to result
7: for i = m[1] to min(n− 1, m[1] + dev) do
8: if child ci of currentNode is not Null then
9: x[1]← i GETALLSUPERMSETS(ci, m[2 :], dev)

4. Mathematical Analysis of the Structure

In this section, we present theoretical results of the time and space complexity of the
multiset-trie data structure. In the following Section 4.1, we discuss the running time com-



Algorithms 2023, 16, 170 8 of 28

plexity of the presented algorithms. First, in Section 4.1.1, we present the mathematical model
that we use to describe the distribution of multisets in the multiset-trie and input data. Using
a probabilistic approach and tools from a Galton–Watson process, we measure the expected
cardinality of the multiset-trie in Theorem 2. Further, we derive the expected cardinality of
the searched subtree of the multiset-trie parametrized by an input multiset in Corollary 1.

In Section 4.1.2, we discuss the running time complexity of the functions GETALL-
SUBMSETS and GETALLSUPERMSETS. We observe that the complexity of the functions
is exponential. Moreover, the worst-case running time complexity is the same for both
functions, and its upper bound is the cardinality of the multiset-trie.

The remaining “existence” functions are discussed in Section 4.1.3. We observe that,
beyond the scope of our mathematical model, unlike in functions GETALLSUBMSETS and
GETALLSUPERMSETS, the mapping φ has an impact on the performance of the functions
SUBMSETEXISTENCE and SUPERMSETEXISTENCE. In particular, the frequency analysis of
the symbols from Σ in input data determines such a φ that gives a boost in performance.

We find that the performance of the functions SUBMSETEXISTENCE and SUPERMSETEX-
ISTENCE in the worst-case scenario is also proportional to the size of the constructed trie.
We give a rather technical upper bound for the worst-case running time complexity, which
appears to be the same for both functions. However, it must be stressed that for the positive
outcome, this worst-case behavior holds only on specific cases, such as the presence of the
empty set in the multiset-trie.

Finalizing the mathematical analysis, we present the study of the space complexity of
the multiset-trie in Section 4.2. We show that the space used for the storage is asymptotically
equal to the size of the input data.

4.1. Time Complexity of the Algorithms

The performance of the functions will be measured by the number of visited nodes in
a multiset-trie during the execution of a particular query by the functions SEARCH, DELETE,
SUBMSETEXISTENCE, SUPERMSETEXISTENCE, GETALLSUBMSETS, GETALLSUPERMSETS and
the procedure INSERT.

By the design of the multiset-trie, it is easy to see that the functions SEARCH, DELETE

and the procedure INSERT have complexity of O(σ). Because σ is defined when the structure
is initialized and does not depend on the user input afterwards, the asymptotic complexity
of the functions SEARCH, DELETE and the procedure INSERT is O(1). Nonetheless, in the
general case, the complexity is O(σ).

In what follows, we focus on the analysis of the more involved functions: SUBMSETEX-
ISTENCE, SUPERMSETEXISTENCE, GETALLSUBMSETS, and GETALLSUPERMSETS.

4.1.1. Mathematical Model

We start with the basics of our mathematical model. Let Σ be an alphabet of cardinality
σ, such that Σ = {1, 2, . . . , σ}. Define N to be the set of all possible multisets that can be
inserted in a multiset-trie. Let n be the maximal degree of a node in a multiset-trie. Then,
the maximal multiplicity of an element in a multiset is equal to n− 1. Thus, the number
of multisets in a complete multiset-trie is |N| = nσ. Let M be a collection of multisets
inserted into multiset-trieM. All the multisets in M are constructed from the alphabet Σ
according to the parameters σ and n. Hence, any multiset m ∈ M, has at most σ distinct
elements that are members of Σ, and every distinct element in m has multiplicity strictly
less than n. Because a multiset does not distinguish different orderings, it is assumed, for
simplicity, that all elements are ordered in ascending order. A multiset m is represented as
{1k1 , 2k2 , . . . , σkσ}, where eke represents an element e ∈ Σ with multiplicity ke.

Denote the nodes of multiset-trie on all levels but on σ + 1 as internal and nodes on
the leaf level as leaf nodes. Observe that every internal non-root node has a degree of at
least 1. Indeed, the insertion of a multiset requires the construction of a path of length σ + 1,
meaning that if an internal node exists in a multiset-trie, it must have a degree of at least 1.



Algorithms 2023, 16, 170 9 of 28

It also follows that the height of a multiset-trie is always σ + 1 as soon as at least one
multiset is inserted into the data structure.

Our model assumes that all the inserted multisets are chosen with the same probability,
meaning that for some p ∈ (0, 1), the following holds:

P(m ∈ M) = p, ∀ m ∈ N.

Let ξ1, ξ2, . . . , ξσ+1 be random variables such that ξi represents the number of nodes in a
multiset-trie on the i-th level. For every node j on i-th level, we assign a random variable
ξij to be the number of its children, such that j ∈ [1, ξi]. Then, for every i ∈ [1, σ], the
following holds:

ξi+1 =
ξi

∑
j=1

ξij, (1)

where ξ1 = 1. It is easy to see that the variable ξi+1 can have values in the interval [ξi, ni]
and the value of the variable ξij is within the interval [1, n]. Without conditioning on the
existence of any node in multiset-trie, it is easy to describe the probability of the existence
of any individual node.

Lemma 1. Any potential node on a fixed level i, where i ∈ {1, 2, . . . , σ+ 1} exists, with probability

pi = 1− (1− p)nσ+1−i
. (2)

Proof. Let v be an arbitrary node in a multiset-trie on an arbitrary level i. Consider the
subtree with the root v and call it the v-subtree. Since the height of the multiset-trie is σ + 1,
we can calculate the height of the v-subtree. Taking into account that the root node has
height 1, the height of the v-subtree is

hv = σ + 1− i.

A node in a multiset-trie exists if at least one node exists on the leaf level of its subtree, i.e.,
a node on the level σ + 1 that belongs to v-subtree. The possible number of nodes on the
leaf level of v-subtree can be easily calculated knowing its height. It is equal to

nσ+1−i.

A node at level σ + 1 exists with probability p, where p = P(m ∈ M). Thus, the probability
that there are no nodes on the leaf level in v-subtree is

(1− p)nσ+1−i
.

The claim follows by taking the complement probability of the above result.

Recall that for any given discrete random variable X taking values over positive non-
negative integral values, one can define a so-called probability generating function (PGF, for
short) GX to be a formal power series defined as

GX(z) = ∑
i≥0

Pr(X = i)zi.

While the PGFs are usually not meant to be evaluated for concrete values of z, certain
values have special interpretation when used in PGF, or in a derivation(s) of PGF. For
instance, Pr(X = 0) = GX(0), and also E(X) = G′X(1). For many values of z, the function
GX may not converge to any finite value. For this reason, it is a common notation to write,
in particular,

GX(1−) = lim
z↗1

GX(z).



Algorithms 2023, 16, 170 10 of 28

In what follows, we will denote a Bernoulli-distributed random variable with param-
eter p as Bernoulli(p). Furthermore, we denote a zero-truncated binomially distributed

random variable on parameters n and pi+1 by B0(n, pi+1). Finally, d
= indicates so-called

equality in distribution.

Example 1. The probability generating function of a binomial random variable B(n, p), the number
of successes in n trials, with probability p of success in each trial, is

GB(n,p)(z) = G(z) =
n

∑
k=0

(
n
k

)
pk(1− p)n−kzk

=
n

∑
k=0

(
n
k

)
(pz)k(1− p)n−k

= ((1− p) + pz)n.

It is thus easy to compute expectation

E(B(n, p)) = G′(1) = np.

We now focus our attention on the distribution of ξij.

