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Abstract: In this manuscript, we carry out a study on the generalization of a known family of
multipoint scalar iterative processes for approximating the solutions of nonlinear systems. The
convergence analysis of the proposed class under various smooth conditions is provided. We also
study the stability of this family, analyzing the fixed and critical points of the rational operator
resulting from applying the family on low-degree polynomials, as well as the basins of attraction
and the orbits (periodic or not) that these points produce. This dynamical study also allows us to
observe which members of the family are more stable and which have chaotic behavior. Graphical
analyses of dynamical planes, parameter line and bifurcation planes are also studied. Numerical tests
are performed on different nonlinear systems for checking the theoretical results and to compare the
proposed schemes with other known ones.
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1. Introduction

Many papers deal with methods and families of iterative schemes to approximate the
solution of nonlinear equations f (x) = 0, with f : I ⊆ R→ R as a function defined in an
open interval I. Each of them has a different behavior due to their order of convergence,
stability and efficiency. Of the existing methods in the literature, in the present manuscript,
we focus on the family of iterative processes (ACTV) for approximating the solutions of
nonlinear equations, proposed by Artidiello et al. in [1]. This family was constructed
adding a Newton step to Ostrowski’s scheme, and using a divided difference operator.
Then, the family has a three-step iterative expression with an arbitrary complex parameter
α. Moreover, its order of convergence is at least six. Its iterative expression is

yk = xk −
f (xk)

f ′(xk)
,

zk = yk −
f (yk)

2 f [xk, yk]− f ′(xk)
,

xk+1 = zk − [α + (1 + α)uk + (1− α)vk]
f (zk)

f ′(xk)
, k = 0, 1, . . .

(1)

where

uk = 1− f [xk, yk]

f ′(xk)
and vk =

f ′(xk)

f [xk, yk]
, k = 0, 1, 2, . . .
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The divided difference operator is defined as

f [x, y] =
f (x)− f (y)
(x− y)

, ∀x, y ∈ I.

By using tools of complex dynamics, the stability of this family was studied by
Moscoso [2], where it was observed that there is good dynamic behavior in the case of
α = 1. In Section 2, we present the multidimensional extension of family (1) and prove its
convergence order.

In the stability analysis (Section 3), we determine whether the fixed points of the
associated rational operator are of an attracting, repulsing or saddle point nature; on the
other hand, we search for which values of the parameter-free critical points may appear. In
the bifurcation analysis of free critical points (Section 4), we calculate the parameter lines,
which we generate from the mentioned free critical points, then we generate the bifurcation
planes for specific intervals of parameter α, and as a consequence of these studies, we
generate the dynamical planes for members of the family with stable and unstable behavior.
In Section 5, some numerical problems are considered to confirm the theoretical results.
The proposed schemes for different values of parameter are considered and compared with
Newton’s method and some known sixth-order techniques, namely C61, C62, B6, PSH61,
PSH62, XH6, introduced by Cordero et al. in [3], Cordero et al. in [4], Behl et al. in [5],
Capdevila et al. in [6], and Xiao and Yin et al. in [7].

The iterative expressions of these methods for solving a nonlinear systems F(x) = 0, F :
Ω ⊆ Rn → Rn are shown below. Newton’s scheme is the most known iterative algorithm

x(k+1) = x(k) −
[

F′
(

x(k)
)]−1

F
(

x(k)
)

, k = 0, 1, . . . , (2)

where F′(x) denotes the Jacobian matrix associated to F.
The following sixth-order iterative scheme (see [3]) is named C61. It uses three evalua-

tions of F and two of F′, per iteration:

y(k) = x(k) − F′
(

x(k)
)−1

F
(

x(k)
)

,

z(k) = y(k) − F′
(

x(k)
)−1

[
2I − F′

(
y(k)

)
F′
(

x(k)
)−1

]
F
(

y(k)
)

,

x(k+1) = z(k) − F′
(

y(k)
)−1

F
(

z(k)
)

, k = 0, 1, . . .

(3)

The following scheme, introduced in [4], is a modified Newton–Jarratt composition
with sixth-order convergence and evaluates twice F and F′, per iteration. It is denoted
by C62:

z(k) = x(k) − 2
3

F′
(

x(k)
)−1

F
(

x(k)
)

,

y(k) = x(k) − 1
2

[
3F′
(

z(k)
)
− F′

(
x(k)

)]−1[
3F′
(

z(k)
)
+ F′

(
x(k)

)]
F′
(

x(k)
)−1

F
(

x(k)
)

,

x(k+1) = y(k) −
[
−1

2
F′
(

x(k)
)
+

3
2

F′
(

z(k)
)]−1

F
(

y(k)
)

, k = 0, 1, . . .

(4)

Algorithm (5) was constructed by Behl et al. in [5] and it is denoted by B6.
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y(k) = x(k) − 2
3

F′
(

x(k)
)−1

F
(

x(k)
)

,

z(k) = x(k) −
[

a1 I + a2

(
F′
(

y(k)
)−1

F′
(

x(k)
))2

]
F′
(

x(k)
)−1

F
(

x(k)
)

,

x(k+1) = z(k) −
[
b2F′

(
x(k)

)
+ b3F′

(
y(k)

)]−1[
F′
(

x(k)
)
+ b1F′

(
y(k)

)]
F′
(

x(k)
)−1

F
(

z(k)
)

,

(5)

where k ≥ 0, a1 = −a2 + 1 = 5/8, a2 = 3/8, b2 = 1 − b3 + b1 = (−1/2)(1 + 3b1),
b3 = (1/2)(3+ 5b1) and b1 is a parameter. This is a class of iterative processes that achieves
convergence order six with twice F evaluations and F′, per iteration. For our comparison,
we will use two versions of method B6, one of them with a2 = 3

8 , a1 = 5
8 , b1 = − 3

5 ,
b3 = 0, b2 = 2

5 and the other one with a2 = 3
8 , a1 = 5

8 , b1 = 1, b3 = 4, b2 = −2.
Capdevila et al. in [6] introduced the following class of iterative methods that we call

PSH61. The elements of this family have an order of convergence of six and they need
three evaluations of function F, one of the the Jacobian matrix F′ and a divided difference
[x, y; F] per iteration:

y(k) = x(k) −
[

F′
(

x(k)
)]−1

F
(

x(k)
)

,

z(k) = y(k) −
[

I + 2t(k) +
1
2

αt(k)
2
][

F′
(

x(k)
)]−1

F
(

y(k)
)

,

x(k+1) = z(k) −
[

I + 2t(k) +
1
2

αt(k)
2
][

F′
(

x(k)
)]−1

F
(

z(k)
)

, k = 0, 1, . . . ,

(6)

where α is free and t(k) = I −
[

F′
(

x(k)
)]−1[

x(k), y(k); F
]
. For the numerical results, we will

take α = 0 and α = 10.
Introduced also by Capdevila et al. in [6], we work with the following scheme, denoted

PHS62, with the same order of convergence and the same number of functional evaluations
per iteration as PSH61:

y(k) = x(k) −
[

F′
(

x(k)
)]−1

F
(

x(k)
)

,

z(k) = y(k) −
[

I + 2
(

I + αt(k)
)−1

t(k)
][

F′
(

x(k)
)]−1

F
(

y(k)
)

,

x(k+1) = z(k) −
[

I + 2
(

I + αt(k)
)−1

t(k)
][

F′
(

x(k)
)]−1

F
(

z(k)
)

, k = 0, 1, . . .

