
Citation: Chincholi, F.; Koestler, H.

Detectron2 for Lesion Detection in

Diabetic Retinopathy. Algorithms

2023, 16, 147. https://doi.org/

10.3390/a16030147

Academic Editors: Bharatendra Rai

and S.A. Senthil Kumar

Received: 19 January 2023

Revised: 19 February 2023

Accepted: 2 March 2023

Published: 7 March 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Detectron2 for Lesion Detection in Diabetic Retinopathy
Farheen Chincholi * and Harald Koestler

Department of Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU),
91054 Erlangen, Germany
* Correspondence: farheen.s.chincholi@fau.de

Abstract: Hemorrhages in the retinal fundus are a common symptom of both diabetic retinopathy
and diabetic macular edema, making their detection crucial for early diagnosis and treatment. For this
task, the aim is to evaluate the performance of two pre-trained and additionally fine-tuned models
from the Detectron2 model zoo, Faster R-CNN (R50-FPN) and Mask R-CNN (R50-FPN). Experiments
show that the Mask R-CNN (R50-FPN) model provides highly accurate segmentation masks for
each detected hemorrhage, with an accuracy of 99.34%. The Faster R-CNN (R50-FPN) model detects
hemorrhages with an accuracy of 99.22%. The results of both models are compared using a publicly
available image database with ground truth marked by experts. Overall, this study demonstrates
that current models are valuable tools for early diagnosis and treatment of diabetic retinopathy and
diabetic macular edema.

Keywords: diabetic retinopathy; diabetic macular edema; deep learning; machine learning; deep
neural networks

1. Introduction

Diabetes is a significant contributor to blindness among people aged 20 to 74 in the
United States, according to a study conducted by the National Health and Nutrition Exam-
ination Survey (NHANES) at the Centers for Disease Control and Prevention (CDC) [1].
The study, which was published in the Journal of the American Medical Association [2],
found a link between diabetes and failing eyesight in people with the disease.

Diabetes can lead to two serious eye conditions: diabetic retinopathy (DR) and diabetic
macular edema (DME). DR is assessed by grading the presence and severity of retinopathy
in the macula and peripheral retina of each eye [3]. DR is divided into non-proliferative
diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR) and is graded
based on the presence of microaneurysms, hemorrhages, cotton wool spots, and hard
exudates, as illustrated in Figure 1 [4]. Meanwhile, DME is identified by the presence
of blot hemorrhages and hard exudates within a 2-disc diameter from the center of the
macula.

The treatment for DR and DME is determined by the severity of the condition [5].
With mild or moderate DR, progression can often be prevented through good blood sugar
control. Early detection of DR and DME is crucial as evidence suggests that appropriate
management at an early stage, including regulation of blood pressure, glucose levels, and
lipid profiles, can greatly slow the progression of DR and even reverse moderate NPDR to
DR-free stage. DME is treated with anti-VEGF medications and Focal Laser Treatment. For
PDR, the main therapy is panretinal photocoagulation (PRP) [6].

In recent years, the utilization of deep learning models has gained popularity in the
analysis of retinal images and detection of DR and DME. Despite its effectiveness, previous
research in the automatic detection of DR and DME from digital fundus images has faced
criticisms due to its black-box approach that relies on various representations for predic-
tions without explicitly displaying the diabetic retinopathy lesions like microaneurysms
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and retinal hemorrhages [5]. This has raised concerns among physicians regarding the ac-
ceptability of the method for clinical use. However, the new deep learning-based screening
software presents an opportunity to address these concerns by filling the gap in detect-
ing both DR and DME simultaneously, while providing a more transparent method for
predictions.

This paper develops a prototype of a deep learning-based screening software for the
early detection and location of diabetic retinopathy (DR) and diabetic macular edema
(DME) from digital fundus images. The prior research in this field, which encompasses
classical machine learning, deep learning, and deep neural networks, is critically reviewed
and discussed in Section 2. The research methodology, which includes the dataset used,
the baseline models (Faster R-CNN (R50-FPN) and Mask R-CNN (R50-FPN)), process
flow, and training and loss functions, is detailed in Section 3. The results of the research,
including evaluation metrics, analysis of accuracy, false Negative Rate, and convergence
speed, and analysis of the baseline models in object detection and instance segmentation,
are showcased in Section 4. Finally, Section 5 delves into the discussion and future work
related to this research.