Lemma 2. Suppose that a node v exists at level 1 ≤ i ≤ σ. Then, the number of its children ξiv is
modeled by a zero-truncated binomially distributed random variable on parameters n and pi+1. In
particular, the probability of node v having k children equals

P(ξiv = k) =
(n

k)(1− pi+1)
n−k

1− (1− pi+1)n (3)

and the corresponding probability generating function equals

B0(n, pi+1)
d
= Gi(z) =

(1 + pi+1(z− 1))n − (1− pi+1)
n

1− (1− pi+1)n . (4)

Proof. In order to prove the lemma, we have to show that ξiv
d
= B0(n, pi+1). Consider an

arbitrary node v on level 1 ≤ i ≤ σ. According to the definition of the multiset-trie, a node
exists at level i if and only if it has at least one child. Note that this is not true for the nodes
on the leaf level σ + 1. This implies that a node on level i can have k ∈ {1, 2, . . . , n} children.
Let X0, X1, . . . , Xn−1 be random variables; they are defined as follows:

Xk =

{
0 child k of node v does not exist
1 child k of node v exists

As was shown in the previous Lemma 2, the distribution of Xk is Xk
d
= Bernoulli(pi+1).

Since our model assumes that all the multisets in M are chosen uniformly at random, the
variables Xk, Xl are independent for k 6= l. However, in our case, the node v cannot have 0
children, so the sum ∑n

k=1 Xk has a zero-truncated binomial distribution,

n

∑
k=1

Xk
d
= B0(n, pi+1),

which completes the proof.



Algorithms 2023, 16, 170 11 of 28

Knowing the probability density and probability generating functions of ξij from
Lemma 2, we can now estimate the number of nodes in a randomly generated multiset-trie
as follows:

E(|M|) = E
[

σ+1

∑
i=1

ξi

]
. (5)

In order to evaluate (5), we will use some of the tools from a Galton–Watson process;
see Gardiner [26] for an introduction. Using Equations (1) and (4), we can derive the
probability generating function for the random variable ξi+1 as

Gξi+1(z) = Gξi (Gi(z)). (6)

Since there is always precisely one node at the root level, we have P(ξ1 = 1) = 1. Hence,
the probability generating function for the random variable ξ1 is

Gξ1(z) = z1 = z (7)

which is the initial condition for the recursive Equation (6).

Proposition 1. The expectation of the random variable ξi+1 can be expressed as follows.

E(ξi+1) = E(ξi)E(B0(n, pi+1))

for 1 ≤ i ≤ σ.

Proof. Using the following property of probability generating function

G′X(1
−) = E(X) (8)

the expectation for the random variable ξi+1 can be derived in terms of Equation (6).

E(ξi+1) = G′ξi+1
(1−)

= G′ξi
(Gi(1−))G′i(1

−). (9)

According to (3) and (4), the value of Gi(z) at 1 is 1 and the value of its derivative at 1 is
E(B0(n, pi+1)). Substituting the values of Gi(1−) and G′i(1

−), and applying the property (8),
we complete the proof.

From Proposition 1 above and Lemma 2, we can conclude that

E(ξi) = E(ξi−1)E(B0(n, pi))

= E(ξi−1)
npi

1− (1− pi)n . (10)

Theorem 1. LetM be a multiset-trie defined with parameters n, σ, and denote the number of
nodes on every level i by a random variable ξi. Furthermore, let all multisets appear inM with
equal probability p ∈ (0, 1). Then, the expected number of nodes on every level ofM, i.e., E(ξi), is
defined as

E(ξi) = ni−1 1− (1− p)nσ+1−i

1− (1− p)nσ . (11)



Algorithms 2023, 16, 170 12 of 28

Proof. According to (7), the expected number of nodes on the first level is 1.
Using E(ξ1) = 1 and the result from Proposition 1, we obtain

E(ξi) =
i

∏
j=2

npj

1− (1− pj)n =
i

∏
j=2

n
1− (1− p)nσ+1−j

1− (1− p)nσ+2−j

= ni−1 1− (1− p)nσ+1−i

1− (1− p)nσ

Having derived the expected number of nodes on every level of multiset-trie, the
expected value of the total number of nodes in a multiset-trie can be calculated with respect
to the parameters n, σ and p. This result is obtained in the next theorem.

Theorem 2. The expected cardinality of a multiset-trie defined on parameters n, σ, and p can be
computed as

E(|M|) =
σ+1

∑
i=1

ni−1 1− (1− p)nσ+1−i

1− (1− p)nσ , (12)

where r = (1− p)n, so r ∈ (0, 1).

Proof. Using the results obtained from Theorem 1, we compute

E(|M|) = E
[

σ+1

∑
i=1

ξi

]

=
σ+1

∑
i=1

ni−1 1− (1− p)nσ+1−i

1− (1− p)nσ

With the expected number of nodes in a multiset-trieM obtained from Theorem 2,
we can now generalize the result for a subtree inM parametrized by an input multiset m.
The subtrees that we are interested in are the ones that contain all the sub-multisets or all
the super-multisets of m. In order to calculate the expected cardinality of such subtrees, we
need the following definition.

Definition 1. Let m = {1k1 , 2k2 , . . . , σkσ}, where eke is an element e with multiplicity ke. Let
M1, M2 be the subsets of the set M, such that M1 = {x ∈ M : x ⊆ m} and M2 = {x ∈ M : x ⊇
m}. Define αi and βi as follows:

αi =

{
1, i = 0

∏i
j=1(k j + 1), 1 ≤ i ≤ σ

and

βi =

{
1, i = 0

∏i
j=1(n− k j − 1), 1 ≤ i ≤ σ

.

The expected cardinality of the subtrees containing the multisets from M1 or M2 is
defined in the following corollary.

Corollary 1. Let M1, M2, αi and βi be defined as in Definition 1; then, the expected cardinality of
a multiset-trie subtreeMM1 that contains all the multisets from the set M1 is equal to



Algorithms 2023, 16, 170 13 of 28

E(|MM1 |) =
σ+1

∑
i=1

αi−1
1− (1− p)αi−1

1− (1− p)ασ
. (13)

The expected cardinality of a multiset-trie subtreeMM2 that contains all the multisets from the set
M2 is equal to

E(|MM2 |) =
σ+1

∑
i=1

βi−1
1− (1− p)βi−1

1− (1− p)βσ
. (14)

Proof. Using the results from Theorems 1 and 2, we derive the formulas (13) and (14) by
specifying the possible number of nodes on every level in the multiset-trie according to the
multiset m. Note that the formula (11) assumes that, on every level but the first one, there
are n possible nodes. Given a sub-multiset or super-multiset query and an input multiset
m, the number of nodes that will be traversed on level i is defined by the number ki−1 + 1
or n− ki−1 − 1 for i ≥ 2. On level i = 1, there is only one root node in any multiset-trie
M, which always exists if M 6= ∅ and is traversed for any type of query (sub-multiset and
super-multiset).

4.1.2. GetAllSubmsets and GetAllSupermsets

In this subsection, we discuss the running time complexity of the functions GETALL-
SUBMSETS and GETALLSUPERMSETS. It is obvious that any other algorithm for retrieving
all the sub-multisets or super-multisets has a worst-case running time complexity of at
least O(|M|). Hence, the functions GETALLSUBMSETS and GETALLSUPERMSETS have the
worst-case running time complexity O(|M|). Indeed, the case when the algorithms re-
trieve all the multisets stored in a multiset-trie by traversing the whole structure can be
easily constructed.

Consider the function GETALLSUBMSETS. The function takes some multiset m as an
input argument. Then, it returns a set of multisets {x ∈ M : x ⊆ m} from the multiset-trie
M. Having a multiset m set to the largest possible multiset in N (it can also be larger),

m = {1n−1, 2n−1, . . . , σn−1}

the whole multiset-trie is traversed during the GETALLSUBMSETS query.
Now, let us consider the function GETALLSUPERMSETS. Similarly, the function takes

a multiset m as an input argument. However, in this case, it returns the set of multisets
{x ∈ M : x ⊇ m} from the multiset-trieM. In order to obtain the traversing of all the
multiset-trie, one must set m to the smallest possible multiset, i.e., an empty multiset

m = {∅} = {10, 20, . . . , σ0}.

Thus, we can conclude that the worst-case running time complexity of the functions
GETALLSUBMSETS and GETALLSUPERMSETS is O(E(|M|)). According to Theorem 2, the
expected number of visited nodes in the worst case is

O(
σ+1

∑
i=1

ni−1 1− (1− p)nσ+1−i

1− (1− p)nσ ).