(7)

In this case, we take α = 10.
Finally, we use the method called XH6 introduced by Xiao and Yin in [7]. In this case,

we need twice F evaluations and F′ on x(k), z(k) and x(k), y(k), respectively, per iteration.

y(k) = x(k) − 2
3

F′
(

x(k)
)−1

F
(

x(k)
)

,

z(k) = x(k) − 1
2

[
−I +

9
4

F′
(

y(k)
)−1

F′
(

x(k)
)
+

3
4

F′
(

x(k)
)−1

F′
(

y(k)
)]

F′
(

x(k)
)−1

F
(

x(k)
)

,

x(k+1) = z(k) − 1
2

[
3F′
(

y(k)
)−1
− F′

(
x(k)

)−1
]

F
(

z(k)
)

, k = 0, 1, . . .

(8)
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Multidimensional Real Dynamics Concepts

Discrete dynamics is a very useful tool to study the stability of iterative schemes
for solving nonlinear systems. An exhaustive description of this tool can be found in the
book [8]. A resource used for the stability analysis of iterative schemes for solving nonlinear
systems is to analyze the dynamical behavior of the vectorial rational operator obtained to
apply the iterative expression on low degree polynomial systems. This technique generally
uses quadratic or cubic polynomials [9].

When we have scalar iterative processes, the tools to be used are of real or complex
discrete dynamics. However, here, we handle a family of vectorial iterative methods, so
real multidimensional dynamics must be used to analyze its stability, see [6]. We proceed
by taking a system of quadratic polynomials on which we will apply our method in order
to obtain the associated multidimensional rational operator and perform the analysis of the
fixed and critical points in order to select members of the family with good stability.

Some concepts used in this study are presented, see for instance [10].
Let G : Rn → Rn be the operator obtained from the iterative scheme on a polynomial sys-

tem p(x). The set of successive images of x(0) through G(x),
{

x(0), G
(

x(0)
)

, . . . , Gm
(

x(0)
)

, . . .
}

is called the orbit of x(0) ∈ Rn. x∗ ∈ Rn is a fixed point of G if G(x∗) = x∗. Of course, the
roots of p(x) are a fixed point of G, but there may be fixed points of G that are not solutions
of system p(x). We refer them as strange fixed points. A point x that satisfies Gk(x) = x
and Gk−p(x) 6= x, for p < k and k ≥ 1 is called a periodic point, of period k. For classifying
the stability of fixed or periodic points, we use the following result.

Theorem 1 ([8], pg. 558). Let G : Rn → Rn be of type C2. Assuming that x∗ is a periodic k-point,
k ≥ 1. If λ1, λ2, . . . , λn are the eigenvalues of G′(x∗), we have the following:

(a) If all eigenvalues λk verify that |λk| < 1, then x∗ is an attracting point.
(b) If an eigenvalue λk0 is such that

∣∣λk0

∣∣ > 1, then x∗ is unstable, that is, repulsor or saddle.
(c) If all eigenvalues λk verify that |λk| > 1, then x∗ is a repulsive point.

The set of preimages of any order of an attracting fixed point of the multidimensional
rational function G, x∗,

A(x∗) =
{

x(0) ∈ Rn : Gm
(

x(0)
)
→ x∗, m→ ∞

}
,

is the basin of attraction of x∗, A(x∗).
The solutions of G′(x) = 0 are called the critical point of operator G . The critical

points different of the roots of p(x) are called a free critical point. The critical points are
important for our analysis because of the following result from Julia and Fatou (see [11–13]).

Theorem 2 (Julia and Fatou). Let G be a rational function. The immediate basin of attraction of a
periodic (or fixed) attractor point contains at least one critical point.

2. Family ACTV for Nonlinear Systems

Taking into account the iterative expression of family (1), we can extend, in a natural
way, this expression for solving nonlinear systems F(x) = 0. We change scalar f ′ by vecto-
rial F′ and f [x, y] by the divided difference operator [x, y; F]. The resulting expression is
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y(k) = x(k) −
[

F′
(

x(k)
)]−1

F
(

x(k)
)

,

z(k) = y(k) −
(

2
[

x(k), y(k); F
]
− F′

(
x(k)

))−1
F
(

y(k)
)

,

x(k+1) = z(k) −
[

αF′
(

x(k)
)−1

+ (1− α)
[

x(k), y(k); F
]−1
]

F
(

z(k)
)

− (1 + α)

[
In − F′

(
x(k)

)−1[
x(k), y(k); F

]]
· F′
(

x(k)
)−1

F
(

z(k)
)

,

(9)

where In is the n× n identity matrix.
Mapping [·, ·; F] : Ω×Ω ⊂ Rn ×Rn −→ L(Rn) such that

[x, y; F](x− y) = F(x)− F(y), for any x, y ∈ Ω,

is the divided difference operator of F on Rn (see [14]).
The proof of the main result is based on the Genochi–Hermite formula (see [14]),

[x, y; F] =
∫ 1

0
F′(x + t(x− y))dt, for all (x, y) ∈ Ω×Ω.

By developing F′(x + th) in Taylor series around x, we obtain∫ 1

0
F′(x + th)dt = F′(x) +

1
2

F′′(x)h +
1
6

F′′′(x)h2 +O
(

h3
)

. (10)

Denoting by e = x− ξ, where ξ is a zero of F(x), and assuming that F′(ξ) is invertible,
we obtain

F(x) = F′(ξ)
(

e + C2e2 + C3e3 + C4e4 + C5e5
)
+ O

(
e6
)

,

F′(x) = F′(ξ)
(

I + 2C2e + 3C3e2 + 4C4e3 + 5C5e4
)
+ O

(
e5
)

,

F′′(x) = F′(ξ)
(

2C2 + 6C3e + 12C4e2 + 20C5e3
)
+ O

(
e4
)

,

F′′′(x) = F′(ξ)
(

6C3 + 24C4e + 60C5e2
)
+ O

(
e3
)

,

where Cq = 1
q! [F

′(ξ)]−1F(q)(ξ), q ≥ 2. Replacing these expressions in the Genocchi–
Hermite formula and denoting the second point of the divided difference by y = x + h and
the error of y by ey = y− ξ, we obtain

[x, y; F] = F′(ξ)
[

I + C2
(
ey + e

)
+ C3e2

]
+ O

(
e3
)

.

