
Citation: Marochok, S.; Zajac, P.

Algorithm for Generating S-Boxes

with Prescribed Differential

Properties. Algorithms 2023, 16, 157.

https://doi.org/10.3390/a16030157

Academic Editor: Frank Werner

Received: 15 December 2022

Revised: 8 February 2023

Accepted: 11 March 2023

Published: 13 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Algorithm for Generating S-Boxes with Prescribed
Differential Properties
Stanislav Marochok and Pavol Zajac *

Department of Computer Science and Mathematics, Faculty of Electrical Engineering and Information
Technology, Slovak University of Technology in Bratislava, Ilkovičova 3, 812 19 Bratislava, Slovakia
* Correspondence: pavol.zajac@stuba.sk

Abstract: Cryptographic S-boxes are vectorial Boolean functions that must fulfill strict criteria to
provide security for cryptographic algorithms. There are several existing methods for generating
strong cryptographic S-boxes, including stochastic search algorithms. These search algorithms
typically generate random candidate Boolean functions (or permutations) that are improved during
the search by examining the search space in a specific way. Here, we introduce a new type of
stochastic algorithm for generating cryptographic S-boxes. We do not generate and then improve the
Boolean function; instead, we build the vector of values incrementally. New values are obtained by
randomized search driven by restrictions on the differential spectrum of the generated S-box. In this
article, we formulate two new algorithms based on this new approach and study the better one in
greater detail. We prove the correctness of the proposed algorithm and evaluate its complexity. The
final part contains an experimental evaluation of the method. We show that the algorithm generates
S-boxes with better properties than a random search. We believe that our approach can be extended
in the future by adopting more advanced stochastic search methods.

Keywords: S-box; differential spectrum; search algorithm; stochastic search

1. Introduction

A substitution box (S-box) is a principal component of a large class of symmetric
ciphers. The main task of the S-box is to provide nonlinearity to the cipher design, creating
a property called confusion [1]. From the mathematical point of view, a cryptographic
n×m S-box is a vectorial Boolean function S : Zn

2 → Zm
2 , which fulfills specific criteria. We

refer the reader to [2] for a more thorough study of Boolean functions used in cryptography.
We can evaluate a vectorial Boolean function with respect to some S-box criteria and

assign a quality to an S-box (with respect to these criteria). An S-box that fulfills prescribed
criteria is called a strong S-box, while an S-box that lacks in some criterion is called a weak
S-box. The S-box criteria include:

• Nonlinearity, which measures the resistance against the linear cryptanalysis [3]. Non-
linearity is computed as a minimum distance to all affine functions, which can be
efficiently implemented with a Fast Walsh–Hadamard transform. Cryptographic
applications require S-boxes with nonlinearity that is as high as possible.

• Differential profile, which measures the resistance against the differential cryptanaly-
sis [4]. The differential profile measures the probability of the difference propagation,
and should be as flat as possible. In this article, we focus exclusively on the differential
profile. We provide more details in the following text.

• Balancedness [5], which is required to achieve uniform distribution of output bits.
A balanced Boolean function has the same number of zeroes and ones in its vector
of values. Note that it is easy to show that Boolean permutation (bijective vectorial
Boolean function) is always balanced.

Algorithms 2023, 16, 157. https://doi.org/10.3390/a16030157 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16030157
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0009-0009-9446-1871
https://orcid.org/0000-0003-1909-9453
https://doi.org/10.3390/a16030157
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16030157?type=check_update&version=1


Algorithms 2023, 16, 157 2 of 15

• Strict Avalanche (SAC) and Output Bit Independence (BIC) [6,7], which measure the
diffusion properties of the S-box.

• Algebraic immunity [8], which measures the resistance against algebraic attacks on
symmetric ciphers.

• Multiplicative complexity [9], which measures the complexity of the S-box imple-
mentation in terms of the number of AND gates required to implement the S-box.
High multiplicative complexity means that S-box implementation in hardware is more
costly. On the other hand, S-boxes with low multiplicative complexity can be weak
with respect to other criteria.

• Other criteria, such as differential profile with respect to addition modulo 2n [10]. This
can cover special cases required by non-standard cipher designs.

An important task in cipher design is to generate strong S-boxes, as using a weak S-box
can weaken the cipher. Even if the overall cipher design fixes the weakness introduced by
a weak S-box, it would be less efficient than the design which uses strong S-boxes. There
are multiple methods for generating strong S-boxes, which we review in Section 2. While
efficient algebraic constructions of S-boxes with good cryptographic properties are known,
we prefer to generate S-boxes with stochastic methods that can choose S-boxes from a
large set of possible candidates and are not restricted to specific algebraic classes. Our
main reason is that some cipher designs can be vulnerable against algebraic attacks (see,
e.g., [11]), and these types of attacks can be specific to only certain classes of S-boxes.

Thus, our goal is to generate S-boxes with better properties than can be obtained
from a randomly generated vectorial Boolean function while keeping the S-box space as
large (and diverse) as possible. For this purpose, we have introduced a new algorithm for
generating S-boxes with prescribed differential properties. Unlike other known stochastic
methods, our algorithms build the S-box in incremental steps. After each new value, we
check the partial differential table. If the partial S-box does not fulfill the criteria, we use
backtracking to explore a different branch of the search space. The algorithm is formally
presented in Section 3.

Note that in our search algorithm we focus on a single S-box criterion, the maximum
value of the so-called Difference Distribution Table (DDT). We define the Difference Dis-
tribution Table (sometimes called the XOR table) of S-box S as a matrix D(S) over Z, with
dimension 2n × 2m. When S is known from the context, we simply write D. Rows of D are
indexed by vectors a ∈ Zn

2 , while columns are indexed by vectors b ∈ Zm
2 . An element at

position (a, b) has a value

D(S)
a,b = |{x ∈ Zn

2 ; S(x⊕ a)⊕ S(x) = b}|.

The differential profile of an S-box S is a multiset of values from D(S) for a 6= 0.
S-box S is differentially δ-uniform if δ = maxa 6=0{D

(S)
a,b}, that is, δ is the maximum

value in the whole DDT excluding the case a = 0. Our goal is to construct S-boxes
with low differential uniformity, which are important in constructing ciphers resistant to
differential cryptanalysis.

It might be possible to generalize our algorithm for multiple criteria; however, we
wanted to keep this research focused. We suspect that it would be too difficult to understand
and analyze the method properly if we wanted to include multiple criteria. By investigating
a single criterion, we can evaluate the complexity of the algorithm analytically (Section 4).
We provide experimental results for small S-boxes in Section 5. Finally, we discuss our
results and open research questions in Section 6.