Figure 1. The retinal fundus can exhibit various types of lesions, each with its distinct appearance.
Soft exudates appear as white, feathery or fluffy spots, while hard exudates are harder, uneven and
have a white or yellowish appearance. Microaneurysms are small, round and have defined borders,
measuring less than 3 mm in diameter, and are red in color. Hemorrhages are indications of bleeding
in the retina and can manifest as dots, blots or flames. Additionally, the macula and optic disc are
also indicated.

2. Related Work

This section provides an overview of the various approaches used for DR detection
and grading. The section is divided into three subsections. The first Section 2.1 discusses
classical machine learning approaches used for DR detection and grading, including their
limitations. The second Section 2.2 focuses on deep learning methods used for grading DR,
which have the advantage of handling large and complex data and learning directly from
the data. Section 2.3 discusses the use of deep learning methods specifically for detecting
DME, which is a common complication of DR.

2.1. Classical ML

In classical machine learning approaches for DR and DME detection, various al-
gorithms have been used, such as linear regression, logistic regression, support vector
machine, principal component analysis, decision tree, random forest, and naive Bayes.
In some cases, these algorithms have been combined with optimization techniques like
moth-flame optimization to enhance their performance.

In a study by Pragathi Nagaraja Rao et al. [7], an integrated machine learning approach
was proposed for early detection of diabetic retinopathy. The approach combined the use
of support vector machine, principal component analysis, and moth-flame optimization
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techniques. The individual performance of decision tree, support vector machine, random
forest, and naive Bayes algorithms was initially evaluated on a diabetic retinopathy dataset.
The integration of PCA improved the performance of the decision tree algorithm, but re-
duced the performance of the other algorithms. The integration of moth-flame optimization
with SVM and PCA resulted in improved performance with an average of 85.61%.

A study [8] focuses on early detection of diabetic retinopathy using an ensemble
machine learning model composed of Random Forest, Decision Tree, Adaboost, K-Nearest
Neighbor, and Logistic Regression algorithms. The diabetic retinopathy dataset was nor-
malized using min-max normalization before training the ensemble model, and the results
showed that the ensemble model outperformed the individual machine learning algo-
rithms.

According to the study by Alsaih et al. [9], a machine learning framework was
developed for DME using optical coherence tomography (OCT) volumes. The dataset
used in the study consisted of 32 OCT volumes obtained from the Singapore Eye Research
Institute using the CIRRUS SD-OCT device. The study employed pre-processing, feature
detection, feature representation, and classification steps to classify the images as normal
or DME. The best results were achieved using LBP16-ri vectors and linear-support vector
machine in combination with PCA and bag of words representations, with a sensitivity and
specificity of 87.5% each.

The studies have shown that classical ML algorithms can be useful in DR and DME
detection, however, they have limitations such as difficulty in handling large and complex
data, and dependence on the quality of hand-engineered features. These limitations have
led to a shift towards deep learning methods in recent years.

2.2. Deep Learning (DL) Methods for DR Grading

In this category of studies, deep neural networks are used to grade DR into different
stages, including non-DR, mild NPDR, moderate NPDR, severe NPDR, and PDR.

A study by Dai et al. [6] described the development of a deep learning system called
DeepDR for the early detection and grading of diabetic retinopathy. The system was trained
on a large dataset from a single ethnic cohort of patients with diabetes. The system was
trained using a large dataset from a single ethnic cohort of patients with diabetes. The
performance of DeepDR was high in detecting microaneurysms, cotton-wool spots, hard
exudates, and hemorrhages, with area under the curve (AUC) scores ranging from 0.901 to
0.967. The grading of diabetic retinopathy was also successful with AUC scores ranging
from 0.943 to 0.972. However, further validation in multiethnic and multicenter cohorts is
needed to confirm the robustness of lesion detection and grading.

