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Abstract: QR codes (short for Quick Response codes) were originally developed for use in the
automotive industry to track factory inventories and logistics, but their popularity has expanded
significantly in the past few years due to the widespread applications of smartphones and mobile
phone cameras. QR codes can be used for a variety of purposes, including tracking inventory,
advertising, electronic ticketing, and mobile payments. Although they are convenient and widely
used to store and share information, their accessibility also means they might be forged easily. Digital
forensics can be used to recognize direct links of printed documents, including QR codes, which is
important for the investigation of forged documents and the prosecution of forgers. The process
involves using optical mechanisms to identify the relationship between source printers and the
duplicates. Techniques regarding computer vision and machine learning, such as convolutional
neural networks (CNNs), can be implemented to study and summarize statistical features in order
to improve identification accuracy. This study implemented AlexNet, DenseNet201, GoogleNet,
MobileNetv2, ResNet, VGG16, and other Pretrained CNN models for evaluating their abilities to
predict the source printer of QR codes with a high level of accuracy. Among them, the customized
CNN model demonstrated better results in identifying printed sources of grayscale and color QR
codes with less computational power and training time.

Keywords: machine learning; convolutional neural network (CNN); quick response; deep learning;
identification of printer source; QR Code

1. Introduction

QR codes have been a popular and convenient way to store and share information,
including URLs, for a certain period of time. They can be easily produced, are reliable, and
are inexpensive to use. When scanned using a smartphone camera, a QR code can quickly
direct a user to a specific website or webpage without the need to manually enter the URL
using a keyboard. This makes QR codes a convenient tool for many different applications,
including marketing, advertising, and electronic ticketing.

Various publications such as business cards, posters, and newspapers have QR codes
attached as a part of their product promotions, since these efficient, accessible, and afford-
able digital printers are extremely popular. That is, users can easily print QR codes for
a variety of purposes. When a QR code is scanned through smartphone cameras, it can
quickly link to a specific website or webpage via the embedded URL, which makes QR
codes a convenient device for accessing information or services.

However, the widespread availability of printing devices has led to an increase in the
threat of illegal reproduction and document forgery. It is often difficult to protect original
documents in the digital age [1], so digital forensics provides a way to trace devices that
are used to print documents in order to identify those who are responsible for the illegal
redistribution of documents for personal gain.

The identification of sources of printed documents and the source printers is a vital
issue for research in the digital forensics and document analysis communities. A variety
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of techniques have been proposed for source printer identification from the experimental
phase to digitizing processing. To some extent, handmade features have been used to extract
intrinsic and extrinsic signatures [2] from printed documents. The analysis of chemical toner
via considerable extensive tests from laboratories such as spectroscopy [3–5] and X-ray [6]
laboratories has been recommended in some studies. However, these techniques can be
time-consuming and require specialized equipment, and they may also damage or destroy
the document being investigated. With the advance of computer vision and machine
learning techniques, it is now possible to use convolutional neural networks (CNNs)
to automatically extract and learn statistical features from scanned images to improve
identification accuracy. These techniques can be faster and more efficient than traditional
methods, and they do not risk damaging the document being analyzed.

The extrinsic signature approach involves embedding characteristic footprints, called
extrinsic signatures, on printed documents by encoding information during the printing
process [2] using methods such as continuous-tone watermarking [7] and halftone [8–10].
However, there is no industry standard or exact criteria for this process, meaning that
different printer sources require different decoding techniques, and there is no universal
solution. This lack of standardization makes the extrinsic signature approach cumbersome.

During their research, Purdue University scientists [2] discovered subtle alternating
light and dark lines, called banding, on scanned documents printed at 2400 dpi. These lines
are present in every digital printer, but their visibility may vary. The banding is caused by
physical components inside the printer, such as the gears, creating a pattern of concrete
mechanical imperfections in each printer. In particular, irregular periodic fluctuations in
the rotational movement of the photoreceptor drum can create visible banding artifacts and
a non-uniform pattern with a combination of light and dark horizontal lines perpendicular
to the direction of paper movement through the printer. This pattern of information can be
used as an intrinsic signature [2].

Intrinsic signature methods use computer vision and machine learning techniques
applied to scanned versions of suspected documents, rather than relying on printer in-
formation embedded in the documents themselves. These methods for text (non-colored)
documents typically make use of handmade features based on assuming imperfections
about printed documents, which are extracted from a limited portion of the data (such as
one symbol or letter) and fed into supervised classifiers to identify the printer source. This
approach has been widely studied in the literature, with various methods proposed [11–18].

This paper proposes a deep learning solution on the basis of CNN to replace traditional
methods depending on manually engineered features. The CNN structure is trained on
various printer models duplicated from various sources to identify intrinsic signatures
on an input printed image, with the aim to analyze a printed document’s origin and
improve its characteristics. This approach is driven by the recent triumph of deep learning
techniques in various detection and recognition tasks [19] and the ability of CNNs to learn
features automatically using backpropagation procedures [20].

The proposed approach for print source identification is suitable for both black and
white (BW) and color QR codes and involves the analysis of two separate datasets. To ensure
that the results are based solely on intrinsic signatures, extrinsic signature information
such as watermarks is excluded from the datasets. The approach leverages a deep learning
framework based on CNNs for image classification, and the data preprocessing follows a
method similar to that used in supervised learning [21,22]. To avoid bias, related data are
printed in nearly the same dimensions within the same scanner.

BW and color QR codes are different in their structure and method of encoding
information. BW QR codes use a traditional array of black and white grids named modules
to store information, while color QR codes use a technique called halftone QR codes [23]
to generate halftone masks that are embedded onto color images [24,25]. These masks
are modified by removing certain regions to highlight the region of interest while also
considering codeword layout and error-correcting codes [26–30]. The color QR code
structure described throughout the research refers to the involvement a visual QR code
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in a color algorithm based on a wavelet transform and the human vision system, which
has been improved with an automatically generated algorithm based on Mask R-CNN for
improved aesthetics [30] and a faster generation process.

