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Abstract: Since failure of steam turbines occurs frequently and can causes huge losses for thermal
plants, it is important to identify a fault in advance. A novel clustering fault diagnosis method for
steam turbines based on t-distribution stochastic neighborhood embedding (t-SNE) and extreme
gradient boosting (XGBoost) is proposed in this paper. First, the t-SNE algorithm was used to map
the high-dimensional data to the low-dimensional space; and the data clustering method of K-means
was performed in the low-dimensional space to distinguish the fault data from the normal data. Then,
the imbalance problem in the data was processed by the synthetic minority over-sampling technique
(SMOTE) algorithm to obtain the steam turbine characteristic data set with fault labels. Finally, the
XGBoost algorithm was used to solve this multi-classification problem. The data set used in this
paper was derived from the time series data of a steam turbine of a thermal power plant. In the
processing analysis, the method achieved the best performance with an overall accuracy of 97% and
an early warning of at least two hours in advance. The experimental results show that this method
can effectively evaluate the condition and provide fault warning for power plant equipment.

Keywords: fault diagnosis; steam turbine; t-distribution stochastic neighborhood embedding (t-SNE);
extreme gradient boosting (XGBoost); clustering

1. Introduction

Thermal power plays an important role in power generation. Thermal power gen-
eration consumes enormous amounts of available coal energy, resulting in a shortage of
coal energy. In order to conserve energy consumption, reduce pollution and protect the
environment, thermal power plants should adopt advanced scientific and technological
means to reduce energy efficiency loss, and strengthen research on fault diagnosis of main
power generation (e.g., steam boilers and turbines) [1–3].

In recent years, the rapid development of information technologies, computer tech-
nologies and other new technologies has brought new progress in equipment condition
monitoring and fault diagnosis [4,5]. The application of machine learning in intelligent
diagnosis has achieved good results. The main machine learning algorithms include sup-
port vector machines (SVM) [6,7] and its improved algorithms, decision trees, its improved
algorithms [8,9], artificial neural network (ANN), and its improved algorithms [10,11], etc.
These algorithms can achieve better classification results for data sets with a large number of
fault tags. Deng et al. [12] used the improved particle swarm optimization (PSO) algorithm
to optimize the parameters of least squares support vector machines (LS-SVM) to construct
an optimal LS-SVM classifier, which is used to classify the fault. In Sun’s research [13], a
fault diagnosis method based on wavelet packet analysis and SVM was proposed. Firstly,
the wavelet packet transform was used to decompose and denoise the signal, and the
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original fault feature vector was extracted for reconstruction. The improved SVM algorithm
was used to diagnose the fault based on the new fault feature vector. Wu et al. [14] proposed
a deep transfer learning method based on the hybrid domain adversarial learning (HDAL)
strategy for rotating machines in nuclear power plants.

Since failure of steam turbines occurs frequently and causes huge losses in thermal
plants, it is important to identify the fault in advance. Thermal power plants use big data
technology to deeply mine data value [15–18], which also makes itself more optimized,
safer, and more economical. The steam turbine is one of the most important equipment
in thermal power plants [19,20]. A large amount of steam turbine data, such as condition
monitoring data, fault data and so on, has been accumulated in power plant automation
systems, which contain characteristic data about the steam turbine fault condition. Accurate
fault diagnosis can find the fault in time, repair it in advance, and ensure normal production.
However, due to data acquisition and artificial records, the fault records cannot be directly
related to the automatic acquisition of time series data. More seriously, due to the low
efficiency and low quality of manual recording, the sample data with a large number of
labels cannot be directly obtained. In addition, the turbine has high reliability and is in
normal operation for a long time, which makes it difficult to provide a large amount of
faulty sample data. Since the signals collected by the automatic system are nonlinear and
non-stationary, the fault features are often drowned by external factors such as noise and
the traditional signal processing; thus, analysis technology is severely limited. Therefore,
an effective method for feature extraction and fault diagnosis for steam turbines is needed
for this condition.

After analyzing the recent progress, a novel fault diagnosis method based on t-
distribution stochastic neighborhood embedding (t-SNE), K-means clustering, synthetic
minority over-sampling technique (SMOTE) and extreme gradient boosting (XGBoost)
is proposed in this paper. Since the vibration signal collected by samplers had a high
dimensional feature and the data could not be visualized, t-SNE was used to map the
high-dimensional data to the low-dimensional space. Most of the data collected from the
thermal plant was unlabeled, so the data clustering method of K-means was used in the
low-dimensional space to distinguish the fault data from the normal data for automatic
fault identification. The imbalance problem in the data was processed by the SMOTE
algorithm to obtain the steam turbine characteristic data set with fault labels. Finally, the
XGBoost algorithm was used to solve this multi-classification problem. When the steam tur-
bines were detected by the trained model in this paper, the prediction information fed back
to the thermal power plant immediately. This early warning information for a predictive
failure will give the thermal power plant enough time to deal with the problems in advance.
During this time, the plant could use other methods to reasonably determine when to take
action. Compared with the above literature, the differences between the proposed method
and other studies are shown in Table 1. The main objective of the proposed method was to
develop a novel procedure for actual power plant data.

