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Abstract: Image captioning is the multi-modal task of automatically describing a digital image based
on its contents and their semantic relationship. This research area has gained increasing popularity
over the past few years; however, most of the previous studies have been focused on purely objective
content-based descriptions of the image scenes. In this study, efforts have been made to generate more
engaging captions by leveraging human-like emotional responses. To achieve this task, a mean teacher
learning-based method has been applied to the recently introduced ArtEmis dataset. ArtEmis is the
first large-scale dataset for emotion-centric image captioning, containing 455K emotional descriptions
of 80K artworks from WikiArt. This method includes a self-distillation relationship between memory-
augmented language models with meshed connectivity. These language models are trained in a
cross-entropy phase and then fine-tuned in a self-critical sequence training phase. According to
various popular natural language processing metrics, such as BLEU, METEOR, ROUGE-L, and CIDEr,
our proposed model has obtained a new state of the art on ArtEmis.

Keywords: image captioning; mean teacher learning; self-distillation; self-critical sequence training;
natural language processing

1. Introduction

Image captioning is an important step towards developing scene-understanding
ability in deep learning models for plenty of purposes. This multi-modal task deals with
both textual and visual modalities with the goal of generating fluent natural language
descriptions according to the contents of a digital image [1]. The applications of image
captioning include usage in virtual assistants, helping visually impaired people to obtain a
better perception of their surroundings, and industrial quality control. The early studies
were based on retrieval-based [2,3], and template-based methods [4–6], where the captions
are directly retrieved from an existing database causing the captions to be repetitive and not
completely specific to the input image. The next step in the evolution of image captioning
models was utilizing convolutional neural networks as visual feature extractors [7–10], and
recurrent-neural-network-based modules as the caption generator of their model operating
in an auto-regressive manner [7,10]. Recently, fully attentive transformer-based models
have been one of the main trending methods to tackle this problem, following different
variations of attentive encoder/decoder configurations utilizing self-attention [11].

However, most of the previous work is focused on generating purely objective content-
based descriptions. Over time, these descriptions have gotten increasingly accurate, but
they lack personality, emotion, and other human-like attributes. Stylized image captioning
was the next step to overcome this limitation by generating captions following a given
linguistic style. The absence of a large-scale dataset containing stylized (image, text) pairs
has also led to adopting semi-supervised approaches, usually exploiting an unpaired
stylized corpus to extract different styles [12–15]. However, some datasets have been
introduced, such as Personality-Captions [12], containing 215 personality traits paired with
images and their corresponding captions. FlickrStyle10k [16] also contains (image, text)

Algorithms 2023, 16, 97. https://doi.org/10.3390/a16020097 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16020097
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a16020097
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16020097?type=check_update&version=1


Algorithms 2023, 16, 97 2 of 14

pairs with two different styles. In stylized image captioning, the core concept is generating
objective descriptions, only with different wording according to the target linguistic style.

Various modalities can be utilized in the task of attention-based image captioning.
Lu et al. [17] introduced a novel sound active attention framework to generate captions
more specific to the interest of the observer. The process is similar to the active attention
in the human mind generated by top-down signals. On the other hand, Wang et al. [18]
proposed NUAN, a non-uniform attention network for multi-modal feature fusion. The
attention mechanism in NUAN considers three modalities of text, sound, and vision non-
uniformly, where the text is utilized as a determinative representation while visual and
acoustic representations are leveraged to obtain a solid representation.

Achlioptas et al. [19] introduced ArtEmis, the first large-scale dataset for affective
image captioning accompanied by baseline neural speakers to generate emotion-based
descriptions. In addition to being subjective, rich, and diverse, this dataset contains
affective language. Figure 1 shows an example from the ArtEmis dataset containing
multiple emotional responses for the same artwork. In this paper, we propose Nemesis, a
Neural Mean Teacher Learning-based Emotion-centric Speaker trained on ArtEmis. Our
model is capable of generating affective utterances describing the triggered human-like
emotional responses stemming from visual stimuli. The generated utterances are according
to both the visual features and emotion-based supervision signals.
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Figure 1. An example from the ArtEmis dataset containing multiple emotional responses for the
same artwork. You can see the different descriptions along with their corresponding emotional class
(in bold font).