Particularly, if y is the Newton approximation, i.e., h = x− y = [F′(x)]−1F(x), we obtain

[x, y; F] = F′(ξ)
[

I + C2e +
(

C2
2 + C3

)
e2
]
+ O

(
e3
)

.

Convergence Analysis

Theorem 3. Being F : Ω ⊆ Rn → Rn differentiable enough in an open convex neighborhood Ω of
ξ, root of F(x). Consider a seed x(0) close enough to the solution ξ and that F′(x) is continuous and
invertible in ξ. Then, (9) has a local convergence of order six, for all α ∈ R, with the error equation

e(k+1) =
[
(5 + α)

(
C5

2 − C2
2C3C2

)
− C3C3

2 + C2
3C2

]
e(k)

6
+ O

(
e(k)

7
)

,

being Ck =
1
k! [F

′(ξ)]−1F(k)(ξ), k = 2, 3, . . . , e(k) = x(k) − ξ.
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Proof. From

y(k) = x(k) −
[

F′
(

x(k)
)]−1

F
(

x(k)
)

, (11)

We perform the Taylor series of F
(

x(k)
)

and F′
(

x(k)
)

around ξ,

F
(

x(k)
)
= F′(ξ)

[
e(k) + C2e(k)

2
+ C3e(k)

3
+ C4e(k)

4
+ C5e(k)

5
+ C6e(k)

6
+ C7e(k)

7
]

+ O
(

e(k)
8
)

,
(12)

F′
(

x(k)
)
= F′(ξ)

[
I + 2C2e(k) + 3C3e(k)

2
+ 4C4e(k)

3
+ 5C5e(k)

4
+ 6C6e(k)

5
+ 7C7e(k)

6
]

+ O
(

e(k)
7
)

.
(13)

We suppose that the Jacobian matrix F′(ξ) is nonsingular and calculate the Taylor

expansion of
[

F′
(

x(k)
)]−1

as follows:

[
F′
(

x(k)
)]−1

=
[

I + X2e(k) + X3e(k)
2
+ X4e(k)

3
+ X5e(k)

4
+ X6e(k)

5
+ X7e(k)

6
][

F′(ξ)
]−1

+ O
((

ek
)7
)

,
(14)

where X2, X3, X4, X5, X6, X7 are unknowns such that[
F′
(

x(k)
)]−1

F′
(

x(k)
)
= I.

Then, it can be proven that

[
F′
(

x(k)
)]−1

=
[

I − 2C2e(k) +
(

4C2
2 − 3C3

)
e(k)

2
+
(

6C3C2 + 6C2C3 − 4C4 − 8C3
2

)
e(k)

3
+(

16C4
2 + 9C2

3 − 12C3C2
2 − 12C2C3C2 − 12C2

2C3 + 8C4C2 + 8C2C4 − 5C5

)
e(k)

4
+(

−32C5
2 − 18C2

3C2 + 24C3C3
2 + 24C2C3C2

2 + 24C2
2C3C2 − 16C4C2

2 − 16C2C4C2 + 10C5C2

−18C3C2C3 − 18C2C2
3 + 12C4C3 + 24C3

2C3 − 16C2
2C4 + 12C3C4 + 10C2C5 − 6C6

)
e(k)

5

+
(

64C6
2 + 36C2

3C2
2 − 48C3C4

2 − 48C2C3C3
2 − 48C2

2C3C2
2 + 32C4C3

2 + 32C2C4C2
2 − 20C5C2

2

+36C3C2C3C2 + 36C2C2
3C2 − 24C4C3C2 − 48C3

2C3C2 + 32C2
2C4C2 − 24C3C4C2 − 20C2C5C2

+12C6C2 − 48C4
2C3 − 27C3

3 + 36C3C2
2C3 + 36C2C3C2C3 + 36C2

2C2
3 − 24C4C2C3 − 24C2C4C3

+15C5C3 − 24C3C2C4 − 24C2C3C4 + 16C2
4 + 32C3

2C4 − 20C2
2C5 + 15C3C5 + 12C2C6 − 7C7

)
e(k)

6
][

F′(ξ)
]−1

+ O
(

e(k)
7
)

,

(15)

and multiplying expressions (12) and (15), we obtain[
F′
(

x(k)
)]−1

F
(

x(k)
)
= e(k) − C2e(k)

2
+ 2
(

C2
2 − C3

)
e(k)

3
+
(

3C3C2 + 4C2C3 − 3C4 − 4C3
2

)
e(k)

4
+
(
−6C3C2

2 − 8C2
2C3 + 6C2

3 − 6C2C3C2 + 6C2C4 + 4C4C2 + 8C4
2 − 4C5

)
e(k)

5
+(

−16C5
2 − 9C2

3C2 + 12C3C3
2 + 12C2C3C2

2 + 12C2
2C3C2 − 8C4C2

2 − 8C2C4C2 + 5C5C2

−12C3C2C3 − 12C2C2
3 + 8C4C3 + 16C3

2C3 − 12C2
2C4 + 9C3C4 + 8C2C5 − 5C6

)
e(k)

6
.
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Taking into account e(k) = x(k) − ξ, the expansion of the error at the first step of family
(1) is

y(k) − ξ = C2e(k)
2 − 2

(
C2

2 − C3

)
e(k)

3 −
(

3C3C2 + 4C2C3 − 3C4 − 4C3
2

)
e(k)

4

−
(
−6C3C2

2 − 8C2
2C3 + 6C2

3 − 6C2C3C2 + 6C2C4 + 4C4C2 + 8C4
2 − 4C5

)
e(k)

5

−
(
−16C5

2 − 9C2
3C2 + 12C3C3

2 + 12C2C3C2
2 + 12C2

2C3C2 − 8C4C2
2 − 8C2C4C2 + 5C5C2

−12C3C2C3 − 12C2C2
3 + 8C4C3 + 16C3

2C3 − 12C2
2C4 + 9C3C4 + 8C2C5 − 5C6

)
e(k)

6
.