2. Methods for Generating Cryptographic S-Boxes

There are a large number of different methods for generating cryptographic S-boxes.
In this section, we provide a brief non-exhaustive overview of existing methods. The S-box
generation methods can be categorized into the following main categories:



Algorithms 2023, 16, 157 3 of 15

• (Pseudo-)random generation
• Stochastic search
• Mathematical construction
• Construction from smaller components.

2.1. Random S-Boxes

The easiest way to generate an S-box is to choose a candidate randomly. It is obvious
that such a randomly generated S-box will not have the strongest cryptographic properties.
On the other hand, a randomly generated Boolean function will not be too weak, either.
Pseudo-random S-box generation is based on a known pseudo-random generator initialized
with a known seed. If the seed is not controlled by the cipher designers, the randomness of
the S-box generation can be verifiable by third parties.

A (pseudo-)random S-box generation can be improved by examining a larger set of
S-boxes and taking either the best candidate or the first candidate that fulfills the required
design restrictions. An example is the basis of the algorithm used to generate S-boxes for the
AES candidate MARS [12]. The authors tested roughly 226 candidates on five differential
and four linear criteria. Note that this algorithm combines random generation with an
extra ”early abort”, that is, when a special criterion (with a low probability of occurrence)
is encountered, a candidate is modified in such a way that the criterion is satisfied.

2.2. Stochastic Search

Random S-box generation is a complex computational problem, as it takes a very long
time to enumerate and examine all possible candidates until a suitable candidate with the
required properties is found. With increasing size of the S-boxes, the space of potential
candidates grows super-exponentially. For a fixed S-box size, strengthening the criteria
increases the search time exponentially. One of the methods for decreasing the search
time and increasing the quality of S-box candidates is to apply various stochastic search
heuristics from the areas of artificial intelligence and evolutionary computation.

Artificial intelligence and evolutionary computation play an important in both crypt-
analysis [13] and cipher design [14]. The seminal works in this area include the use of
Simulated Annealing [15], Hill-Climbing [16,17], and their combinations and extensions [17]
for generating cryptographic S-boxes.

Modern stochastic search methods provide very strong experimental results, especially
when considering multi-objective optimization [18]. In [19], the authors presented an
optimization of the simulated annealing (SA) algorithm. In [20], a parallel application of
tabu search and simulated annealing was employed. A method based on a memorable
simulated annealing algorithm was successfully applied in [21] to generate chaotic S-boxes.
A reversed genetic algorithm for generating S-boxes was proposed in [22]. The search starts
from a mathematically constructed set of candidates (see the next section) and improves
the diversity and quality of candidates by stochastic search based on genetic algorithms.
Genetic algorithms can be used to find cellular automata-based S-boxes [23,24]. Stochastic
search methods can be improved in terms of both the quality of results and the complexity
of algorithms by investigating new implementation techniques and cost functions [25].

Our proposed algorithm is based on an exhaustive search with early rejection. We
believe that it might be possible to improve the proposed method by adopting a combina-
tion of the proposed search method and evolutionary search methods. Inspiration can be
found in [26], for instance, where a combination of a special genetic algorithm and total
tree searching produced S-boxes with high nonlinearity.

2.3. Mathematical Construction

A different approach to the construction of S-boxes is to use mathematical (or algebraic)
construction of S-boxes. Mathematically constructed S-boxes are based on using a family
of Boolean functions with known security properties [2], such as the Gold functions [27],
the Kasami functions [28], the Bracken–Leander functions [29], Dillon’s permutation [30],



Algorithms 2023, 16, 157 4 of 15

and others. New functions with good properties can be derived mathematically from these
known constructions [31].

One of the most commonly used families of functions is based on inverse mapping. As
an example, the function x254 in GF(28) is known to be four-differentially uniform [32] and
to have high nonlinearity and algebraic degree. The S-box of the current Advanced Encryp-
tion Standard (AES) was constructed by applying an affine transformation to this function.
Another way of mathematical constructing S-boxes is using cubic polynomial mapping [33].

In [34–37], the authors applied various optimizations to AES S-box generation. A
key-dependent mechanism to generate S-boxes with good cryptographic properties was
used in [38,39]. A similar approach combined with other proposed optimizations was
applied by the authors of [40–43].

A different approach was used in [44,45]. The authors replaced the binary representa-
tion of S-boxes with a domain quasigroup G, making it possible to find functions that are
at the same time both balanced and perfectly nonlinear. Such functions have a completely
flat difference distribution table.

2.4. Construction from Smaller Components

A Boolean function can be implemented in (AND, XOR) algebra (or any other Boolean
algebra). The minimum number of AND-gates in the (AND, XOR) representation of a
Boolean function is called the multiplicative complexity (MC). The MC is an important
property for various problems connected to S-boxes, such as logic circuit minimization,
algebraic cryptanalysis, and optimal masking against higher-order power analysis attacks.
However, low multiplicative complexity can conflict with other S-box criteria, such as
nonlinearity and differential uniformity.

In [9], we provided an analysis of multiplicative complexity for all 4× 4 bijective
S-boxes and showed that MC of any 4× 4 S-box is at most 5. It is, however, difficult to
determine the MC of an existing (larger) S-box. Thus, in [46], we described the process of
generic construction, which can be applied in the construction of strong n× n S-boxes with
low multiplicative complexity. Instead of analyzing an existing complex Boolean function,
we constructed an S-box from smaller primitives with known multiplicative complexity.

3. New Algorithm for Generating S-Boxes with Prescribed Differential Properties

The goal of an S-box generation algorithm is to produce an S-box, which is a vectorial
Boolean function

S : Zn
2 → Zm

2

that fulfills specific criteria. For a given m, n there are 2m2n
possible functions S. In general,

for each potential S, we define some evaluation function eval(S) that returns a score with
respect to selected criteria. If the score is below some limit, we reject the Boolean function
(a weak S-box); otherwise, we produce S as a result of the S-box generation. We aim to
obtain an S-box with as high a score as possible, but are limited by computational resources,
as even for small m, n it might be impossible to examine the whole search space.

Our new algorithm is based on a randomized search with early rejection. Our search
criteria are reduced to a single dimension; we evaluate the Difference Distribution Table
(DDT) of the S-box and reject all S-boxes with DDTs containing values above some pre-
selected threshold δ. Threshold δ should be selected according to the security requirements.
Our algorithm either produces a δ-uniform S-box or proves that no such S-box exists. Note
that if we set the threshold δ too low, the algorithm might take too long to find a suitable
S-box or exhaust the search space. The complexity analysis provided in Section 4 can help
to select a suitable threshold that balances security requirements and the running time of
the algorithm.