The proposed pipeline consists of:

• Auxiliary text-to-emotion and image-to-emotion classification tasks;
• A visual encoder to extract visual features from the input image;
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• Two interconnected language models following a transformer-based encoder/decoder
architecture.

In Nemesis, we introduce two main contributions:

1. A novel approach for the image-to-emotion classification task by decreasing the
texture bias of the classifier and encouraging the model towards a shape-based classi-
fication. This is because of the differing local textures in our input images (artworks)
in comparison to the real world;

2. Achieving a state-of-the-art performance using the Nemesis on the ArtEmis dataset.
We suggest that a self-critical mean teacher learning-based approach, supervised by
extra emotional signals, is a promising path towards generating more human-like,
emotionally rich captions.

1.1. Related Work
1.1.1. Mean Teacher Learning

Mean teacher learning is a semi-supervised paradigm based on the interaction
between two models referred to as the teacher model and the student model. In the first
place, Samuli et al. [20] proposed a novel architecture in which the temporal ensembling
maintains an exponential moving average of the target predictions, while the inconsistent
predictions are penalized by taking the mean squared error between the predictions of
both models. However, temporal ensembling had a slow pace in utilizing the learned
information in the training process since the targets are updated only once per epoch.
Hence, it was not efficient when applied to large-scale datasets. Tarvainen et al. [21]
proposed mean teacher learning, in which the teacher model maintains an average of
the student model’s weights consecutively during the training steps instead of the label
predictions. We follow the latter approach in our proposed model.

1.1.2. Knowledge Distillation

The latent knowledge encapsulated within a larger network is often referred to as
“dark knowledge” [22]. Knowledge distillation (KD) [23] is the self-supervised process
of transferring dark knowledge from a bigger model to a smaller one, which has been
shown to be utilized effectively in various vision-language tasks. The same process is called
self-distillation when the models have equal sizes. In our case, the teacher model supplies
an extra supervision signal to the student model to improve in the imitation of its behavior
by providing predicted soft labels [24].

1.1.3. Self-Critical Sequence Training

Policy gradient-based reinforcement learning methods, such as REINFORCE [25],
have been utilized in image captioning to overcome the mismatch and the exposure bias
between the optimizing function and the non-differentiable evaluation metrics [26–28].
Self-critical sequence training (SCST) [29] is a special case of REINFORCE in which the
model’s own test-time inference is used to normalize the rewards it experiences rather
than estimating the reward and the normalization method. Rennie et al. [29] proposed that
directly optimizing the CIDEr metric [30] through the SCST process during the test-time
can be a highly effective way to overcome the non-differentiability of such metrics and
boost the performance significantly. Yang et al. [31] introduced Variational Transformer,
in which the SCST process uses the range median of all samples to improve the diversity
without sacrificing the accuracy.

1.1.4. Visual Encoding

As an early stage in an image captioning pipeline, the spatial information and structure
are extracted from our input image to achieve a proper visual representation. Some works
utilize non-attentive CNNs to extract the global features [7,10], while some other methods
are based on grid-based and region-based feature extraction using additive attention [9,32].
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In our case, we extract the visual features following the recent approach of employing
large-scale vision-language architectures [33], such as CLIP [34] and BLIP [35].

1.1.5. Auxiliary Emotion Classification Tasks

Emotions in ArtEmis dataset are divided into 9 emotional classes; we have amusement,
awe, contentment, and excitement as positive emotions, while we have anger, fear, disgust,
and sadness as negative emotions. In addition, a ninth class named something else has
been considered to express having no particular emotions or an additional feeling not
listed. Following the work of [19], we employ two classifiers for our auxiliary emotion
classification tasks, which will be utilized in both the captioning process and evaluation.
We are basically facing a nine-way classification problem corresponding to each emotional
class. The first module is a text-to-emotion classifier to predict the dominant emotional
class of an utterance, and the utilization of this module has been discussed in Section 3.2.2.
The text-to-emotion classification task is achieved by utilizing a fine-tuned pre-trained Bert
model [36] to classify utterances to the emotional class to which they most likely belong.

The second module is an image-to-emotion classifier to predict the dominant emo-
tional class of a visual input. Since the ArtEmis dataset consists of artworks and sketches,
the local textures mostly differ from the ones in the real world. In addition, the human
mind also tends to focus on shape-based information. On the other hand, the models
pre-trained on the ImageNet [37] dataset are biased towards local textures. Therefore, we
have utilized a ResNet-50 [38] encoder pre-trained on the Stylized-ImageNet [39] dataset,
which is an augmentation of the standard ImageNet dataset. In Stylized-ImageNet, the
local textures are heavily distorted, while the shapes have remained intact to increase
the shape bias. Basically, we want to train our classifier to detect objects based on shapes
rather than local textures.

