
Citation: Calimeri, F.; Leone, N.;

Melissari, G.; Pacenza, F.; Perri, S.;

Reale, K.;Ricca, F.; Zangari, J.

ASP-Based Declarative Reasoning in

Data-Intensive Enterprise and IoT

Applications. Algorithms 2023, 16, 159.

https://doi.org/10.3390/a16030159

Academic Editor: Angelo Montanari

Received: 16 February 2023

Revised: 9 March 2023

Accepted: 10 March 2023

Published: 14 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

ASP-Based Declarative Reasoning in Data-Intensive Enterprise
and IoT Applications
Francesco Calimeri 1,2 , Nicola Leone 1 , Giovanni Melissari 2 , Francesco Pacenza 1 , Simona Perri 1 ,
Kristian Reale 1,2,* , Francesco Ricca 1 and Jessica Zangari 1

1 Department of Mathematics and Computer Science, University of Calabria, 87036 Rende, Italy
2 DLVSystem L.T.D., Via della Resistenza 19/C, 87036 Rende, Italy
* Correspondence: kristian.reale@unical.it

Abstract: In the last few years, we have witnessed the spread of computing devices getting smaller
and smaller (e.g., Smartphones, Smart Devices, Raspberry, etc.), and the production and availability
of data getting bigger and bigger. This work presents DLV-EE, a framework based on Answer Set
Programming (ASP) for performing declarative reasoning tasks over data-intensive, distributed
applications. It relies on the DLV2 system and it features interoperability means for dealing with
Big-Data over modern industry-level databases (relational and NoSQL). Furthermore, the work
introduces DLV-IoT, an ASP system compatible with “mobile” technologies for enabling advanced
reasoning capabilities on smart/IoT devices; eventually, DLV-EE and DLV-IoT via some real-world
applications are illustrated as well.

Keywords: Answer Set Programming; Non-monotonic Reasoning; DLV; Big Data; SQL; NoSQL; IoT;
Raspberry; Android

1. Introduction

Answer Set Programming (ASP) [1,2] is an expressive and versatile [3,4] logic pro-
gramming paradigm that was introduced in the field of non-monotonic reasoning. It allows
for defining complex computational problems in a clear and fully declarative fashion. With
ASP, a problem can be expressed via a rule-based logic program, whose intended models,
called answer sets, correspond one-to-one to solutions. These solutions can be found using
ASP systems [5–7].

The intrinsic declarative nature of ASP, combined with its high expressive power,
fostered the development of various supporting systems within the scientific community
over time [8,9]. This, in turn, has spurred the growth of numerous applications across
various fields, including Scheduling [10,11], Workflows [12], Optimization [13], and many
others [14]. The availability of robust and reliable ASP systems has been a key factor in this
growth.

The DLV system [7] has been one of the first solid and reliable integrated ASP systems.
Its project started a few years after the first definition of Answer Set semantics [1,2].
Since its first versions, it has been a suitable tool for applications in academic and real-
world scenarios, and significantly contributed both to spreading the usage of ASP and to
fostering AI-based technological transfer activities. After years of incremental updates, a
brand new version has been released, namely DLV2 [7], a modern ASP system featuring
efficient evaluation techniques, proper development tools, versatility, and interoperability.
In addition to the standard ASP language, DLV2 offers constructs and tools for further
enhancing usability in real-world contexts [15].

The increased use of ASP in the industry has led to the development of advanced
libraries [16] and tools [17,18] for supporting programmers, knowledge engineers, and
organizations in handling complex projects within real-world domains. However, practical

Algorithms 2023, 16, 159. https://doi.org/10.3390/a16030159 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16030159
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-0866-0834
https://orcid.org/0000-0002-9742-1252
https://orcid.org/0000-0001-5307-8491
https://orcid.org/0000-0001-6632-3492
https://orcid.org/0000-0002-8036-5709
https://orcid.org/0000-0002-5988-2429
https://orcid.org/0000-0001-8218-3178
https://orcid.org/0000-0002-6418-7711
https://doi.org/10.3390/a16030159
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16030159?type=check_update&version=2

Algorithms 2023, 16, 159 2 of 14

application scenarios have undergone continuous evolution over the years. Applications
requiring reasoning over a large amount of data, possibly varying over time, have been aris-
ing and proper solutions have been conceived, e.g., in the context of big data platforms [19],
social network analysis [20], biological networks [21], traffic analytic [22]. Moreover, in
the latest years, we observed the emergence of compact computing devices and the in-
creasing generation and accessibility of heterogeneous data, e.g., in the context of digital
forensics [23], smart cities [24], and activity recognition [25].

This paper presents a framework for developing ASP-based applications in scalable
data-intensive, called DLV Enterprise Edition (DLV-EE). The framework relies on DLV2,
whose existing functionalities have been significantly extended to optimize the evaluation
techniques in data-intensive environments. Moreover, the system has been made capable
of inter-operate with relational DBMS and NoSQL technologies. Furthermore, DLV-EE
provides a service interface, based on the REST philosophy, allowing client environments
to interact with it. In addition, the paper introduces DLV-IoT, an ASP system able to shift
the execution of reasoning tasks directly on Smart Devices, hence compatible with “mobile”
technologies (Android-based devices and Raspberry). This allows edge devices to perform
local reasoning over, for example, data provided by their own sensors.

This work also presents an Integrated Development Environment (IDE) consisting
of an extended version of the most comprehensive IDE for ASP, namely ASPIDE [17]. In
particular, the IDE can support the entire life-cycle of ASP development, from program
editing to application deployment, combining a cutting-edge editing tool with a collection
of user-friendly graphical tools for program composition, debugging, testing, profiling,
DBMS access, solver execution configuration, and output-handling.