Another study by Ting, D.S.W [5] aimed to evaluate the diagnostic performance of a
deep learning system (DLS) for detecting referable diabetic retinopathy using retinal images.
The DLS achieved a high accuracy with an area under the curve of 0.936, a sensitivity of
90.5%, and a specificity of 91.6%. However, it should be noted that the focus of this study
was only on detecting referable diabetic retinopathy, which may not encompass all cases of
diabetic retinopathy. Additionally, the study has limitations, including varying reference
standards and a “opaque” effect, which may impact its acceptance by physicians.

In the study [10], the authors present a machine learning-based approach to automate
the classification of diabetic retinopathy (DR). Convolutional neural networks (CNNs), such
as VGG-16 and VGG-19 [11], were employed to analyze fundus images and categorize the
DR severity into five levels ranging from 0 (no DR) to 4 (proliferative DR). The system was
evaluated using various performance metrics including accuracy, sensitivity, specificity, and
AUC, and the results showed that the system achieved a high accuracy of 82%, sensitivity
of 80%, specificity of 82%, and AUC of 0.904.

These studies demonstrate the effectiveness of deep learning algorithms in grading
DR, which can be useful in the diagnosis and prompt treatment of the disease.
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2.3. DL Methods for DME Detection

In the literature, various DL-based approaches have been proposed for detecting
and grading DME in digital fundus images. In [12], a deep learning-based approach was
proposed for grading DME. A deep convolutional neural network (DCNN) was trained on
a large dataset of digital fundus images. The DCNN was trained to distinguish between
normal, mild, moderate, and severe DME using supervised learning approach, which
means that the network was trained to make predictions based on the labeled examples in
the training dataset. The training process involved iteratively adjusting the weights of the
network to minimize the prediction error on the training set, until the error converged to a
minimum. The results showed that the DCNN was able to achieve an accuracy of 90.6% in
grading DME.

The study [13] presents an end-to-end deep learning approach for the detection and
grading of DME in digital fundus images. The authors used a convolutional neural network
(CNN) to analyze the fundus images and classify them into different stages of DME, ranging
from normal to severe. The performance of the system was evaluated on a large dataset of
digital fundus images and results showed that the proposed approach achieved an accuracy
of 91.5% in detecting and grading DME.

The study by Chen et al. [14] presents a deep transfer learning-based approach for the
detection of DME in digital fundus images. The authors used a pre-trained CNN, which
was fine-tuned on a dataset of fundus images with DME. The results of the study showed
that the proposed approach was accurate in detecting DME, with an accuracy of 95.7%.
This study highlights the potential of transfer learning in medical image analysis, especially
in the detection of DME.

These studies demonstrate the effectiveness of deep learning-based approaches for
detecting and grading DME in digital fundus images. However, further research is needed
to improve the accuracy and robustness of these methods.

2.4. Previous Studies: A Summary of Techniques, Focus, and Challenges

The reviewed literature explored a range of ML and DL techniques for DR detection
and summarized the different methods of the models in Table 1. Approximately 70% of
the previous studies were focused on detecting the stages of DR or classifying images as
DR or non-DR [15], as depicted in Figure 2. In contrast, only 27% of the studies aimed at
classifying NPDR and PDR, and a mere 6% aimed at detecting and classifying lesions in
fundus images into NPDR or PDR. Despite the various techniques and focus areas, the
current challenge in the field remains to create a reliable system that can detect both DR
and DME. This challenge has been the emphasis of recent studies and is a crucial area of
ongoing research in the field of DR detection.

Table 1. Table summarizing classical machine learning and deep learning methods for diabetic
retinopathy and diabetic macular edema detection and grading

Field Ref Method Database

Classical Machine Learning

[7] Integrated SVM, PCA, and Moth-Flame Optimization Own dataset

[8] Ensemble of Random Forest, Decision Tree, Adaboost, K-NN,
Logistic Regression DR dataset

[9] LBP16-ri vectors and SVM with PCA and BoW representations -

DL methods for DR grading

[6] DeepDR Single ethnic dataset

[5] DLS Single ethnic dataset

[10] CNNs (VGG-16 and VGG-19) Fundus images

DL methods for DME detection

[12] Deep Convolutional Neural Network Own dataset

[13] Convolutional Neural Network Own dataset

[14] Transfer Learning-based Convolutional Neural Network Own dataset
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Figure 2. Percentage of studies with a focus on different aspects of DR, highlighting the lower
percentage dedicated to lesion detection.