The main advantage of our algorithm in comparison with a simple search is that we
can evaluate the DDT based on a piece of partial information about the function S. This
allows us to reduce the search tree size by cutting whole unproductive branches, essentially



Algorithms 2023, 16, 157 5 of 15

performing an early rejection sampling in the search space. Thus, it can produce good
S-boxes with less work than a simple exhaustive or random search.

3.1. Partial DDT

Let S : Zn
2 → Zm

2 be a vectorial Boolean function. We say that S is partially determined
on P if we have a set of points P = {(x, y) ∈ X× Y} with X ⊂ Zn

2 , Y ⊂ Zm
2 , and y = S(x)

for each x ∈ X. The Partial Difference Distribution Table of partially determined S is a
2n × 2m matrix with elements

PDDTa,b = |{x ∈ X; S(x⊕ a)⊕ S(x) = b}|.

We can compute the partial DDT of an S-box given lists X, Y with Algorithm 1. We
suppose that lists X, Y encode pairs (x, y = S(x)) in a given order of elements. Note that
if lists X, Y are extended by one element, the next PDDT can be computed efficiently by
simply adding extra values to the previous PDDT by computing differences of the last
added pair (x, y) with previous pairs in the partial S-box.

Algorithm 1 Partial DDT construction algorithm
Require: X, Y {Lists defining a partial S-box of the same length l.}
Require: n, m {S-box dimensions.}

PDDT ← zero_matrix(2n, 2m)
for all i ∈ {0, 1, . . . , l − 1} do

for all j ∈ {0, 1, . . . , l − 1} do
xor_x ← X[i]

⊕
X[j]

xor_y← Y[i]
⊕

Y[j]
P[xor_x][xor_y]← P[xor_x][xor_y] + 1

end for
end for
return PDDT

Because X ⊂ Zn
2 , each PDDTa,b ≤ DDTa,b. Thus, given a partially evaluated S, we can

check whether PDDT satisfies our pre-selected threshold δ. If for some a, b, PDDTa,b > δ,
then DDTa,b > δ as well. Thus, we can quickly reject partial S without evaluating other
points from Zn

2 \ X and use backtracking to check for other more suitable branches of the
search tree.

Note that we can place other stricter criteria on DDT. However, we require that these
criteria are preserved when using partial DDT, e.g., we can have more strict restrictions on
specific rows or columns of the DDT. This can be useful for cipher designs based on simple
substitution permutation networks, e.g., a present-like cipher [47] with a custom S-box,
which requires stronger criteria on rows and columns of the DDT indexed by indices with
low Hamming weight. In general, we can define a function satis f ies_conditions() with the
input being a partial DDT, which returns true if the partial DDT satisfies S-box criteria
and false otherwise. In our analyses, we use a simple function that only checks whether
PDDTa,b ≤ δ for each a, b.

3.2. General Idea of the Algorithm

The general idea of our randomized search algorithm is presented as Algorithm 2. We
store a partially determined S-box using lists X, Y. In each step, we choose a random new
point a from the remaining unassigned points from Zn

2 and determine a random coordinate
S(a) = b. Then, we check the partial DDT; if it satisfies the conditions, we extend lists X, Y
and continue with the algorithm. When we have assigned a value to each point from Zn

2 ,
we return a finished S-box with a DDT that satisfies the criteria.

In general, Algorithm 2 is not guaranteed to find an S-box; a partial S-box given by
sets X, Y may be constructed with a correct partial DDT in such a way that no successor



Algorithms 2023, 16, 157 6 of 15

fulfills the DTT criteria. Thus, we need to introduce an additional parameter, limit, that can
be used to restrict the search to a fixed number of maximum retries.

Algorithm 2 Randomized algorithm to construct S-boxes with prescribed differential table
Require: n > 0, S-box input size.
Require: m > 0, S-box output size.
Require: satis f ies_conditions(), a function that returns true if partial DDT satisfies criteria.
Require: limit, the maximum number of tries.

X ← [], Y ← []
counter ← 0
while len(X) < 2n do

if counter > limit then
return ∅

end if
a←∈R Fn

2 \ X
b←∈R Fm

2 {for bijective S-box use: b←∈R Fm
2 \Y}

PDDT ← partial_ddt(X + [a], Y + [b])
if satis f ies_conditions(PDDT) then

X.append(a)
Y.append(b)

end if
counter ← counter + 1

end while
return Sbox(X, Y)

Note that the presented methods can be used to generate both general S-boxes (any
vectorial Boolean function) and bijective S-boxes,. When generating bijective S-boxes, it is
necessary to set the same S-box input and output size (m = n) and restrict the selection of
the y values to ensure that no y value is repeated. The appropriate modification is marked
in the formal descriptions of Algorithms 2 and 3 in the comments.

3.3. Main Algorithm

The disadvantages of Algorithm 2 lead us to a final version of the search algorithm
that is based on a depth-first search with backtracking. This algorithm is formalized as
Algorithm 3.

In Algorithm 3, we initialize arrays Yx with potential elements from Zm
2 in random

order. Then, we try to fill in the partial S-box in a fixed order of x, with S(x) stored in the
growing list Y. For each new x, we take the next element y from Yx (representing y = S(x))
and check whether the conditions on partial DDT of the potential S-box hold. If PDDT is
correct, we continue with new x; otherwise, we remove y from Yx, and try the next one.

If all y on a level have been removed, it is neceesary to backtrack. We remove the
last stored assignment of y = S(x) by decreasing active x and removing y from Y and the
corresponding Yx set. After backtracking, we continue to investigate the remaining options
in Yx, or backtrack again if all options are exhausted.

In practice, it is possible to speed up the search by exploiting the affine equivalence
of S-boxes; see, e.g., [9]). This means that when x = 0 or x = 2i for some i < n, we only
use Yx = {x}. In this case, the algorithm generates a normalized representative of an affine
class of S-boxes with the required DDT. This method cannot be applied when looking
for additional properties of the DDT, such as special distribution of values in rows and
columns of the DDT.



Algorithms 2023, 16, 157 7 of 15

Algorithm 3 Depth-first search algorithm to find S-boxes with prescribed differential table
Require: n > 0, S-box input size.
Require: m > 0, S-box output size.
Require: satis f ies_conditions(), a function that returns true if partial DDT satisfies criteria.