The rest of the paper is structured as follows. Section 2 presents the DLV-EE frame-
work, with a specific focus on its interoperability means, while Section 3 introduces the
DLV-IoT system. Section 3.1 introduces the development tools to facilitate the design,
implementation, and deployment of ASP-based applications in the real-world contexts
described above. Section 4 illustrates the potential of the proposals via some use cases in
the smart city and touristic domains. Eventually, Section 5 draws the conclusions.

2. The DLV-EE Framework

This Section presents the framework DLV-EE that empowers the DLV2 system with ad-
vanced interoperability means for dealing with Big Data over modern, industry-level, databases.

DLV-EE consists of different modules (see Figure 1) that work together for making the
development of effective ASP-based data-intensive solutions viable.

Figure 1. DLV-EE Architecture.

In particular, the system emerges from the integration of different versions of DLV2
featuring all the most recent and advanced features, interacting with external database
systems (both relational and NoSQL, even big-data oriented).

Algorithms 2023, 16, 159 3 of 14

In particular, the system is endowed with proper modules for interacting with external
data sources and hence performing reasoning tasks on Relational Database and Graph
Database systems via SQL and SPARQL [15], respectively. To this aim, specific features have
been traditionally integrated into different DLV versions for querying external systems via
SQL and SPARQL; such querying is achieved via specific system directives that can be used
from within an ASP program. In addition, the support for a set of very popular, industry-
standard data management systems has been added, via express modules for Apache Hive
https://hive.apache.org (and hence the Apache Hadoop framework https://hadoop.apache.
org) and the document database systems Elasticsearch https://www.elastic.co/elasticsearch
and MongoDB https://www.mongodb.com all website accessed on 16 February 2023. It
was made possible thanks to the capability of DLV2 of interacting with external sources of
computations via external atoms [15].

Roughly, proper external atoms are defined along with corresponding handlers (im-
plemented in Python) that are in charge of interacting with the data sources. External atoms
are special atoms that can appear only in the rule bodies, whose semantics is provided
externally (i.e., from the outside of the logic program) via Python functions. In particular,
an external atom has the form (1):

&p(i1, . . . , in; o1, . . . , om) (1)

where &p is an external predicate and i0, . . . , in and o0, . . . , om (n, m ≥ 0) are input and out-
put terms, respectively. Basically, for each external predicate &p featuring n/m input/out-
put terms, the user must define a Python function whose name is p and has n/m input/out-
put parameters. The function has to be compliant with Python https://docs.python.org/3
version 3. As an example, the following rule r makes use of an external atom with two
input and one output terms to concatenate two strings:

r : append(X,Y,Z) :− string(X), string(Y), &append_string(X,Y;Z).

The program above has to be coupled with the implementation of a Python function,
called append_string, whose implementation could be as follows:

def append_string (X , Y) :
return s t r (X)+ s t r (Y)

External atoms can be both functional and relational, i.e., they can return a single tuple
or a set of tuples, as output.

Furthermore, the DLV-EE system has been designed to foster the incorporation of its
reasoning capabilities into any other application. This is obtained via the REST endpoint
module, which exposes a REST interface. Any Client can use this interface for asking
specific ASP programs to be executed; programs are passed via ad-hoc REST calls. A service
will then execute the reasoning engine by automatically exploiting the correct module(s)
(Hive, MongoDB, Elasticsearch), computing the results, and sending them back to the client
in response to the service call. Both the input ASP programs and the returned results will
be passed over the network serialized in the JSON format https://www.json.org/.

2.1. Reasoning over Hive

Hive https://hive.apache.org is a system allowing to build of distributed, large-scale
data warehouses featuring a metadata repository for advanced analyses. Hive is built on
top of Apache Hadoop https://hadoop.apache.org, which is a robust and very popular
open-source framework conceived to facilitate the development of distributed computing
over large amounts of data. Hadoop relies on HDFS (Hadoop Distributed File System) https:
//hadoop.apache.org/docs/r1.2.1/hdfs_design.html for data storage and makes use of
MapReduce [26] or YARN https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-
yarn-site/YARN.html algorithms to allow the distributed execution across clusters of
machines. Hadoop is widely used in industry, as it is highly reliable (e.g., it facilitates the
replacement of cluster nodes in case of failure) and scalable (e.g., the computational capacity

https://hive.apache.org
https://hadoop.apache.org
https://hadoop.apache.org
https://www.elastic.co/elasticsearch
https://www.mongodb.com
https://docs.python.org/3
https://www.json.org/
https://hive.apache.org
https://hadoop.apache.org
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/stable/hadoop-yarn/hadoop-yarn-site/YARN.html

Algorithms 2023, 16, 159 4 of 14

can be increased or decreased by just adding or removing nodes). Queries to Hive are
given via HiveQL https://cwiki.apache.org/confluence/display/Hive/LanguageManual,
a language based on SQL. Roughly, when an HiveQL query is issued, Hadoop first analyzes
the query and generates an execution plan, then a proper MapReduce or YARN algorithm
is used to determine the query answer(s).

A properly designed integration with such a system can allow us not only to retrieve
data but also to delegate to the external large-scale database some of the most data-intensive
parts of the evaluation. In particular, specific sub-programs of the input ASP program
(i.e., those falling in a fragment of ASP corresponding to Datalog) can be evaluated by
Hive, without the need of loading the whole input data in the main memory. This can
be performed by identifying an evaluation order for the Datalog rules, translating such
rules into SQL instructions, and asking Hive for evaluating the so-defined SQL queries.
DLV2 then takes the results and evaluates the remaining part of the program, i.e., the part
falling in fragments more expressive than Datalog and thus, impossible to be translated
into standard SQL.