2. Materials and Methods

Neural Mean Teacher Learning-based Emotion-centric Speaker or Nemesis is our
proposed neural speaker capable of leveraging emotional supervision signals in the caption
generation process. In this section, we will elaborate on the pipeline, architecture, and
finally, the training strategy.

2.1. Pipeline

The pipeline of Nemesis, as shown in Figure 2, consisted of a visual encoder extracting
visual features from the input image, then passing them to both the student model and
the teacher model. Inspired by the work of Barraco et al. [40], both models had identical
architectures linked based on two types of interactions: (1) the self-distillation process,
where the teacher model provides regression targets via passing its predicted logits as soft
labels to the equally sized student model [24]. This extra supervision signal enhances the
ability of the student model to imitate the behavior of the teacher model. (2) The teacher
model performs a form of model ensembling by updating its parameters θt according to
the exponential moving average (EMA) [41] of the student model’s parameters θs. This
updating procedure can be formally defined by the equation below:

θt ← λθt + (1− λ)θs, (1)

where λ is a value between [0, 1], indicating the intensity of this update. The exact role of
these interactions in the training process is discussed in the training strategy section.
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Figure 2. The interactions between our two language models: (1) the EMA update according to the
student model’s weights. (2) The self-distillation process using the teacher model’s predicted logits
passed to the student model, which will be treated as soft labels.

Emotional Grounding

In this process, at each time-step, an additional feature according to the dominant
emotional class of the input image was also passed to the language models alongside the
extracted visual features. This extra emotional signal enabled the model to decouple the
emotion conveyed during the caption generation process from the input image’s dominant
emotional class. This was inspired by how the human mind works while describing an
emotional response, where we decide how to feel about something first, and then we put
it into words. The dominant emotional class was selected utilizing the image-to-emotion
classifier during evaluation. The neural speaker leveraging this supervision signal was
called Emotionally Grounded Nemesis or EGNemesis.

2.2. Architecture

Both language models followed the same architecture consisting of a stack of memory-
augmented encoders and a stack of meshed decoders [42]. This architecture is illustrated in
Figure 3, and different components are elaborated in the following.
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Figure 3. The architecture of both the teacher model and the student model. It consists of a stack of
memory-augmented encoders and a stack of meshed decoders. The memory-augmented encoder
encodes the multi-level visual relationships leveraging the priori knowledge provided by the memory
vectors. The meshed decoder generates the textual tokens leveraging the meshed connectivity
illustrated by the red arrows.
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2.2.1. Memory-Augmented Encoder

The memory-augmented encoder utilized bi-directional attention to process the visual
features received from the visual encoder. However, using only bi-directional attention
would have deprived us of incorporating any priori knowledge in our encoding procedure.
Hence, we utilized additional independent learnable memory vectors along with the key
and value vectors to encode the additional priori knowledge. Finally, the encoder’s output
was the result of a feed-forward network applied to the memory-augmented bi-directional
attention result. The outputs of all encoder layers were passed to each decoder layer via
a meshed-like connectivity. The memory-augmented attention is formally defined by the
equation below:

MemAugatt(X) = Attention
(
WqX, KMemAug, VMemAug

)
,

KMemAug = concat(WkX, Memk),
VMemAug = concat(WvX, Memv),

(2)

where X is the input set, Wq, Wk, Wv are matrices of learnable weights, and Memk and
Memv are learnable memory matrices.

2.2.2. Meshed Decoder

Our decoder predicted the next word in an auto-regressive manner according to both
the previously generated words and the encoder outputs. It applied right-masked self-
attention to process the input sequence and utilized cross-attention to process the encoder
outputs received through the meshed-like connection. This meshed-like connectivity
enabled our model to extract both low-level and high-level features through a meshed
cross-attention process. The cross-attention module used queries based on the self-attention
results and keys and values from the encoder outputs. Finally, the output of the position-
wise feed-forward layer gave us the output logit at each time-step.