According to Theorem 1, the worst-case running time complexity given an input multiset
m for the function GETALLSUBMSETS is

O(
σ+1

∑
i=1

αi−1
1− (1− p)αi−1

1− (1− p)ασ
)

and for the function GETALLSUPERMSETS is



Algorithms 2023, 16, 170 14 of 28

O(
σ+1

∑
i=1

βi−1
1− (1− p)βi−1

1− (1− p)βσ
).

4.1.3. SubmsetExistence and SupermsetExistence

We start the analysis of the functions SUBMSETEXISTENCE and SUPERMSETEXISTENCE

with an observation. Our theoretical model assumes that all the multisets are inserted into
multiset-trie at random. It was already concluded that the probability distribution function
P(m ∈ M) has an impact on the size of multiset-trieM. Moreover, this distribution influ-
ences the performance of the functions SUBMSETEXISTENCE and SUPERMSETEXISTENCE

even more.
For a real-world model, such that P(m ∈ M) 6= const, the performance of the search

algorithms directly depends on the number of nodes on every level ξi. When the search
functions check if a multiset is in multiset-trie, the complete path that corresponds to this
multiset is checked. Knowing this fact, the search can be optimized during the construction
of a multiset-trie.

Recall that a multiset-trie is defined on parameters n, Σ, σ = |Σ|, and φ. Let the
frequency of an element e in a multiset m be the multiplicity of e in m, denoted by multm(e).
Then, the frequency of an element e can be defined as a sum ∑m∈M multm(e). According
to the frequencies of elements in Σ, the performance of the multiset-trie can be optimized
by the mapping φ : Σ → I. Indeed, the ordering of elements by their frequencies has an
influence on the performance. The frequency of an element e ∈ Σ affects the distribution of
ξφ(e) as follows. The larger the frequency of e, the larger the number of nodes on the φ(e)
level. Thus, if the number of nodes on lower levels is greater than on higher levels, then
the search functions will discard complete paths that do not satisfy the query faster. Hence,
the closest match will be found faster.

Let us now switch back to our mathematical model and note that the influence of the
mapping function φ in our model has an inessential impact on the performance, because
all the multisets are equally likely, and the whole domain N is used for sampling multisets.

Consider both functions SUBMSETEXISTENCE and SUPERMSETEXISTENCE. Whenever
the result is false, i.e., no multiset in M is a sub-multiset or super-multiset of an input
multiset m, both functions in the worst case visit all the nodes inM but the nodes on the
leaf level. Of course, such a case would be very rare, assuming a random input model, but
it can be constructed as follows.

Consider the function SUBMSETEXISTENCE. Then, given an input multiset m =
{1k1 , 2k2 , . . . , σkσ}, the collection of inserted multisets M must be equal to M = {x ∈
M : kx,σ > km,σ}. Analogically, for the function SUPERMSETEXISTENCE with an input
multiset m = {1k1 , 2k2 , . . . , σkσ}, the collection of inserted multisets M must be equal to
M = {x ∈ M : kx,σ < km,σ}.

Thus, the worst-case running time complexity of the functions SUBMSETEXISTENCE

and SUPERMSETEXISTENCE is O(|M| − |M|). According to Theorem 2, this value is

O(
σ

∑
i=1

ni−1 1− (1− p)nσ+1−i

1− (1− p)nσ ).

According to Theorem 1, the worst-case running time given an input multiset m for the
function SUBMSETEXISTENCE is

O(
σ

∑
i=1

αi−1
1− (1− p)αi−1

1− (1− p)ασ
)

and for the function SUPERMSETEXISTENCE is

O(
σ

∑
i=1

βi−1
1− (1− p)βi−1

1− (1− p)βσ
).



Algorithms 2023, 16, 170 15 of 28

Note that the summation goes only up to σ and not up to σ + 1 as in Theorem 2 or
in Theorem 1.

As for the case wherein the outcome of the functions SUBMSETEXISTENCE and SU-
PERMSETEXISTENCE is true, one has to guarantee the termination of the algorithm at some
node on the leaf level. The worst-case scenario can be constructed in the same way as for
the false outcome but with two more multisets in M. The first multiset is the empty multiset.
With the empty multiset, the function SUBMSETEXISTENCE will visit the same amount of
nodes as for the false case, plus one more for the empty multiset. The second multiset is the
maximal possible multiset from N. In this case, the function SUPERMSETEXISTENCE will
also visit the same amount of nodes as for the false case, plus one more for the maximal
multiset. Hence, the worst-case running time complexity for both outcomes (true and false)
is the same.

4.2. Space Complexity

As in any efficient algorithm, there is always some trade-off between space and time
complexity. While offering efficient sub- and super-multiset queries, an additional space
must be provided for multiset storage. As we increase the parameter p, the number of
sets we need to store (i.e., number of leaves) increases linearly. Figure 2 shows that the
additional overhead space that our data structure uses does not increase as the tree is
becoming more and more dense.

0.0 0.2 0.4 0.6 0.8 1.0
Probability

0.0

0.2

0.4

0.6

0.8

1.0

N
o
d

e
s 

[×
1
0

2
6
]

Expected number of nodes

Total nodes

Leaf nodes

Figure 2. Size of a tree (E(|M|)) compared to the number of stored sets (E(|M|)), as the probability
parameter p increases. Parameters σ and n are 26 and 10, respectively. The additional overhead space
that our data structure uses does not increase as the tree is becoming more and more dense.

As we see in Figure 2, the value of |M| is slightly shifted with respect to the value of |M|.
Now, we demonstrate a more descriptive comparison between |M| and |M|. Figure 3

shows the ratio between the expected cardinality of a multiset-trie |M| and the actual
number of multisets stored |M| for parameters n and σ being 10 and 26, respectively.

Analyzing the graph in Figure 3, we can safely say that the upper bound for the ratio
is σ + 1. The argument holds because of the limit

lim
p→0+

E(ξi) = 1, (15)

where ξi is the number of nodes on the i-th level and 1 ≤ i ≤ σ + 1.
However, the ratio σ + 1 can be obtained only with a very small cardinality of the

set M, in particular |M| = 1. In order to obtain such a case, the probability p must be at
most 1

nσ .



Algorithms 2023, 16, 170 16 of 28

The lower bound for the ratio is obviously at p = 1 and is equal to 1:

lim
n,σ→∞

nσ+1 − 1
nσ(n− 1)

= 1. (16)

Since the ratio σ + 1 can be obtained for a very specific case only and with a small
increase in probability, the ratio drops rapidly and it can be concluded that the space
complexity of the multiset-trie is O(|M|).

0.0 0.2 0.4 0.6 0.8 1.0
Probability

2

4

6

8

10

Di
m

en
sio

nl
es

s

Ratio nodes/multisets
Ratio

Figure 3. The ratio of “data overhead” derived from Figure 2, as the density p of our data structure
increases. Unless we are in a very sparse setting, the trade-off in terms of space is small.

4.3. An Informal Comment on the Mathematical Analysis

In the next section, we show how our data structure preforms in certain environments.
We will see, in our view, great results throughout various experiments, even when compared
with state-of-the-art approaches such as Inverted Index.

It was very frustrating to us that, despite these indications, it seems that this structure
is very difficult to analyze. Even after restricting the analysis to the (usually simple) case
wherein the input data are uniformly distributed, and after utilizing reliable probabilistic
tools, our approach unfortunately did not provide as clear results as we hoped for. We
would be very keen to learn of an approach or technique that would offer more insight into
the mathematical analysis of our data structure and its algorithms.

5. Experiments

This section contains the results of experiments that were performed on the multiset-
trie data structure. In particular, we tested the functions SUBMSETEXISTENCE, SUPERMSE-
TEXISTENCE, GETALLSUBMSETS, and GETALLSUPERMSETS. We refer to the former two
operations as the existence operations, and the later two as the exhaustive operations.