For z(k), we calculate
[

x(k), y(k); F
]

up to order six using the Genochi–Hermite formula
seen in (10), obtaining

=F′(x)
[

I + C2e(k) +
(

C2
2 + C3

)
e(k)

2
+
(

C4 + C3C2 + 2C2C3 − 2C3
2

)
e(k)

3

+
(

C5 + C4C2 + 3C2C4 + 2C2
3 − 3C2C3C2 − 4C2

2C3 − C3C2
2 + 4C4

2

)
e(k)

4

+
(

C6 − 8C5
2 + 6C2C3C2

2 + 8C3
2C3 + 6C2

2C3C2 − C4C2
2 − 6C2

2C4 − 4C2C4

C2 − 6C2C2
3 − C2

3C2 − 2C3C2C3 + 2C4C3 + 3C3C4 + C5C2 + 4C2C5

)
e(k)

5

+
(

C7 + 16C6
2 + 9C2C2

3C2 + 12C2C3C2C3 + 12C2
2C2

3 − C3C2C3C2 − C2
3C2

2

− 12C2C3C3
2 − 12C2

2C3C2
2 − 12C3

2C3C2 − 16C4
2C3 + 4C3C4

2 + 8C2C4C2
2

+ 8C2
2C4C2 + 12C3

2C4 + C4C3
2 − 8C2C4C3 − 9C2C3C4 − 3C3C2C4 − C3C4C2

− C4C3C2 − 2C4C2C3 + 5C2C6 + C6C2 − 2C3
3 + 4C3C5 + 2C5C3 + 3C2

4

−5C2C5C2 − 8C2
2C5 − C5C2

2

)
e(k)

6
]
+ O

(
e(k)

7
)

.

(16)

Following a similar procedure to the one used in (14) and (15), we have

(
2
[

x(k), y(k); F
]
− F′

(
x(k)

))−1
=
[

I +
(

C3 − 2C2
2

)
e(k)

2
+
(

2C4 − 2C3C2 − 4C2C3 + 4C3
2

)
e(k)

3

+
(
−4C4

2 + 6C2
2C3 + 6C2C3C2 − 6C2C4 − 2C4C2 + 3C5 − 3C2

3

)
e(k)

4
+
(
−2C4C2

2 + 8C2
2C4

+ 8C2C4C2 − 2C4C3 − 4C3C4 + 8C3C3
2 − 4C2C3C2

2 − 8C2
2C3C2 − 4C3

2C3 − 2C5C2 − 8C2C5

−2C3C2C3 + 8C2C2
3 + 4C6

)
e(k)

5
+
(

8C6
2 − 4C4

2C3 + 8C2
2C3C2

2 − 4C2C3C3
2 − 24C3C4

2 + 4C3
2C3C2

− 10C2
2C2

3 − 2C2C3C2C3 + 10C2
3C2

2 + 12C3C2C3C2 + 16C3C2
2C3 − 10C2C2

3C2 + 10C2C4C3 − 6C4

C2C3 − 2C4C3C2 − 4C3C2C4 + 10C2C3C4 − 4C2C4C2
2 + 10C4C3

2 − 4C3
2C4 − 12C2

2C4C2 − C5C3

−5C3C5 − 10C2C6 − 2C6C2 − 3C3
3 + 10C2C5C2 + 10C2

2C5 − 4C5C2
2 − 2C2

4

)
e(k)

6
]
+ O

(
e(k)

7
)

.

(17)

Now, we obtain the expansion of F
(

y(k)
)

,(
y(k) − ξ

)2
=C2

2e(k)
4
+
(
−4C3

2 + 2C2C3 + 2C3C2

)
e(k)

5
+
(

12C4
2 − 11C2

2C3 + 4C2
3 + 3C2C4

−4C2C3C2 + 3C4C2 − 7C3C2
2

)
e(k)

6
+ O

(
e(k)

7
)

,(
y(k) − ξ

)3
=C3

2e(k)
6
+ O

(
e(k)

7
)

,



Algorithms 2023, 16, 163 8 of 21

F
(

y(k)
)
=F′(ξ)

[(
y(k) − ξ

)
+ C2

(
y(k) − ξ

)2
]
+ O

((
y(k) − ξ

)3
)

=F′(ξ)
[
C2e(k)

2
+ 2
(

C3 − C2
2

)
e(k)

3
+
(

3C4 + 5C3
2 − 3C3C2 − 4C2C3

)
e(k)

4

+
(

4C5 − 6C2C4 + 10C2
2C3 − 6C2

3 − 4C4C2 + 8C2C3C2 − 12C4
2 + 6C3C2

2

)
e(k)

5

+
(

28C5
2 − 27C3

2C3 + 16C2C2
3 + 15C2

2C4 − 9C3C4 − 8C2C5 + 5C6 − 16C2
2C3C2

+ 9C2
3C2 + 11C2C4C2 − 5C5C2 − 18C2C3C2

2 + 8C4C2
2 − 12C3C3

2 − 8C4C3

+12C3C2C3)e(k)
6
]
+ O

(
e(k)

7
)

.

(18)

Considering the results obtained in (16)–(18), the second step has as the error equation

z(k) − ξ =
(

C3
2 − C3C2

)
e(k)

4
+
(
−2C4C2 + 2C2

2C3 + 2C2C3C2 + 4C3C2
2 − 2C2

3 − 4C4
2

)
e(k)

5

+
(

10C5
2 − 5C3

2C3 − 8C2
2C3C2 − 8C2C3C2

2 − 9C3C3
2 + 4C2C2

3 + 6C2
3C2 + 8C3C2C3 + 3C2

2C4

+ 3C2C4C2 + 6C4C2
2 − 3C3C4 − 4C4C3 − 3C5C2

)
e(k)

6
.

To obtain the error equation of the third step, we need the calculation of [xk, yk; F]−1

and F
(

z(k)
)

since the other elements were previously obtained. Following a process similar
to that seen in (17) and developing only to order two, we have that

[xk, yk; F]−1 = I − C2e(k) − C3e(k)
2
+ O

(
e(k)

3
)

.

For the calculation of F
(

z(k)
)

, we are only interested in the terms up to order six, so
applying what we see in formula (18), we obtain

F
(

z(k)
)
= F′(ξ)

[(
z(k) − x∗

)]
+ O

((
z(k) − ξ

)2
)

.

The resulting error equation for the family of methods (9) is

e(k+1) =
[
(5 + α)

(
C5

2 − C2
2C3C2

)
− C3C3

2 + C2
3C2

]
e(k)

6
+ O

(
e(k)

7
)

.