The following example simulates a potential use case. Suppose that a social network
would like to offer its users suggestions about people to invite for a dinner. Besides direct
friends, suggestions could also include friends of friends. It is reasonable to assume that
close friends could be preferred in suggestions and that the social network can estimate
the degree of likeness/unlikeness among subscribed people on the basis of their interests,
interactions, and so on. The following ASP program can be adapted to explore (directly
and indirectly) the friendship network of a user, namely Giovanni, and then to provide him
with suitable suggestions on people that he could invite.
f1 : nfriends (10).
f2 : averageAge (25).
r1 : possible_friend(Y) :− close_friend(giovanni ,Y).
r2 : possible_friend(X) :− possible_friend(Y), close_friend(Y,X).
r3 : suggested_friend(Y,A) :− possible_friend(Y), person(Y,A), A>18.
r4 : invite(X) | −invite(X) :− suggested_friend(X).
r5 : :− #count{X: invite(X)} > N, nfriends(N).
r6 : :− #sum{A,X: suggested_friend(X, A),invite(X)} < AVG*N,

nfriends(N), averageAge(AVG).
r7 : :∼ invite(X), suggested_friend(X,_), unlike(giovanni ,X,D). [D@1 ,X]

Rules r1 and r2 compute the transitive closure of the friendship relation of Giovanni,
restricting the computation to close friends only. Rule r3 suggests a person Y if there is a
possible friend and is older than 18. Rule r4 guesses if a suggested friend should be invited
or not. Assuming that the number of invited people should be limited, rule r5 ensures
that the number of invited friends is not greater than the desired maximum one. Rule r6
imposes that the average age of the invited friends is not smaller than a given value. Rule
r7 expresses that preferred solutions are those in which the total degree of dislike among
Giovanni and invited people is minimized.

Intuitively, computing the transitive closure of the friendship relation in a social
network could be very expensive when performed on a huge database. Thus, traditional
main memory ASP systems would struggle in handling it; even the naive import of the
friendship relation is not feasible in practice. Hence, given that this subprogram entirely
falls into Datalog, its computation can be delegated to Hive, letting the DLV2 be in charge
of evaluating the remaining subsequent disjunctive part of the program.

From a practical point of view, the delegation mentioned above is possible thanks to
an external atom, namely &bigasp, having the form (2):

&bigasp(rules , input , output , db, host:port , user , password; term[, term]). (2)

where:

rules a string specifying some Datalog rules whose evaluation is delegated
externally on the DB;

input a string (possibly empty) featuring a set of ASP facts to be exported to the
DB;

https://cwiki.apache.org/confluence/display/Hive/LanguageManual

Algorithms 2023, 16, 159 5 of 14

output a string specifying the name and the arity of the predicate corresponding to
the resulting output relation;

db a string specifying the name of the ODBC DSN (Data Source Name);
host:port a string reporting the address and the port of the Hive server;
user a string specifying the username willing to connect to the server;
password a string specifying the user’s password;
term one or more (optional) output terms.

The Python function defining the behavior of such external atom connects to the
specified Hive server via the given username and password, exports the given facts (if any),
converts the given rules into one or more HiveQL queries, executes such queries on the DB
and returns as output a set of tuples that will populate the specified output relation. The
output terms correspond to selected fields of the resulting HiveQL queries.

Let us consider again our running example and illustrate how the external atom is
intended to be used to externally delegate the computation of suggested friends.

r8 : suggested_friend(Y,A) :- &bigasp(
"possible_friend(Y) :- close_friend(giovanni , Y).
possible_friend(X) :- possible_friend(Y), close_friend(Y,X).
suggested_friend(Y,A) :- possible_friend(Y), person(Y,A), A>18.", "",
"suggested_friend /2", "my_db", "192.168.1.1:10000", "my_username",
"my_password"; Y,A,B,C).

Apart from connection parameters and the name of the output relation, the external
atom, presented in rule r8, takes as input the extracted rules, invokes the machinery for
enabling their evaluation on the external my_db and returns the results as a sequence of
tuples representing the suggested friends with their age. Such tuples populate the extension
of the suggested_friend relation so that the traditional ASP evaluation can continue.

The external atom &bigasp translates the extracted rules to the following HiveQL queries:

1. possible_friend(Y) :- close_friend(giovanni, Y).

INSERT INTO possible_friend
SELECT DISTINCT t0.name1 as name,

’2023-01-11 01:21:09’ AS currentStartDate,
’0’ AS recursionLevel

FROM close_friend AS t0
WHERE t0.name0=’giovanni’

2. possible_friend(X) :- possible_friend(Y), close_friend(Y, X).

INSERT INTO possible_friend
SELECT DISTINCT t1.name1 as name,

’2023-01-11 01:21:09’ AS currentStartDate,
’1’ AS recursionLevel

FROM possible_friend AS t0, close_friend AS t1
WHERE t0.currentStartDate = ’2023-01-11 01:21:09’

AND t1.currentStartDate = ’2023-01-11 01:21:09’
AND t0.name0=t1.name0 AND t0.recursionLevel= ’0’

3. suggested_friend(Y,A) :- possible_friend(Y), person(Y,A), A>18.

INSERT INTO suggested_friend
SELECT DISTINCT t0.name0 as name, t1.age as age,

’2023-01-11 01:21:09’ AS currentStartDate
FROM possible_friend AS t0,person AS t1
WHERE t0.executiontime = ’2023-01-11 01:21:09’

AND t1.executiontime = ’2023-01-11 01:21:09’
AND t0.name=t1.name
AND t1.age > 18

The translation 1 inserts, in the table possible_friend, all close friends of giovanni. Consid-
ering that possible_friend needs to be the result of a recursion, the attribute currentStartDate,
indicating the moment in which the recursion started, and recursionLevel, indicating which

Algorithms 2023, 16, 159 6 of 14

step of the execution was reached, has been introduced. The subsequent recursive execu-
tions are made by the translation 2, which performs a join between the possible_friend and
close_friend tables and inserts to possible_friend the results of the join where the recursionLevel
attribute is incremented by 1. With the translation 3, the suggested_friend table is populated
with the calculated possible friends having an age higher than 18. Finally, the suggested
friends are returned to the ASP program and the execution can continue in main memory
with the so-filtered data.