3. Methodology
3.1. Process Flow Explanation

Figure 3 provides a visual representation of the process of using the models to detect
hemorrhages within an input image and determine the presence of either DME or DR.
The input image is fed into the base deep learning models trained to detect hemorrhages
and locate them within the image. The models output a prediction on the presence of
hemorrhages within the image. If a hemorrhage is detected, the location of the hemorrhage
with respect to the macula is calculated. The location of the hemorrhage is then used to
classify the images. If the hemorrhage is found within the macula, it is determined that
DME is present. Otherwise, DR is present.

Figure 3. The step-by-step process of detecting hemorrhages and locating DME/DR with Faster
R-CNN (R50-FPN) and Mask R-CNN (R50-FPN) models.

3.2. Dataset

The study used 89 color fundus images from a publicly available database DIARETDB1
(89) [16], with 84 images having at least mild non-proliferative diabetic retinopathy (NPDR)
and 5 images of normal eyes. Medical experts marked the images as ground truth. Annota-
tions were created using Labelme, which were then converted to the Common Objects in
Context (COCO) [17] format using a local script or the tool Roboflow [18]. The original data
set was divided into a training set of 28 images and a test set of 61 images, with different
confidence levels marking the affected areas of the images. The training set had 18 images
with hard exudates, 6 images with soft exudates, 19 images with microaneurysms, and
21 images with hemorrhages, while the test set had 20 images with hard exudates, 9 images
with soft exudates, 20 images with microaneurysms, and 18 images with hemorrhages. The
ground truth confidence level in the DIARETDB1 data set was set to 0.75.
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Publicly available datasets such as MESSIDOR [19], APTOS 2019 Blindness Detec-
tion [20], and the kaggle [21] diabetic-retinopathy-detection database are often utilized for
detecting diabetic retinopathy (DR) and diabetic macular edema (DME) in public domain.
However, one drawback of these datasets is that they solely offer a severity rating ranging
from 0 to 4 for each image, and do not include precise annotations of the lesions present in
the images. This can pose difficulties when utilizing these datasets for tasks that require
pinpointing the location of the lesions.

3.3. Baseline Models

The study utilizes two models, Faster R-CNN (R50-FPN) and Mask R-CNN (R50-FPN),
which are both based on the Detectron2 platform developed by Facebook AI Research
(FAIR) [22]. This platform provides a flexible environment for developing and deploying
computer vision algorithms and includes various object detection techniques, such as
Mask R-CNN [23], RetinaNet [24], Faster R-CNN [25], and RPN. The Faster R-CNN (R50-
FPN) [26] is a Faster R-CNN model with a ResNet50+FPN backbone, and the Mask R-CNN
(R50-FPN) [27] is a Mask R-CNN model with a ResNet50+FPN backbone. These models
will be further explained in Sections 3.3.1 and 3.3.2.

3.3.1. Faster R-CNN (R50-FPN) Architecture

The architecture of Faster R-CNN (R50-FPN) [28] is depicted in Figure 4 and is made
up of three main parts: the Backbone Network, the Region Proposal Network, and the
Box Head. The Backbone Network is a ResNet+FPN backbone that extracts feature maps
from the input image. The ResNet part of the backbone consists of residual blocks stacked
on top of one another, which are simpler to optimize and improve accuracy compared to
traditional deep networks. The Feature Pyramid Network (FPN) [29] part of the backbone
creates proportionally scaled feature maps from a single-scale input image of any size.

The Region Proposal Network (RPN) [28] is a deep learning network used for object
detection that generates rectangular object proposals with corresponding objectness scores
from the input image. It shares its convolutional layers with the Fast R-CNN object
identification network to save computation time. The Box Head is a type of region of interest
head that uses fully connected layers to refine box placements and classify objects. It takes
the feature maps and region proposals generated by the RPN and performs computations
on each region, cutting and warping the feature maps with proposal boxes to create multiple
fixed-size features. The final output is limited to 100 boxes after non-maximum suppression.