Y ← []
for all x ∈ {0, 1, . . . , 2n − 1} do

Yx ← shu f f le(Zm
2 ) {Store elements in random order.}

end for
x ← 0
while x < 2n do

{If bijective S-boxes are required, use y ∈ Yx −Y instead.}
for all y ∈ Yx do

PDDT ← partial_ddt([0, 1, . . . , x], Y + [y])
if satis f ies_conditions(PDDT) then

x ← x + 1 {Increse depth.}
Y.append(y)

else
Yx.remove(y) {Dead end, try other branches.}

end if
end for

{Search failed?}
if x = 0 and Y0 = [] then

return ∅
end if

{Backtracking needed?}
if Yx = [] then

Yx ← shu f f le(Zm
2 ) {Reset options on this level.}

x ← x− 1 {Decrease search level.}
y← Y.pop() {Remove last element of Y.}
Yx.remove(y) {Explored, no suitable successors.}

end if
end while
return Sbox([0, 1, . . . , 2n − 1], Y) {Whole S-box is determined.}

Algorithm 3 is a typical example of an exhaustive search algorithm. Thus, it always
stops and produces the required results if any S-box that satisfies the conditions exists.
However, in the worst-case scenario the algorithm needs to examine the whole search
space, with potential complexity as high as 2m2n

DDT evaluations. However, because
unproductive branches are cut off, the proposed algorithm terminates sooner than a simple
exhaustive search that only checks the DDT of the whole S-box. A more detailed complexity
analysis is provided in Section 4.

3.4. Example Run of the Algorithm

In Table 1, we provide a small example run of Algorithm 3. We use parameters
n = m = 3 and try to restrict DDT in such a way that each DDTa,b ≤ 2. Additionally, we
use affine equivalence and search only for bijective S-boxes to further restrict the search
space for the sake of demonstration. Note that these choices only influence the selection of
sets Yx in Algorithm 3.



Algorithms 2023, 16, 157 8 of 15

Table 1. Example of S-box construction with (modified) Algorithm 3.

Step x Available Items in Yx Partial S-Box max. Value in PDDT Is Valid?

0 - { 0, 1, 2, 3, 4, 5, 6, 7 } [ ] 0 -
1 0 { 0 } [ 0 ] 0 true
2 1 { 1 } [ 0, 1 ] 2 true
3 2 { 2 } [ 0, 1, 2 ] 2 true
4 3 { 5, 7, 3, 6 } [ 0, 1, 2, 5 ] 2 true
5 4 { 4 } [ 0, 1, 2, 5, 4 ] 2 true
6 5 { 6, 7, 3 } [ 0, 1, 2, 5, 4, 6 ] 2 true
7 6 { 3, 7 } [ 0, 1, 2, 5, 4, 6, 3 ] 4 false
8 6 { 3, 7 } [ 0, 1, 2, 5, 4, 6, 7 ] 2 true
9 7 { 3 } [ 0, 1, 2, 5, 4, 6, 7, 3 ] 2 true

4. Complexity Analysis

Recalling our basic notation, we want to generate a suitable vectorial Boolean function
F : Zn

2 → Zm
2 variables with a differential spectrum bounded by δ. Thus, the difference

distribution table of F should contain values d upper-bounded by δ.
To estimate the complexity, we abstract our algorithm using a “balls into bins” problem.

We start with an N ×M matrix of empty bins. These correspond to possible DDT positions;
thus, N = 2n, M = 2m.

During the algorithm, we fill in the vector of function values of F of length N. After k
steps of the algorithm, k positions out of N are filled. These fixed values determine existing
differences in the partial DDT, distributed in at most k(k− 1)/2 rows.

In step k + 1, we add a new assignment F(xk+1) = yk+1. The k differences
∆x

i = xk+1 ⊕ xi for i = 1, 2, . . . , k address at most k rows of the DDT. For each i, we in-
crease the DDT value in column ∆y

i = F(xk+1)⊕ F(xi). Due to using the ⊕ operation, all of
the differences are paired; thus, we do not need to check the differences of xi ⊕ xk+i, only
to increase the DDT value directly by 2.

We abstract this in the “balls into bins” problem as follows. Each difference pair is a
“ball” we throw into DDT “bins”; in iteration k, we independently and randomly choose k
rows of bins, then throw a ball into bins in each of the chosen rows. The random variable
Bk

i,j represents the number of balls in a bin in row i and column j after the k-th iteration. In

our algorithm the choices of DDT positions are not independent; however, we use Bk
i,j as an

estimate of the probability distribution of the generated partial DDTs after k steps of the
algorithm (up to a scaling factor of 2).

4.1. Random Generation of S-Boxes

If there is no restriction on DDT, we can estimate the probability distribution of the
final DDTs by computing BN

i,j. Alternatively, this should correspond to a simpler experiment
in which we simply throw N(N − 1)/2 balls into N ×M bins. The generated function F is
expected to be δ-differentially uniform with a probability of event

BN
i,j ≤ δ/2, for each 1 ≤ i ≤ N, 1 ≤ j ≤ M.

Distribution of balls in bins follows a multinomial distribution, with κ = NM exclu-
sive events (bins), equal event probabilities πi =

1
NM , and the number of trials equal to

ν = N(N−1)
2 . Thus, the expected average number of balls per bin is E(Xi) = νπi =

N−1
2M .

The most important case for S-box generation is when N = M = 2n, which provides us
with an expected average number of balls per bin near 1/2. Considering ν such samples,
we now ask what the is probability that all samples are at most at the threshold δ/2 in
order to obtain a δ-differentially uniform S-box.



Algorithms 2023, 16, 157 9 of 15

To simplify this calculation, we can replace individual binomial distributions with
their Poisson approximation

f (k; λ) = Pr(X = k) =
λke−λ

k!
,

which has λ = 1/2. The probability that the sample size reaches the threshold t = δ/2 + 1 is

Pr(DDTi,j ≥ t) = Q(Xi,j ≥ t) = e−1/2 ∑
j≥t

(1/2)j

j!
.

The terms in the expansion converge rapidly to 0; thus, we can take the first term as the
expected probability of a single bin containing at least t balls. The probability that none of
the bins contains t or more balls is then estimated by

pt =

(
1− e−1/2 (1/2)t

t!

)κ

.

The estimated probabilities for N = M = 2n and t = δ/2 + 1 are summarized numerically
in Table 2.

Table 2. Estimated probabilities of random δ-differentially uniform S-boxes using “bins and balls”
method.