The multiset-trie is implemented in the C++ programming language. The current
implementation uses only the standard library of the C++14 version of the standard and
has a command line interface [27]. The implementation of the program was optimized for
testing, and, therefore, the program operates with files to process queries. After processing
all the queries, the results are stored in files for further analysis.

The current implementation of multiset-trie is not optimized for space consumption.
A node in the multiset-trie is implemented as a record indicating the level of the tree that
corresponds to a symbol from Σ, and including an array of pointers to its children indexed
by the multiplicities of the child symbols. The arrays have fixed length n from the interval
[0, n]. Only some elements of an array may point to a child node, while others include a
Null value.



Algorithms 2023, 16, 170 17 of 28

Before we start, we will give a few definitions of the parameters that were varied
throughout the experiments and discuss the experimental data that were used.

Let M be a set of multisets inserted into multiset-trie and let n be the maximal node
degree. Let N be the power multiset of Σ, where the multiplicity of each element is bounded
from above by n− 1. We define the density of a multiset-trie to be the ratio |M||N| , where | · |
denotes cardinality.

The selected parameters of the data structure that were varied in the experiments were
as follows:

• σ—the cardinality of the alphabet Σ;
• n—the maximal degree of a node, which explicitly defines the maximal multiplicity of

elements in a multiset;
• φ—mapping of letters from Σ into a set of consecutive integers;
• d—density of a multiset-trie.

The cardinality of a power multiset N is equal to nσ, which means that density d of a
multiset-trie depends on parameters |M|, σ and n. Because parameters σ and n are set
when a multiset-trie is initialized, the parameter |M|was varied to change the density in the
experiments. As we mentioned in Section 2, the mapping φ determines the correspondence
of letters to levels in multiset-trie, i.e., it defines the ordering of levels in multiset-trie. It is
also true that φ defines the ordering in multisets.

In the following Sections 1–5, we will present the behavior of the multiset-trie data
structure depending on the selected parameters, as well as the comparative benchmark
of the multiset-trie against the B-tree implementation of Inverted Index. We start with
experiments that were performed on artificially generated data in order to give a general
picture of the multiset-trie’s performance.

In Experiment 1, a special case of the multiset-trie is considered. Only sets are allowed
to be stored in the data structure, i.e., the maximally allowed multiplicity is set to 1. The
performance is measured with respect to the density of the multiset-trie.

Experiment 2 was an extension of the previous one. Here, we also measured the
performance of the multiset-trie depending on its density. The difference was that the
allowed multiplicity of an element was raised, i.e., the data structure was populated
with multisets.

Summarizing the tests of the performance depending on the density, we present
Experiment 3. It shows the nonlinearity of the performance with respect to the density of
the multiset-trie.

The fourth experiment on the multiset-trie uses real-world data. In Experiment 4, the
influence of the mapping φ is studied. The input data are obtained by mapping real words
from the English dictionary to the set of consecutive integers using the function φ. The
experiment shows that the performance of the multiset-trie is noticeably influenced by
different mappings φ. It also shows the usability of the multiset-trie in terms of real data,
demonstrating the high performance of search queries.

Finally, the empirical comparison of the multiset-trie data structure with the B-tree-
based Inverted Index is presented in Experiment 5. We use Inverted Index to store and
retrieve multisets in the same way as is described in the paper by Helmer and Moerkotte [23]
for sets. In the comparison, we use three types of queries: exact, sub-multiset, and super-
multiset retrieval.

5.1. Data Generation

We denote by input data the data that are used to fill the structure prior to testing and
by test data the set of queries that are used to test the performance of the functions.

The artificially generated input data are obtained by sampling |M| multisets from
N. All the multisets in N are constructed according to parameters σ and n and represent
the power multiset of the alphabet Σ. Every multiset in M is chosen from N with equal
probability p. Thus, the probability p gives a collection M of multisets that are sampled



Algorithms 2023, 16, 170 18 of 28

from N with uniform distribution. Uniform distribution is chosen in order to simulate
random user input.

The test data are generated artificially and constructed as follows. Given the parame-
ters σ and n, the possible size of a multiset varies from 1 to σn. The number of randomly
generated test multisets for every value of multiset size is 1500. In other words, we perform
1500 experiments in order to measure the number of visited nodes for the queries with a
test multiset of distinct sizes. The final value of visited nodes is calculated by taking an
arithmetic mean among all 1500 measurements.

5.2. Experiment 1

This experiment shows the performance of multiset-trie being used for storing and
retrieving sets instead of multisets. We restrict multiset-trie in order to obtain a closer
comparison with the set-trie data structure [24]. In this case, we set the maximal node
degree n to be 2 and σ to be 25. The mapping φ does not have an influence in this particular
experiment because the input data are generated artificially with uniform distribution. On
average, the results will be the same for any φ, since all the multisets are equally likely to
appear in M. The parameter |M| varies from 10,000 sets up to 320,000 sets. According to the
parameters n and σ, the cardinality of N is 33, 554, 432 ≈ 3.36× 107. Thus, the calculated
density of the multiset-trie with respect to |M| varies from 0.3× 10−3 to 9.5× 10−3.

The performance of the functions SUBMSETEXISTENCE and SUPERMSETEXISTENCE

increases as the density increases (see Figure 4a,b). The results are as expected because the
increase in the density increases the probability of finding a sub-multiset or super-multiset
in multiset-trie, which leads to a lower number of visited nodes.

0 5 10 15 20 25
Length of input

50

100

150

200

250

300

350

Vi
sit

ed
 n

od
es

Subset existence
|M| = 10,000
|M| = 20,000
|M| = 40,000
|M| = 80,000
|M| = 160,000
|M| = 320,000

(a)

0 5 10 15 20 25
Length of input

50

100

150

200

250

300

350

Vi
sit

ed
 n

od
es

Superset existence
|M| = 10,000
|M| = 20,000
|M| = 40,000
|M| = 80,000
|M| = 160,000
|M| = 320,000

(b)
Figure 4. Existence functions of Experiment 1. (a) submsetExistence; (b) supermsetExistence.

The maxima are located between 175 and 375 for SUBMSETEXISTENCE and between
175 and 350 for SUPERMSETEXISTENCE. According to these maxima, we can deduce that at
least 7–15 multisets were checked in order to find a sub-multiset or super-multiset, which
is from 0.02× 10−3 to 1.5× 10−3 of the multiset-trie and from 1.9× 10−7 to 4.5× 10−7 of
the complete multiset-trie.

As the density increases, the peaks shift from the center to the left or to the right, for
SUBMSETEXISTENCE and SUPERMSETEXISTENCE, respectively. The shifts are the conse-
quence of the uniform distribution of sets in M. Since every set has the same probability
of appearing in M, the distribution of set sizes in M is normal. Consequently, with the
increase in the density of the multiset-trie, the number of sets in M with cardinality 1

2 σ will
be larger than the number of sets with cardinality 1

2 σ± ε, for 1
2 σ > ε > 0. Thus, the function

SUBMSETEXISTENCE needs to visit less nodes for test sets of size 1
2 σ than for test sets of

size 1
2 σ± ε. The function decreases the multiplicity of some elements (in some cases, it

skips them) in order to find the closest subset. Hence, the peak shifts to the left. Oppositely,
the function SUPERMSETEXISTENCE increases the multiplicity of some elements (in this



Algorithms 2023, 16, 170 19 of 28

case, adding new elements) in order to find the closest superset. Thus, the peak shifts to
the right.

Note that despite the peak shifts, both functions SUBMSETEXISTENCE and SUPERMSE-
TEXISTENCE have approximately the same worst-case performance.

The performance of the functions GETALLSUBMSETS and GETALLSUPERMSETS de-
creases as the density increases (see Figure 5a,b). This happens because the number of
multisets in multiset-trie increases, which means that any multiset in the data structure will
have more sub- and super-multisets. The maxima for both functions vary from 8.0× 104 to
1.5× 106 visited nodes. We can notice that the local maxima for the functions GETALLSUBM-
SETS and GETALLSUPERMSETS differ with respect to the length of input. The explanation is
very simple. In order to find all sub-multisets of a small set, the function has to traverse
a small part of the multiset-trie. As the size of a set increases, the part of a multiset-trie
where all the sub-multisets of a given set are stored also increases. The opposite holds for
the function GETALLSUPERMSETS.