2.3. Training Strategy
2.3.1. Cross-Entropy (XE) Training

In this phase, the student model faces two objectives. The first objective is to optimize
the cross-entropy loss according to the previously generated utterances, the input image,
and the model parameters. This process is formally defined by the equation below:

L(θ) = Ex∼D ∑τ
log(uτ |uk<τ , i, θ), (3)

where θ is the model parameters, uτ is the generated utterance at time-step τ, and i is the
input image.

The second objective for the student model was to optimize the self-distillation loss
with respect to the student model’s parameters. Self-distillation loss is defined as the mean
squared error (MSE) between the output logits of both models. This process follows the
expression below:

min
θs

∑τ
(pt, τ − ps, τ)

2, (4)

where pt, τ and ps, τ are the output logits over the vocabulary of N words at time-step τ for
the teacher model and the student model, respectively.

The next step was the EMA update of the teacher model’s parameters θt based on the
student model’s parameters θs following the expression mentioned in Equation (1). This
process was conducted after each stochastic gradient descent (SGD) update of the student
model. It enabled the teacher model to keep up with the improvement in the student model
in a stable and steady manner.

2.3.2. SCST Fine-Tuning

This phase is a special case of REINFORCE [25], where the idea is to weight the samples
outperforming the current test-time model positively and, in contrast, weight the samples
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inferior to the current test-time model negatively. This weighting process was completed
via the reward function utilized to assign a proper score to the generated utterances at
each time-step. For this purpose, the CIDEr-D [30] metric was used as the reward function,
and we used the model’s own test-time inference to normalize the rewards. Specifically, at
each time-step, the top-1 utterance in each of the k returned beams was assigned with a
proper reward, and the average of the rewards was used as a baseline to normalize them
and reduce the variance. This phase enabled us to overcome the non-differentiability of
such metrics and boost the performance significantly. The SCST-based fine-tuning process
is formally defined by the expression below:

∇θL(θ) = −
1
k ∑k

j=1((r
(

uj
)
− ((∑j r

(
uj
)
)/k))∇θ log p

(
uj
)
), (5)

where uj is the j-th utterance in the beam, r(.) is the reward function, and (∑j r
(
uj))/k is

the average of the rewards to normalize the value. The utilization of other metrics, such as
emotional alignment [19], was also experimented with. In this metric, the text-to-emotion
classifier was utilized to predict the emotional class of the generated caption, then it was
compared to the dominant emotional class of the ground-truth captions, and the percentage
of matches is our score. However, the results were not acceptable due to the high variance
of such metrics.

2.4. Dataset

The ArtEmis dataset [19] was utilized to train and evaluate our proposed model. It
contains 454,684 emotion-centric utterances related to 80,031 artworks publicly available
in the WikiArt (https://www.wikiart.org, accessed on 21 February 2022) dataset. The
corpus contains 37,250 distinct words, which took 11,138 h to gather by 6788 annotators
via Amazon’s Mechanical Turk (AMT) services. The reason for using artworks is that they
are the best tools to trigger emotional responses. Each utterance belonged to one of these
9 emotional classes: amusement, awe, contentment, and excitement as positive emotions,
while we have anger, fear, disgust, and sadness as negative emotions. In addition, a ninth
class named something else was considered to express having no particular emotions or
an additional feeling not listed. Efforts were made to include at least one negative and
one positive emotional response for each artwork. Partitions of 85%, 5%, and 10% were
considered for train, validation, and test splits, respectively.

3. Results
3.1. Metrics and Implementation Details

We employ the following captioning metrics: BLEU [43], METEOR [44], ROUGE [45],
and CIDEr [30]. For the cross-entropy training and SCST fine-tuning stages, batch sizes of
50 and 30 were considered, respectively. In the captioning model’s training phase, the byte
pair encoding (BPE) [46] method was utilized to represent the words. Sinusoidal positional
encodings [11] were employed to represent word positions. Three layers of both encoders
and decoders were utilized, each with a dimensionality of 512. The emotional grounding
module was a single layer linear feed-forward network where the input was a one-hot
vector of size 9 corresponding to our emotional classes, and the output was an embedding
vector of size 10. The feed-forward dimensionality was 2058 in EGNemesis and 2048 in
Nemesis with a head-number of 8. The memory size was set to 40. In addition, a dropout
of 0.1 was applied to each sub-layer.