Table 1. Research comparison of the proposed method.

Proposed Method Other Literatures

Data set source Actual data from the actual
plant

Experimental data or
numerical simulation data

Data length Larger (months or even years) Smaller (hours or days)

Fault label Partly missing or being
blurred Identified by the experiment

Fault verification Based on real faults in the
plant Based on simulated faults

Iterative strategy for research Determined by the actual
operation of the plant Unable to iterate

Significance of research Solving practical problems Continuous improvement of
research algorithms
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The rest of this paper is organized as follows. Section 2 discusses methods. Section 2.1
introduces and discusses the performance indicator extraction based on t-SNE and K-
means. Section 2.2 introduces the imbalanced data recognition model based on SMOTE and
XGBoost. A model evaluation method is presented in Section 2.3. Section 3 presents the
data experiment and results and discussion of the proposed method. Finally, conclusions
are drawn in Section 4.

2. Methods
2.1. Performance Indicator Extraction Based on t-SNE and K-Means

The t-SNE algorithm is a nonlinear dimensionality reduction algorithm that maps
multi-dimensional data into two or more dimensions by the similarity of high-dimensional
data [21,22]. It has been applied to many fields, including image processing [23], genet-
ics [24], and materials science [25]. In this paper, the input of t-SNE is signal features
extracted by data acquisition equipment. According to the similarity of signal features,
these features are further reduced. The main algorithm is as follows and the source code of
the t-SNE algorithm is in Appendix A.

(1) The conditional probability of distribution pj|i between the corresponding data xi
and xj in the high-dimensional space is calculated to represent the similarity between the
data. The high-dimensional data, xi and xj, correspond to the mapping points yi and yj
in a low dimension and qj|i is their similar conditional probability distribution. The initial
value is Y(0) =

{
y1 y2 · · · yn

}
. pj|i and qj|i are calculated as follows.

pj|i =
exp(−

∥∥xi − xj
∥∥2/2σ2

i )

∑ k 6=i exp(−‖xi − xk‖2/2σ2
i )

(1)

qj|i =
exp(−

∥∥yi − yj
∥∥2
)

∑ k 6=i exp(−‖yi − yk‖2)
(2)

where σi is the Gaussian distribution variance centered on xi.
(2) Calculating the joint probability density pij of high dimensional samples.

pij =
pj|i + pi|j

2n
(3)

(3) Calculating the joint probability density qij of the low dimensional samples.

qij =

(
1 +

∥∥yi − yj
∥∥2
)−1

∑ k 6=l

(
1 + ‖yk − yl‖2

)−1 (4)

(4) Calculating the loss function C and its gradient. C is defined by the Kullback–
Leibler (KL) distance to evaluate the similarity degree of joint probability density pij and
qij.

C = KL = ∑i ∑j pij log
pij

qij
(5)

δC
δyi

= 4∑j

(
pij − qij

)(
yi − yj

)(
1 +

∥∥yi − yj
∥∥2
)−1

(6)

(5) Iterative updating.

Y(t) = Y(t−1) + η
δC
δy

+ α(t)
(

Y(t−1) −Y(t−2)
)

(7)

where t is the number of iterations, η is the learning rate, and α(·) is the momentum factor.
(6) Returning to (4) and (5) until the number of iterations is reached.
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After obtaining the low-dimensional data output by the t-SNE algorithm, the K-means
clustering algorithm [26] was used to classify the data into two categories. This algorithm
is used to classify fault dangerous intervals. When a single fault hazardous interval is
identified, the data is divided into fault data and normal data. However, the lack of failure
records leads to an imbalance problem.

2.2. Imbalanced Data Recognition Model Based on SMOTE and XGBoost

Sampling methods are very popular for balancing the class distribution. Over- and
under-sampling methodologies have received considerable attention to counteract the
effect of imbalanced data sets. The SMOTE algorithm is simple and efficient, has good
anti-noise ability, and can improve the generalization of the model [27,28]. The formal
procedure is as follows.

The minority class is over-sampled by taking each minority class sample and inserting
synthetic examples along the line segments connecting any/all of the k minority class
nearest neighbors. Depending on the amount of over-sampling required, neighbors are
randomly selected from the k nearest neighbors. Synthetic samples are generated as follows:
take the difference between the feature vector of sample and its nearest neighbor; multiply
this difference by a random number between 0 and 1, and add it to the feature vector
under consideration. This results in the selection of a random point along the line segment
between two specific features. This approach effectively forces the decision region of the
minority class to become more general [29].

Boosting is a machine learning technique that can be used for regression and classi-
fication problems. It generates a weak learner at each step and accumulates them in the
overall model. If the weak learner for each step is based on the gradient direction of the
loss function, it can be called gradient boosting decision tree (GBDT) [30]. The difference
with GBDT is that only the first derivative of the loss function is used to compute the
objective function. The XGBoost approximates the loss function using the second order
Taylor expansion. The main algorithm is as follows and the source code of the XGBoost
algorithm is in Appendix A.