To sum up, the notable contributions of this paper are as follows;

1. A comparison is conducted of the identification accuracy of seven popular pretrained
CNN models using three different optimizers on separate BW and color QR code
datasets to identify the printed sources.

2. To identify which printers are the easiest and most difficult to distinguish among our
printer datasets, we compared the performance of seven popular pretrained CNN
models using three different optimizers.

3. We analyzed how each pretrained model behaves differently with BW and color QR
code datasets.

4. A customized CNN is designed and developed to identify printed sources based
on a residual model. The network has a small number of parameters and is de-
signed to be fast and reliable with a tweakable input size, convolution kernel size,
and hyperparameters.

The paper has four sections. Section 2 includes a review of previous work, such as
techniques for identifying intrinsic printer artifacts using computer vision and machine
learning, as well as the structures of BW and color QR codes and the concept of CNN. In
Section 3, the proposed approach for identifying printed sources is described. Section 4
presents the results, accompanied by details of the conducted experiments. Finally, the
paper concludes in Section 5 with opinions and suggestions for future research.

2. Related Work
2.1. Texture-Based Methods

After the continuous development of computer vision in recent years, different ex-
periments have been conducted by combining techniques such as support vector machine
(SVM) with a grey-level co-occurrence matrix (GLCM) [13,14], convolution texture gradient
filter (CTGF) [15], local binary pattern (LBP) [16], CC-RS-LTrP-PoEP [17], and discrete
wavelet transform (DWT) [18].

Mikkilineni [13,14] proposed a model that takes the banding signal into account
by regarding scanned document output as an “image” and using co-occurrence texture
features at the gray level.

Ferreira et al. [15] believed that these low-gradient areas, which are established on
purpose by the printer firmware to make imperceptible visual effects or patterns specific
to each printer, could be used as intrinsic features to identify the print sources. How-
ever, these low-gradient areas can only be identified with microscopes and require a
minimum size of 600 dpi uncompressed scanned documents to be extracted, making this
approach impractical.

Tsai et al. [18] used wavelet-based features extracted via DWT in conjunction with
GLCM features to improve upon Mikkilineni’s model by adding extra extractions on the
spatial noise patterns generated by laser printers when the printed image is decomposed
into different wavelet sub-bands. They later improved the model further by adding Local
Binary Pattern (LBP) [16], a feature extractor that identifies the grayscale-invariant texture
by combining the measure of texture from each neighborhood and the difference of the
average gray level of those pixels based on binary numbers.

Joshi and Khanna [17] proposed a method that involves various techniques and filters,
which are stitched together to extract features before being trained under a support vector
machine (SVM). The process begins by extracting the scanned document letters using a
connected-component labeling (CCL) algorithm. Then, it is followed by regional separation,
Gabor filtering, local tetra patterns (LTrP) estimation feature descriptor, feature concatena-
tion, and post-extraction pooling (PoEP). However, the identification accuracy of Ferreira’s
CNN model [11] was still superior in 5 out of the 10 tested printer models, demonstrating
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the superiority of CNNs over SVMs. The identification accuracy of CNNs was dramatically
improved by breaking the input dataset down into different representations before training.

Do [31] conducted an empirical test on the ImageNet data, which indicated that the Inc-
Par-PSVM algorithm with the Jetson Nano operates more efficiently and more accurately
in comparison with the state-of-the-art linear SVM algorithm run on a PC. Likewise, Tsai
and Peng [32] proved that beautified QR codes generated by the method IS-QR designed
could perform better than other methods in visualization. On the other hand, Wang, Zuo,
and Zheng [33] applied the Riemannian manifold learning for dimensionality reduction
while preserving the local intrinsic structure of the features and they even implemented a
deep stack autoencoder network with seven layers to detect the double JPEG compression.
Tsai, Wu, and Lin [34] examined the ARM-QR code’s visual quality through the Peak
Signal-to-Noise Ratio (PSNR), Mean-Square Error (MSE), Structural Similarity Index Metric
(SSIM), and Gradient Magnitude Similarity Deviation (GMSD), and the results of their
experiment confirm that the visual beautification of the QR code is better.

2.2. Deep Learning-Based Methods

Anselmo Ferreira [11] tried to sharpen the classification of small patches produced by
laser printers through the use of multiple CNeural Network (CNN) models that analyze
the characteristics of these patches. To do this, the data were broken down into three differ-
ent representations—high-frequency imperfections (banding), image pixels, and border
effects—and fed into a set of lightweight CNNs called a Raw Image Network, a Median-
Residual Network, and an Average-Residual Network. The results from these networks
were then concatenated and fed into a classifier, with a final decision contributing to the
identification results. However, this method requires a significant amount of time and
energy to collect and process the data.

Do-Guk Kim [21] proposed using Generative Adversarial Networks (GANs) to de-
compose the image of a halftone color channel of photographed color documents and
transfer the data of the decomposed image into CNNs for the purpose of identifying the
source printer. However, this method cannot be used to identify the source printer of
scanned images due to the differences in illumination and clarity between the scanning and
photographic environments. In contrast, Kim et al. suggested splitting the printed image
into smaller blocks to assist CNN models extract better results in printed documents.

Zhongyuan Guo [22] proposed using a customized bottleneck residual model to
identify the source printer using black and white QR codes as datasets scanned at 300 dpi.
Otsu’s segmentation was used to convert the QR codes from grayscale to black and white
to minimize variance, resulting in the whole dataset being converted into binary images.
A morphological opening operation (erosion followed by dilation) was then used to fill
in the inside of the QR code and dismiss a few unintended connected domains. The
goal of this approach was to achieve spectacular identification results while maintaining
low-complexity CNNs. Nevertheless, the use of image filtering significantly modified the
dataset prior to training.