Adam [47] optimizer has been employed in all experiments along with a beam size of 5.
In the cross-entropy training, the typical transformer learning rate scheduling strategy [11]
has been utilized with a 10,000 iteration warmup. While in the SCST fine-tuning phase, a
fixed learning rate of 5× 10−6 has been considered, with a momentum λ of 0.999 for the
teacher model.

https://www.wikiart.org
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3.2. Ablation Study
3.2.1. Visual Encoder

First, we evaluated the role of employing different models as the visual encoder to
extract visual features. We experimented with detecting the object bounding boxes using
a Faster R-CNN [48] model using a ResNet-101 [38] module pre-trained on the Visual
Genome dataset [49]. Additionally, extracting grid-based features via CLIP [34] and region-
based features via BLIP [35] was examined. In particular, the CLIP-RN50 × 16 variant was
utilized, which is based on an EfficientNet-style [50] scaling. On the other hand, we utilized
the BLIPViT−L/16 variant, which is based on the vision transformer [51] approach.

As can be observed in Tables 1 and 2, the best performance was achieved by the
teacher model of Nemesis utilizing CLIP-RN50 × 16 as the visual encoder; hence, we will
be referring to this exact configuration when mentioning the Nemesis. For the EGNemesis,
the best performance was achieved by the student model utilizing BLIPViT−L/16; therefore,
this particular configuration will be referred to as the EGNemesis in the following sections.
As mentioned previously, the student and teacher models had equal sizes. In addition,
the student model experiencing a higher number of parameter updates provided the
opportunity to outperform the teacher model.

Table 1. Performance of the teacher model utilizing different visual encoders for both the Nemesis
and EGNemesis models. (B: BLEU, M: METEOR, R: ROUGE, C: CIDEr).

Model Visual Encoder
Teacher Model

B-1 B-2 B-3 B-4 M R C

Faster R-CNN 0.503 0.277 0.154 0.089 0.141 0.278 0.093

Nemesis CLIP-RN50 × 16 0.539 0.311 0.178 0.106 0.141 0.294 0.130

BLIPViT−L/16 0.526 0.304 0.175 0.105 0.138 0.291 0.127

Faster R-CNN 0.458 0.233 0.121 0.066 0.118 0.242 0.070

EGNemesis CLIP-RN50 × 16 0.475 0.252 0.136 0.076 0.124 0.254 0.095

BLIPViT−L/16 0.470 0.252 0.137 0.077 0.123 0.255 0.099

Table 2. Performance of the student model utilizing different visual encoders for both the Nemesis
and EGNemesis models. (B: BLEU, M: METEOR, R: ROUGE, C: CIDEr).

Model Visual Encoder
Student Model

B-1 B-2 B-3 B-4 M R C

Faster R-CNN 0.498 0.273 0.151 0.086 0.130 0.276 0.087

Nemesis CLIP-RN50 × 16 0.532 0.304 0.172 0.102 0.137 0.290 0.120

BLIPViT−L/16 0.509 0.290 0.165 0.097 0.137 0.281 0.116

Faster R-CNN 0.455 0.233 0.122 0.066 0.114 0.243 0.066

EGNemesis CLIP-RN50 × 16 0.472 0.251 0.134 0.076 0.124 0.254 0.095

BLIPViT−L/16 0.479 0.260 0.141 0.080 0.129 0.262 0.099

On the other hand, to experiment with handling the big data in various paradigms,
these visual encoders have been utilized in two visual encoding modes. The CLIP and
BLIP visual encoders have been incorporated in online visual encoding mode, where the
visual feature extraction is carried out in real-time while training. On the other hand, the
Faster R-CNN visual encoder has been utilized in offline visual encoding mode, where the
features have been extracted before training the language models. These extracted features
are stored on the disk and accessed during the training process. Data parallelism has been
leveraged with the BLIP visual encoder in the XE training phase to reduce the training
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time. Table 3 contains training times corresponding to each visual encoding mode for both
training phases. However, the SCST fine-tuning was not carried out for the model trained
on the Faster R-CNN encoder due to the incompetent results.

Table 3. Training time based on utilizing different visual encoding modes.