Assume that a data set is D = {(xi, yi)}(|D| = m, xi ∈ Rn, yi ∈ R), then we obtain n
observations with m features each and with a corresponding variable y. Let ŷ be defined as
a result given by an ensemble represented by the generalized model as follows:

ŷi = φ(xi) =
K

∑
k=1

fk(xi), fk ∈ F (8)

where fk is a regression tree, and fk(xi) represents the score given by the k-th tree to the i-th
observation in data. In order to functions fk, the following regularized objective function
should be minimized:

L(φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk) (9)

where l is the loss function. To prevent too large complexity of the model, the penalty term
Ω is included as follows:

Ω( fk) = γT +
1
2

λ‖ω‖2 (10)

where γ and λ are parameters controlling penalty for the number of leaves T and magnitude
of leaf weights ω respectively. The purpose of Ω( fk) is to prevent over-fitting and to
simplify models produced by this algorithm.

An iterative method is used to minimize the objective function. The objective function
that minimized in j-th iterative to add fj is:

L(j) =
n

∑
i=1

l
(

yi, ŷi
(t−1) + fj(xi)

)
+ Ω

(
fj
)

(11)
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Equation (11) can be simplified by using the Taylor expansion. Then, a formula can be
derived for loss reduction after the tree split from a given node:

Lsplit =
1
2

[ (
∑i∈IL

gi
)2

∑i∈IL
hi + λ

+

(
∑i∈IR

gi
)2

∑i∈IR
hi + λ

− (∑i∈I gi)
2

∑i∈I hi + λ

]
− γ (12)

where I is a subset of the available observations in the current node and IL, IR are subsets
of the available observations in the left and right nodes after the split. The functions gi and
hi are defined as follows:

gi = ∂ŷ(j−1) l
(

yi, ŷ(j−1)
)

(13)

hi = ∂2
ŷ(j−1) l

(
yi, ŷ(j−1)

)
(14)

The XGBoost algorithm has many advantages: it prevents over-fitting by increasing
the complexity and compression of the loss function; it optimizes the number of iterations
through cross-validation; and it improves the computational efficiency of the model through
parallel processing. This algorithm is implemented in the “xgboost” package for the
“Python” language provided by the creators of the algorithm.

2.3. Model Assessment Method

The confusion matrix [31] is a classical method for evaluating the results of classifica-
tion models:

Cq =


N11 N12 · · · N1k
N21 N22 · · · N2k

...
...

. . .
...

Nk1 Nk2 · · · Nkk

 (15)

where Nij represents the probability that class i is divided into class j on the verification set.
Accuracy, recall, and F1-score [32] play a role in the evaluation of the classification

model. Through these complementary evaluation indexes, with the results of the confusion
matrix, the algorithm model can be evaluated, optimized and screened, and the optimal
algorithm model suitable for the data can be obtained.

Accuracy refers to the ratio of the predicted correct number in the test results of the
test set to the total number of samples, which is expressed as follows.

Accuracy =
∑i Nii

∑i ∑j Nij
(16)

The precision of class i indicates the ratio between the number of class i predicted
correctly and the number of class i predicted in the test set results, which is expressed as
follows:

Precision =
Nii

∑j Nij
(17)

Recall refers to the ratio between the number of correct class i predicted in the test
results of the test set and the number of class i. The equation is as follows:

Recall =
Nii

∑i Nij
(18)

F1-score is calculated by precision and recall. Since these two values are not intuitive
enough, they are more intuitive after conversion. The larger the value, the better the result.
The formula is as follows:

F1 =
2PR

P + R
(19)

where P is the accuracy and R represents the recall rate.
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Through the accuracy rate, recall rate, and F1-score, which can reflect the quality of
classification results, we can adjust and optimize the classification model.

To better understand the proposed fault diagnosis of the steam turbine process, we
summarize the main procedures as follows.

Step 1: Extraction of performance indicators. The t-SNE algorithm is used for dimen-
sion reduction. Then, cluster analysis is performed on the low-dimensional data. With the
fault records, the fault data and normal data of the clustering result are distinguished.

Step 2: Imbalanced data detection model. The imbalance problem in the data is
processed by the SMOTE algorithm. We used the XGBoost algorithm to solve this multi-
classification problem.

Step 3: Model evaluation method. The confusion matrix is used to evaluate the results
of classification models.

Figure 1 shows a schematic diagram of the proposed fault diagnosis of the steam
turbine process in this paper.
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3. Experiments, Results and Discussion
3.1. Introduction of Data Set

The data set in this paper was derived from the time series data of Steam Turbine 2 in
a thermal power plant in China. The data set include the following two parts.

(1) One was from the supervisory control and data acquisition (SCADA) system. The
original sampling period of the SCADA system was less than one millisecond. The data set
was the interval sampling data of every one second.

(2) The other was the fault information from the manual record and the system
application and product (SAP). The fault information mainly came from the manual record
of the power plant, including the fault content and the recorded time. However, some
of the fault information was not part of the equipment operation faults and could not be
effectively identified by the automated acquisition system. Therefore, in this paper, the
fault information was filtered.