2.2. Reasoning over MongoDB or Elasticsearch

MongoDB https://www.mongodb.com is a very popular open-source cross-platform
document-oriented NoSQL database system, developed in C++. It handles BSON (Bi-
nary JSON) https://www.mongodb.com/json-and-bson, a JSON extension that features
a broader data type support, and it is used in a wide range of different application do-
mains, including the gaming industry (SEGA, Electronic Arts) and e-commerce (eBay) https:
//www.mongodb.com/who-uses-mongodb. Thanks to its distributed nature, it can also be
used as a distributed file system, supporting the storage of large files and taking advantage
of replication and load balancing across multiple servers. Data are stored in structures
called “collections”, that contain documents without a fixed schema; the supported query
language allows to filter and sort data over every field and to perform any kind of aggrega-
tion. For instance, with aggregation queries one can group documents from collections that
meet specific criteria and apply over them aggregation functions such as count, average,
or sum.

To make DLV2 interact with MongoDB a specific external atom has been designed.
Instances of these external atoms can be featured in some rule bodies; during the evaluation
of the program, the corresponding Python module is invoked for fetching the data from
the DBMS by querying the system and transforming the results in ASP facts. The facts are
in turn used by DLV2 for evaluating the ASP program. The external atom has the form (3):

&mongo(host , port , database , collection , query , key , aggr; term[, term]). (3)

where:

host is the address of the MongoDB server.
port is the port of the MongoDB server.
database is the name of the database over which the query has to be performed.
collection is the name of the collection from which data is to be retrieved.
query is the query to be executed on MongoDB.
key is needed to select fields within the document; this parameter determines

the arity of the predicate. If an empty string ("") is specified, all fields are
returned.

aggr this parameter informs the Python module about the presence of aggregate
functions, hence providing instructions about the search method to be used:
"yes" indicates to use db.aggregate(), while "no" indicates to use db.find().

term one or more (optional) output terms determining the values of the field(s)
retrieved via the query.

The following example illustrates how an ASP program can make use of data retrieved
via MongoDB. Considering the ASP rule r1 below:
r1 : b(X,Y) :- &mongo("localhost", 27017 , "admin", "football",

"{age: {$gt: 30}}", "_id: 0, name: 1, surname: 1","yes"; X, Y).

r1 can be used to fill in the extension of the head predicate b having arity 2 with the names
and the surnames of the football players appearing in the collection “football” who are
over 30 years old.

During the evaluation of the logic program, DLV2 invokes the Python module corre-
sponding to the external atom mongo where the input terms contain the information needed
for establishing the connection with the MongoDB server and performing the query. DLV2
waits for the results, that return as JSON documents, for instance, json1 and json2:

https://www.mongodb.com
https://www.mongodb.com/json-and-bson
https://www.mongodb.com/who-uses-mongodb
https://www.mongodb.com/who-uses-mongodb

Algorithms 2023, 16, 159 7 of 14

json1 : { "player": { "name": "Cristiano", "surname": "Ronaldo" } }
json2 : { "player": { "name": "Leo", "surname": "Messi" } }

Such documents are then transformed into tuples that bind the output parameters X
and Y, used by DLV2 for evaluating the rule.

Elasticsearch https://www.elastic.co/elasticsearch is a full-text search engine based
on Lucene https://lucene.apache.org, a free open-source API for information extraction,
widely used in the development of search engines. It is also a document-oriented DBMS
that stores data over a distributed database. Documents are collections of fields represented
in JSON format; each document belongs to an index and is identified by a unique key. Load
balancing over the database distributed architecture is guaranteed by the division into
Shards (partitions).

The interoperability between DLV2 and Elasticsearch is obtained by defining a specific
external atom. In this case, the external atom has the form (4):

&elastic(host , port , query ,index; term [,term]) (4)

where:

host is the address of the Elasticsearch server.
port is the listening port of the Elasticsearch server (9200 is the standard one).
query is the query to be executed on MongoDB.
index is a string representing the index where the query should be performed.
term one or more (optional) output terms determining the values of the field(s)

retrieved via the query.

Similarly to the MongoDB case, the external atom of Elasticsearch can be exploited to
perform a query, e.g. for obtaining all the football players as in the rule r2 below:

r2 : b(X,Y) :- &elasticsearch("localhost", 9200,
"{’_source ’:[’teams ’,’player ’],’query ’:{’match_all ’:{}}}},"anElasticIndex";X,Y).

Also in this case the Python module invokes Elasticsearch to pass the query and obtain
the results.

3. DLV-IoT

The Internet of Things (IoT) is a rapidly growing technology trend that is changing the
way people live, work, and interact with the world. It refers to an interconnected network
of devices, such as vehicles, home appliances, and other items which are embedded
with sensors, specific firmware, and network connectivity, allowing them to collect and
exchange vast amounts of data. The use of IoT devices is predicted to expand even more
in the future, thanks to the new technologies coming from domotics, home automation,
healthcare, and smart cities [27]. Moreover, IoT devices are particularly attractive since they
allow us to make decisions, automate processes, and improve efficiency in many different
contexts. For the above reasons, enabling advanced and complex reasoning capabilities
in IoT applications, today, could be largely beneficial, especially when massive groups of
sensors need to be leveraged.

In general, in the IoT context, devices first acquire information about the surrounding
environment, then a decision-making logic takes actions based on the input knowledge.
Typically, due to the limited availability of computing power or memory on the edge
devices, data is sent to remote/cloud systems that are in charge of actually performing the
computation. However, data collected can come at a high pace and high volumes, thus
suggesting that the ability to reason on such data locally and in real-time could benefit
many advanced applications.

DLV-IoT is an ASP system conceived to be profitably used in such contexts, as it can
shift the execution of reasoning tasks directly on Smart Devices. DLV-IoT consists of a
specific version of DLV that analyzes the requested reasoning task and input data, and
performs an estimation of the computational workload, thus deciding whether it can be
reasonably executed locally; if this is not the case, it interacts with DLV-EE via the REST

https://www.elastic.co/elasticsearch
https://lucene.apache.org

Algorithms 2023, 16, 159 8 of 14

services made available via the introduction of a REST endpoint, thus enjoying the full
computational power of the DLV-EE system, presumably running over more powerful
infrastructures (see Figure 2).