Figure 4. The architecture of Faster R-CNN (R50-FPN) consists of 3 stages: (1) Backbone Network,
(2) Region Proposal Network (RPN), (3) Box Head, and Fast R-CNN for object identification. Mask
R-CNN (R50-FPN) employs the same 3-step procedure as Faster R-CNN (R50-FPN), but also includes
a binary mask produced for each ROI in addition to class and box offset predictions in the third stage.

3.3.2. Mask R-CNN (R50-FPN) Architecture

Mask R-CNN [23] is an extension of Faster R-CNN, with the main difference being the
inclusion of an additional output branch for generating object masks. While Faster R-CNN
outputs class labels and bounding-box offsets, Mask R-CNN also generates binary masks
for each region of interest (ROI). The procedure for Mask R-CNN (R50-FPN) [28] is similar
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to that of Faster R-CNN (R50-FPN), with the first two stages being the backbone network
and RPN. In the third stage, in addition to class and box offset predictions, a binary mask is
generated for each ROI. This allows for more precise spatial arrangement of objects, as it
involves pixel-to-pixel alignment.

Mask Representation: Mask R-CNN [23] predicts binary masks for objects in an image
by using a fully convolutional network (FCN). The FCN generates an m x m mask for each
region of interest (ROI), preserving the pixel-to-pixel correspondence through convolutions.
This allows for precise extraction of the object’s spatial structure. The RoIAlign layer in
Mask R-CNN helps maintain the accuracy of the small RoI features by aligning them with
the input, leading to better mask prediction performance. The RoIAlign layer is crucial for
accurate mask prediction and ensures per-pixel spatial correspondence.

RoIAlign: The RoIAlign layer in Mask R-CNN improves the accuracy of the features
extracted from regions of interest (RoIs) compared to the standard RoIPool operation.
RoIPool quantizes the RoI to the granularity of the feature map and divides it into spatial
bins, which can result in inaccuracies. RoIAlign, on the other hand, aligns the retrieved
features with the input, removing the harsh quantization introduced by RoIPool and pro-
viding improved alignment. This improved alignment allows for more accurate bounding
box regression, resulting in better object detection performance compared to models like
Fast R-CNN.

3.4. Training and Loss Function

The RPN is trained to classify the anchor boxes as objects or not objects by applying
back-propagation and Stochastic Gradient Descent (SGD) [30]. The RPN training uses the
“image-centric” sampling method, where each mini-batch originates from a single image
with a mix of good and bad example anchors. The loss function is computed by randomly
selecting 256 anchors from the image, with a positive to negative anchor ratio of up to 1:1.
If an image has fewer than 128 positive samples, the mini-batch is boosted with negative
samples.

The entire architecture is trained using a four stage alternating training method [23].
First, the backbone CNN network is initialized with ImageNet weights and region proposals
are generated through fine-tuning these weights. Then, the RPN is trained and used as
a proposal for the object detection network. The backbone network is again initialized
with ImageNet weights, but it is not yet connected to the RPN network. The RPN and Fast
R-CNN detector are then fine-tuned by fixing the common layer weights and tweaking
only the layers specific to the detector network.

Both machine learning models were trained on an Intel CPU with 4GB of RAM, using
Python 3.7, PyTorch 1.8 or later, TorchVision, and TensorBoard version 1.6.0, on a Linux
system. With a learning rate of 0.00025, the models were trained for 30,000 iterations, using
data augmentations such as Re-size-Shortest-Edge to maintain image aspect ratios [31].
This can help prevent the image from being distorted, which is especially important for
image classification and object detection tasks where the shape and size of objects are
critical features for determining their class or location.