Once the convergence order of the proposed class of the iterative method is proven, we
undertake a complexity analysis, taking into account the cost of solving the linear systems
and the rest of the computational effort, not only of the proposed class but also of Newton’s
and those schemes presented in the Introduction, with the same order six. In order to
calculate it, let us remark that the computational cost (in terms of products/quotients) of
solving a linear system of size n× n is

1
3

n3 + n2 − 1
3

n,

but if another linear system is solved with the same coefficient matrix, then the cost increases
only in n2 operations. Moreover, a matrix–vector product corresponds to n2 operations.
From these bases, the computational effort of each scheme is presented in Table 1. As the
ACTV class depends on parameter α, we consider α = 1, as this value eliminates one of the
terms in the iterative expression, reducing the complexity.
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Table 1. Computational cost (products/quotients) of proposed and comparison methods.

Method Complexity C

Newton 1
3 n3 + n2 − 1

3 n
C61

2
3 n3 + 5n2 − 2

3 n
C62 n3 + 4n2 − n
B6 n3 + 8n2 − n

PSH61
1
3 n3 + 11n2 − 1

3 n
PSH62

5
3 n3 + 9n2 − 2

3 n
XH6 2

3 n3 + 7n2 − 2
3 n

ACTVα = 1 2
3 n3 + 5n2 − 2

3 n

Observing the data in Table 1, there seems to be a great difference among Newton’s
and sixth-order methods, with PSH62, B6 and C62 being the most costly, in this order. Our
proposed scheme ACTV for α = 1, stays in the middle values of the table. However, this
must be seen in contrast with the order of convergence p of each scheme. With this point of
view, the comparison among the methods is more clear.

With the information provided by Table 1, we represent in Figures 1 and 2 the per-
formance of the efficiency index IO = p

1
C of each method, where p is the order of the

corresponding scheme. This index was introduced by Traub in [15], in order to classify the
procedures by their computational complexity.

Figure 1. Efficiency index IO for systems of size n = 2 to n = 10.

In Figure 1, we observe that the best scheme is that of Newton, being that our proposed
procedure (dashed line in the figure) is third in efficiency. This situation changes for bigger
sizes of the system (see Figure 2), as ACTV for α = 1 achieves the second best place, very
close to Newton’s, improving the rest of schemes of the same order of convergence. Our
concern now is the following: is it possible to find some values of the parameter α such
that this performance is held or even improved? The improvement can be in terms of the
wideness of the set of converging initial estimations. This is the reason why we analyze the
stability of the class of iterative methods.
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Figure 2. Efficiency index IO for systems of size n = 10 to n = 50.

3. Stability Analysis

Let us consider a polynomial system of n variables q(x) = 0, q : Rn → Rn where
qi(x) = x2

i − 1, i = 1, 2, ..., n and we denote by K(x) the associated rational function.
From now on, we denote by ACTV6(x, α) =

(
actv6

1(x, α), actv6
2(x, α), . . . , actv6

n(x, α)
)

the
vectorial function obtained when class (9) is applied on q(x). As q(x) = 0 is uncoupled,
all functions actv6

j (x, α) are analogous, with the difference of the index j = 1, 2, ..., n. Their
expressions are

actv6
j (x, α) =

p(x, α)

128x5
j

(
1 + x2

j

)2(
1 + 3x2

j

) , j = 1, 2, ..., n, (19)

where,

p(x, α) = 1 + x6
j (404− 20α) + x10

j (782− 6α) + α + x12
j (77 + α)− 2x2

j (1 + 3α)

+5x8
j (155 + 3α) + x4

j (11 + 15α).

There are values of α for which the operator coordinates are simplified; we show the
particular case when α = 1.

actv6
j (x, 1) =

1− 7x2
j + 34x4

j + 90x6
j + 125x8

j + 13x10
j

64x5
j

(
1 + x2

j

)2 , j = 1, 2, ..., n. (20)

By determining and analyzing the corresponding fixed points of the operator, we
present a synthesis of the most relevant results.

Theorem 4. Roots of q(x) are the components of 2n superattracting fixed points of ACTV6(x, α)
associated to the class of iterative methods (9). The same happens with the roots of l(t) = −1− α +
(1 + 5α)t2 − (10 + 10α)t4 + (10α− 286)t6 − (421 + 5α)t8 + (α− 307)t10 depending on α:

(a) If α < −1 or α > 307, there are two real roots of l(t), denoted by li(α), i = 1, 2. Fixed
points (lσ1(α), lσ2(α), . . . , lσn(α)) where σi ∈ {1, 2}, are repulsive points. However, if any of
lσj(α) = ±1, j ∈ {1, 2, . . . , n}, then they are saddle points.

(b) ACTV6(x, α) has no strange fixed points for −1 ≤ α ≤ 307.
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Proof. To calculate the fixed points of ACTV6(x, α), we solve actv6
j (x, α) = xj,

−
(

x2
j − 1

)
l(t) = −1− α + (1 + 5α)t2 − (10 + 10α)t4 + (10α− 286)t6 − (421 + 5α)t8

+ (α− 307)t10,
(21)

for j = 1, 2, . . . , n, that is, xj = ±1 and roots of l(t), provided that t 6= 0.
At most, two of the roots of l(t) are not complex, depending on α. The qualitative

performance of ACTV6(x, α) is deduced from the eigenvalues of ACTV6′(x, α) evaluated
at the fixed points. Due to the nature of the polynomial system, these eigenvalues coincide
with the coordinate function of the rational operator:

Eigj
(
lj(α), . . . , lj(α)

)
=(

−1 + lj(α)
2)5(5(1 + α) + 3lj(α)

6(77 + α) + 3lj(α)
4(65 + 17α) + lj(α)

2(49 + 37α)
)

128lj(α)6
(
1 + lj(α)2

)3(1 + 3lj(α)2
)2

(22)

We calculate the absolute values of these eigenvalues only where fixed points are real;
it is clear that those fixed points lj(α) = ±1 are super attracting.

We proceed to plot some of the eigenvalues; if α < −1, the eigenvalues of
(

ACTV6)′(x, α)
at any strange fixed point are named saddle points when their combinations have some
component +1,-1 and the combinations of real roots coming from l(t) are named repulsors
because all eigenvalues are greater than 1 (see Figure 3a); if α > 307, a similar behavior is
observed (see Figure 3b).

(a) (b)

Figure 3. Eigenvalues associated to the fixed points. (a) Eigj(l1(α), . . . , l1(α), α) for α < −1.
(b) Eigj(l1(α), . . . , l1(α), α) for α > 307.

Once the existence and stability of strange fixed points of ACTV6(x, α) is studied, our
aim is to show if there exist any other attracting behavior different from the fixed points.

4. Bifurcation Analysis of Free Critical Points

In the following result, we summarize the most relevant results about critical points.