Figure 2. Typical architecture of a DLV-IoT-based application over Raspberry.

To date, besides the widespread mobile operating system Android https://www.
android.com/, DLV-IoT is also able to run on Raspberry Pi https://www.raspberrypi.com/,
which is one of the most commonly used systems for collecting, aggregating and analyzing
data coming from a network of IoT devices. Raspberry Pi is a tiny, low-cost, single-board
computer that has become increasingly popular for IoT applications thanks to its compact
size, portability, versatility, and low power consumption. Moreover, Raspberry Pi can be
also directly connected to a variety of sensors, allowing it to gather data immediately from
the physical world.

The current version of DLV-IoT performs the local evaluation only in the case of
Datalog programs; when full ASP language is present, it defaults to DLV-EE; more accurate
estimations of the computational workload are under consideration.

3.1. Development Tools for DLV-EE and DLV-IoT

The evolution and the introduction of more advanced hardware and software tech-
nologies generally go hand in hand with the implementation of proper tools for supporting
developers during the entire development cycle of a given application, such as proper Inte-
grated Development Environments (IDEs). As for “standard” ASP, and DLV in particular,
ASPIDE [17] is one of the most comprehensive IDE for ASP which was followed by further
extensions over the years.

To support the development of applications based on DLV-EE and DLV-IoT, i.e., appli-
cations that require ASP solvers to go beyond reasoning in main memory and gathering
input from local files, this work ASPIDE has been properly extended via a synergic integra-
tion of multiple Integrated Development Environments suitably adapted to our purpose
(Figure 3).

https://www.android.com/
https://www.android.com/
https://www.raspberrypi.com/

Algorithms 2023, 16, 159 9 of 14

Figure 3. Integrated Development Environment for DLV-EE and DLV-IoT.

3.1.1. Development of DLV-EE Solutions

In the case of applications that make direct use of DLV-EE, the development can rely
on direct access to the REST services; however, one can also use ASPIDE which has been
purposely extended to ease the whole process. In particular, once the ASP programs are
written, it is possible to decide either to save them directly to the local disk or interact with
the REST interface to access a remote workspace and store ASP programs and facts directly
to the DLV-EE storage location. Moreover, it is possible to invoke DLV-EE from ASPIDE
itself by exploiting the REST interface.

3.1.2. Development of DLV-IoT Solutions

For the development of DLV-IoT based solutions for Android and Raspberry Pi systems,
in this work ASPIDE has been extender to make the system suitable for implementing
and deploying ASP programs into external libraries. In such a way, the final libraries
can be integrated, on one hand, to the Android Studio environment https://developer.
android.com/studio for the development of software solutions based on Android, and on
the other hand, to the Eclipse environment https://www.eclipse.org/, for implementing
e.g., Raspberry Pi solutions. More in detail, an ASP programmer can first write the ASP
program in ASPIDE, export the program into an AAR https://developer.android.com/
studio/projects/android-library/JAR https://docs.oracle.com/javase/8/docs/technotes/
guides/jar/jarGuide.html library and then import the library into a Java program for
Android or Raspberry Pi applications: the Java programmer just needs to import the library
into the desired environment like Android Studio or Eclipse and use it (note that the DLV-IoT
system will be included in the library as well).

4. DLV-EE and DLV-IoT at Work: Some Use Cases

This section presents two real-world scenarios and shows how applications based
on DLV-EE and DLV-IoT can be conveniently developed. The first scenario consists of
an Android app, namely NavTour, allowing users to exploit an intelligent navigator sys-
tem (DLVNavigator); the second scenario makes use of the DLV-IoT system in a Smart
Cities context.

4.1. Planning Touristic Itineraries

DLVNavigator is a web service, based on DLV-EE, which has been endowed with
additional features to automatically generate tourist itineraries. The web service can be
easily accessed from multiple clients via a RESTful architecture that exposes APIs capable
of providing a rich set of services, which are briefly described in the following. The service
provides the user with a planned itinerary enriched with information about locations

https://developer.android.com/studio
https://developer.android.com/studio
https://www.eclipse.org/
https://developer.android.com/studio/projects/android-library
https://developer.android.com/studio/projects/android-library
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jarGuide.html

Algorithms 2023, 16, 159 10 of 14

and the visiting times of the points of interest (POIs) (e.g., historic squares, museums,
monuments, etc.). Itineraries are guaranteed to be free of loops and dead ends, also
ensuring compliance with the preferences and time constraints coming from the user and
paying attention to other details (e.g., do not place POIs to be visited in time slots in which
they are not available to the public).

To generate a fully customized itinerary, which results as close as possible to desiderata
from the user, some profiling functionalities have been implemented; in particular, users
can indicate their preferences regarding the type of POIs they intend to visit expressed by
numerical values between 0 and 10, for each category of points of interest. Registration
(and authentication) functions have been made available to the user to associate itineraries
and profiles to a specific user account.

The service is made available to mobile users via an Android App called NavTour
(see Figure 4). When a new tour has been planned by DLVNavigator, it is available in the
app; all the stages are reported, and the user can start the tour. When the user physically
moves from one place to the next one, the app automatically keeps track of the progresses;
interestingly, the tour is dynamically managed: in case the user spends more time than
what was originally allotted in the schedule, a rescheduling is automatically determined,
taking into account the remaining time and user preferences.