4. Results
4.1. Evaluation Metrics

The performance of the detector is evaluated using sensitivity, specificity, and accu-
racy [32]. These performance measures are commonly used in medical diagnosis and are
defined as follows:

Sensitivity is the ratio of true positive (TP) cases to the sum of true positive and false
negative (FN) cases. Specificity is the ratio of true negative (TN) cases to the sum of true
negative and false positive (FP) cases [33]. Accuracy is the ratio of the sum of true positive
and true negative cases to the overall sample.
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Sensitivity = TP/(TP + FN) (1)

Speci f icity = TN/(TN + FP) (2)

Accuracy = TP + TN/(TN + TP + FN + FP) (3)

In the evaluation of object detection and instance segmentation models in Section 4.3,
the key metrics utilized to assess the performance are Intersection over Union (IoU) and
the standard metrics provided by the Common Objects in Context (COCO) dataset [17].
IoU measures the overlap between the predicted and ground-truth bounding boxes and is
calculated as the ratio of their intersection to their union. A high IoU score indicates a good
match between the two bounding boxes. An example of IoU scores is shown pictorially in
a Figure 5.

In addition to IoU, COCO provides standard metrics, including Average Precision
(AP) and Average Recall (AR) [34]. These metrics are listed in Table 2. AP measures the
accuracy of the model’s object detection, while AR measures the model’s ability to recall
objects. AP is calculated across different scales and at different IoU thresholds (IoU = 0.50,
0.75) and is divided into categories based on object size (small, medium, large). These
categories are represented as APsmall (for small objects with an area < 322), APmedium
(for medium objects with an area between 322 and 962), and APlarge (for large objects with
an area > 962) [35].

Similarly, average recall will be calculated at different levels of maximum detections
per image (ARmax = 1, 10, 100) and divided into categories based on object size (ARsmall,
ARmedium, ARlarge). These metrics provide a comprehensive evaluation of the perfor-
mance of object detection models and help assess the strengths and weaknesses of the
approach, specifically with respect to object size and detection count.

Table 2. Evaluation metrics from COCO [35] used to assess the performance of object detection
models on the COCO dataset. These evaluation metrics include Average Precision (AP) and Average
Recall (AR) for bounding box detection, as well as AP and AR for different object sizes and IoU
thresholds.

Average Precision (AP) AP Across Scales

AP % AP at IoU = 0.50:0.05:0.95 APmedium % AP for medium objects: 322 < area < 962
APIoU = 0.50 % AP at IoU = 0.50 APsmall % AP for small objects: area < 322
APIoU = 0.75 % AP at IoU = 0.75 APlarge % AP for large objects: area > 962

Average Recall (AR) AR Across Scales

ARmax = 1 % AR given 1 detection per image ARsmall % AR for small objects: area < 322
ARmax = 10 % AR given 10 detections per image ARmedium % AR for medium objects: 322 < area < 962
ARmax = 100 % AR given 100 detections per image ARlarge % AR for large objects: area > 962

Figure 5. Example IoU scores for the detected bounding box.

4.2. Analysis of Accuracy, False Negative Rate, and Convergence Speed

Figure 6a illustrates the accuracy of the Mask R-CNN (R50-FPN), which was 99.34%
with a sensitivity of 97.5% and a specificity of 96.6%. This indicates that the model accurately
classified the majority of positive and negative cases, with a low number of false positive
and false negative results. For the Faster R-CNN (R50-FPN), the accuracy was 99.22%
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with a sensitivity of 97.37% and a specificity of 96.49%. Although the accuracy is slightly
lower compared to the Mask R-CNN (R50-FPN), the sensitivity and specificity are still
high, which means the model still has a good performance in classifying the positive and
negative cases.

Figure 6b shows the comparison of the false negative rate of the two models. The
results indicate that Mask R-CNN (R50-FPN) performs better, with a lower false negative
rate of approximately 0.8% compared to Faster R-CNN (R50-FPN)’s rate of 0.6%. Figure 6c
illustrates the convergence of the loss value for both models during the training process.
Both models converge to a minimum value, with Faster R-CNN (R50-FPN) demonstrating
faster convergence and a lower minimum loss value compared to Mask R-CNN (R50-FPN).
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Figure 6. Faster R-CNN (R50-FPN) in red and Mask R-CNN (R50-FPN) in blue over 30k iterations.
(a) Illustrates accuracy, with Mask R-CNN (R50-FPN) having a higher overall accuracy of 99.34%.
(b) Compares false negative rate, with Mask R-CNN (R50-FPN) performing better with a final false
negative rate of 0.8%. (c) Demonstrates convergence of loss value, with Faster R-CNN (R50-FPN)
demonstrating faster convergence and a lower minimum loss value.