0 5 10 15 20 25
Length of input

102

103

104

105

106

Vi
sit

ed
 n

od
es

Find all subsets
|M| = 10,000
|M| = 20,000
|M| = 40,000
|M| = 80,000
|M| = 160,000
|M| = 320,000

(a)

0 5 10 15 20 25
Length of input

102

103

104

105

106

Vi
sit

ed
 n

od
es

Find all supersets
|M| = 10,000
|M| = 20,000
|M| = 40,000
|M| = 80,000
|M| = 160,000
|M| = 320,000

(b)
Figure 5. Exhaustive functions of Experiment 1. (a) getAllSubmsets; (b) getAllSupermsets.

Despite the fact, that for a lookup of any set/multiset, σ nodes must be visited in
multiset-trie on average, the data structure has very similar performance results in compar-
ison to the set-trie data structure.

5.3. Experiment 2

In Experiment 2, we demonstrate the performance of the unrestricted multiset-trie
allowing multisets to be inserted into the data structure. We set n to be 6 and retain σ = 25,
as in Experiment 1. The mapping φ does not have an influence on the results, since the
input data are generated artificially with uniform distribution. The cardinality of M varies
from 40,000 to 640,000 multisets. Thus, the calculated density d varies from 1.4× 10−15 to
2.25× 10−14. The density is much smaller than in Experiment 1, because now we allow
multisets to be stored in the data structure, and according to the parameters n and σ, the
cardinality of N is 625 = 2.84× 1019.

As we can see from the graphs in Figure 6a,b, the performance of the functions
SUBMSETEXISTENCE and SUPERMSETEXISTENCE becomes worse as the density increases.
In this case, the number |M| is slightly larger than in Experiment 1, but the density is very
small. Consequently, multiset-trie becomes more sparse. Multisets in a sparse multiset-trie
differ more, which leads to a larger number of visited nodes.

The maxima for both functions vary from 7500 to 25,000 visited nodes. According to
these maxima, at least 300–1000 multisets were checked in order to find a sub-multiset or
super-multiset, which is from 1.5× 10−3 to 7.5× 10−3 of the entire multiset-trie and from
1.1× 10−17 to 3.4× 10−17 of the complete multiset-trie. The percentage of visited multisets
with respect to |M| is larger than in Experiment 1. However, if one would compare the
percentage of visited multisets with respect to the complete multiset-trie, then, in the case
of Experiment 2, it is less by 10 orders than in Experiment 1.



Algorithms 2023, 16, 170 20 of 28

0 20 40 60 80 100 120
Length of input

0.0

5,000.0

10,000.0

15,000.0

20,000.0

25,000.0

Vi
sit

ed
 n

od
es

Subset existence
|M| = 40,000
|M| = 80,000
|M| = 160,000
|M| = 320,000
|M| = 640,000

(a)

0 20 40 60 80 100 120
Length of input

0.0

5,000.0

10,000.0

15,000.0

20,000.0

25,000.0

Vi
sit

ed
 n

od
es

Superset existence
|M| = 40,000
|M| = 80,000
|M| = 160,000
|M| = 320,000
|M| = 640,000

(b)
Figure 6. Existence functions in Experiment 2. (a) submsetExistence; (b) supermsetExistence.

The peaks are shifted from the center to the left and right for SUBMSETEXISTENCE and SU-
PERMSETEXISTENCE, respectively. Such behavior was previously observed in Experiment 1.
The explanation is the same: the input data have a uniform distribution, implying that the
size of multisets in M is normally distributed. Because of the normal distribution of the
size of multisets, the shift in the peak occurs as the density increases.

It can also be observed that, as in the previous Experiment 1, both functions SUBMSE-
TEXISTENCE and SUPERMSETEXISTENCE have similar worst-case performance.

The functions GETALLSUBMSETS and GETALLSUPERMSETS decrease their performance
as the density increases (see Figure 7a,b). This happens because the number of multisets
increases as the density increases. Thus, there are more nodes that have to be visited
in order to retrieve all sub- or super-multisets of some multiset. The maximum for both
functions varies from 0.9× 105 to 1.5× 107 visited nodes. As was observed in Experiment 1,
the maxima occur at opposite points. For the function GETALLSUBMSETS, it will always be
at the largest size of the multiset, which is 125 in our case. Conversely, the maximum for
GETALLSUPERMSETS is at the smallest size of multiset, which is 0 (an empty set).

0 20 40 60 80 100 120
Length of input

102

103

104

105

106

107

Vi
sit

ed
 n

od
es

Find all subsets
|M| = 40,000
|M| = 80,000
|M| = 160,000
|M| = 320,000
|M| = 640,000

(a) Experiment 2, getAllSubmsets function.

0 20 40 60 80 100 120
Length of input

101

102

103

104

105

106

107

Vi
sit

ed
 n

od
es

Find all supersets
|M| = 40,000
|M| = 80,000
|M| = 160,000
|M| = 320,000
|M| = 640,000

(b) Experiment 2, getAllSupermsets function.

Figure 7. Exhaustive functions in Experiment 2.

The results of Experiment 1 show that the performance of functions SUBMSETEXIS-
TENCE and SUPERMSETEXISTENCE increases as the density increases. However, we observe
the opposite behavior in Experiment 2. We explain the reason for such a contradiction in
the next Experiment 3.

5.4. Experiment 3

The results of Experiment 1 and Experiment 2 have shown that as the density of a
multiset-trie increases, the performance of functions SUBMSETEXISTENCE and SUPERMSE-
TEXISTENCE can both become better and worse. The reason for such behavior is that



Algorithms 2023, 16, 170 21 of 28

the dependence of the number of visited nodes on the density is not a linear function.
The performance of the abovementioned functions is maximal when the multiset-trie is
complete. As the multiset-trie becomes more sparse (the density is small), the multisets
differ more, and the number of visited nodes increases. However, the multisets differ less
when the density is high, so the number of visited nodes decreases. Since the dependence
of the number of visited nodes on the density of multiset-trie is a continuous function in
the interval [0, 1], there exists a global maximum. In other words, there exists such a value
of density where the number of visited nodes is maximal.

In this experiment, we empirically find the extremum of density for functions SUBM-
SETEXISTENCE and SUPERMSETEXISTENCE. The parameters σ and n are set to 12 and 5,
respectively. The density varies from 1.0× 10−6 to 1.0× 10−2. The number of visited nodes
was chosen to be maximal for each value of a particular density.

As we see in Figure 8a,b both functions SUBMSETEXISTENCE and SUPERMSETEXIS-
TENCE have the maximum around d ≈ 7.0× 10−5. The maximum is less than 0.3× 10−3

and greater than 1.4× 10−15, which explains the behavior of multiset-trie in Experiment 1
and Experiment 2. It is safe to say that the maximum may vary depending on parameters
n and σ, but such a maximum always exists. Therefore, we omit the experiments with
different parameters n and σ.

0.0 0.2 0.4 0.6 0.8 1.0
Density, %

75

100

125

150

175

200

225

250

Vi
sit

ed
 n

od
es

Subset existence

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Density, %

75

100

125

150

175

200

225

250

275

Vi
sit

ed
 n

od
es

Superset existence

(b)

Figure 8. Existence functions in Experiment 3. (a) submsetExistence; (b) supermsetExistence.

5.5. Experiment 4

In previous experiments, the input was generated artificially with a uniform distribu-
tion, so there was no influence of the mapping function φ on the performance of the tested
functions. This experiment shows the influence of the mapping φ from alphabet Σ to a set
of consecutive integers. We obtain the influence by taking the real-world data as input data.