S-Box Size δ = 4 δ = 6 δ = 8 δ = 10 δ = 12

n = 4 3.8% 66.7% 96.0% 99.7% 99.9%
n = 6 0.0% 0.2% 52.4% 94.8% 99.6%
n = 8 0.0% 0.0% 0.0% 42.2% 94.0%

Using the approximation

pt ≈ 1− κe−1/2 (1/2)t

t!

and Stirling’s approximation [48], we obtain

ln(1− pt) ≈ 2n− 1/2− t(ln 2 + ln t− 1). (1)

This means that when we decrease δ for a fixed n, our probability of generating a
δ-uniform S-box decreases exponentially. Thus, we need to examine exponentially more
randomly generated S-boxes to obtain one of suitable quality.

4.2. Analysis of the Algorithm 3

From the complexity point of view, Algorithm 3 has the advantage of early rejection
compared to the general rejection sampling employed by a randomized depth-first search
for S-boxes. A classical approach is to generate the whole S-box, compute DDT, and then
reject or accept based on the threshold δ. Our new algorithm enables partial DDT sampling.
If the partial sample contains DDT values above the threshold δ, further iterations of
the algorithm cannot improve this value, meaning that it can be immediately rejected.
Moreover, using a randomized depth-first search, we can exclude the whole set of samples
that are above the threshold δ from the search.

Similarly to Section 4.1, we can estimate the probability of distribution of PDDT cells
after s steps of the algorithm as follows:

Pr(PDDT(s)
i,j ≥ t) = Q(X(s)

i,j ≥ t) = e−λs ∑
j≥t

(λs)j

j!
,



Algorithms 2023, 16, 157 10 of 15

where λs is an expected average value of ”balls per bin” after s steps of the algorithm. The
number of bins, value κ = MN, does not change throughout the algorithm, however, the
expected average occupancy of the bins λs grows with s.

If we carry out rejection sampling after exactly s steps of the algorithm, we can estimate
the probability of not rejecting the PDDT with threshold t = δ/2 + 1 again as

pt,s =

(
1− e−λs

(λs)t

t!

)κ

.

The value of λs increases with s as follows. After s steps, we throw s(s− 1)/2 “balls” (pairs
added to PDDT) into MN bins; thus, the average number of “balls per bin” is

λs =
s(s− 1)
2MN

.

For S-boxes S : Zn
2 ← Zn

2 , we have N = M = 2n and

λs ≈
s2

22n+1 .

When s is small in comparison to MN, we have a low probability of rejecting a PDDT;
thus, the search space quickly branches out. With growing s, we increase the number of
potential branches (up to Ms), as well as the probability of rejecting the PDDTs. Thus, the
estimated width of the search tree on level s is

Ws = Ws−1 ·M · pt,s = Ms
s

∏
i=1

pt,i.

The number of potential endpoints of the search tree we are looking for is D = MN pt.
Each of these points is connected to the root of the search tree, with the paths going through
the level with the maximum width of the tree, denoted by W = max Ws. Thus, we need to
go through the search tree on average W/D-times, which is

max
s≤N

{
Ms−N ∏s

i=1 pt,i

pt

}
.

As Ms−N ∏s
i=1 pt,i < 1 for each s, it is apparent that Algorithm 3 can always find the desired

S-box (if it exists) faster than random search, which has an expected complexity of p−1
t .

5. Experimental Results

In this section, we present experimental results to support our theoretical analysis of
the algorithm. To obtain the presented results, we used a custom software called “SBox
Tool” [49], developed in Python. This software can generate a selected number of S-boxes
of a given size using different methods, analyze them, and export the results for further
statistical processing.

In the first experiment, we analyzed a large number of randomly generated bijective
S-boxes generated using Python’s random permutation method. Table 3 contains a cumu-
lative distribution of δ-differentially uniform S-boxes. The values are based on a dataset
of 10,000 randomly generated S-boxes. The experimental values are consistent with the
estimates obtained by the ”bins and balls” method presented in Table 2.



Algorithms 2023, 16, 157 11 of 15

Table 3. Cumulative distribution of δ-differentially uniform S-boxes based on a dataset of
10,000 randomly generated S-boxes.

S-Box Size δ = 4 δ = 6 δ = 8 δ = 10 δ = 12

n = 4 5.15% 65.53% 95.03% 99.36% 99.98%
n = 6 0 0.23% 50.09% 94.05% 99.51%
n = 8 0 0 0.33% 39.88% 93.93%

We implemented the proposed method based on depth-first search (Algorithm 3) in
the “S-box tool” software. We tested the method by generating datasets of 100 bijective
S-boxes S : Zn

2 → S : Zn
2 with different parameter settings. As the generated S-boxes were

bijective, all of them are balanced. Although our method does not focus on other S-box
properties, we have included the distribution of nonlinearity of the generated S-boxes for
comparison with other methods based on the suggestion of an anonymous reviewer.

The summary of the results is presented in Tables 4–8. We show two different methods
of S-box generation: “Random” denotes simple random generation, while our new method
is denoted by the label ”P_DDT”. The parameter δmax denotes the limit on partial DDT items
allowed during the search. The “time” column is the average time required to generate an
S-box with the selected method, while columns in “Nr. of δ-uniform S-boxes” show the
distribution of the maximum value in the final DDT among the generated S-boxes (out of
100 generated S-boxes). Finally, the columns in ”Nonlinearity” show the distribution of the
nonlinearity among the generated S-boxes (out of 100 generated S-boxes).

Table 4. Comparison of random generation of S-boxes with the proposed method based on partial
DDT for an S-box size of n = 4.

Nr. of δ-Uniform S-Boxes Nonlinearity

method time [s] n δmax 4 6 8 10 0 2 4

P_DDT 0.04398 4 4 100 0 0 0 0 44 56

P_DDT 0.02742 4 6 5 95 0 0 0 91 9

P_DDT 0.02582 4 8 3 59 38 0 3 92 5

P_DDT 0.02295 4 10 5 60 27 8 2 92 6

Random 0.00056 4 - 1 65 25 7 9 88 3

Table 5. Comparison of random generation of S-boxes with the proposed method based on partial
DDT for an S-box size of n = 5.

Nr. of δ-Uniform S-Boxes Nonlinearity

method time [s] n δmax 4 6 8 10 2 4 6 8

P_DDT 1.52535 5 4 100 0 0 0 0 0 9 91

P_DDT 0.07977 5 6 0 100 0 0 0 2 45 53

P_DDT 0.07214 5 8 0 19 81 0 0 2 56 42

P_DDT 0.06545 5 10 0 22 58 20 0 5 58 37

Random 0.00051 5 - 0 20 66 14 1 2 66 31



Algorithms 2023, 16, 157 12 of 15

Table 6. Comparison of random generation of S-boxes with the proposed method based on partial
DDT for an S-box size of n = 6.