After excluding measurement points with severe data loss or no data records, the
steam turbine data set contained 34 variables, such as the time stamp, operating condition
parameters and status parameters. The acquisition time was eight months, and the size of
the effect data was approximately 340,000.

Table 2 shows the statistical information of the steam turbine data set. In addition,
more detailed information of the data set can be seen in Appendix B, Table A1.

Table 2. Statistical information of the data set on steam turbines.

Data Set Sample Size Time Range

Steam turbine 340,468 January to August in 2018

The fault information was obtained from the fault records manually recorded by the
power plant, including the fault content and recording time. Since some fault records were
not plant operation faults and could not be effectively identified by the data, the available
fault information was screened. The fault records selected for use are shown in Table 3.

Table 3. Five types of faults in the fault record.

No. Fault Discovery Time

1 3 Feb 2018 2:07
2 11 Feb 2018 6:19
3 13 Mar 2018 7:28
4 10 Jun 2018 7:44
5 7 Aug 2018 23:17

3.2. Setting Labels for Different or Normal Faults

We used the fault detection time in the data record to determine the time that the fault
occurred. The data of 8~24 h before and after each fault record of the steam turbine were
intercepted for analysis. First, the t-SNE algorithm described in the previous section was
adopted to map the 34-dimensional data to a two-dimensional space. Then, the K-means
clustering method was used to separate the fault data from the normal data. The processing
results of the algorithm are visualized in Figure 2. Green data points represent normal data,
and other colors represent different fault data points.

The time-series data after clustering was compared to fault records to distinguish fault
data from normal data. As shown in Figure 3, each figure is a data graph of different faults
arranged by time. In the figure, the time of the red line is the actual time recorded for the
five types of faults.

Table 4 shows the information of failure data for five types. Compared to the time of
fault records, it can be seen that this method can distinguish fault data and normal data of
steam turbines, and it has a certain predictive ability.
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3.3. Dealing with Data Imbalance

After labelling the data, the problem to be solved was the data imbalance.
The total number of fault data was 5118 and the number of normal data was 335,350.

The ratio of normal data to faulty data was approximately 67:1, which is a very high
imbalance. The imbalance needed to be processed before building a classification model.
Immediate imbalance processing of this data set could introduce noise, which would affect
the accuracy of subsequent classification algorithms.

The normal data were sampled in sections, and the data of one day every four days
were extracted and reassembled into the normal data. The SMOTE algorithm was used to
deal with the unbalanced data of the newly formed data, and the resulting sample data set
is shown in Table 5.
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Figure 3. Time series data of five faults. (a) Clustering results of Fault 1 based on time series.
(b) Clustering results of Fault 2 based on time series. (c) Clustering results of Fault 3 based on time
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Table 4. Five types of fault data information table.

No. Start Time End Time Advanced Time
(min)

1 3 Feb 2018 0:14 3 Feb 2018 6:45 113
2 10 Feb 2018 22:02 11 Feb 2018 16:16 497
3 12 Mar 2018 19:32 13 Mar 2018 11:10 716
4 9 Jun 2018 14:53 10 Jun 2018 17:25 1011
5 7 Aug 2018 12:07 8 Aug 2018 6:25 670
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Table 5. The amount of fault data.

Original Data by SMOTE

Normal 78,513 78,513
Fault 1 392 5832
Fault 2 1095 16,823
Fault 3 939 14,402
Fault 4 1593 24,655
Fault 5 1099 16,801
Ratio 15:1 1:1

3.4. Test Results

After optimizing the data imbalance in the previous section, the XGBoost algorithm
could be used for fault diagnosis. The data set was divided into a training set and a test set
and divided according to the ratio of 3:7. The results of the confusion matrix are shown in
Table 6.

Table 6. Results of confusion matrix.

Confusion
Matrix

Predicted Result (%)

0 1 2 3 4 5

0 97.06 0.08 1.09 0.67 0.37 0.73
1 0.06 99.94 0 0 0 0
2 1.24 0 98.76 0 0 0
3 2.36 0 0 97.64 0 0
4 0.41 0 0 0 99.59 0
5 0.27 0 0 0 0 99.72

To better calculate the performance of the model, precision, recall rate and F1-score
were calculated, and the calculation results are shown in Table 7.

Table 7. Precision, recall and F1-score results.

Fault Label Precision Recall Rate F1-Score

0 99.18% 96.80% 97.98%
1 98.74% 100.00% 99.37%
2 94.54% 99.02% 97.07%
3 96.52% 97.63% 97.07%
4 98.52% 99.70% 99.11%
5 96.58% 99.72% 98.13%

Tables 6 and 7 show the classification results of the model for five faults of the steam
turbine. As is well-known, for a classification model, if precision, recall and F1-score have
higher values at the same time without considering other factors, the model is considered
to have better performance. The model based on the XGBoost classifier had high accuracy
in fault diagnosis of steam turbines and could identify the different types of faults.