The data are taken from the English dictionary, which contains 235,883 different words.
These words are mapped to multisets of integers according to the φ. In particular, we are
interested in cases where φ(Σ) enumerates letters by their relative frequency in the English
language. We say that φ(Σ) maps letters in ascending order if the most frequent letter is
mapped to number σ. Conversely, in descending order, this letter is mapped to the number 1.
The size of the alphabet σ is set to the size of the English alphabet: 26. The degree of a node
n is set to 10. On average, the multiplicity of letters is, of course, less than 10. We choose
such a large node degree allowing the multiplicity to be up to 10 because the dictionary
contains such words.

The results in Figure 9a,b are more balanced when letters are ordered by frequency in
ascending order. The maxima for the functions SUBMSETEXISTENCE and SUPERMSETEXIS-
TENCE are at 250 visited nodes.



Algorithms 2023, 16, 170 22 of 28

0 50 100 150 200 250
Length of input

102

Vi
sit

ed
 n

od
es

Subset existence
order = descending
order = ascending

(a)

0 50 100 150 200 250
Length of input

100

101

102

103

104

105

Vi
sit

ed
 n

od
es

Superset existence
order = descending
order = ascending

(b)

Figure 9. Existence functions in Experiment 4. (a) submsetExistence; (b) supermsetExistence.

According to the design of the data structure multiset-trie, we can say something
about multiset only if we try to reach it, i.e., to find the complete path that corresponds to a
particular multiset. This means that in order to give an answer about the existance of some
multiset, one has to check the leaf level in multiset-trie.

Letters that have the least frequencies are now located at the top of multiset-trie
according to the ascending order of letters by frequency. This means that the search
becomes narrower because a great deal of invalid paths will be discarded at the top-most
levels. Thus, multiset-trie can be traversed faster.

As may have been noticed, the functions GETALLSUBMSETS and GETALLSUPERMSETS

were not tested in this experiment. These functions are not affected by variations in the
mapping φ, because, for any multiset, they retrieve all sub-/super-multisets. This means
that the number of visited nodes will not be changed as φ varies.

5.6. Experiment 5

In this experiment, we demonstrate the performance of the multiset-trie data structure
compared to the Inverted Index based on the B-tree. Both data structures are implemented
in the programming language C++, providing in this way an experimental setup for a fair
comparison [27].

The Inverted Index is implemented using an idea from [23]. An inverted index
structure consists of two parts: a dictionary and postings. In our case, a dictionary is
implemented as an in-memory B-tree where keys are all distinct values from a domain
represented by a set Σ. The postings are represented by lists of multisets that contain a
particular element from Σ. Each list item in postings contains a cardinality of a multiset,
which speeds up the containment queries.

The experiment uses the input data for the construction of the given data structure
and the test data for the execution of the operations on the given data structure. The input
data comprise a set of randomly generated multisets used for the construction of a data
structure. The test data include the set of multisets together with the operations that are
evaluated. The input and test data were generated with respect to parameters σ and n, as
presented in Table 1.

Table 1. Configuration of σ and n in benchmark.

σ n

5 1
30 1
5 3
15 3
30 3
10 10



Algorithms 2023, 16, 170 23 of 28

We tested all three types of query on all of the configurations from Table 1, resulting
in 18 experiments in total, i.e., 6 experiments per query type. In each experiment, we
measured the average time consumed by the data structure to process the query. The results
of the exact search, sub-multiset, and super-multiset search experiments are presented in
Tables 2, 3 and 4, respectively.

Table 2. Exact search.

σ n Multiset-Trie (µs) Inverted Index (µs)

5 1 3.45 17,782.35
30 1 4.18 24,865.93

5 3 2.20 1508.81
15 3 4.39 2146.36
30 3 10.67 3639.97
10 10 6.93 384.05

Table 3. Sub-multiset search.

σ n Multiset-Trie (µs) Inverted Index (µs)

5 1 8.96 73,500.84
30 1 17.33 547,572.74

5 3 117.95 162,360.43
15 3 20.74 443,321.39
30 3 23.75 947,706.14
10 10 55.59 466,022.68

Table 4. Super-multiset search.

σ n Multiset-Trie (µs) Inverted Index (µs)

5 1 10.63 63,073.86
30 1 14.65 449,251.68

5 3 171.04 163,256.77
15 3 43.42 425,733.80
30 3 22.06 729,831.34
10 10 58.32 373,784.81

We can see that multiset-trie outperforms the Inverted Index in all of the experiments
by up to four orders of magnitude. In an exact search, multiset-trie has to traverse only
up to σ + 1 nodes to obtain a query result. It can be seen from the results that with the
increase in σ, the processing time for multiset-tire also increases. Multiplicity also affects
the processing time; however, this happens passively. Multiplicity, or the degree of a node
n, defines the shape of multisets that are stored in multiset-trie. Thus, it affects the structure
and density of the multiset-trie.

As for the Inverted Index, all three operations must first fetch all postings for each
particular element of a test multiset. Afterward, the intersection of postings is computed to
answer the query. The operations use more processing time than a simple tree traversal,
which we can see from the results. Postings are filtered on-the-fly to reduce the cost of
the intersection.

Implementations of the multiset containment operations for searching sub-multisets
and super-multisets are similar in the case of the inverted file. The algorithm consists
of the same steps. First, the postings are fetched for each element of the test multiset.
Depending on the particular operation, postings are filtered on-the-fly. Finally, the union or
the intersection of the filtered set of postings is computed. Note that the processing time
increases with the size of the inverted index because of the increased sizes of postings.



Algorithms 2023, 16, 170 24 of 28

In the case of multiset-trie, only a traversal of the tree is required, which is much faster
than the processing of postings, as we can see from the results. In the worst case, the whole
tree is traversed, but the same is for an inverted file.

6. Related Work

The data structure multiset-trie is related to the data structures and indexes designed
to store and manage sets and multisets. We mainly focus on the related data structures
and indexes that efficiently support the set and multiset containment queries. Firstly, we
summarize our previous work on the data structure for managing sets in Section 6.1. Next,
we present in Section 6.2 the related work on the inverted files, i.e., the index structure
that serves as a central data structure in the area of Information Retrieval (IR), but also for
storing sets and multisets in database management systems. The alternative to the inverted
file is the signature tree that is presented in Section 6.3. Finally, we describe the related
work in the area of database management systems in Section 6.4. We review the novel index
structures used for the containment queries and the proposed containment join algorithms.

6.1. Set-Trie

The multiset-trie is closely related to the set-trie data structure introduced by Savnik
in [1,24]. A set-trie is a trie data structure that is adapted for the efficient storage and re-
trieval of sets instead of the sequences of symbols. The set-trie provides the set containment
operations, such as the retrieval of the nearest subset or supersets, as well as the retrieval of
all subsets and supersets from the sets of sets.

Since we are storing sets where each element of the set can appear only once, and the
ordering of elements is not important, the ordering of the elements from the alphabet can
be used for guiding the search in set containment operations. Each set is represented in a
set-trie by a path including the increasing elements of a set represented by set-trie nodes.
Since all sets from a set-trie are ordered by the increasing value of the set elements, the
children of each set-trie node n can only be elements larger than the element n. For a given
set s and a set-trie S, the set containment operations search solely the subtree of S that
includes all the sets (paths from a root to a set-trie node) that are the possible subsets or
supersets of s.

The data structure multiset-trie generalizes the set-trie by providing storage for the
set of multisets. When the multiset-trie is restricted to store a set of sets, the underlying
data structure becomes a simple binary tree. Moreover, all the operations of the set-trie
are also supported by the multiset-trie. The generalization comes with a small penalty in
performance if we compare the multiset-trie with the set-trie in the performance of the set
containment operations. The downside of such a generalization is that multiset-trie no
longer supports the path compression that was obtained in set-trie.

6.2. Inverted File

The inverted file [6,7,16] is the most common data structure used to represent a
collection of (multi)sets. In the area of IR [8], the inverted files are used for searching
documents that contain a given set of words. It is composed of two parts: a dictionary and
the postings. The dictionary maps each word to a list of document identifiers together with
the locations of words in documents. The dictionary is most often implemented by a variant
of a search tree, such as a B+ tree. The postings are implemented as a list of positions that
are stored on the disk because of the huge amount of documents usually indexed by the
inverted file. Since we can have a large number of postings for one word, the postings are
compressed. Furthermore, several possible optimizations exist in the representation and
implementation of postings [7], such as the sorting of postings, a technique called skipping,
and others.