Nr. of δ-Uniform S-Boxes Nonlinearity

method time [s] n δmax 6 8 10 12 14 16 18 20

P_DDT 0.50702 6 6 100 0 0 0 2 21 69 8

P_DDT 0.30852 6 8 0 100 0 0 1 36 58 5

P_DDT 0.35756 6 10 0 40 60 0 3 36 60 1

Random 0.00055 6 - 0 52 43 5 3 42 53 2

Table 7. Comparison of random generation of S-boxes with the proposed method based on partial
DDT for an S-box size of n = 7.

Nr. of δ-Uniform S-Boxes Nonlinearity

method time [s] n δmax 6 8 10 12 34 36 38 40 42 44

P_DDT 7.46739 7 6 100 0 0 0 0 0 5 17 57 21

P_DDT 0.31956 7 8 0 100 0 0 0 2 7 41 47 3

P_DDT 0.30249 7 10 0 4 96 0 1 0 7 36 47 9

Random 0.00056 7 - 0 5 77 18 0 3 8 33 48 8

Table 8. Comparison of random generation of S-boxes with the proposed method based on partial
DDT for on S-box size of n = 8.

Nr. of δ-Uniform S-Boxes Nonlinearity

method time [s] n δmax 8 10 12 14 16 86 88 90 92 94 96 98

P_DDT 2.71275 8 8 100 0 0 0 0 1 0 13 23 47 15 1

P_DDT 2.29923 8 10 0 100 0 0 0 1 4 11 39 31 14 0

Random 0.00073 8 - 0 46 46 7 1 1 5 10 26 50 8 0

The results of S-box generation for n = 5 and n = 6 are available in graphical form
in Figures 1 and 2, respectively. Note that we were unable to generate any S-boxes of size
n = 6 with the prescribed maximal DDT value of 4, as the program took too much time
(more than 10 h) and did not produce any solution. Similar issues were encountered for
S-boxes with n = 7 and δmax = 4 and with n = 8 and δmax = 4, 6.

Figure 1. Graphical representation of comparison of the results obtained using different generation
methods and different prescribed maximal value for an S-Box size of n = 5.



Algorithms 2023, 16, 157 13 of 15

Figure 2. Graphical representation of comparison of the results obtained using different generation
methods and different prescribed maximal value for an SBox size of n = 6.

These results show that with the correct δmax setting it is possible to generate S-boxes
within a reasonable time that have better quality than those generated by a random search.
The S-boxes generated with our method have similar nonlinearity to random S-boxes. The
distribution of nonlinearity is slightly improved when setting smaller δmax. This can be
useful for future methods that might combine our algorithm with further post-processing
focused on nonlinearity.

6. Discussion

In this article, we have introduced a new type of algorithm for constructing crypto-
graphically strong S-boxes. The main idea of the proposed method is to determine S-box
function values step by step and examine the partial Difference Distribution Table during
the process. Setting and enforcing quality criteria during the S-box construction leads to a
stochastic search algorithm with early rejection sampling. Our analysis of the algorithm, as
confirmed by experimental results, shows that it outperforms purely random searches.

There are many open questions and open research topics related to our proposal. In
our proposal, we focus solely on the differential properties of the S-box. To generate a good
S-box that satisfies multiple criteria, these criteria can be evaluated after the algorithm
reaches an S-box that fulfills the prescribed differential properties. If the S-box does not
meet other criteria, it is possible to resume the original search after backtracking.

An open question is whether other criteria can be incorporated directly into the search
based on the partial S-box. For certain criteria, this might be challenging. If we consider
nonlinearity as an example, the nonlinearity is the minimum distance of any component of
our function to any linear Boolean function. Adding additional value to a partial S-box can
increase certain distances while decreasing others.

Another open question is whether it is possible to improve our method using stochastic
search heuristics such as hill climbing, simulated annealing, or evolutionary algorithms.
One direction to consider is changing the definition of the algorithm step from permuting
two function values to filling in a partial S-box. It is, however, unclear what the fitness
landscape would look like, as well as whether the optimization heuristics would provide
an additional increase in performance.

Author Contributions: Conceptualization, S.M. and P.Z.; methodology, S.M. and P.Z.; software,
S.M.; validation, S.M. and P.Z.; formal analysis, P.Z.; investigation, S.M. and P.Z.; resources, P.Z.;
data curation, S.M.; writing—original draft preparation, S.M. and P.Z.; writing—review and editing,
S.M. and P.Z.; visualization, S.M. and P.Z.; supervision, P.Z.; project administration, P.Z.; funding
acquisition, P.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Slovak Research and Development Agency under Contract
no. APVV-19-0220.

Institutional Review Board Statement: Not applicable.



Algorithms 2023, 16, 157 14 of 15

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank the anonymous reviewers for their comments and
suggestions that improved this paper’s readability and content.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

AES Advanced Encryption Standard
DDT Difference Distribution Table
MC Multiplicative Complexity
PDDT Partial Difference Distribution Table
S-box Substitution box

References
1. Shannon, C.E. Communication theory of secrecy systems. Bell Syst. Tech. J. 1949, 28, 656–715. [CrossRef]
2. Carlet, C. Boolean Functions for Cryptography and Coding Theory; Cambridge University Press: Cambridge, UK, 2021.
3. Matsui, M. Linear cryptanalysis method for DES cipher. In Proceedings of the Advances in Cryptology—EUROCRYPT’93: Workshop on

the Theory and Application of Cryptographic Techniques Lofthus, Norway, May 23–27. 1993 Proceedings 12; Springer: Berlin/Heidelberg,
Germany, 1994; pp. 386–397.