Training Phase Visual Encoder Encoding Mode Data Parallelism GPU Type Time Per Epoch

Faster R-CNN Offline - NVIDIA P100 1 h

XE CLIP-RN50 × 16 Online - NVIDIA V100 4 h

BLIPViT−L/16 Online X NVIDIA V100 1 h

Faster R-CNN - - - -

SCST CLIP-RN50 × 16 Online - NVIDIA V100 7 h

BLIPViT−L/16 Online - NVIDIA V100 7 h

3.2.2. SCST Fine-Tuning

Table 4 shows the effect of the SCST fine-tuning stage, where the CIDEr-D metric was
used as the reward function to encourage the model’s generations that outperform the
current test-time model following Equation (5). As is observable, the model’s performance
is boosted with respect to all utilized metrics in comparison with the same model after the
cross-entropy training phase. The most significant improvements are related to the CIDEr
and BLEU-1 scores. The BLEU-1 metric increased from 0.539 to 0.711 for the Nemesis, and
from 0.479 to 0.700 for the EGNemesis. On the other hand, the CIDEr score was boosted
from 0.130 to 0.219 for the Nemesis, and from 0.099 to 0.224 for the EGNemesis.

Table 4. The comparison of the results before and after applying the SCST fine-tuning.

Metric Nemesis NemesisSCST EGNemesis EGNemesisSCST

BLEU-1 0.539 0.711 0.479 0.700
BLEU-2 0.311 0.406 0.260 0.403
BLEU-3 0.178 0.211 0.141 0.214
BLEU-4 0.106 0.113 0.080 0.115
METEOR 0.141 0.166 0.129 0.165
ROUGE-L 0.294 0.341 0.262 0.336
CIDEr 0.130 0.219 0.099 0.224

3.2.3. Image-to-Emotion Classifier

A comparison of the model’s performance according to the utilization of different
image-to-emotion classifiers can be found in Table 5. These classifiers are: (1) the ResNet-32
classifier pre-trained on the ImageNet dataset (IN), which gave the best performance in
the previous work by Achlioptas et al. [19]. (2) The ResNet-50 classifier pre-trained on the
Stylized-ImageNet dataset (SIN), which is our proposed classifier.

Table 5. Results with respect to the utilized image-to-emotion classifiers.

Metric EGNemesisIN EGNemesisSIN

BLEU-1 0.466 0.479
BLEU-2 0.251 0.260
BLEU-3 0.137 0.141
BLEU-4 0.077 0.080
METEOR 0.128 0.129
ROUGE-L 0.253 0.262
CIDEr 0.093 0.099
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As is observable, the performance has improved by using our proposed classifier
module in all the utilized metrics. For instance, the BLEU-1 score has improved from 0.466
to 0.479, and the CIDEr metric has improved from 0.093 to 0.099. This shows that the
decrease in texture bias while increasing shape bias achieved a better performance in our
auxiliary image-to-emotion classification task.

3.2.4. Emotional Grounding

The results with and without incorporating the extra emotional supervision signal are
shown in Table 4. This signal is provided based on the emotional class indicated by the
image-to-emotion classifier during the training time to keep the assessment fair.

As can be observed, the evaluation scores experience a decrease after emotional
grounding; however, this degradation in evaluation metrics does not necessarily indicate a
decrease in the quality of generated captions in our case. Most evaluation metrics return a
higher score if the generated caption includes more words from the ground-truth captions
or their synonyms, which is not the best way to assess generated captions in our subjective
emotion-centric utterances. In fact, an increase in the diversity of the captions can result in a
degradation of evaluation metrics. As shown in Figure 4, the generated caption of Nemesis
for the first image is “it looks like a cold winter day”. While the EGNemesis generated
“this painting makes me feel nostalgic. it reminds me of my childhood” grounded in
the Contentment emotional class, which is more emotionally rich according to human
judgment. However, this emotionally grounded utterance will achieve a lower evaluation
score since it does not contain the frequent words in the ground-truth captions, which are
“cold” and “winter”.
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Figure 4. Examples of generated captions for unseen artworks. These samples include utterances
from Nemesis model, and EGNemesis model along with the emotional class extracted by the image-
to-emotion classifier, which has been utilized in the emotional grounding process. The descriptions
contain various human-like emotional expressions, such as “reminds me of my childhood”, “makes
me feel nostalgic”.