The empirical analyses [16,23] show that the inverted file is the most efficient data
structure for containment queries among the data structures: the sequential signature file,
the signature tree, the extendible signature hashing, and the inverted file.



Algorithms 2023, 16, 170 25 of 28

6.3. Signature Trees

A dynamically balanced signature tree [20,28], or S-tree, is an alternative data structure
for the representation of multisets. An S-tree stores objects on the basis of their attributes
represented in the form of signatures. A signature of an object is formed by the discretization
of object attributes. Each attribute is discretized by mapping the attribute values to a sequence
of bits. The bit sequences are the abstractions of the values of object attributes. They are
glued together to form the signature of an object. The mappings from attribute values to
sequences of bits are defined in such a way that allows superimposing a set of signatures by a
single signature. Such a signature is often formed by using the operation OR. This property
of signatures provides the means for the construction of the hierarchy of signatures that is
utilized for efficient search. The multisets can be effectively represented using signatures,
and the superposition operation can be implemented by the operation OR. The use of the
signature tree for the containment operations was studied by Tousidou et al. [21]. They show
that an S-tree that uses linear hash partitioning can be used to implement the containment
operations efficiently.

6.4. Multisets in Relational Databases

The index structures for the efficient implementation of the (multi)set containment
queries were studied in the framework of the relational DBMS as well as the object-relational
DBMS, where we can use multivalued attributes, including sets, multisets (bags), and lists.
Zhang et al. [29] compared the performance of the containment queries implemented in a
standard relational DBMS (RDBMS) to an information retrieval engine. The results show
that, in general, the IR engine performs better than an RDBMS on containment queries. The
significant causes that differentiate the performance of the IR and RDBMS implementations
are the join algorithms employed and the hardware cache utilization. The differences in
join algorithms and the cache access method that makes IR queries faster were identified
precisely. First, the multi-predicate merge join of the IR engine is different from the standard
merge join, and the index nested-loop join algorithms. Second, the study of the utilization
of cache in the multi-predicate merge join, standard merge join, and index-nested loop joins
has been done, identifying more precisely the differences in the algorithms. They have
presented that with some modifications, an RDBMS could perform this class of queries
more efficiently.

The joins in an object-relational DBMS can be defined by means of the contain-
ment operations. A number of containment join methods have been proposed [30–33].
Ramasamy et al. propose the use of the partitioning set join that relies on the representation
of sets by using signatures [30]. The signature-based representation allows the efficient
implementation of the set comparison operations. The partitioning set join was further
improved by Melnik et al. [31] to handle large sets and to speed up the partitioning phase
of the algorithm. Further, Jampani et al. introduced the PRETTI join algorithm, which
combines an inverted file with a prefix tree for the efficient implementation of the contain-
ment joins. The algorithm for R ./ T recursively computes record identifiers from T while
traversing a prefix tree storing the sets from R. The algorithm uses a single intersection of
two lists to enumerate the matching pairs of rid-s. The PRETTI algorithm was improved by
Luo at al. [33] by replacing the prefix tree with the Patricia tree.

7. Conclusions and Future Work

One of the conclusions of studying the multiset-trie both theoretically and empirically
is that our data structure is input-sensitive. Input sensitivity implies non-consistent per-
formance on different input data. However, our argument that the performance can be
optimized by pre-processing the input data is confirmed in Experiment 4. Pre-processing
determines the optimal encoding for input data and ensures the best performance of the
multiset-trie on particular input data. For example, in the case of storing words in the
multiset-trie, the search queries can always be optimized based on the frequencies of letters
in a specific language. We also see from Experiments 1 and 2 that the dependence of the



Algorithms 2023, 16, 170 26 of 28

multiset-trie’s performance on the density is not a linear function. However, the function is
continuous, and the point of inflection is unique on the whole domain, as shown in Exper-
iment 3. This allows us to predict whether multiset-trie can be used for some particular
application, offering high performance.

The mathematical analysis section provides a non-trivial insight regarding the behav-
ior of the multiset-trie data structure when used in randomized data. It is estimated that
the space complexity of multiset-trie is of order O(|M|), which is the minimal possible
space required by any data structure for the storage of |M| objects. As for the running time
complexity of algorithms, the basic tree functions such as INSERT, SEARCH, and DELETE all
have constant complexity once the multiset-trie is defined. The “getAll” multiset containment
functions have the worst-case running time complexity of O(|M|), where |M| is the cardi-
nality of the multiset-trie data structure. The “existence” multiset containment functions have
the worst-case running time complexity of O(|M| − |M|), where |M| is the cardinality of
the multiset-trie and |M| is the number of inserted multisets (nodes on leaf level).

The implementation of the multiset-trie is not optimized. For example, the main
reason for the space inefficiency is in implementing the links from a node to its children.
Our implementation uses an array data structure to link a node to its children, where
each element of an array, indexed by the multiplicity of the element of the next level,
includes a link to a subtree. A custom-implemented small and extendable hash table would
significantly decrease the amount of space needed to represent a multiset-trie.

Further steps in our research will be to extend the functionality of the multiset-trie. We
are interested in more flexible multiset containment queries where additional conditions
constrain the sub- and super-multisets. For example, the multiplicity of an element in a
multiset can be bounded in operations getAllSubmsets and getAllSupermsets. Furthermore,
the similarity search on multisets can be implemented by modifying the algorithms for
searching the sub- and super-multisets. The second line of research is to investigate the
multiset-trie as a database index data structure. A disk-based index data structure allows
for storing and managing a huge amount of multisets. The mapping from a multiset-
trie, i.e., a n-ary search tree, to a block-based index can be easily defined because of the
regularity of multiset-trie. It will be interesting to compare the multiset-trie with other
existing disk-based index data structures.

Author Contributions: The individual contributions of the authors are as follows. First, M.A. was
the original inventor of the proposed data structure. He also worked on software implementation,
formal analysis, visualization, and writing—the original draft. Second, I.S. contributed to the work
on the investigation, supervision, conceptualization, validation, and writing— original draft, review,
and editing. Third, M.K. has contributed with the formal analysis, supervision, conceptualization,
validation, and writing—review and editing. Finally, R.Š. worked on conceptualization, supervision,
formal analysis, validation, project administration, and funding acquisition. All authors have read
and agreed to the published version of the manuscript.

Funding: The authors acknowledge the support in part of the Slovenian Research Agency, research
program P1-0383.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Savnik, I.; Akulich, M.; Krnc, M.; Škrekovski, R. Data structure set-trie for storing and querying sets: Theoretical and empirical

analysis. PLoS ONE 2021, 2, e0245122. [CrossRef] [PubMed]
2. Bouros, P.; Mamoulis, N.; Ge, S.; Terrovitis, M. Set containment join revisited. Knowl. Inf. Syst. 2016, 49, 375–402. [CrossRef]
3. Gripon, V.; Rabbat, M.; Skachek, V.; Gross, W.J. Compressing multisets using tries. In Proceedings of the 2012 IEEE Information

Theory Workshop, Lausanne, Switzerland, 3–7 September 2012; pp. 642–646.
4. Ross, K.A.; Stoyanovich, J. Symmetric relations and cardinality-bounded multisets in database systems. In Proceedings

of the Thirtieth International Conference on Very Large Data Bases, Volume 30, VLDB Endowment, Toronto, ON, Canada,
29 August–3 September 2004; pp. 912–923.

http://doi.org/10.1371/journal.pone.0245122
http://www.ncbi.nlm.nih.gov/pubmed/33566827
http://dx.doi.org/10.1007/s10115-015-0895-7


Algorithms 2023, 16, 170 27 of 28

5. Steinruecken, C. Compressing sets and multisets of sequences. IEEE Trans. Inf. Theory 2015, 61, 1485–1490. [CrossRef]
6. Zobel, J.; Moffat, A.; Sacks-Davis, R. An efficient indexing technique for full-text database systems. In Proceedings of the 18th

Conference on Very Large Data Bases, Morgan Kaufmann, Vancouver, BC, Canada, 23–27 August 1992; p. 352.
7. Zobel, J.; Moffat, A. Inverted files for text search engines. ACM Comput. Surv. (CSUR) 2006, 38, 6. [CrossRef]
8. Manning, C.D.; Raghavan, P.; Schütze, H. Introduction to Information Retrieval; Cambridge University Press: Cambridge, UK, 2008;

Volume 1.
9. Mannila, H.; Toivonen, H. Levelwise Search and Borders of Theories in Knowledge Discovery. Data Min. Knowl. Discov. 1997,

1, 241–258. [CrossRef]
10. Flach, P.A.; Savnik, I. Database Dependency Discovery: A Machine Learning Approach. AI Commun. 1999, 12, 139–160.
11. Forgy, C. Rete: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. Artif. Intell. 1982, 19, 17–37.