4.3. Analysis of Baseline Models in Object Detection and Instance Segmentation

In the context of this work, ‘detection’ refers specifically to the identification and
localization of hemorrhages in retinal images, and should not be confused with the more
general concept of object detection. For Faster R-CNN (R50-FPN), Table 3 reveals that the
highest Average Precision (AP) is obtained at an Intersection over Union (IoU) threshold of
0.50:0.95 with all maxdets set to 100, with a value of 0.477. However, the Average Recall
(AR) is low at 0.032 under the same setting. The model performs well for large objects,
with an AP of 0.812 and an AR of 0.830 at IoU 0.50:0.95 with all maxdets set to 100. But it
performs poorly on small objects, with an AP of 0.180 and an AR of 0.182 under the same
setting.

Table 4 indicates that Mask R-CNN (R50-FPN) has superior performance in both object
detection and instance segmentation tasks, with a slightly better performance in object
detection. The AP for object detection is 0.475 at IoU 0.50:0.95 with all maxdets set to 100,
while the AR is 0.031 at the same setting. The AP for instance segmentation is 0.424 at the
same setting. The AP is highest for medium-sized objects, with a value of 0.612 in object
detection and 0.543 in instance segmentation.

The objective evaluation of the accuracy and sensitivity of a Faster R-CNN (R-50-
FPN) model can be facilitated by visually comparing the model’s output to the ground
truth annotations, as demonstrated in Figure 7. This comparison enables the detection of
discrepancies or errors in the model’s predictions and provides insights into the degree of
agreement with expert annotations.

In the context of hemorrhage detection and segmentation, baseline models were
evaluated, and the results are presented in Figure 8. The first image demonstrates early
stages of DR without DME, with a marked area on the top right that indicates a failure in
identification. The second image shows successful hemorrhage detection in a case with
both DR and DME. These results showcase the potential of baseline models for detecting
and segmenting hemorrhages, which can aid in the diagnosis and monitoring of DR in
patients.
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In conclusion, the summary of results shown in Table 5 indicate that both models
have a relatively high average precision, with Mask R-CNN (R50-FPN) performing slightly
better overall compared to Faster R-CNN (R50-FPN). However, the performance of both
models can be improved by adjusting the IoU and maximum detection settings.

Table 3. COCO evaluation metrics for object detection using Faster R-CNN (R50-FPN) baseline. The
metric maxdets specifies the maximum number of detections per image for calculating the average
precision (AP) and average recall (AR).

Backbone: Faster R-CNN(R50-FPN)

IoU Area Maxdets AP IoU Area Maxdets AR

0.50:0.95 all 100 0.477 0.50:0.95 all 1 0.032
0.50 all 100 0.590 0.50:0.95 all 10 0.317
0.75 all 100 0.478 0.50:0.95 all 100 0.514

0.50:0.95 small 100 0.180 0.50:0.95 small 100 0.182
0.50:0.95 medium 100 0.608 0.50:0.95 medium 100 0.662
0.50:0.95 large 100 0.812 0.50:0.95 large 100 0.830

Table 4. COCO Evaluation Metrics for object detection and instance segmentation using Mask R-CNN
(R50-FPN) baseline.

Backbone: Mask R-CNN(R50-FPN)

Object Detection

IoU Area Maxdets AP IoU Area Maxdets AR

0.50:0.95 all 100 0.475 0.50:0.95 all 1 0.031
0.50 all 100 0.584 0.50:0.95 all 10 0.303
0.75 all 100 0.470 0.50:0.95 all 100 0.514

0.50:0.95 small 100 0.205 0.50:0.95 small 100 0.204
0.50:0.95 medium 100 0.612 0.50:0.95 medium 100 0.677
0.50:0.95 large 100 0.734 0.50:0.95 large 100 0.747

Instance Segmentation

0.50:0.95 all 100 0.424 0.50:0.95 all 1 0.030
0.50 all 100 0.545 0.50:0.95 all 10 0.274
0.75 all 100 0.441 0.50:0.95 all 100 0.459

0.50:0.95 small 100 0.160 0.50:0.95 small 100 0.171
0.50:0.95 medium 100 0.543 0.50:0.95 medium 100 0.603
0.50:0.95 large 100 0.686 0.50:0.95 large 100 0.700

Table 5. Summary of object detection performance reported as Average Precision (AP) at different
IoU thresholds, using different backbones."BB” denotes the bounding box-based approach, while “IS”
denotes the instance segmentation-based approach.