In the field of printed source identification, very few studies have investigated the use
of black and white (BW) QR codes as an input dataset, not to mention the more personalized,
colorful QR codes. Most existing methods utilize either grayscale text documents or
photographed color images. With this in mind, we decided to study both BW and color QR
codes as training datasets for input into CNN models.

2.3. Quick Response (QR) Code

A QR code is a two-dimensional barcode symbol that is categorized as a matrix code.
It is made up of black and white squares, known as modules (Figure 1), with the black
squares representing a value of 1 and the white squares representing a value of 0.
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Figure 1. QR code basic unit diagram.

There are 40 versions of QR codes, with the smallest being Version 1, which consists of
21 × 21 code elements. Each subsequent version increases the number of code elements
in the side length by 4. Version 40 has 177 × 177 modules, with a total of 31,329 code
elements. The largest numbers of character types, data, and error correction levels are
defined separately in each session. The QR code system implements the Reed–Solomon
error correction algorithm with four error correction levels. Furthermore, the system
divides QR codes into disjoint blocks and performs error correction on each block. Each
block consists of codewords, and each codeword contains eight data modules. The higher
the error correction level, the lower the storage capacity. The approximate error correction
capabilities at each of the four levels are as follows:

• Level L (Low) 7% of codewords can be restored;
• Level M (Medium) 15% of codewords can be restored;
• Level Q (Quartile) 25% of codewords can be restored;
• Level H (High) 30% of codewords can be restored.

The code elements of a QR code can be divided into non-data areas and data-coding
areas. Figure 2 shows the structure of a QR code. The following terms and uses are
introduced in the QR code diagram:
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2.3.1. Non-Data (Also Known as Functional Patterns)

• The positioning pattern is a crucial feature of the QR code. It consists of three large
black-and-white concentric squares located in the upper left and right and lower left.
Losing one of these patterns greatly affects recognition, as they are essential for QR
code recognition.

• The separator pattern is a continuous white-coded element that surrounds the posi-
tioning pattern to distinguish it from other regions.

• The timing pattern is a ribbon of alternating black and white code elements that is
barely noticeable as it blends in with the other blocks of codewords. It appears in
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all versions of QR codes and is also known as the “fixed pattern” due to its fixed
alternating pattern and position. The timing pattern consists of two straight lines that
confirm the size of the code element.

• The alignment pattern, also known as the alignment marker, is only found in QR
code version 1. The other versions require the addition of an alignment pattern for
positioning. If the alignment pattern is too large, it can be easily deformed during
scanning. However, the alignment pattern can be used as a reference to correct the
deformation of the QR code.

2.3.2. Data Codeword Filling Method

In the QR code diagram, the data bytes are arranged in a zig-zag pattern starting from
the lower right corner of the matrix and moving upwards in rows of two code elements.
When the row reaches the top, the next column of two code elements starts immediately to
the left of the previous column and moves downward. If the current column reaches the
edge of the matrix, it moves to the next two-code-element column and changes direction.
When a function pattern or version format’s reserved area is encountered, the data byte is
placed in the next available code element.

The QR code standard specifies codewords as eight binary bits, such as 10,110,010,
with a length of 8. Each coded element of the encoded data is first put into a 2 × 4 matrix.
In this matrix, the most significant bit of the symbol is represented by 7, and the least
significant bit is represented by 0.

2.4. Development of Color QR Code for Visual Beautification

Chu et al. [24] developed halftone QR codes, which improved the quality and ap-
pearance of QR codes by replacing each QR code module with smaller, 3 × 3 submod-
ules. The submodules were rearranged through a module subdivision process to cre-
ate a new, smaller pattern that could be easily manipulated to achieve a desired shape.
Garateguy et al. [25] later enhanced this technique by embedding halftone patterns as QR
masks into color images. While this technique improved the visibility of the background
color, the area of interest in the background image was still covered by a halftone mask,
and high-resolution QR codes were needed to minimize readability issues.

Li et al. [26] used image-saliency-detection technology to compute the saliency value
of the background image and generate a saliency map, which is an image that highlights the
region on which the eye focuses first. This technique, which is based on human perception,
allows some areas to be free of QR codewords while maintaining the redundancies of the
Reed–Solomon (RS) error-correction blocks. In 2017 and 2018, Lin et al. [27] improved
upon this machine-defined saliency map by introducing an interactive framework in which
the area of interest could be user-defined by creating strokes on the target area. Another
improvement was the implementation of the Adaptive Contrast Enhancement (ACE) [28]
algorithm, which enhances image contrast to improve visual quality and increase the
number of modules that can be erased with minimal impact on readability.

In 2019, M.-J. Tsai and C.-Y. Hsieh [29] introduced a new method for embedding
QR codes. Unlike traditional QR codes, which are embedded in the spatial domain, this
method involves storing both the halftone masks and the background image in a discrete
wavelet transform (DWT) domain, taking into account the Human Visual System (HVS).
This allows the background host image to be considered as part of the scannable region.

M.-J. Tsai and D.-T. Lin [30] updated the previous work by adding a deep learning
solution, Mask R-CNN, which generates an area of interest (Auto Mask) similar to [26],
but with the added feature of object detection for the background image. This automated
method can expand the area of interest or remove codewords from the furthest area. This
latest study on color QR code generation is the primary source for our color QR code
dataset. The source images can be seen in Figure 3.
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2.5. Convolutional Neural Networks

CNNs have been very effective for classifying complex images since 2012 [20].
LeCun et al. [35] concluded that the reduced number of parameters to be learned is the main
benefit of using CNNs, which is better than traditional fully connected neural networks
such as SVM. Convolutional layers consist of small kernels that allow the raw image to be
used without prior handcrafted feature extraction or data reconstruction. As a result, these
layers are extremely effective at extracting high-level features that are fed to fully connected
layers. The first convolutional layer transforms the input image into feature maps, while
the pooling stage reduces the dimensions of the feature maps, as do other layers. Finally,
the last layer is used to classify the input. A CNN is trained using backpropagation and
stochastic gradient descent, with the misclassification error driving the weight update of
both convolutional and fully connected layers. After training, the output of a network’s
layer can be used as a feature vector paired with an external classifier rather than relying
solely on the classification of the network layer. The basic structure of a CNN is shown in
Figure 4, along with a list of its layers.
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1. Input layer: This is where the data are fed into the network. The input data, which
can be either raw image pixels or their transformations, are fed into the network at
the beginning. These data can be selected to better emphasize specific aspects of
the image.