3.5. Results and Discussion

In this paper, we developed a novel procedure for the actual data of the power plant,
and obtained the expected results for the power plant. In order to further illustrate the
superiority of the proposed method in this paper over other methods, it is necessary to
discuss the following issues.

(1) Computational efficiency.
The research object of this paper was a power plant’s big data, so the complexity of

the algorithm was one of the important issues to be considered. The complexity of the
T-SNE algorithm used in the research method of this paper is large. In general, applying
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the T-SNE algorithm for dimensionality reduction for a data set of millions of samples may
take several hours. The number of samples calculated in this paper was about 340,000, and
the training time of the model including the dimensionality reduction algorithm was less
than one hour. Such computational efficiency is perfectly acceptable for an enterprise-level
data application system. In addition, since the probability of serious faults in power plant
enterprises is often low, we generally recommend that power plants update the training
model every six months with new data, and the time to update the model here is at most
a few hours. For the calculation time of the final classification model, achievement of the
real-time effect can be considered (generally no more than 1 s).

(2) Comparison with other algorithms.
The purpose of this research paper was to develop a procedure of fault diagnosis

and prediction for the power plant data. For the data dimensionality reduction algorithm,
we chose the t-SNE algorithm. In the research process, we also compared a principal
component analysis (PCA) algorithm at the same time. Although, the PCA method had
a faster computational speed, it was still less effective than nonlinear dimensionality
reduction algorithms, such as t-SNE, for complex data of the power plant due to the linear
dimensionality reduction method [33].

For the final classification algorithm, in addition to the XGBoost algorithm, we also
compared algorithms such as SVM and random forest (RF). From the application effect
of the data in this paper, the computational results of the XGBoost algorithm and the
RF algorithm were better than SVM; moreover, considering that the XGBoost algorithm
borrows from RF and can support column sampling processing, which can not only reduce
overfitting, but also reduce computational effort [34], the XGBoost algorithm was finally
chosen in this paper.

(3) Improvement of the algorithm.
For a fault diagnosis and prediction system that is really applied to the power plant,

the most important purpose was to be able to detect and warn about the dangerous faults
in advance based on the large historical data. In this paper, the algorithm was trained with
more than 300,000 samples of data for nearly eight months, and the algorithm had some
limitations. However, in the actual application system, we used more than seven years of
historical data of the power plant to train the used model, which proved to have a good
application effect.

Furthermore, in addition to the application data set in this paper, we also validated
the pneumatic feed pump data set for this power plant. The results also showed that the
method proposed in this paper was also applicable to other equipment in the power plant.
In general, the accuracy of 90% of the actual data can meet the needs of the enterprise
management. Therefore, the research algorithm in this paper has been practically applied
in the power plant and has achieved satisfactory results.

4. Conclusions

A model based on t-SNE and XGBoost was proposed to detect the early failure of
steam turbines. The model with high accuracy was verified by the data of steam turbine
units of thermal power plants in China.

(1) The uncertainty problem of feature extraction in the unlabeled data set was solved
using t-SNE and K-means. This method can distinguish fault data and normal data, and
it has a certain foresight because it can distinguish the time when the fault occurs, which
is earlier than the fault record of manual inspection, making it more suitable for practical
application in fault diagnosis of steam turbines.

(2) The problem of data imbalance caused by fewer fault records was solved by using
the SMOTE algorithm, which is of great significance to the fault diagnosis of the steam
turbine and other mechanical equipment with fewer faulty samples.

(3) In the identification of new data, the accuracy and other indicators of the model
based on XGBoost reached more than 97%, which shows that this method has high value
in turbine fault diagnosis.
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Appendix A

The following source code for reference is the t-SNE algorithm.

Algorithm A1. T-SNE algorithm.

#!/usr/bin/env python
# coding: utf-8

import os
import sys
os.chdir (os.path.split (os.path.realpath (sys.argv [0]))[0])

import numpy
from numpy import *
import numpy as np

from sklearn.manifold import TSNE
from sklearn.datasets import load_iris
from sklearn.decomposition import PCA
import matplotlib.pyplot as plt

import pandas as pd

df1 = pd.read_excel (‘D:/data/gz5.xlsx’)

df1.label.value_counts ()

def get_data (data):
X = data.drop (columns = [‘time’, ‘label’]).values
y = data.label.values
n_samples, n_features = X.shape
return X, y, n_samples, n_features

X1, y1, n_samples1, n_features1 = get_data (df1)

X_tsne = TSNE (n_components = 2,init = ‘pca’, random_state = 0).fit_transform (X1)

def plot_embedding (X, y, title = None):
x_min, x_max = np.min(X, 0), np.max(X, 0)
X = (X − x_min) / (x_max − x_min)
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Algorithm A1. T-SNE algorithm.

plt.figure ()
ax = plt.subplot (111)
for i in range (X.shape [0]):

plt.text (X [i, 0], X [i, 1], ‘.’,
color = plt.cm.Set1 (y[i] * 3/10.),
fontdict = {‘weight’: ‘bold’, ‘size’: 9})

plt.xticks ([]), plt.yticks ([])
if title is not None:

plt.title (title)

plot_embedding (X_tsne, y1)

from sklearn.cluster import KMeans
from sklearn.externals import joblib
from sklearn import cluster

estimator = KMeans (n_clusters = 2)

res = estimator.fit_predict (X_tsne)
lable_pred = estimator.labels_

centroids = estimator.cluster_centers_

inertia = estimator.inertia_

from pandas import DataFrame
XA = DataFrame (res)
XA.to_csv (‘D:/data/gz5out.csv’)

The following source code for reference is the XGBoost algorithm.