For computing the tourist itinerary, DLVNavigator relies on a proper ASP program
consisting of two layers. The first layer is in charge of selecting a number of POIs complying
with some given constraints (i.e., number, duration, etc.). The selection of POIs is optimized
according to user preferences (e.g., how many POIs for each category) and total costs (e.g.,
ticket prices). The second layer builds the tour by defining the sequence of POIs to visit,
taking into account entry/exit times and the available time budget; the tour can also be
optimized according to other specific desiderata (e.g., minimizing the distances between
consecutive POIs in the tour). Details about the implementation and the ASP programs
employed can be found at https://www.mat.unical.it/ricca/aspide/dlvee.

(a) (b)

Figure 4. The NavTour Android application. (a) New itinerary; (b) Planned Tour.

https://www.mat.unical.it/ricca/aspide/dlvee

Algorithms 2023, 16, 159 11 of 14

4.2. Controlling Traffic Lights in Road Crossings

In a smart city [28?], digital technologies, such as edge devices or sensors, are scattered
throughout the city to collect data. Leveraging technological solutions from different areas,
such as IoT, Social Computing, and Artificial Intelligence, new information about the
surrounding environment is inferred from collected data [30,31]. Such information is used
for automatizing a “smart” management of infrastructures, resources, and services.

The following part illustrates how DLV-IoT can be used as a smart city technology.
As a target use case, consider a simplified setting consisting of three roads with two

crossings, namely c1 and c2, as shown in Figure 5. On each crossing, there are four traffic
lights, one per each traveling direction, i.e., s1, s2, s3, and s4. For the sake of simplicity, it
is supposed that vehicles can only go straight without turning right or left and that the
behavior of the two crossings follows the rules listed below.

• In each crossing, the two traffic lights on the same road must simultaneously have the
same status; thus, they are grouped in the pairs <s1, s4> and <s2, s3>. In addition,
when <s1, s4> have the red status, <s2, s3> have the green status and vice-versa.
Green means that vehicles can pass; red means that vehicles have to stop.

• Every 10 s, the traffic lights switch their status.
• In case a pedestrian wants to request to cross at a traffic light, it and its paired traffic

light turn red. Consequently, the status of both traffic lights in the other pair of the
same crossing switches to green.

• The green wave can be enabled at certain times of the day, to force the pair <s1, s4> of
both crossings c1 and c2 to become simultaneously green, while all the other traffic
lights must turn red.

Figure 5. A Smart City use case: crossroads with traffic lights.

This scenario was simulated using some Arduino and Raspberry Pi devices. The
configuration is depicted in Figure 5: each traffic light is emulated with an Arduino https:
//www.arduino.cc/ device and each crossing is equipped with a Raspberry Pi device;
moreover, a further central Raspberry Pi device coordinates the traffic lights in green wave
situations.

ASP can be profitably used to model the functioning of the crossings using DLV-IoT as
a reasoning engine, executed on the Raspberry Pi devices. In particular, for each crossing,
the corresponding Raspberry Pi device executes DLV-IoT over an ASP program for defining
how to control the local functioning of its traffic lights. The ASP program receives as input
some facts modeling the topology of the corresponding crossing. For instance, for c1, the
following facts, from f1 to f5, states that c1 is a crossing and that s1, s2, s3, s4 are traffic
lights related to c1.

f1 : crossing(c1).
f2 : traffic_light(s1,c1).
f3 : traffic_light(s2,c1).

https://www.arduino.cc/
https://www.arduino.cc/

Algorithms 2023, 16, 159 12 of 14

f4 : traffic_light(s3,c1).
f5 : traffic_light(s4,c1).

Similar facts, in which c1 is replaced by c2, are the input of the ASP program controlling
the crossing c2. The ASP program, modeling the behavior of each crossing, is composed as
follows:

r1 : samePair(s1,s4,C) :− crossing(C).
r2 : samePair(s2,s3,C) :− crossing(C).
r3 : status(T,C,red) | status(T,C,green) :− traffic_light(T,C).
r4 : :− status(T1,C,Status1), status(T2,C,Status2),

samePair(T1,T2,C), Status1 != Status2.
r5 : :− status(T1,C,Status), status(T2 ,C,Status),

T1!=T2 , not samePair(T1,T2,C).

Rules r1 and r2 define the grouping in pairs of traffic lights on the same road. Rule
r3 guesses the status of each traffic light. Rules r4 and r5 are strong constraints allowing
to discard solutions in which two traffic lights of the same road have different statuses
(i.e., r4) and two different traffic lights not part of the same pair have the same status
(i.e., r5). The Raspberry Pi of each crossing generates a first status assignment for each traffic
light and every 10 seconds the statuses are automatically turned. In case a pedestrian
requires to cross a road, e.g., at the traffic light s1 of c1, the Raspberry Pi of c1 is notified, and
consequently, it re-executes DLV-IoT over the same ASP program above with the addition
of the fact status(s1,c1,red). The statuses of the traffic lights are accordingly updated and
then, continue to be turned every 10 seconds. The central Raspberry Pi is in charge of
synchronizing both crossings in case of a green wave. To this end, DLV-IoT is executed over
the same program above with the addition of the strong constraint reported below (rule r6).

r6 :- greenwave , state(s1 ,C,red).

Hence, when a green wave is requested (i.e., a fact greenwave is given as input), the
status of the traffic lights s1 of both c1 and c2 has to be green. The constraint r4 ensures that
the traffic lights s4 of both c1 and c2 are green as well. The central Raspberry Pi can thus
directly update the statuses of all traffic lights overriding the default behavior.

5. Conclusion and Discussion

This paper presented DLV-EE, an ASP-based Framework for performing declarative-
based reasoning tasks over Big Data, classical relational database systems, and NoSQL
databases. Moreover, DLV-IoT, a variant of DLV2 geared towards IoT technologies, was
proposed for easing the implementation of ASP-based mobile and distributed applications.
The specific development tools, designed for DLV-EE and DLV-IoT, and based on ASPIDE
were also discussed. Finally, the potential of the proposals was highlighted with the help of
some use cases. DLV-EE, DLV-IoT and the related development tools can be downloaded
at https://www.mat.unical.it/ricca/aspide/dlvee.