2. Convolutional layers: These layers contain a series of fixed-size filters used to perform
convolution on the image data, generating a so-called feature map. These filters
can highlight patterns such as edges and changes in color, which help characterize
the image.
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3. Rectified Linear Unit (ReLU): ReLU layers, which normally follow a convolution
operation, apply a non-linear function to the output x of the previous layer, such as
f(x) = max(0,x). According to Krizhevsky et al. [20], this function can be computed
faster than its equivalents with tanh units in terms of training time with gradient
descent. This helps to create rapid convergence in the training process by reducing
the vanishing gradient problem and more or less maintaining the constancy of the
gradient in all the network layers, thereby speeding up the training process.

4. Pooling layers: A pooling layer summarizes the data by applying some linear or
non-linear operation, such as generalized mean or max, to the data within a window
that slides across the feature maps. This reduces the spatial size of the feature maps
used by the subsequent layers and helps the network to focus only on the most im-
portant patterns identified by the convolutional layers and ReLU, thereby minimizing
computation intensity.

5. Fully connected layers: The fully connected layers are located at the end of the network
and are used for understanding the patterns generated by the previous layers. They
act as classifiers, usually followed by a soft-max layer to determine the class associated
with the input image.

6. Soft-max layer: The soft-max layer is typically used during training at the network’s
end. It normalizes the input values so that they add up to one, and its output can be
interpreted as a probability distribution, such as the probability of a sample belonging
to each class.

In this deep learning study on identifying QR-code-printed sources, we used pre-
trained CNN models that have been trained and tested extensively on the ImageNet
dataset. These models are useful because their identification performance has already been
verified through the ImageNet standard. However, one major drawback of deep learning
is that common CNNs typically require thousands or even millions of labeled data for
training, which can be unrealistic for many applications due to the time needed to train the
model and the lack of available training data.

Some readily available pretrained CNN models, such as AlexNet, GoogleNet, VGG16,
ResNet, MobileNetv2, and DenseNet201, are chosen to be tested in this work with BW and
color QR codes separately. These QR codes all have nearly identical images that are difficult
to distinguish with the human eye unless they are compared side-by-side. This work
also represents an alternative approach that meets the above requirements by construct-
ing a simple, lightweight residual model for printed source identification, as discussed
in Section 4.

3. Proposed Method

The proposed method is executed based on the supervised deep-learning pipeline for
classifying images. There are five steps, starting from the printing process, where the QR
code is first generated from digital files. Then, all the QR code documents are arranged to
be printed in the same batch. Next, as its name suggests, all the printed QR code documents
are scanned in the scanning process, which is also called the digitalization process. QR
code extraction is where the scanned documents are thrown into a program, and the QR
codes are automatically cropped and saved individually. In dataset preparation, all the
cropped QR codes are split into 16 smaller image blocks (Figure 5) before being fed into
CNN models during the Run Model process. Only 4 blocks are shown because of limited
space (all 16 image blocks are used in the actual training).

The diagram in Figure 5 illustrates the process for the deep learning printed source
identification of the QR codes.
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1. Printing Process:

• BW QR Codes are printed on 11 printer models (Table 1).
• Color QR Codes are printed on 8 printer models (Table 2).

2. Scanning Process: The printed QR codes are digitalized using a dedicated office
scanner, and all the documents are saved in TIF lossless image format. BW QR code
uses 8-bit grayscale format, while color QR code is saved in 24-bit RGB format.

3. QR code extraction: Using MATLAB, the regionprops and imcrop functions are com-
bined to automatically crop and resize all 24 QR codes on one page. This process is
looped 24 times from the top left to right.

4. Dataset preparation: An open-source image viewer, XnView MP, is implemented to
divide all extracted QR codes into 4 × 4 image blocks by batch. Moreover, all BW
QR code images are converted from 8-bit format to 24-bit format, as required by the
pretrained models. The cropping process does not affect the image quality because
the image is neither reconstructed nor resized.

5. Run model: The CNN model is operated to put a new set of images into categories.

Table 1. Printer and Brand Model List (BW QR Code).

No Brand Model

1 Canon LBP3310

2 Canon LBP6300

3 Canon M417 LIPSX

4 Epson L350

5 Epson L3110

6 Fuji Xerox P355d

7 HP M283

8 HP M377

9 HP M401

10 HP M425

11 Konica Minolta Bizhub C364
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Table 2. Printer Brand and Model List (Color QR Code).

No Brand Model

1 Canon ImageRunner 6555i

2 Canon LBP9200C

3 Fuji Xerox ApeosPort-VII

4 Fuji Xerox DocuCentre-IV

5 HP M283

6 HP M377

7 Konica Minolta Magicolor 1690

8 Kyocera Ecosys M5520

3.1. Data Collection

To collect the data, a QR code generator is used to produce a link, https://www.iim.
nctu.edu.tw/ (10 December 2022), for black and white QR codes, which are saved in a PNG
format with a dimension of 512 × 512 pixels.

There are 24 QR code images per page A total of 10 of them are collected for an
individual printer model, and 240 QR codes are collected for each printer.

• BW QR codes: 2640 QR codes are collected after printing the documents with 11 indi-
vidual printers (Table 1).

• Color QR codes: to compare the same model with BW QR codes, documents are
printed with 8 printer models, resulting in 1920 color QR codes collected in total.

Those printed pages are then scanned to be digitalized in the TIF format through an
Epson Perfection V39 scanner at 400 dpi and saved in an uncompressed form to preserve
as many details as possible.