Algorithm A2. XGBoost algorithm.

#!/usr/bin/env python
# coding: utf-8

from xgboost import plot_importance
from matplotlib import pyplot as plt

import xgboost as xgb
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
import pandas as pd
from xgboost.sklearn import XGBClassifier

# load data
data = pd.read_csv (‘D:/data/suanfa/kyq.csv’)
x, y = data.loc [:,data.columns.difference ([‘label’])].values, data [‘label’].values
x_train, x_test, y_train, y_test = train_test_split (x, y, test_size = 0.3)

data.label.value_counts ()

params ={‘learning_rate’: 0.1,
‘max_depth’: 2,
‘n_estimators’:50,
‘num_boost_round’:10,
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Algorithm A2. XGBoost algorithm.

‘objective’: ‘multi:softprob’,
‘random_state’: 0,
‘silent’:0,
‘num_class’:6,
‘eta’:0.9

}

model = xgb.train (params, xgb.DMatrix (x_train, y_train))
y_pred = model.predict (xgb.DMatrix (x_test))
yprob = np.argmax (y_pred, axis = 1) # return the index of the biggest pro

model.save_model (‘testXGboostClass.model’)

yprob = np.argmax (y_pred, axis = 1) # return the index of the biggest pro

predictions = [round (value) for value in yprob]

# evaluate predictions
accuracy = accuracy_score(y_test, predictions)
print (“Accuracy: %.2f%%” % (accuracy * 100.0))

plot_importance (model)
plt.show ()

xgb1 = XGBClassifier (
learning_rate = 0.1,
n_estimators = 20,
max_depth = 2,
num_boost_round = 10,
random_state = 0,
silent = 0,
objective = ‘multi:softprob’,
num_class = 6,
eta = 0.9
)

xgb1.fit (x_train, y_train)

y_pred1 = xgb1.predict_proba (x_test)

yprob1 = np.argmax (y_pred1, axis = 1) # return the index of the biggest pro

from sklearn.metrics import confusion_matrix
confusion_matrix (y_test.astype (‘int’), yprob1.astype (‘int’))

from sklearn.metrics import classification_report
print (‘Accuracy of Classifier:’,xgb1.score (x_test, y_test.astype (‘int’)))
print (classification_report (y_test.astype (‘int’), yprob1.astype (‘int’)))

Appendix B

Table A1. Variable name.

No. Description

F0 Time stamp
F1 Turbine Speed
F2 Main Steam Pressure
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Table A1. Cont.

No. Description

F3 Reheat Steam Pressure
F4 Main Steam Temp
F5 Bearing Bushing 11
F6 Bearing Bushing 12
F7 Bearing Bushing 21
F8 Bearing Bushing 22
F9 Bearing Bushing 31

F10 Bearing Bushing 32
F11 Bearing Bushing 41
F12 Bearing Bushing 42
F13 Bearing Bushing 51
F14 Bearing Bushing 61
F15 Bearing Vibration 1X
F16 Bearing Vibration 1Y
F17 Bearing Vibration 1Z
F18 Bearing Vibration 2X
F19 Bearing Vibration 2Y
F20 Bearing Vibration 2Z
F21 Bearing Vibration 3X
F22 Bearing Vibration 3Y
F23 Bearing Vibration 3Z
F24 Bearing Vibration 4X
F25 Bearing Vibration 4Y
F26 Bearing Vibration 4Z
F27 Bearing Vibration 5X
F28 Bearing Vibration 5Y
F29 Bearing Vibration 5Z
F30 Bearing Vibration 6X
F31 Bearing Vibration 6Y
F32 Bearing Vibration 6Z
F33 Turbine Differential Expansion
F34 Rotor Eccentricity

References
1. Yu, J.; Jang, J.; Yoo, J.; Park, J.H.; Kim, S. A fault isolation method via classification and regression tree-based variable ranking for

drum-type steam boiler in thermal power plant. Energies 2018, 11, 1142. [CrossRef]
2. Madrigal, G.; Astorga, C.M.; Vazquez, M.; Osorio, G.L.; Adam, M. Fault diagnosis in sensors of boiler following control of a

thermal power plant. IEEE Lat. Am. Trans. 2018, 16, 1692–1699. [CrossRef]
3. Wu, Y.; Li, W.; Sheng, D.; Chen, J.; Yu, Z. Fault diagnosis method of peak-load-regulation steam turbine based on improved