4. Biham, E.; Shamir, A. Differential cryptanalysis of DES-like cryptosystems. J. Cryptol. 1991, 4, 3–72. [CrossRef]
5. Chakrabarty, K.; Hayes, J. Balanced boolean functions. IEE Proc.-Comput. Digit. Tech. 1998, 145, 52–62. [CrossRef]
6. Webster, A.F.; Tavares, S.E. On the design of S-boxes. In Proceedings of the Advances in Cryptology—CRYPTO’85 Proceedings;

Springer: Berlin/Heidelberg, Germany, 1985, pp. 523–534.
7. Forrié, R. The strict avalanche criterion: Spectral properties of Boolean functions and an extended definition. In Proceedings of

the Conference on the Theory and Application of Cryptography, Santa Barbara, CA, USA, 21–25 August 1988; pp. 450–468.
8. Braeken, A.; Preneel, B. On the Algebraic Immunity of Symmetric Boolean Functions. In Proceedings of the Progress in Cryptology—

INDOCRYPT 2005; Maitra, S., Veni Madhavan, C.E., Venkatesan, R., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 35–48.
9. Zajac, P.; Jókay, M. Multiplicative complexity of bijective 4× 4 S-boxes. Cryptogr. Commun. 2014, 6, 255–277. [CrossRef]
10. Zajac, P.; Jókay, M. Cryptographic properties of small bijective S-boxes with respect to modular addition. Cryptogr. Commun.

2020, 12, 947–963. [CrossRef]
11. Matheis, K.; Steinwandt, R.; Suárez Corona, A. Algebraic Properties of the Block Cipher DESL. Symmetry 2019, 11, 1411. [CrossRef]
12. Burwick, C.; Coppersmith, D.; D’Avignon, E.; Gennaro, R.; Halevi, S.; Jutla, C.; Matyas, S.M., Jr.; O’Connor, L.; Peyravian, M.;

Safford, D.; et al. MARS-a candidate cipher for AES. NIST AES Propos. 1998, 268, 80.
13. Antal, E.; Eliáš, M. Evolutionary computation in cryptanalysis of classical ciphers. Tatra Mt. Math. Publ. 2017, 70, 179–197.

[CrossRef]
14. Mariot, L.; Jakobovic, D.; Bäck, T.; Hernandez-Castro, J. Artificial intelligence for the design of symmetric cryptographic primitives.

In Security and Artificial Intelligence: A Crossdisciplinary Approach; Springer: Berlin/Heidelberg, Germany, 2022; pp. 3–24.
15. Clark, J.A.; Jacob, J.L. Two-stage optimisation in the design of Boolean functions. In Proceedings of the Australasian Conference

on Information Security and Privacy, Brisbane, QLD, Australia, 10–12 July 2000; pp. 242–254.
16. Millan, W.; Clark, A.; Dawson, E. Smart hill climbing finds better boolean functions. In Proceedings of the Workshop on Selected

Areas in Cryptology, Ottawa, ON, Canada, 11–12 August 1997, Volume 63.
17. Millan, W.; Burnett, L.; Carter, G.; Clark, A.; Dawson, E. Evolutionary heuristics for finding cryptographically strong S-boxes. In

Proceedings of the International Conference on Information and Communications Security, EUROCRYPT 1998, Espoo, Finland,
31 May–4 June 1998; pp. 263–274.

18. Fuller, J.; Millan, W.; Dawson, E. Multi-objective optimisation of bijective S-boxes. New Gener. Comput. 2005, 23, 201–218.
[CrossRef]

19. Kuznetsov, A.; Wieclaw, L.; Poluyanenko, N.; Hamera, L.; Kandiy, S.; Lohachova, Y. Optimization of a Simulated Annealing
Algorithm for S-Boxes Generating. Sensors 2022, 22, 6073. [CrossRef]

20. Souravlias, D.; Parsopoulos, K.; Meletiou, G. Designing Bijective S-boxes Using Algorithm Portfolios with Limited Time Budgets.
Appl. Soft Comput. 2017, 59, 475–486. [CrossRef]

21. Wang, J.; Zhu, Y.; Zhou, C.; Qi, Z. Construction Method and Performance Analysis of Chaotic S-Box Based on a Memorable
Simulated Annealing Algorithm. Symmetry 2020, 12, 2115. [CrossRef]

22. Ivanov, G.; Nikolov, N.; Nikova, S. Reversed genetic algorithms for generation of bijective s-boxes with good cryptographic
properties. Cryptogr. Commun. 2016, 8, 247–276. [CrossRef]

http://doi.org/10.1002/j.1538-7305.1949.tb00928.x
http://dx.doi.org/10.1007/BF00630563
http://dx.doi.org/10.1049/ip-cdt:19981769
http://dx.doi.org/10.1007/s12095-014-0100-y
http://dx.doi.org/10.1007/s12095-020-00447-x
http://dx.doi.org/10.3390/sym11111411
http://dx.doi.org/10.1515/tmmp-2017-0026
http://dx.doi.org/10.1007/BF03037655
http://dx.doi.org/10.3390/s22166073
http://dx.doi.org/10.1016/j.asoc.2017.05.052
http://dx.doi.org/10.3390/sym12122115
http://dx.doi.org/10.1007/s12095-015-0170-5


Algorithms 2023, 16, 157 15 of 15

23. Picek, S.; Mariot, L.; Yang, B.; Jakobovic, D.; Mentens, N. Design of S-boxes defined with cellular automata rules. In Proceedings
of the Proceedings of the Computing Frontiers Conference, Siena Italy, 15–17 May 2017; pp. 409–414.

24. Mariot, L.; Picek, S.; Leporati, A.; Jakobovic, D. Cellular automata based S-boxes. Cryptogr. Commun. 2019, 11, 41–62. [CrossRef]
25. Freyre-Echevarría, A.; Alanezi, A.; Martínez-Díaz, I.; Ahmad, M.; Abd El-Latif, A.A.; Kolivand, H.; Razaq, A. An external

parameter independent novel cost function for evolving bijective substitution-boxes. Symmetry 2020, 12, 1896. [CrossRef]
26. Tesař, P. A new method for generating high non-linearity s-boxes. Radioengineering 2010, 19, 23–26.
27. Gold, R. Maximal recursive sequences with 3-valued recursive cross-correlation functions (Corresp.). IEEE Trans. Inf. Theory

1968, 14, 154–156. [CrossRef]
28. Kasami, T. The weight enumerators for several classes of subcodes of the 2nd order binary Reed-Muller codes. Inf. Control 1971,

18, 369–394. [CrossRef]
29. Bracken, C.; Leander, G. A highly nonlinear differentially 4 uniform power mapping that permutes fields of even degree. Finite

Fields Their Appl. 2010, 16, 231–242. [CrossRef]
30. Browning, K.; Dillon, J.; McQuistan, M.; Wolfe, A. An APN permutation in dimension six. Finite Fields Theory Appl. 2010,

518, 33–42.
31. Calderini, M. Differentially low uniform permutations from known 4-uniform functions. Des. Codes Cryptogr. 2021, 89, 33–52.