3.2. QR Code Extraction

Through MATLAB, batch-like image extraction is designed specifically for black and
white images to cut out all 24 QR code images on the same page by detecting the bounding
box individually. There is a rough dimension of 554 × 554 for all the QR codes, although
some of them could be bigger or smaller by 1 to 5 pixels based on the printer. Saving
all QR code images in the TIF format means that the scanned files are uncompressed
images to ensure the intrinsic signatures, such as banding produced by the toner, are still in
high resolution.

In this step, all the extracted QR codes are divided into 4 × 4-size blocks, as shown
in Figures 6 and 7. Consequently, each printer has 240 QR code images, so splitting every
image individually into 16 blocks means a total of 240 × 16 = 3840 blocks. Since eleven
printers are used for the test, as shown in Table 2, the overall accumulated images become
3840 × 11 = 42,240 blocks.

The QR code images are divided into 4 × 4 blocks, which means 554/4 = ±139 pixels.
Since the size of each block of images may be slightly different, they need to be upscaled to
a unified dimension. imageDataAugmenter, one of MATLAB’s features is then adapted to
upscale and unify all the images to 227 × 227 (AlexNet), 224 × 224 (the rest of the pretrained
models), and 160 × 160 (customized model) so that the image blocks can be implemented
as input training images. Refer to Figures 6 and 7 for image block illustrations.

In MATLAB, the training and testing/validation sets are divided based on the ratio
80:20 and treated as such. Both of them are combined in every epoch before being averaged
into a single identification result.

https://www.iim.nctu.edu.tw/
https://www.iim.nctu.edu.tw/


Algorithms 2023, 16, 160 11 of 22

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 23 
 

 
Figure 6. Image samples for BW QR codes printed by 11 printers (please note that each number 
refers an item in Table 1 for the printer and brand model). 

Figure 6. Image samples for BW QR codes printed by 11 printers (please note that each number refers
an item in Table 1 for the printer and brand model).

An image datastore is a device that allows users to store large volumes of image data,
even if data are not fitting in memory, and to read batches of images efficiently when
processing network training.

Based on the 80:20 ratio, the BW QR Code has a training set of 33,792 images and
a test set of 8448 ones. The color QR Code has a training set of 24,576 images and a test
set of 6144. The training and test sets are completely separate and use the splitEachLabel
function as declared at the beginning of the data preprocessing right after the new images
are loaded as an image datastore and waiting to be fed into the network. In MATLAB, the
imageDatastore function automatically labels the images based on folder names and stores
the data as ImageDatastore objects.
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4. Experimental Results
4.1. Training Environment

In terms of the training equipment, tests in the paper are conducted through a PC
equipped with AMD Ryzen 7 3700X CPU @3.60 GHz with eight cores, 16 Threads, an
NVIDIA GeForce RTX 3090 GPU with 24 GB GDDR6X VRAM, and 32 GB DDR4 2400 MHz
RAM with a Windows 10 Education operating system. The source codes of the CNN
models are developed in MATLAB.

In this experiment, pre-trained models such as MobileNetv2, VGG16, AlexNet, ResNet,
DenseNet201, and GoogleNet have their hyperparameters tweaked, as shown in Table 3.

Table 3. HyperParameters for All CNN Models.

Parameter Value/Type

Image Size 160 × 160, 224 × 224, 227 × 227

Cross Validation Holdout

Training/Testing 80/20

Optimizer SGDM, ADAM, RMSprop

Max Epochs 30

Minibatch Size 64

Shuffle Every epoch

Initial Learn Rate 10−3 no decay
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The only variable in this test is the restricted learning rate. Since all the CNN models
were pre-trained at a learning rate of 0.001 on an ImageNet database with over 1 million
images and 1000 different categories, the research keeps the learning rate at 0.001 for
consistency. Moreover, setting a higher value than recommended, such as 0.01, might result
in unstable models with lower validation rates and/or overfitting.

Five image augmentations are used to increase the generalization of the pretrained
model during training and to determine whether they could identify each printer’s in-
trinsic signatures and banding correctly when images are rotated, mirrored, and scaled.
These augmentations are Xreflection, Xtranslation, Ytranslation, Xscale, and Yscale. The
augmentation techniques applied to the training dataset are summarized in Table 4.

Table 4. Image Augmentation Parameters.

Augmentation Type Purpose Value

RandXReflection Reflection in the left-right direction randomly appears, specified as a logical scalar. The image is
reflected horizontally with a 50% probability 1 (true)

RandXTranslation Moving the image in the X or Y direction (or both) from the center coordinate. This forces the
convolutional neural network to look everywhere within the image dimension. [−30, 30]

RandYTranslation

RandXScale The image is scaled outward or inward. While scaling outward, the final image size is larger than
the original. Most image frameworks cut out a section from the new image, with a size equal to the

original image. Scaling inward reduces the image size, forcing the model to make assumptions
about what lies beyond the boundary.

[0.9, 1.1]
RandYScale

4.2. Performance Evaluation of BW QR Codes

To evaluate the fine-tuned pretrained models, standard performance metrics are used,
including precision and accuracy, recall (or sensitivity), and specificity for each optimizer.
These metrics are implemented to determine the best parts in terms of prediction accuracy,
overall stability, and training duration, as shown in Table 5.