PCA-HKNN artificial neural network. Proc. Inst. Mech. Eng. O J. Risk Reliab. 2021, 235, 1026–1040. [CrossRef]
4. Cao, H.; Niu, L.; Xi, S.; Chen, X. Mechanical model development of rolling bearing-rotor systems: A review. Mech. Syst. Signal

Process. 2018, 102, 37–58. [CrossRef]
5. Xu, Y.; Zhen, D.; Gu, J.; Rabeyee, K.; Chu, F.; Gu, F.; Ball, A.D. Autocorrelated Envelopes for early fault detection of rolling

bearings. Mech. Syst. Signal Process. 2021, 146, 106990. [CrossRef]
6. Kazemi, P.; Ghisi, A.; Mariani, S. Classification of the Structural Behavior of Tall Buildings with a Diagrid Structure: A Machine

Learning-Based Approach. Algorithms 2022, 15, 349. [CrossRef]
7. Shi, Q.; Zhang, H. Fault Diagnosis of an Autonomous Vehicle With an Improved SVM Algorithm Subject to Unbalanced Datasets.

IEEE Trans. Ind. Electron. 2021, 68, 6248–6256. [CrossRef]
8. Zhang, P.; Gao, Z.; Cao, L.; Dong, F.; Zhou, Y.; Wang, K.; Zhang, Y.; Sun, P. Marine Systems and Equipment Prognostics and

Health Management: A Systematic Review from Health Condition Monitoring to Maintenance Strategy. Machines 2022, 10, 72.
[CrossRef]

9. Li, X.; Wu, S.; Li, X.; Yuan, H.; Zhao, D. Particle swarm optimization-Support Vector Machine model for machinery fault diagnoses
in high-voltage circuit breakers. Chin. J. Mech. Eng. 2020, 33, 6. [CrossRef]

10. Zan, T.; Liu, Z.; Wang, H.; Wang, M.; Gao, X.; Pang, Z. Prediction of performance deterioration of rolling bearing based on JADE
and PSO-SVM. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2020, 235, 1684–1697. [CrossRef]

11. Fink, O.; Wang, Q.; Svensen, M.; Dersin, P.; Lee, W.-J.; Ducoffe, M. Potential, challenges and future directions for deep learning in
prognostics and health management applications. Eng. Appl. Artif. Intell. 2020, 92, 103678. [CrossRef]

http://doi.org/10.3390/en11051142
http://doi.org/10.1109/TLA.2018.8444388
http://doi.org/10.1177/1748006X211010518
http://doi.org/10.1016/j.ymssp.2017.09.023
http://doi.org/10.1016/j.ymssp.2020.106990
http://doi.org/10.3390/a15100349
http://doi.org/10.1109/TIE.2020.2994868
http://doi.org/10.3390/machines10020072
http://doi.org/10.1186/s10033-019-0428-5
http://doi.org/10.1177/0954406220951209
http://doi.org/10.1016/j.engappai.2020.103678


Algorithms 2023, 16, 98 17 of 17

12. Deng, W.; Yao, R.; Zhao, H.; Yang, X.; Li, G. A novel intelligent diagnosis method using optimal LS-SVM with improved PSO
algorithm. Soft Comput. 2019, 23, 2445–2462. [CrossRef]

13. Sun, H.; Zhang, L. Simulation study on fault diagnosis of power electronic circuits based on wavelet packet analysis and support
vector machine. J. Electr. Syst. 2018, 14, 21–33.

14. Wang, Z.; Xia, H.; Yin, W.; Yang, B. An improved generative adversarial network for fault diagnosis of rotating machine in nuclear
power plant. Ann. Nucl. Energy 2023, 180, 109434. [CrossRef]

15. Kang, C.; Wang, Y.; Xue, Y.; Mu, G.; Liao, R. Big Data Analytics in China’s Electric Power Industry. IEEE Power Energy Mag. 2018,
16, 54–65. [CrossRef]

16. Ma, Y.; Huang, C.; Sun, Y.; Zhao, G.; Lei, Y. Review of Power Spatio-Temporal Big Data Technologies for Mobile Computing in
Smart Grid. IEEE Access 2019, 7, 174612–174628. [CrossRef]

17. Lai, C.S.; Locatelli, G.; Pimm, A.; Wu, X.; Lai, L.L. A review on long-term electrical power system modeling with energy storage. J.
Clean. Prod. 2021, 280, 124298. [CrossRef]

18. Dhanalakshmi, J.; Ayyanathan, N. A systematic review of big data in energy analytics using energy computing techniques.
Concurr. Comput. Pract. Exp. 2021, 34, e6647. [CrossRef]

19. Li, W.; Li, X.; Niu, Q.; Huang, T.; Zhang, D.; Dong, Y. Analysis and Treatment of Shutdown Due to Bearing Vibration Towards
Ultra-supercritical 660MW Turbine. IOP Conf. Ser. Earth Environ. Sci. 2019, 300, 42006–42008. [CrossRef]