Theorem 5. ACTV6(x, α) has as free critical points

(crσ1(α), crσ2(α), . . . , crσn(α)), σi ∈ {1, 2, . . . , m}, m ≤ 6,

make null the entries of the Jacobian matrix, for j = 1, 2, . . . , n, being crj(α) 6= ±1, ∀j, that is,

(a) If α ∈ (−∞,−77] ∪ {−5} ∪ [−1, ∞), there not exist free critical points.
(b) If α ∈ (−77,−5) ∪ (−5,−1), then two real roots of polynomial k(x) = 5 + 5α + (49 +

37α)x2 + (195 + 51α)x4 + (231 + 3α)x6 are components of the free critical point.
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Proof. The not null components of ACTV6′(x, α) are

∂a ctv6
j (x, α)

∂xj
=(

−1 + x2
j

)5(
5(1 + α) + 3x6

j (77 + α) + 3x4
j (65 + 17α) + x2

j (49 + 37α)
)

128x6
j

(
1 + x2

j

)3(
1 + 3x2

j

)2 , j = 1, 2.

(23)

Then, the real roots of 5(1 + α) + x2
j (49 + 37)α + 3x4

j (65 + 17α) + 3x6
j (77 + α) are free

critical points, provided that they are not null.

4.1. Parameter Line and Bifurcation Plane

Now, we use a graphical tool that helps us to identify for which values of parameters
there might be convergence to roots, divergence or any other performance. Real parametric
lines, for n = 2, are presented in Figures 4 and 5 (see Theorem 5). In these figures, a different
free critical point is employed as a seed of each member of the class, using −77 < α < −5
and −5 < α < −1 to ensure the existence of real critical points.

To generate them, a mesh of 1000× 1000 points is made in [0, 1]×]− 77,−5 [ for the
first figure and [0, 1]×]− 5,−1 [ for the next. We use [0, 15] in Figure 4a to increase the
interval where α is defined and [0, 1] in Figures 4a and 5, allowing a better visualization.
So, the color corresponding to each value of α is red if the corresponding critical point
converges to one of the roots of the polynomial system, blue in the case of divergence,
and black in other cases (chaos or periodic orbits). In addition, we use 500 as the limit of
iterations and tolerance 10−3.

(a) (b)

Figure 4. Parameter line of ACTV6(x, α) in α ∈ (−77,−5). (a) α ∈ (−77,−5). (b) α ∈ (−77,−72).

The global performance of each pair of free critical points is similar, so only (cri1(α), cri1(α))
is shown in Figure 4. In Figure 4a, only a small black region shows non-convergence to the
roots (red color) . Now we show the parameter line for α ∈ (−5,−1).

Figure 5. Parameter line of ACTV6(x, α) in α ∈ (−5,−1).

In the line shown in Figure 5 it is observed that the zone shows global convergence to
the roots. Therefore, it is a good area for choosing α.

The concept of bifurcation is important in nonlinear systems since it allows us to study
the behavior of the solutions of a family of iterative methods. In reference to dynamical
systems, a bifurcation occurs when a small variation in the values of the system parameters
(bifurcation parameters) causes a qualitative or topological change in the behavior of the
system. Feigenbaum or bifurcation diagrams appear to analyze the changes of each class
of methods on q(x) by using each critical point of the function as a seed and observing its
performance for different ranges of α. By using a mesh with 4000 subintervals in each axis
and after 1000 iterations, different behaviors can be observed.
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Figure 6 shows the bifurcation diagrams in the black area of the parameter line
Figure 4b, specifically when α ∈ (−73.5,−72.5). In Figure 6a, a general convergence to one
of the roots appears. However, a quadruple-period orbit can be found in a small interval
around α = −73. It includes not only periodic but also chaotic behavior (strange attractors,
blue regions).

To obtain the strange attractors, we plot in Figures 7 and 8 the orbit of 1000 initial
guesses close to point x = (0.36, 0.36) in the (x1, x2)-space by iterating ACTV6((x1, x2), α).
The value of the parameter used is α = −73.25 , laying in the blue region. For each seed,
the first 500 iterations are ignored; meanwhile, the following 400 appear in blue and the
last 100 in magenta color. We see in Figures 7 and 8 that a parabolic fixed point bifurcates
in periodic orbits with increasing periods, and therefore falls in a dense orbit (chaotic
behavior) in a small area of (x1, x2) space.

(a)

(b) (c)

Figure 6. Feigenbaum diagrams of ACTV6(x, α), for −73.5 < α < −72.5, from different critical points.
(a) (cri1(α), cri1(α)) and (cri2(α), cri2(α)). (b) (cri1(α), cri1(α)) a detail. (c) (cri2(α), cri2(α)) a detail.

For values of α ∈ (−76.9,−76.5), the bifurcation diagrams can be observed in Figure 9.
It is related to the black region of Figure 4b. In addition, it can be observed a general
convergence to one of the roots, but a sixth-order periodic orbit appears in a small interval
around α = −76.8. It includes chaotic behavior (blue regions) beside periodic performance.
Strange attractors can be found in them. To represent it, we plot in Figure 10 the (x1, x2)-
space the orbit of x(0) = (0.0001, 0.0001) by ACTV6((x1, x2), α), for α = −76.9, laying in
the blue region.
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(a) (b)

Figure 7. Strange attractors of ACTV6(x, α) for α in blue quadruple-period cascade. (a) α = −73.25.
(b) α = −73.25.

(a) (b)

Figure 8. Details Strange attractors of ACTV6(x, α). (a) α = −73.25, a detail. (b) α = −73.25, a detail.

(a)

(b) (c)

Figure 9. Feigenbaum diagrams of ACTV6(x, α), for −76.9 < α < −76.6, from different critical points.
(a) (cri1(α), cri1(α)) and (cri2(α), cri2(α)). (b) (cri1(α), cri1(α)) a detail. (c) (cri2(α), cri2(α)) a detail.
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(a)

(b) (c)

Figure 10. Strange attractors of ACTV6(x, α) for α in blue quadruple-period cascade. (a) α = −76.89.
(b) α = −76.89 a detail. (c) α = −76.89 into the detail.

4.2. Dynamical Planes

The tool with which we can graphically visualize most of the information obtained is
the dynamical planes; in these, we represent the basins of attraction of the attracting fixed
points for several values of parameter α. The above mentioned can only be done when the
nonlinear system has a dimension of 2, although the results of the dynamical analysis are
valid for any dimension.

To calculate the dynamical planes for the systems, a grid of points is defined in the
real plane, and each point is used as an initial estimate of the iterative method for a fixed
α. If the iterative method converges to some zero of the polynomial from a particular
point of the grid, then it is assigned a certain color; in particular, if it only converges to
the roots of q(x), the predominant colors are orange if it converges to x = (1, 1), blue if it
converges to x = (−1, 1), green if it converges to x = (−1,−1) and brown if it converges
to x = (1,−1). If, as an initial estimate, a point has not converged to any root of the
polynomial in 100 iterations at most, it is assigned as black. The colors in certain basins
are darker or not, indicating that the orbit in certain initial estimate will converge to the
fixed point of the basin with greater or fewer iterations, with the lighter colors causing
fewer iterations.