Table 5. Performance Metrics for BW QR Code.
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AlexNet

SGDM 97.7 0.98 0.98 0.99 143

Adam 9.09 0.01 0.09 0.91 –

RMSprop 9.09 0.01 0.09 0.91 –

GoogleNet

SGDM 98.3 0.98 0.98 0.99 65

Adam 89.8 0.94 0.90 0.99 68

RMSprop 84.2 0.86 0.84 0.98 66

DenseNet201

SGDM 99.7 0.99 0.99 1.00 839

Adam 97.8 0.98 0.98 0.99 1090

RMSprop 97.8 0.98 0.98 0.99 984

MobileNetv2

SGDM 99.7 0.99 0.99 0.99 117

Adam 99.3 0.99 0.99 0.99 151

RMSprop 99.7 0.99 0.99 1.00 136
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Table 5. Cont.
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ResNet18

SGDM 99.9 0.99 0.99 1.00 53

Adam 99.4 0.99 0.99 0.99 55

RMSprop 99.4 0.99 0.99 0.99 49

ResNet50

SGDM 99.9 1.00 1.00 1.00 108

Adam 99.5 0.99 0.99 0.99 124

RMSprop 99.5 0.99 0.99 0.99 121

VGG16

SGDM 99.6 0.99 0.99 1.00 114

Adam 9.09 0.01 0.09 0.91 –

RMSprop 9.09 0.01 0.09 0.91 –

Our Model

SGDM 99.7 0.99 0.99 1.00 51

Adam 99.7 0.99 0.99 1.00 59

RMSprop 99.8 0.99 0.99 1.00 55
(“–” means data can be ignored).

For identifying the BW QR code printed source, ResNet50 SGDM took first place, with
100% accuracy, based on perfect scores for all three performance metrics. In second place,
ResNet18 had a training time almost 50% faster than ResNet50 SGDM, with minimal loss
in prediction accuracy, precision, and recall. MobileNetv2 took third place at 99.7%, with a
training time of almost 117 min, or about 9 min longer than ResNet50. The results of our
customized model are also included for comparison.

The results for identifying each printer model’s intrinsic signatures are shown at the
bottom of Table 6, with the accuracy for each printer being measured to determine which
printer model is the easiest and hardest to distinguish for each CNN model.

Table 6. BW QR Code Per Printer Identification Result for Each Pretrained CNN Model.

Model
Name Optimizer Accuracy 1 2 3 4 5 6 7 8 9 10 11

Alex
Net

SGDM 0.9770 0.882 1 1 1 1 0.973 0.991 1 0.995 0.987 0.921

Adam 0.9090 – – – – – – – – – – –

RMSprop 0.9090 – – – – – – – – – – –

Google
Net

SGDM 0.9828 0.986 1 1 1 0.997 1 0.995 0.978 1 0.910 0.945

Adam 0.8981 0.936 0.943 1 1 1 1 0.997 0.992 0.995 0.829 0.186

RMSprop 0.8420 0.984 0.913 0.839 0.785 1 1 0.913 0.855 0.931 0.727 0.315

Dense
Net201

SGDM 0.9969 1 1 1 0.999 1 1 1 0.992 1 0.975 1

Adam 0.9776 0.954 0.984 1 1 1 1 0.990 0.842 0.996 1 0.987

RMSprop 0.9776 0.958 0.997 1 1 1 1 1 0.801 0.997 1 1

Mobile
Netv2

SGDM 0.9978 1 1 1 1 1 0.995 0.995 0.997 1 0.999 0.990

Adam 0.9928 0.930 1 1 1 1 1 1 0.997 0.995 0.999 1

RMSprop 0.9966 0.999 1 1 1 1 1 1 1 0.964 1 1
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Table 6. Cont.

Model
Name Optimizer Accuracy 1 2 3 4 5 6 7 8 9 10 11

Res
Net18

SGDM 0.9987 0.995 1 1 1 1 1 0.997 0.999 1 0.997 0.997

Adam 0.9943 1 0.999 0.969 1 1 0.995 0.987 0.993 0.996 1 0.999

RMSprop 0.9944 0.986 1 0.999 1 1 0.987 0.996 0.995 0.987 0.990 1

Res
Net50

SGDM 0.9996 1 1 1 1 1 1 1 1 1 1 0.996

Adam 0.9947 0.996 1 0.993 1 1 0.974 0.996 0.995 0.992 0.999 0.996

RMSprop 0.9946 0.987 0.999 0.995 1 1 0.986 0.993 0.995 0.993 0.996 0.996

VGG
16

SGDM 0.9960 1 1 1 1 1 1 1 0.999 1 0.978 0.979

Adam 0.0909 – – – – – – – – – – –

RMSprop 0.0909 – – – – – – – – – – –

Printer Identification Results 0.976 0.990 0.988 0.987 1 0.995 0.991 0.967 0.991 0.964 0.900

(“–” means data can be ignored).

According to the results in Table 6, the printer that can be most easily identified
using the pretrained CNN models is the Epson L3110 (printer model number 5). Please
refer to Table 1 for the Model Name. It is worth noting that this printer has the most
prominent banding compared to the other models. The Fuji Xerox P355d (printer model
number 6) takes the second position, while the third position is a tie between the HP M283
(multicolor laserjet printer that can also print in color) and the HP M401 (black-and-white
laserjet printer). The M283 has a deeper and more consistent black color with smooth color
transitions, while the M401 has a less consistent black color with some white patches visible
upon closer examination.

Model number 11, the Konica Minolta Bizhub C364, has a 90% identification rate. It
is vital to think that this does not necessarily mean that it is the most difficult printer to
identify. In fact, a 90% identification rate is still quite impressive. The main reason for this
model’s lower average identification rate is that GoogleNet achieved significantly lower
accuracy when using both Adam and RMSprop optimization algorithms.

Performance Evaluation for Color QR Codes

In general, pretrained CNN models tend to train faster when using a Color QR Code
dataset rather than a BW QR Code dataset.

While it might be expected that an 8-bit grayscale image would be easier to process
due to having fewer color channels than a 24-bit RGB image, it turns out that more features
can be extracted from a 24-bit image, which significantly speeds up the inference process of
the CNN models in this case.

According to Table 7, MobileNetv2 with the RMSprop optimization algorithm has the
highest accuracy, at 99.9%, after 103 min of training. VGG16 comes in second place, with
an accuracy of 99.8% and a faster training time of 86 min. AlexNet takes third place, with
a training time of only 33 min and an accuracy of 99.6%. AlexNet has the fastest training
time of all the models and is also one of the top three for accuracy, beating ResNet18 by
almost 10 min. Previously, ResNet18 was known for having the fastest training time in a
BW QR code experiment.