As far as future work is concerned, extensions are planned for both the DLV-EE
framework and the development tools, with the aim of dealing with more data sources,
both relational and NoSQL, and further improving performance in data-intensive contexts.
Furthermore, compatibility of DLV-IoT is planned to be improved beyond the currently
supported Raspberry and Android architectures; also, improvements are programmed on
the workload estimator, for more fine-tuned decisions aimed at minimizing the need for
computation carried away from the edge devices.

Author Contributions: Conceptualization, F.C., N.L., S.P. and J.Z.; Methodology, F.C., N.L., F.P., S.P.,
F.R. and J.Z.; Software, F.C., G.M., K.R., F.R. and J.Z.; Validation, F.C., N.L., S.P. and F.R.; Formal
analysis, F.C., F.P., S.P., F.R. and J.Z.; Investigation, F.C., K.R., F.R. and J.Z.; Resources, G.M., F.P., K.R.
and J.Z.; Data curation, N.L. and G.M.; Writing—original draft, F.P., S.P. and J.Z.; Writing—review
& editing, F.C., F.P., S.P., F.R. and J.Z.; Visualization, F.C., G.M., S.P. and F.R.; Supervision, N.L., S.P.
and F.R.; Project administration, F.C. and N.L.; Funding acquisition, N.L. All authors have read and
agreed to the published version of the manuscript.

https://www.mat.unical.it/ricca/aspide/dlvee

Algorithms 2023, 16, 159 13 of 14

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This work has been partially supported by : (i) POR CALABRIA FESR-FSE 2014-
2020, project “DLV Large Scale: un sistema per applicazioni di Intelligenza Artificiale in architetture
data-intensive e mobile”, CUP J28C17000220006; (ii) PRIN PE6, Title: “Declarative Reasoning over
Streams”, funded by the Italian Ministero dell’Università, dell’Istruzione e della Ricerca (MIUR),
CUP:H24I17000080001; (iii) PON-MISE MAP4ID, Title: “Multipurpose Analytics Platform 4 Industri-
alData”, funded by the Italian Ministero dello Sviluppo Economico (MISE), CUP: B21B19000650008;
(iv) PON-MISE S2BDW, Title: “Smarter Solution in the Big Data World”, funded by the Italian
Ministero dello Sviluppo Economico (MISE), CUP: B28I17000250008. Also, this work contributes to
the basic research activities of the WP9.1: “KRR Frameworks for Green-aware AI” supported by the
PNRR project FAIR - Future AI Research (PE00000013), Spoke 9 - Green-aware AI, under the NRRP
MUR program funded by the NextGenerationEU.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Gelfond, M.; Lifschitz, V. Classical Negation in Logic Programs and Disjunctive Databases. New Gener. Comput. 1991, 9, 365–386.

[CrossRef]
2. Gelfond, M.; Lifschitz, V. The Stable Model Semantics for Logic Programming. In ICLP/SLP; MIT Press: Cambridge, MA, USA,

1988; pp. 1070–1080.
3. Eiter, T.; Gottlob, G.; Mannila, H. Disjunctive Datalog. ACM Trans. Database Syst. 1997, 22, 364–418. [CrossRef]
4. Brewka, G.; Eiter, T.; Truszczynski, M. Answer set programming at a glance. Commun. ACM 2011, 54, 92–103. [CrossRef]
5. Simons, P.; Niemelä, I.; Soininen, T. Extending and implementing the stable model semantics. Artif. Intell. 2002, 138, 181–234.

[CrossRef]
6. Gebser, M.; Kaminski, R.; Kaufmann, B.; Schaub, T. Multi-shot ASP solving with clingo. Theory Pract. Log. Program. 2019,

19, 27–82. [CrossRef]
7. Alviano, M.; Calimeri, F.; Dodaro, C.; Fuscà, D.; Leone, N.; Perri, S.; Ricca, F.; Veltri, P.; Zangari, J. The ASP System DLV2. In

Lecture Notes in Computer Science, Proceedings of the LPNMR, Hanasaari, Espoo, Finland, 3–6 July 2017; Springer: Berlin/Heidelberg,
Germany, 2017; Volume 10377, pp. 215–221.

8. Lifschitz, V. Answer Set Programming; Springer: Berlin/Heidelberg, Germany, 2019.
9. Eiter, T.; Ianni, G.; Schindlauer, R.; Tompits, H. dlvhex: A System for Integrating Multiple Semantics in an Answer-Set

Programming Framework. In INFSYS Research Report, Proceedings of the WLP, Vienna, Austria, 22–24 February 2006 ; Technische
Universität Wien: Vienna, Austria, 2006; Volume 1843-06-02, pp. 206–210.

10. Fabricius, F.; De Bortoli, M.; Selmair, M.; Reip, M.; Steinbauer, G.; Gebser, M. Towards ASP-based scheduling for industrial
transport vehicles. In Proceedings of the Joint Austrian Computer Vision and Robotics Workshop, Graz, Austria, 16–17 April
2020.

11. Abels, D.; Jordi, J.; Ostrowski, M.; Schaub, T.; Toletti, A.; Wanko, P. Train Scheduling with Hybrid Answer Set Programming.
Theory Pract. Log. Program. 2021, 21, 317–347. [CrossRef]

12. Bobda, C.; Yonga, F.; Gebser, M.; Ishebabi, H.; Schaub, T. High-level synthesis of on-chip multiprocessor architectures based on
answer set programming. J. Parallel Distributed Comput. 2018, 117, 161–179. [CrossRef]

13. Abseher, M.; Gebser, M.; Musliu, N.; Schaub, T.; Woltran, S. Shift Design with Answer Set Programming. Fundam. Informaticae
2016, 147, 1–25. [CrossRef]

14. Falkner, A.A.; Friedrich, G.; Schekotihin, K.; Taupe, R.; Teppan, E.C. Industrial Applications of Answer Set Programming.
KI-Künstliche Intell. 2018, 32, 165–176. [CrossRef]

15. Calimeri, F.; Fuscà, D.; Perri, S.; Zangari, J. External Computations and Interoperability in the New DLV Grounder. In Lecture
Notes in Computer Science, Proceedings of the AI*IA, Bari, Italy, 14–17 November 2017; Springer: Berlin/Heidelberg, Germany, 2017;
Volume 10640, pp. 172–185.