[CrossRef]
12. Bayardo, R.J.; Ma, Y.; Srikant, R. Scaling up All Pairs Similarity Search. In Proceedings of the WWW’07: 16th International World

Wide Web Conference, ACM, Banff, AB, Canada, 8–12 May 2007; pp. 131–140.
13. Xiao, C.; Wang, W.; Lin, X.; Yu, J.X.; Wang, G. Efficient Similarity Joins for Near-Duplicate Detection. ACM Trans. Database Syst.

2011, 36, 15. [CrossRef]
14. Wang, X.; Qin, L.; Lin, X.; Zhang, Y.; Chang, L. Leveraging set relations in exact set similarity join. Proc. VLDB Endow. 2017,

10, 925–936. [CrossRef]
15. Cormen, T.H.; Leiserson, C.; Rivest, R.L.; Stein, C. Introduction to Algorithms, 2nd ed.; The MIT Press: Cambridge, MA, USA, 2001.
16. Zobel, J.; Moffat, A.; Ramamohanarao, K. Inverted files versus signature files for text indexing. ACM Trans. Database Syst. (TODS)

1998, 23, 453–490. [CrossRef]
17. Broder, A.Z.; Eiron, N.; Fontoura, M.; Herscovici, M.; Lempel, R.; McPherson, J.; Qi, R.; Shekita, E. Indexing shared content

in information retrieval systems. In Proceedings of the International Conference on Extending Database Technology, Edinburgh, UK,
29 March 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 313–330.

18. Terrovitis, M.; Passas, S.; Vassiliadis, P.; Sellis, T. A Combination of Trie-trees and Inverted Files for the Indexing of Set-valued
Attributes. In Proceedings of the 15th ACM International Conference on Information and Knowledge Management, Arlington, VA, USA,
6–11 November 2006; ACM: New York, NY, USA, 2006; pp. 728–737.

19. Terrovitis, M.; Bouros, P.; Vassiliadis, P.; Sellis, T.; Mamoulis, N. Efficient Answering of Set Containment Queries for Skewed Item
Distributions. In Proceedings of the 14th International Conference on Extending Database Technology, Uppsala, Sweden, 21 March 2011;
ACM: New York, NY, USA, 2011; pp. 225–236.

20. Deppisch, U. S-tree: A Dynamic Balanced Signature Index for Office Retrieval. In Proceedings of the 9th Annual International ACM SIGIR
Conference on Research and Development in Information Retrieval, Pisa, Italy, 1 September 1986; ACM: New York, NY, USA, 1986; pp. 77–87.

21. Tousidou, E.; Bozanis, P.; Manolopoulos, Y. Signature-based Structures for Objects with Set-valued Attributes. Inf. Syst. 2002,
27, 93–121. [CrossRef]

22. Chen, Y.; Shi, Y. Signature Files and Signature File Construction. In Encyclopedia of Database Technologies and Applications; IGI
Global: Hershey, PA, USA, 2005. [CrossRef]

23. Helmer, S.; Moerkotte, G. A performance study of four index structures for set-valued attributes of low cardinality. VLDB J. 2003,
12, 244–261. [CrossRef]

24. Savnik, I. Index data structure for fast subset and superset queries. In Proceedings of the International Conference on Availability,
Reliability, and Security, Vienna, Austria, 23–26 August 2022; Springer: Berlin/Heidelberg, Germany, 2013; pp. 134–148.

25. Sedgewick, R.; Wayne, K. Algorithms, 4th ed.; Addison-Wesley: Professional: Boston, MA, USA, 2011.
26. Gardiner, C.W. Stochastic Methods; Springer: Berlin/Heidelberg, Germany, New York, NY, USA, Tokyo, Japan, 1985.
27. Akulich, M. Mstrie Repository. 2019. Available online: https://github.com/nick-ak96/mstrie (accessed on 10 March 2023).
28. Pfaltz, J.L.; Berman, W.J.; Cagley, E.M. Partial-match Retrieval Using Indexed Descriptor Files. Commun. ACM 1980, 23, 522–528.

[CrossRef]
29. Zhang, C.; Naughton, J.; DeWitt, D.; Luo, Q.; Luo, Q.; Lohman, G. On Supporting Containment Queries in Relational Database

Management Systems. In Proceedings of the SIGMOD, Portland, OR, USA, 14–19 June 2020; ACM: New York, NY, USA, 2001; pp. 425–436.
[CrossRef]

30. Ramasamy, K.; Patel, J.M.; Naughton, J.F.; Kaushik, R. Set containment joins: The good, the bad and the ugly. In Proceedings of
the 26th VLDB Conference, Morgan Kaufmann, Cairo, Egypt, 10–14 September 2000.

31. Melnik, S.; Garcia-Molina, H. Adaptive Algorithms for Set Containment Joins. ACM Trans. Database Syst. 2003, 28, 56–99.
[CrossRef]

http://dx.doi.org/10.1109/TIT.2015.2392093
http://dx.doi.org/10.1145/1132956.1132959
http://dx.doi.org/10.1023/A:1009796218281
http://dx.doi.org/10.1016/0004-3702(82)90020-0
http://dx.doi.org/10.1145/2000824.2000825
http://dx.doi.org/10.14778/3099622.3099624
http://dx.doi.org/10.1145/296854.277632
http://dx.doi.org/10.1016/S0306-4379(01)00047-3
http://dx.doi.org/10.4018/978-1-59140-560-3.ch105
http://dx.doi.org/10.1007/s00778-003-0106-0
https://github.com/nick-ak96/mstrie
http://dx.doi.org/10.1145/359007.359013
http://dx.doi.org/10.1145/375663.375722
http://dx.doi.org/10.1145/762471.762474


Algorithms 2023, 16, 170 28 of 28

32. Jampani, R.; Pudi, V. Using Prefix-Trees for Efficiently Computing Set Joins. In Proceedings of the Database Systems for Advanced
Applications, 10th International Conference, DASFAA 2005, Beijing, China, 17–20 April 2005; pp. 761–772. [CrossRef]

33. Luo, Y.; Fletcher, G.H.L.; Hidders, J.; Bra, P.D. Efficient and scalable trie-based algorithms for computing set containment relations.
In Proceedings of the 31st IEEE International Conference on Data Engineering, ICDE 2015, Seoul, Republic of Korea, 13–17 April
2015; pp. 303–314. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/11408079_69
http://dx.doi.org/10.1109/ICDE.2015.7113293

	Introduction
	Multiset-Trie Data Structure
	Multiset-Trie Operations
	Insert
	Search
	Delete
	Sub-Multiset and Super-Multiset Existence
	Get All Sub-Multisets and Get All Super-Multisets

	Mathematical Analysis of the Structure
	Time Complexity of the Algorithms
	Mathematical Model
	GetAllSubmsets and GetAllSupermsets
	SubmsetExistence and SupermsetExistence

	Space Complexity
	An Informal Comment on the Mathematical Analysis

	Experiments
	Data Generation
	Experiment 1
	Experiment 2
	Experiment 3
	Experiment 4
	Experiment 5

	Related Work
	Set-Trie
	Inverted File
	Signature Trees
	Multisets in Relational Databases

	Conclusions and Future Work
	References