Table 8 shows the results of the per-printer identification. The same indicators are used
to evaluate the accuracy of each printer and optimization algorithm in order to determine
the best-performing CNN model.

Model number 2, the Canon LBP9200C, is the easiest printer to identify. In second
place is model number 4, the Fuji Xerox DocuCentre-IV, with 98.6% identification accuracy.
Model number 1, the Canon imageRunner 6555i, takes third place with 97.7% accuracy, just
0.9% behind the second-place printer.
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Table 7. Performance Metrics for COLOR QR Code.
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AlexNet

SGDM 99.6 0.99 0.99 0.99 33

Adam 12.5 0.01 0.12 0.87 –

RMSprop 12.5 0.01 0.12 0.87 –

GoogleNet

SGDM 73.7 0.82 0.74 0.96 50

Adam 71.9 0.83 0.72 0.96 52

RMSprop 50.9 0.59 0.51 0.93 51

DenseNet201

SGDM 96.7 0.97 0.97 0.99 749

Adam 92.3 0.95 0.92 0.98 780

RMSprop 90.5 0.94 0.90 0.98 718

MobileNetv2

SGDM 96.8 0.97 0.97 0.99 100

Adam 98.6 0.98 0.98 0.99 109

RMSprop 99.9 1 1 1 103

ResNet18

SGDM 97.7 0.98 0.98 0.99 42

Adam 97.4 0.98 0.97 0.99 43

RMSprop 92.7 0.94 0.93 0.99 42

ResNet50

SGDM 95.7 0.96 0.96 0.99 81

Adam 95.8 0.96 0.96 0.99 95

RMSprop 96.3 0.96 0.96 0.99 92

VGG16

SGDM 99.8 0.99 0.99 1 86

Adam 12.5 0.01 0.12 0.87 –

RMSprop 12.5 0.01 0.12 0.87 –

Our Model

SGDM 99.69 0.99 0.99 1 40

Adam 99.7 0.99 0.99 0.99 42

RMSprop 98.63 0.98 0.98 0.99 44
(“–” means data can be ignored).

Table 8. COLOR QR Code Per Printer Identification Result for Each Pretrained CNN Model.

Model Name Optimizer Accuracy 1 2 3 4 5 6 7 8

AlexNet

SGDM 0.9956 0.979 1 1 1 0.999 1 1 0.987

Adam 0.125 – – – – – – – –

RMSprop 0.125 – – – – – – – –

GoogleNet

SGDM 0.7366 0.997 1 0.865 0.999 0.605 0.353 1 0.669

Adam 0.7188 0.897 0.991 0.685 1 0.464 0.561 1 0.145

RMSprop 0.5095 0.743 1 0.017 0.967 0.255 0.030 0.212 0.855

DenseNet201

SGDM 0.9666 1 1 0.996 0.988 0.913 0.910 1 0.925

Adam 0.9234 1 1 1 1 0.943 0.991 1 0.447

RMSprop 0.905 1 1 1 1 0.939 0.965 1 0.328

MobileNetv2

SGDM 0.9685 1 1 1 0.969 0.936 0.996 0.996 0.995

Adam 0.9857 0.999 1 1 0.887 1 1 1 1

RMSprop 0.9998 1 1 1 1 0.999 1 1 1

ResNet18

SGDM 0.9773 0.999 1 0.947 1 0.879 0.996 0.997 0.999

Adam 0.9744 0.999 1 0.875 1 0.960 0.962 1 1

RMSprop 0.9268 1 1 0.895 0.999 0.978 0.987 1 0.551
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Table 8. Cont.

Model Name Optimizer Accuracy 1 2 3 4 5 6 7 8

ResNet50

SGDM 0.9566 0.999 1 0.979 0.999 0.979 0.957 0.995 0.730

Adam 0.9584 1 1 1 0.951 0.751 0.999 1 0.967

RMSprop 0.9628 0.999 1 1 1 0.861 0.997 1 0.832

VGG16

SGDM 0.9977 1 1 1 1 0.995 1 0.997 0.977

Adam 0.125 – – – – – – – –

RMSprop 0.125 – – – – – – – –

Printer Identification Results 0.977 0.999 0.898 0.986 0.850 0.865 0.953 0.789

(“–” means data can be ignored).

4.3. Customized Fine-Tuned Residual Model Structure

In this study, a deep learning neural network with residual connections is proposed
(as shown in Figure 8) and trained on both BW and color QR code image blocks. Resid-
ual connections are a common feature of convolutional neural network architecture be-
cause they can improve the gradient flow through the network and enable the training of
deeper networks.
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Table 9. Residual model’s architecture.

Layer Name Output Size 14-Layer

convInp 160 × 160 [7 × 7], [5 × 5],
[3 × 3], 16 stride 1

S1U1conv_x
S1U2conv_x 160 × 160

[
3 × 3, 16
3 × 3, 16

]
× 2

S2U1conv_x
S2U2conv_x 80 × 80

[
3 × 3, 32
3 × 3, 32

]
× 2

S3U1conv_x
S3U2conv_x 40 × 40

[
3 × 3, 64
3 × 3, 64

]
× 2

globalPool 33 × 33 Average pooling

fcFinal
softmax 1 × 1 11 or 8 fully connected, softmax

classoutput Output into 11 categories (BW) or 8 categories (color)

For many applications, a network that consists of a simple sequence of layers is
sufficient. However, some applications require networks with a more complex graph
structure, in which inputs come from multiple layers and outputs go to multiple layers.
These types of networks are often referred to as directed acyclic graph (DAG) networks.

A residual network is a type of DAG network that includes residual (or shortcut)
connections that bypass the main layers of the network. These residual connections allow
the parameter gradients to more easily propagate from the output layer of the network to
the earlier ones and result in deeper training, which improves accuracy for challenging
tasks, such as identifying intrinsic signatures, which often look identical in most datasets.
The overall structure of our residual model is shown in Figure 8, and its architecture is
detailed in Table 9.