16. Thimm, M. The Tweety Library Collection for Logical Aspects of Artificial Intelligence and Knowledge Representation. Künstliche
Intell. 2017, 31, 93–97. [CrossRef]

17. Calimeri, F.; Germano, S.; Palermiti, E.; Reale, K.; Ricca, F. Developing ASP Programs with ASPIDE and LoIDE. Künstliche Intell.
2018, 32, 185–186. [CrossRef]

18. Oetsch, J.; Pührer, J.; Tompits, H. The SeaLion has Landed: An IDE for Answer-Set Programming-Preliminary Report. In
Lecture Notes in Computer Science, Proceedings of the INAP/WLP, Vienna, Austria, 28–30 September 2011; Springer: Berlin/Heidelberg,
Germany, 2011; Volume 7773, pp. 305–324.

http://doi.org/10.1007/BF03037169
http://dx.doi.org/10.1145/261124.261126
http://dx.doi.org/10.1145/2043174.2043195
http://dx.doi.org/10.1016/S0004-3702(02)00187-X
http://dx.doi.org/10.1017/S1471068418000054
http://dx.doi.org/10.1017/S1471068420000046
http://dx.doi.org/10.1016/j.jpdc.2018.02.010
http://dx.doi.org/10.3233/FI-2016-1396
http://dx.doi.org/10.1007/s13218-018-0548-6
http://dx.doi.org/10.1007/s13218-016-0458-4
http://dx.doi.org/10.1007/s13218-018-0534-z

Algorithms 2023, 16, 159 14 of 14

19. Ren, X.; Curé, O.; Naacke, H.; Xiao, G. RDF Stream Reasoning via Answer Set Programming on Modern Big Data Platform. In
Proceedings of the ISWC (P&D/Industry/BlueSky), Monterey, CA, USA, 8–12 October 2018; Volume 2180.

20. Güven, Ç.; Atzmueller, M. Applying Answer Set Programming for Knowledge-Based Link Prediction on Social Interaction
Networks. Front. Big Data 2019, 2, 15. [CrossRef] [PubMed]

21. Gebser, M.; Schaub, T.; Thiele, S.; Veber, P. Detecting inconsistencies in large biological networks with answer set programming.
Theory Pract. Log. Program. 2011, 11, 323–360. [CrossRef]

22. Zhong, S.; Sun, D.J. Logic-Driven Traffic Big Data Analytics: An Introduction. In Logic-Driven Traffic Big Data Analytics: Methodology
and Applications for Planning; Springer Nature Singapore: Singapore, 2022; pp. 1–32.

23. Costantini, S.; Gasperis, G.D.; Olivieri, R. Digital forensics and investigations meet artificial intelligence. Ann. Math. Artif. Intell.
2019, 86, 193–229. [CrossRef]

24. Badii, C.; Bellini, P.; Difino, A.; Nesi, P. Smart City IoT Platform Respecting GDPR Privacy and Security Aspects. IEEE Access
2020, 8, 23601–23623. [CrossRef]

25. Do, T.M.; Loke, S.W.; Liu, F. HealthyLife: An Activity Recognition System with Smartphone Using Logic-Based Stream Reasoning.
In Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Proceedings of the
MobiQuitous; Springer: Berlin/Heidelberg, Germany, 2012; Volume 120, pp. 188–199.

26. Dean, J.; Ghemawat, S. MapReduce: Simplified data processing on large clusters. Commun. ACM 2008, 51, 107–113. [CrossRef]
27. Sánchez-Corcuera, R.; Núñez-Marcos, A.; Sesma-Solance, J.; Bilbao-Jayo, A.; Mulero, R.; Zulaika, U.; Azkune, G.; Almeida, A.

Smart cities survey: Technologies, application domains and challenges for the cities of the future. Int. J. Distributed Sens. Netw.
2019, 15. [CrossRef]

28. Hall, R.E.; Bowerman, B.; Braverman, J.; Taylor, J.; Todosow, H.; Von Wimmersperg, U. The Vision of a Smart City; Technical Report;
Brookhaven National Lab. (BNL): Upton, NY, USA, 2000.

29. Hollands, R.G. Will the real smart city please stand up? City 2008, 12, 303–320. [CrossRef]
30. D’Aniello, G.; Gaeta, M.; Orciuoli, F. An approach based on semantic stream reasoning to support decision processes in smart

cities. Telemat. Inform. 2018, 35, 68–81. [CrossRef]
31. Dustdar, S.; Nastic, S.; Scekic, O. Smart Cities-The Internet of Things, People and Systems; Springer: Berlin/Heidelberg, Germany, 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.3389/fdata.2019.00015
http://www.ncbi.nlm.nih.gov/pubmed/33693338
http://dx.doi.org/10.1017/S1471068410000554
http://dx.doi.org/10.1007/s10472-019-09632-y
http://dx.doi.org/10.1109/ACCESS.2020.2968741
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1177/1550147719853984
http://dx.doi.org/10.1080/13604810802479126
http://dx.doi.org/10.1016/j.tele.2017.09.019

	Introduction
	The DLV-EE Framework
	Reasoning over Hive
	Reasoning over MongoDB or Elasticsearch

	DLV-IoT
	Development Tools for DLV-EE and DLV-IoT
	Development of DLV-EE Solutions
	Development of DLV-IoT Solutions

	DLV-EE and DLV-IoT at Work: Some Use Cases
	Planning Touristic Itineraries
	Controlling Traffic Lights in Road Crossings

	Conclusion and Discussion
	References