For α with stable behavior, we elaborate our graph that has a grid with 500 × 500
points, with 100 as the maximum number of iterations and limit of [−5, 5] for both axes
(see Figure 11), for values of α in unstable regions the interval is [−40, 40] in both axes in
Figure 12 and [−30, 30] in Figure 13. Periodic orbits are also observed in Figure 13.
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(a) (b)

(c) (d)

Figure 11. Dynamical planes for some stable values of parameter α. (a) α = 1. (b) α = −5. (c) α = −40.
(d) α = −72.

In Figure 11a, we see four basins of attraction that correspond to the roots of poly-
nomial system, with a very stable behavior. However, each basin of attraction has more
than one connected component for α = −5 and α = −40, as can be seen in Figures 11b,c,
respectively. This performance increases for lower values of α close to the instability zones
seen in the parameter lines Figure 4b, as seen in Figure 11d.

(a) (b)

Figure 12. Unstable dynamical planes of ACTV6(x, α) on q(x) . (a) α = −73.25. (b) α = −73.25.
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(a)

(b) (c)

Figure 13. Periodic orbits for parameter α = −73 for different initial values. (a) x(0) = (0.361236, 1).
(b) x(0) = (1, 0.361236). (c) x(0) = (−21.0469,−21.0469).

In Figure 12, we can see a chaotic behavior (chaos) when we take initial estimations in
the black zones, producing orbits with random behavior that do not lead to the expected
solution. Finally, in Figure 13, the phase space for α = −73 is plotted. In them, the following
3-period orbits are painted in yellow:

• {(−21.0469, 1), (−0.368161, 1), (0.361236, 1), (17.9769, 1)},
• {(1, 17.9769), (1,−0.368161), (1, 0.361236), (1,−21.049)},
• {(−21.0469,−21.0469), (−0.368161,−0.368161), (0.361236, 0.361236),

(17.9769, 17.9769)},
We can observe three attracting orbits, whose coordinates are symmetric.

5. Numerical Results

We are going to work with the following test functions and the known zero:

(1) F1(x1, x2) = (ex1 ex2 + x1 cos(x2), x1 + x2 − 1), ξ̄1 ≈ (3.46750, −2.46750).
(2) F2(x1, x2, x3) = (sin(x1) + x2

2 + log(x3) − 7, 3x1 + 2x2 − x−3
3 + 1, x1 + x2 + x3 − 5),

ξ̄1 ≈ (−2.21537, 2.49969, 4.71567).
(3) F3(x1, x2) = (x1 + ex2 − cos(x2), 3x1 − x2 − sin(x2)), ξ̄1 ≈ (0, 0).
(4) F4(x1, x2, x3, x4) = (x2x3 + x4(x2 + x3), x1x3 + x4(x1 + x3), x1x2 + x4(x1 + x2),

ξ̄1 ≈ (0.57735, 0.57735, 0.57735, −0.28868).
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(5) F5(ξi) = arctan(xi)+ 1− 2
[
∑20

k=1 x2
k − x2

i

]
= 0, i = 1, 2, . . . , 20, ξ̄1 ≈ (0.1757, 0.1757, ....,

0.1757), ξ̄2 ≈ (−0.1496,−0.1496, ....,−0.1496).

The obtained numerical results were performed with the Matlab2022b version, with
2000 digits in variable precision arithmetic, where the most relevant results are shown in
different tables. In them appear the following data:

• k is the number of iterations performed (“-” appears if there is no convergence or it
exceeds the maximum number of iterations allowed).

• x̄ is the obtained solution.
• ρ is the approximated computational order of convergence, ACOC, defined in [16]

ρ =
ln ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖

ln ‖x(k)−x(k−1)‖
‖x(k−1)−x(k−2)‖

, k = 2, 3, . . . ,

(if the value of ρ for the last iterations is not stable, then “-” appears in the table).
• εaprox is the norm of the difference between the two last iterations,

∥∥∥x(k+1) − x(k)
∥∥∥.

• ε f is the norm of function F evaluated in the last iteration,
∥∥∥F
(

x(k+1)
)∥∥∥. (If the error

estimates are very far from zero or we get NAN, infinity, then we will place “-” ).

The iterative process stops when one of the following three items is satisfied:

(i)
∥∥∥x(k+1) − x(k)

∥∥∥ < 10−100;

(ii)
∥∥∥F
(

x(k+1)
)∥∥∥ < 10−100;

(iii) 100 iterations.

The results obtained in the tables show that, for the stable values α = 1 and α = −5,
the expected results were obtained. For the parameter values that present instability in
their dynamical planes (α = −73.25 and α = −76.89), in some examples, the convergence is
a little lower than expected; Tables 2–5 have a higher number of iterations than methods of
the same order shown in Table 6. There is behavior that is not out of the normal for Table 3.

If the initial point is selected in the black area, these unstable family members do not
converge to the solution, Table 4. In this last table, we observe that Newton’s method does
not converge to the desired solution with the initial estimate x = (−17.76,−17.78) contrary
to the stable members of the ACTV family.

Table 2. Results for function F1, using as seed x(0) = (2.5, −1.5).

Iterative Method k ρ εaprox ε f ξ̄ Cpu-Time

ACTV6, α = 1 4 6.0038 8.580× 10−76 0 ξ̄1 3.5022
ACTV6, α = −5 4 6.0001 8.576× 10e−110 0 ξ̄1 3.5053

ACTV6, α = −73.25 4 5.883 1.015× 10e−38 1.299× 10e−229 ξ̄1 3.8991
ACTV6, α = −76.89 4 5.874 6.0584× 10−38 6.1856× 10−225 ξ̄1 3.4959

Newton 9 2.0000 7.299× 10−146 1.964× 10−291 ξ̄1 1.2855
C61 4 6.0011 3.393× 10−101 0 ξ̄1 1.6573
C62 4 6.0011 1.044× 10−88 0 ξ̄1 1.5505

B6, b1 = −3/5 4 6.004 2.675× 10−75 0 ξ̄1 1.7605
B6, b1 = 1 4 6.0008 6.720× 10−92 0 ξ̄1 1.5495

PSH61, α = 0 4 6.0101 3.503× 10−65 0 ξ̄1 3.6422
PSH61, α = 10 4 6.0000 1.013× 10−125 0 ξ̄1 3.5589
PSH62, α = 10 4 6.159 2.556× 10−34 8.874× 10−203 ξ̄1 3.9764

XH6 4 6.0026 1.161× 10−80 0 ξ̄1 1.6411
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Table 3. Results for function F2, with initial estimation x(0) = (−2, 2, 4).