3.3. Comparison with the State-of-the-Art
3.3.1. Auxiliary Classification

The nine-way emotional classification problem is an extremely challenging task
because of the subjectivity of emotions and diversity of emotional utterances. In a
previous work, a user study was conducted to measure the accuracy of this classification
task by humans [19]. This study consisted of three human experts attempting to guess
the dominant emotional class based on a ground-truth utterance of ArtEmis, where they
achieved an accuracy of only 61.2%. This depicts how challenging this task is, even
based on human judgment. However, the BERT-based text-to-emotion classifier utilized
in our model achieved a 64.8% accuracy, which is a surprising performance compared to
the human results.
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For the image-to-emotion classification task, which is arguably more difficult
than the text-to-emotion classification, the ResNet-32 module pre-trained on ImageNet
(IN) achieved a 60.2% accuracy, while the ResNet-50 module pre-trained on Stylized-
ImageNet (SIN) achieved a 59.4% accuracy. However, the accuracy of this auxiliary task
is not directly important to us. As mentioned earlier, Table 5 shows that our model
performs better when utilizing the classifier trained on SIN because of the more diverse
and shape-driven label predictions.

3.3.2. Emotion-Centric Image Captioning Task

We compared our proposed neural speaker to the best-performing emotion-centric
image captioning models introduced by [19] on the ArtEmis dataset. These neural speakers
include a captioning model inspired by meshed-memory transformer (M2) [42] architecture,
and an LSTM-based model inspired by “Show, Attend and Tell” (SAT) [9]. In addition, this
comparison included the emotionally grounded variations of these models (i.e., M2-EG
and SATEG).

As can be observed in Table 6, our proposed model outperforms both the emotionally
grounded and standard variations of M2 and SAT speakers with respect to all incorporated
metrics. This improvement is more notable in models after the SCST fine-tuning stage. The
only exception is the EGNemesis, and the reason for this degradation has been elaborated
on previously. As an example, Figure 5 shows some generated utterances from SATEG
and EGNemesis models, where EGNemesis appears to generate more abstract, diverse,
emotionally rich, and human-like captions.

Table 6. Comparison of state-of-the-art results and Nemesis after both cross-entropy training and
SCST fine-tuning.

Metric SAT SATEG M2 M2-EG Nemesis NemesisSCST EGNemesis EGNemesisSCST

BLEU-1 0.536 0.520 0.507 0.511 0.539 0.711 0.479 0.700
BLEU-2 0.290 0.280 0.282 0.282 0.311 0.406 0.260 0.403
BLEU-3 0.155 0.146 0.159 0.154 0.178 0.211 0.141 0.241
BLEU-4 0.087 0.079 0.095 0.090 0.106 0.113 0.080 0.115
METEOR 0.142 0.134 0.140 0.137 0.141 0.166 0.129 0.165
ROUGE-L 0.297 0.294 0.280 0.286 0.294 0.341 0.262 0.336
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Figure 5. A comparison between the examples of generated captions by EGNemesis and SATEG
models along with the emotional class extracted by the image-to-emotion classifier, which has been
utilized in the emotional grounding process. It can be observed that the generated utterances by
EGNemesis appear to be more abstract, human-like, and emotionally rich.
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3.3.3. Limitations

The main challenge in the task of emotion-centric image captioning is the lack of a
proper evaluation metric that aligns well with human judgment. Most of the evaluation
metrics focus on comparing words in the generated captions with the words or synonyms
in the reference captions, which is not the best approach for our diverse and subjective task.
On the other hand, the generated captions are still far from including the ideal human-like
properties to describe both emotionally and linguistically accurate emotional responses.

4. Conclusions

Neural speakers capable of producing affective utterances are an important step
toward generating more engaging captions by provoking human emotions. As humans,
emotions are a crucial part of expressing ourselves when we aim to describe different
phenomena. Therefore, it is logical to expect the automatic image captioning process to
consider this essential aspect of our perceptions. In this paper, we introduced Nemesis, a
Neural Mean Teacher Learning-based Emotion-centric Speaker, an image captioning model
capable of describing emotional responses to visual stimuli. We used the ArtEmis dataset to
train our proposed neural speaker, the first large-scale dataset for affective image captioning
containing 455K emotional descriptions of 80K artworks from WikiArt. We showed that
incorporating a mean teacher learning-based approach followed by SCST-based fine-tuning,
which utilizes extra emotional supervision signals, is a promising path toward generating
more human-like emotion-centric descriptions. This was achieved by both experimenting
with the utilization of different modules in the proposed pipeline and comparing it with
the latest state-of-the-art methods.
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