[CrossRef]
32. Nyberg, K. Perfect nonlinear S-boxes. In Proceedings of the Workshop on the Theory and Application of of Cryptographic

Techniques, Brighton, UK, 8–11 April 1991; pp. 378–386.
33. Zahid, A.H.; Arshad, M.J. An Innovative Design of Substitution-Boxes Using Cubic Polynomial Mapping. Symmetry 2019, 11, 437.

[CrossRef]
34. Juremi, J.; Mahmod, R.; Sulaiman, S. A proposal for improving AES S-box with rotation and key-dependent. In Proceedings of

the 2012 International Conference on Cyber Security, Cyber Warfare and Digital Forensic (CyberSec), Kuala Lumpur, Malaysia,
26–28 June 2012; pp. 38–42. [CrossRef]

35. Sahoo, O.; Kole, D.; Rahaman, H. An Optimized S-Box for Advanced Encryption Standard (AES) Design. In Proceedings of the 2012
International Conference on Advances in Computing and Communications, Cochin, India, 9–11 August 2012; pp. 154–157. [CrossRef]

36. Wang, H.; Zheng, H.; Hu, B.; Tang, H. Improved Lightweight Encryption Algorithm Based on Optimized S-Box. In Proceedings
of the 2013 International Conference on Computational and Information Sciences, Shiyang, China, 21–23 June 2013; pp. 734–737.
[CrossRef]

37. Cui, J.; Huang, L.; Zhong, H.; Chang, C.; Yang, W. An improved AES S-box and its performance analysis. Int. J. Innov. Comput.
Inf. Control 2011, 7, 2291–2302.

38. Niemiec, M.; Machowski, L. A new symmetric block cipher based on key-dependent S-boxes. In Proceedings of the 2012 IV
International Congress on Ultra Modern Telecommunications and Control Systems, St. Petersburg, Russia, 3–5 October 2012;
pp. 474–478. . [CrossRef]

39. Kazlauskas, K.; Smaliukas, R.; Vaicekauskas, G. A Novel Method to Design S-Boxes Based on Key-Dependent Permutation
Schemes and its Quality Analysis. Int. J. Adv. Comput. Sci. Appl. 2016, 7. [CrossRef]

40. Kazlauskas, K.; Vaicekauskas, G.; Smaliukas, R. An Algorithm for Key-Dependent S-Box Generation in Block Cipher System.
Informatica 2015, 26, 51–65. [CrossRef]

41. Mathur, N.; Bansode, R. AES Based Text Encryption Using 12 Rounds with Dynamic Key Selection. Procedia Comput. Sci. 2016,
79, 1036–1043. [CrossRef]

42. Zobeiri, M.; Maybodi, B. Introducing a new method in cryptography by using dynamic P-Box and S-Box (DPS method) based on
modular calculation and key encryption. ARPN J. Eng. Appl. Sci. 2017, 12, 2946–2953.

43. Gupta, M.; Sinha, A. Enhanced-AES encryption mechanism with S-box splitting for wireless sensor networks. Int. J. Inf. Technol.
2021, 13. [CrossRef]

44. Grošek, O.; Nemoga, K.; Satko, L. Ideal Difference Tables from an Algebraic Point of View. Cryptology and Information Security,
Proc. of VI RECSI, Teneriffe, Spain 2000; pp. 51–58. Ammendment to Criptologia y Seguridad de la Informacion (P. Caballero-Gil,
C. Hern’andez-Goya), RA-MA, Madrid. 2000. pp. 453–454. Available online: https://www.casadellibro.com/libro-criptologia-y-
seguridad-de-la-informacion-vi-recsi-actas/9788478974313/727589 (accessed on 14 December 2022).

45. Satko, L.; Grošek, O.; Nemoga, K. Extremal generalized S-boxes. Comput. Inform. 2003, 22, 85–99.
46. Zajac, P. Constructing S-boxes with low multiplicative complexity. Stud. Sci. Math. Hung. 2015, 52, 135–153. [CrossRef]
47. Bogdanov, A.; Knudsen, L.R.; Leander, G.; Paar, C.; Poschmann, A.; Robshaw, M.J.; Seurin, Y.; Vikkelsoe, C. PRESENT: An

ultra-lightweight block cipher. In Proceedings of the International Workshop on Cryptographic Hardware and Embedded
Systems, Vienna, Austria, 10–13 September 2007; pp. 450–466.

48. Marsaglia, G.; Marsaglia, J.C. A New Derivation of Stirling’s Approximation to n! Am. Math. Mon. 1990, 97, 826–829. [CrossRef]
49. Marochok, S. Constructing S-Boxes with Prescribed Differential Distribution Table. Master’s Thesis, Slovak University of

Technology in Bratislava, Bratislava, Slovakia, 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/s12095-018-0311-8
http://dx.doi.org/10.3390/sym12111896
http://dx.doi.org/10.1109/TIT.1968.1054106
http://dx.doi.org/10.1016/S0019-9958(71)90473-6
http://dx.doi.org/10.1016/j.ffa.2010.03.001
http://dx.doi.org/10.1007/s10623-020-00807-x
http://dx.doi.org/10.3390/sym11030437
http://dx.doi.org/10.1109/CyberSec.2012.6246172
http://dx.doi.org/10.1109/ICACC.2012.35
http://dx.doi.org/10.1109/ICCIS.2013.198
http://dx.doi.org/10.1109/ICUMT.2012.6459712
http://dx.doi.org/10.14569/IJACSA.2016.070412
http://dx.doi.org/10.15388/Informatica.2015.38
http://dx.doi.org/10.1016/j.procs.2016.03.131
http://dx.doi.org/10.1007/s41870-021-00626-w
https://www.casadellibro.com/libro-criptologia-y-seguridad-de-la-informacion-vi-recsi-actas/9788478974313/727589
https://www.casadellibro.com/libro-criptologia-y-seguridad-de-la-informacion-vi-recsi-actas/9788478974313/727589
http://dx.doi.org/10.1556/012.2015.52.2.1306
http://dx.doi.org/10.1080/00029890.1990.11995666

	Introduction
	Methods for Generating Cryptographic S-Boxes
	Random S-Boxes
	Stochastic Search
	Mathematical Construction
	Construction from Smaller Components

	New Algorithm for Generating S-Boxes with Prescribed Differential Properties
	Partial DDT
	General Idea of the Algorithm
	Main Algorithm
	Example Run of the Algorithm

	Complexity Analysis
	Random Generation of S-Boxes
	Analysis of the Algorithm 3

	Experimental Results
	Discussion
	References