20. Ashraf, W.M.; Rafique, Y.; Uddin, G.M.; Riaz, F.; Asin, M.; Farooq, M.; Hussain, A.; Salman, C.A. Artificial intelligence based
operational strategy development and implementation for vibration reduction of a supercritical steam turbine shaft bearing. Alex.
Eng. J. 2022, 61, 1864–1880. [CrossRef]

21. van der Maaten, L.; Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
22. Gisbrecht, A.; Schulz, A.; Hammer, B. Parametric nonlinear dimensionality reduction using kernel t-SNE. Neurocomputing 2015,

147, 71–82. [CrossRef]
23. Wang, H.-H.; Chen, C.-P. Applying t-SNE to Estimate Image Sharpness of Low-cost Nailfold Capillaroscopy. Intell. Autom. Soft

Comput. 2022, 32, 237–254. [CrossRef]
24. Xu, X.; Xie, Z.; Yang, Z.; Li, D.; Xu, X. A t-SNE Based Classification Approach to Compositional Microbiome Data. Front. Genet.

2020, 11, 620143. [CrossRef]
25. Yi, C.; Tuo, S.; Tu, S.; Zhang, W. Improved fuzzy C-means clustering algorithm based on t-SNE for terahertz spectral recognition.

Infrared Phys. Technol. 2021, 117, 103856. [CrossRef]
26. Gutierrez-Lopez, A.; Gonzalez-Serrano, F.-J.; Figueiras-Vidal, A.R. Optimum Bayesian thresholds for rebalanced classification

problems using class-switching ensembles. Pattern Recognit. 2023, 135, 109158. [CrossRef]
27. Arora, J.; Tushir, M.; Sharma, K.; Mohan, L.; Singh, A.; Alharbi, A.; Alosaimi, W. MCBC-SMOTE: A Majority Clustering Model for

Classification of Imbalanced Data. CMC-Comput. Mater. Contin. 2022, 73, 4801–4817. [CrossRef]
28. Kumar, A.; Gopal, R.D.; Shankar, R.; Tan, K.H. Fraudulent review detection model focusing on emotional expressions and explicit

aspects: Investigating the potential of feature engineering. Decis. Support Syst. 2022, 155, 113728. [CrossRef]
29. Guo, S.; Chen, R.; Li, H.; Zhang, T.; Liu, Y. Identify Severity Bug Report with Distribution Imbalance by CR-SMOTE and ELM. Int.

J. Softw. Eng. Knowl. Eng. 2019, 29, 139–175. [CrossRef]
30. Duan, G.; Han, W. Heavy Overload Prediction Method of Distribution Transformer Based on GBDT. Int. J. Pattern Recognit. Artif.

Intell. 2022, 36, 2259014. [CrossRef]
31. Liu, X.; Liu, W.; Huang, H.; Bo, L. An improved confusion matrix for fusing multiple K-SVD classifiers. Knowl. Inf. Syst. 2022, 64,

703–722. [CrossRef]
32. Maldonado, S.; López, J.; Jimenez-Molina, A.; Lira, H. Simultaneous feature selection and heterogeneity control for SVM

classification: An application to mental workload assessment. Expert Syst. Appl. 2020, 143, 112988. [CrossRef]
33. Anowar, F.; Sadaoui, S.; Selim, B. Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA,

LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Comput. Sci. Rev. 2021, 40, 100378. [CrossRef]
34. Khan, N.; Taqvi, S.A.A. Machine Learning an Intelligent Approach in Process Industries: A Perspective and Overview. ChemBioEng

Rev. 2023. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1007/s00500-017-2940-9
http://doi.org/10.1016/j.anucene.2022.109434
http://doi.org/10.1109/MPE.2018.2790819
http://doi.org/10.1109/ACCESS.2019.2957181
http://doi.org/10.1016/j.jclepro.2020.124298
http://doi.org/10.1002/cpe.6647
http://doi.org/10.1088/1755-1315/300/4/042006
http://doi.org/10.1016/j.aej.2021.07.039
http://doi.org/10.1016/j.neucom.2013.11.045
http://doi.org/10.32604/iasc.2022.020665
http://doi.org/10.3389/fgene.2020.620143
http://doi.org/10.1016/j.infrared.2021.103856
http://doi.org/10.1016/j.patcog.2022.109158
http://doi.org/10.32604/cmc.2022.025960
http://doi.org/10.1016/j.dss.2021.113728
http://doi.org/10.1142/S0218194019500074
http://doi.org/10.1142/S0218001422590145
http://doi.org/10.1007/s10115-022-01655-y
http://doi.org/10.1016/j.eswa.2019.112988
http://doi.org/10.1016/j.cosrev.2021.100378
http://doi.org/10.1002/cben.202200030

	Introduction 
	Methods 
	Performance Indicator Extraction Based on t-SNE and K-Means 
	Imbalanced Data Recognition Model Based on SMOTE and XGBoost 
	Model Assessment Method 

	Experiments, Results and Discussion 
	Introduction of Data Set 
	Setting Labels for Different or Normal Faults 
	Dealing with Data Imbalance 
	Test Results 
	Results and Discussion 

	Conclusions 
	Appendix A
	Appendix B
	References