Iterative Method k ρ εaprox ε f ξ̄ Cpu-Time

ACTV6, α = 1 4 6.0096 7.045× 10−158 0 ξ̄1 6.4105
ACTV6, α = −5 4 6.0214 5.875× 10−179 0 ξ̄1 6.1329

ACTV6, α = −73.25 4 6.0161 1.622× 10−106 0 ξ̄1 6.2416
ACTV6, α = −76.89 4 6.0162 1.447× 10−105 0 ξ̄1 6.0655

Newton 8 2.0004 9.136× 10−113 3.933× 10−225 ξ̄1 1.4579
C61 4 5.995 7.360× 10−143 0 ξ̄1 2.4032
C62 4 6.0076 3.126× 10−188 0 ξ̄1 2.1022

B6, b1 = −3/5 4 6.007 2.544× 10−149 0 ξ̄1 2.3387
B6, b1 = 1 4 5.9824 4.643× 10−201 0 ξ̄1 2.2433

PSH61, α = 0 4 6.0048 5.895× 10−119 0 ξ̄1 5.7749
PSH61, α = 10 4 5.9613 2.647× 10−165 0 ξ̄1 6.0901

PSH62, (α = 10) 4 5.9973 5.492× 10−46 2.478× 10−273 ξ̄1 7.0308
XH6 4 6.0019 9.690× 10−153 0 ξ̄1 2.5955

Table 4. Results for function F3 and initial guess x(0) = (−17.76, −17.78).

Iterative Method k ρ εaprox ε f ξ̄ Cpu-Time

ACTV6, α = 1 10 5.9096 1.148× 10−35 4.953× 10−211 ξ̄1 8.2697
ACTV6, α = −5 79 6.0503 1.697× 10−177 0 ξ̄1 65.9107

ACTV6, α = −73.25 - - - - - -
ACTV6, α = −76.89 - - - - - -

Newton - - - - - -
C61 - - - - - -
C62 - - - - - -

B6, b1 = −3/5 6 5.9119 1.353× 10−35 2.050× 10−210 ξ̄1 2.4022
B6, b1 = 1 - - - - - -

PSH61, α = 0 - - - - - -
PSH61, α = 10 - - - - - -
PSH62, α = 10 26 5.994 7.5229× 10−84 0 ξ̄1 26.0787

XH6 - - - - - -

Table 5. Results for function F4 and initial approximation x(0) = (1, 1, 1, 1).

Iterative Method k ρ εaprox ε f ξ̄ Cpu-Time

ACTV6, α = 1 4 6.0917 6.448× 10−61 0 ξ̄1 9.0684
ACTV6, α = −5 4 7.0212 5.485× 10−75 0 ξ̄1 9.1124

ACTV6, α = −73.25 4 4.7204 2.972× 10−41 3.558× 10−239 ξ̄1 8.6135
ACTV6, α = −76.89 4 4.3741 3.677× 10−41 6.341× 10−236 ξ̄1 8.8727

Newton 9 2.0083 2.927× 10−144 4.469× 10−290 ξ̄1 2.0165
C61 4 6.3232 1.707× 10−91 0 ξ̄1 2.5118
C62 4 6.2666 4.519× 10−110 0 ξ̄1 2.4156

B6, b1 = −3/5 4 6.3173 4.001× 10−93 0 ξ̄1 2.4766
B6, b1 = 1 4 6.2481 5.909× 10−118 0 ξ̄1 2.3827

PSH61, α = 0 4 5.7907 5.398× 10−50 2.505× 10−292 ξ̄1 8.5868
PSH61, α = 10 4 7.0301 1.819× 10−70 0 ξ̄1 8.7981
PSH62, α = 10 4 4.726 3.477× 10−37 7.995× 10−207 ξ̄1 8.9312

XH6 4 6.3144 5.747× 10−94 0 ξ̄1 2.5340
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Table 6. Results for function F5 using as initial estimation x(0) = (1, 1, . . . , 1).

Iterative Method k ρ εaprox ε f ξ̄ Cpu-Time

ACTV6, α = 1 5 6.000 3.605× 10−128 0 ξ̄1 427.4885
ACTV6, α = −5 5 5.9965 1.036× 10−181 0 ξ̄1 411.3637

ACTV6, α = −73.25 7 6.0011 4.997× 10−81 0 ξ̄1 625.0273
ACTV6, α = −76.89 16 6.000 8.800× 10−139 0 ξ̄2 1367.1656

Newton 11 2.000 5.758× 10−148 2.829× 10−294 ξ̄1 24.0160
C61 5 5.9999 2.773× 10−113 0 ξ̄1 42.2095
C62 5 6.000 9.4818× 10−155 0 ξ̄1 35.5499

B6, b1 = −3/5 5 5.9999 1.685× 10−116 0 ξ̄1 45.1993
B6, b1 = 1 5 6.000 1.018× 10−173 0 ξ̄1 40.3692

PSH61, α = 0 5 5.9991 2.420× 10−87 0 ξ̄1 482.4615
PSH61, α = 10 5 5.9627 2.360× 10−162 0 ξ̄1 598.1063
PSH62, α = 10 5 5.9723 1.127× 10−48 2.564× 10−285 ξ̄1 593.7798

XH6 5 5.9999 6.072× 10−118 0 ξ̄1 59.5617

Although Newton’s method (except in case of F3) is faster than sixth-order methods,
its error estimation is improved by the stable members of our proposed family. Moreover,
there exist cases where Newton fails because the initial estimation is far for the searched
roots. In this cases, the stable proposed methods are able to converge.

6. Conclusions

In this manuscript, we extend a family of iterative methods, initially designed to solve
nonlinear equations, to the field of nonlinear systems, maintaining the order of convergence.
We establish, by means of multidimensional real dynamics techniques, which members of
the family are stable and which have a chaotic behavior, taking some of these cases for the
numerical results.

On the other hand, the dynamical study reveals that there are no strange fixed points
of an attracting nature; however, in a very small interval of values of parameter α we find
some periodic orbits and chaos. By performing the numerical tests, we compare the method
with some existing ones in the literature with equal and lower order, verifying that the
proposed schemes comply with the theoretical results. In short, the proposed family is
very stable.

Therefore, we conclude that our aim is achieved: we selected members of our proposed
class of iterative methods that improve Newton and other known sixth-order schemes in
terms of the wideness of the basins of attraction.
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