4.3.1. Defining the Network Architecture: The Components of the Residual
Network Architecture

• The key branch of the network is divided into various twisting layers with batch
normalization and ReLU activation functions that are connected consecutively.

• The network has residual connections that bypass the convolutional units in the main
branch. An element adds the outputs of the residual connections and convolutional
units. The residual connections must also include 1-by-1 convolutional layers when
the activation size differs. In addition, they will allow the parameter gradients to more
easily propagate from the output layer to the earlier layers of the network, enabling
training networks.

4.3.2. Creating the Main Branch of the Network with Five Sections

• The network begins with an initial section that includes the image input layer and an
initial convolution with activation.

• The network has three stages of convolutional layers with different feature sizes
(160-by-160, 80-by-80, and 40-by-40) and different kernel sizes (7 × 7, 5 × 5, and
3 × 3) in the first convolution layer. Each stage includes N convolutional units. In
this example, N = 2. Each convolutional unit contains two 3-by-3 convolutional
layers with activations. The net width parameter shows the network defined as the
number of filters in the convolutional layers in the first stage of the network. The
first convolutional units in the second and third stages down-sample the spatial
dimensions by a factor of two. The number of filters is accumulated by a factor of two
each time spatial down-sampling is performed in order to maintain approximately
the same amount of computation in each individual convolutional layer throughout
the network.
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• The final section of the network includes global average pooling, fully connected,
softmax, and classification layers.

4.4. Performance Evaluation of Customized Fine-Tuned Residual Model

The customized model’s optimizers (SGDM, Adam, and RMSprop) and hyperparame-
ters (as detailed in Table 4) are also used to train and evaluate the model’s performance.
Table 10 shows the accuracy for different optimizers and kernel sizes. The model performs
best with an SGDM optimizer for BW QR codes and an Adam optimizer for color QR codes.
It was also found that the model works best with a kernel size of 7 × 7. Therefore, a kernel
size of 7 × 7 is used to evaluate the standard performance metrics in the next evaluation.

Table 10. Customized residual model. Identification accuracy under different kernel sizes for the
first layer.

(A) BW QR CODE

Optimizers
BW

3 × 3 5 × 5 7 × 7 Time

SGDM 0.9989 0.9930 0.9963 52 min

Adam 0.9991 0.9982 0.9970 59 min

RMSprop 0.9955 0.9640 0.9989 55 min

(B) COLOR QR CODE

Optimizers
Color

3 × 3 5 × 5 7 × 7 Time

SGDM 0.9865 0.9557 0.9963 40 min

Adam 0.9917 0.9991 0.9949 47 min

RMSprop 0.9998 1 0.9863 44 min

Table 11 displays the standard performance metrics, including accuracy, precision, recall
(or sensitivity), and specificity, for each optimizer for BW QR codes (A) and color QR codes (B).

Table 11. Performing metrics for the customized residual model.

(A) BW QR CODE
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SGDM 99.69 0.997 0.997 1 51.38

Adam 99.80 0.997 0.997 1 55.75

RMSprop 99.89 0.999 0.999 1 55.16

(B) COLOR QR CODE
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SGDM 99.69 0.996 0.996 1 40.38

Adam 99.7 0.996 0.996 0.999 42.50

RMSprop 98.63 0.985 0.984 0.998 44
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As shown in Table 11, the training of BW QR codes is still slower than the training of
color QR codes, similar to the results of the previous experiment comparing pretrained
CNN models. However, the training time for our model for BW and color QR codes
only differs by about 9–12 min, which is similar to the training time for the pretrained
ResNet18 model in the earlier experiment for the BW QR Code.

Our model also has better overall stability in terms of accuracy across the three
provided optimizers. For the BW QR code results in Table 5 SGDM has the fastest training
time at 51.3 min, about 4 min faster than the other two optimizers. Adam and RMSprop
provide better identification accuracy (99.8%) but at the cost of longer training times.

For identifying a color QR code, RMSprop has fluctuating accuracy between 98% and
99%, making SGDM and Adam the better choices. Table 10B shows that SGDM has the
fastest training time for color QR codes at 40.3 min. However, the performance of SGDM
and Adam is consistently very similar at 99.7%.

5. Conclusions and Future Work
5.1. Conclusions

To address the issue of QR codes being easily reproducible during the printing process,
we used a printed source identification method based on BW and color QR codes that
were trained under a customized residual network CNN model in this experiment. This
method was found to be as efficient as fine-tuned pretrained CNN models. In general,
dividing QR code images into 16 blocks significantly improved the identification accuracy
and consistency among the different pretrained CNN models.

It is interesting to note that each pretrained CNN model behaves differently when
identifying the printed source of BW and color QR codes. While ResNet performs well for
BW QR codes, it lags behind MobileNetv2 and the more linear models such as AlexNet
and VGG16 (using SGDM optimization) for color QR codes, despite the latter generally
having more intrinsic features.

Our simplified residual model is suitable for popular printer models that are commonly
used in offices and local convenience stores. Its relatively short training time, high accuracy,
and adjustable hyperparameters make it effective at generalizing datasets from an intrinsic
signature perspective and at detecting the intrinsic signatures of QR code datasets.

5.2. Future Works

Now that the printed source identification of scanned QR code images can achieve
high classification results using deep learning models, we believe it is time to tackle more
challenging tasks. These could include adding upsampled images (using Nearest Neighbor,
Bilinear, Bicubic, etc.) to the test/validation set to assess their impact on identification
accuracy, adding a Gaussian blur attack to the QR code and analyzing the noise pattern,
and printing the images on different types of paper to study the effects of surface texture
on image clarity. Additionally, a reverse engineering approach could be used to identify
the extent of wear and tear on mechanical components by examining intrinsic features and
banding at various levels of degradation.
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