Backbone AP AP50 AP75 APs APm APl

Faster rcnn: BB 47.720 58.988 47.782 17.975 60.761 81.220
Mask rcnn: BB 47.492 58.421 47.032 20.525 61.198 73.415
Mask rcnn: IS 42.378 54.517 44.141 16.031 54.304 68.574
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Figure 7. The results of Faster R-CNN (R-50-FPN) can be visually compared to the ground truth to
assess the performance of the model. (a) Shows the output image from Faster R-CNN (R-50-FPN),
(b) Shows the ground truth image overlayed on the output image, and (c) Shows the ground truth
image marked by experts. The visual comparison of the model’s predictions to expert annotations
offers an objective evaluation of the model’s accuracy and sensitivity. It highlights any discrepancies
or errors in the model’s predictions and provides insight into the degree of agreement between the
model’s predictions and the expert annotations.

Figure 8. Results of hemorrhage detection and segmentation from baseline models. (a) Hemorrhage
detection indicating early stages of DR without DME. The marked area on the top right represents a
failure in identification. (b) Hemorrhage detection indicating both DR and a clear case of DME.

5. Discussion and Future Work

In recent years, deep learning models have been utilized to analyze retinal images and
detect the presence of diabetic retinopathy and diabetic macular edema. Previous work in this
field has relied on multiple levels of representation to make predictions, without explicitly dis-
playing the diabetic retinopathy lesions such as microaneurysms and retinal hemorrhages. This
black-box approach, while effective, has raised concerns about its acceptability for clinical use
among physicians. These studies have primarily focused on detecting diabetic retinopathy and
diabetic macular edema at later stages, such as individuals with referable DR or advanced DR,
which indicates that these patients require closer follow-up or treatment from ophthalmologists.
However, early-stage detection is essential to achieving the best possible outcomes for patients
with diabetic retinopathy and diabetic macular edema. Research shows that with appropriate
care at an early stage, it may be possible to significantly slow the development of DR and even
reverse moderate NPDR to a DR-free stage in order to achieve optimal control of blood pressure,
glucose levels, and lipid profiles. In addition, advanced DR is incurable, which underscores the
importance of early detection.
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The results of the evaluation of the deep learning models, Faster R-CNN (R50-FPN)
and Mask R-CNN (R50-FPN), in detecting early stages of DR and DME by focusing on
the presence of hemorrhages in the retinal fundus show promising results. Both models
achieved a high accuracy, with the Mask R-CNN (R50-FPN) having a higher accuracy of
99.34% compared to the Faster R-CNN (R50-FPN) which had an accuracy of 99.22%. The
Mask R-CNN (R50-FPN) also had a higher sensitivity of 97.5% and a higher specificity of
96.6%, while the Faster R-CNN (R50-FPN) had a sensitivity of 97.37% and a specificity of
96.49%. This indicates that both models accurately classified the majority of positive and
negative cases, with a low number of false positive and false negative results.

In the future, improvement in the accuracy of these models can be achieved through
fine-tuning with a larger and more diverse dataset that includes small objects. The impact
of alternate backbone architectures, such as InceptionNet and DenseNet, on the models’
performance should also be investigated. The ultimate goal is to make the detection of DR
and DME fully automatic by training the model to identify all pathologies, the macula,
and the optic disc based on distinctive features. It is important to note that most of the
publicly available datasets which are commonly used for diabetic retinopathy and diabetic
macular edema detection, have limitations in terms of annotations and lesion localization.
These datasets only provide a severity score for each image on a scale of 0 to 4, without
specific annotations of the lesions on the images, which can make it challenging to use
them for tasks that require lesion localization. Thus, it is crucial to develop and use datasets
with more specific annotations for lesion detection and localization in the training of deep
learning models for accurate and efficient detection of diabetic retinopathy and diabetic
macular edema.
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