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Abstract: Over the last few years, human activity recognition (HAR) has drawn increasing interest
from the scientific community. This attention is mainly attributable to the proliferation of wearable
sensors and the expanding role of HAR in such fields as healthcare, sports, and human activity
monitoring. Convolutional neural networks (CNN) are becoming a popular approach for addressing
HAR problems. However, this method requires extensive training datasets to perform adequately on
new data. This paper proposes a novel deep learning model pre-trained on scalograms generated
using the continuous wavelet transform (CWT). Nine popular CNN architectures and different CWT
configurations were considered to select the best performing combination, resulting in the training
and evaluation of more than 300 deep learning models. On the source KU-HAR dataset, the selected
model achieved classification accuracy and an F1 score of 97.48% and 97.52%, respectively, which
outperformed contemporary state-of-the-art works where this dataset was employed. On the target
UCI-HAPT dataset, the proposed model resulted in a maximum accuracy and F1-score increase of
0.21% and 0.33%, respectively, on the whole UCI-HAPT dataset and of 2.82% and 2.89%, respectively,
on the UCI-HAPT subset. It was concluded that the usage of the proposed model, particularly with
frozen layers, results in improved performance, faster training, and smoother gradient descent on
small HAR datasets. However, the use of the pre-trained model on sufficiently large datasets may
lead to negative transfer and accuracy degradation.

Keywords: biomedical signal processing; human activity recognition; convolutional neural networks;
continuous wavelet transform; transfer learning

MSC: 42C40; 65T60; 68T07

1. Introduction

Human activity recognition (HAR) is used nowadays in a variety of human-centric
applications, including elderly care and digital medicine, intelligent buildings, abnormal
activity monitoring, seizure detection, and fall prevention [1–3]. In general, HAR research
can be divided into two categories: HAR that uses visual recognition, and HAR that uses
wearable sensors [4]. While both methods are rapidly advancing, sensor-based HAR has
a number of advantages [5–7]. Firstly, HAR applications often require complete location
coverage, which may be either impossible or impractical using the camera-based approach.
Secondly, vision-based HAR is plagued by privacy and ethics concerns, as cameras are
typically perceived as recording devices and frequently imply constant surveillance. Hence,
the focus of this work is on the sensor-based HAR approach.

HAR based on wearable sensors can be considered a classic multi-variable time-series
classification problem involving the extraction of discriminative features from 1D signals
to recognize activities using a classifier [8]. There are currently a number of approaches
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to the construction of sensor-based HAR models. The traditional feature-based approach
implies the consequent execution of the following steps: signal preprocessing and noise
removal (1), manual feature extraction and feature selection (2), and the use of machine
learning (ML) algorithms to perform activity classification (3) [9,10]. This approach has
shown promising results in many publications [11–15]; however, it has certain drawbacks.
Firstly, statistical signal characteristics (i.e., shallow features) are frequently insufficient
to recognize complex, multi-step activities and transient states. Second, it necessitates a
high level of expertise from the researchers and an individualized approach to each dataset.
Moreover, extracting compelling features becomes exceedingly complicated as the number
of sensors increases.

Convolutional neural networks (CNN) have established the most recent state-of-the-
art in speech and image recognition [16]. Nonetheless, CNN has found application in HAR
problems as a powerful feature extraction mechanism and classifier. Due to the ability
of CNN to automatically extract and select features, they can acquire high-level signal
characteristics and often produce better results than models built using the traditional
approach [17–20]. However, the peculiarity of this method is that it requires large training
datasets to produce adequate results on new data; otherwise, it is prone to underfitting and
overfitting problems. Several methods are available to mitigate this problem, including
data augmentation and regularization [21,22]. Transfer learning (TL) is another promising
technique in which a model trained on a more extensive and general source dataset is then
fine-tuned on a target dataset [23].

Currently, there are numerous pre-trained models available for visual object recogni-
tion [24,25]. However, the goal of this research is the development of a pre-trained deep
CNN model specifically for the HAR classification problem. To accomplish this, an analysis
of the impact of various CWT configurations on the performance of popular CNN architec-
tures was conducted, followed by an evaluation of the best-performing model on a target
dataset with varying numbers of frozen layers to determine how it performs on new data.
Hence, the main contributions of this study can be summarized as follows:

• A novel deep-learning model pre-trained on CWT-generated scalograms was pro-
posed, which is targeted specifically for sensor-based HAR classification problems.
The suggested model outperformed the majority of state-of-the-art studies where the
KU-HAR dataset was employed;

• It was experimentally established that the usage of the proposed pre-trained model,
especially with layer freezing, results in a more stable gradient descent, faster training,
and improved performance on small datasets;

• The impact of different CWT configurations on the performance of well-known neural
network architectures was analyzed, which resulted in 60 combinations and over
300 models being trained and evaluated;

• The potential of the CNN/CWT-based approach for addressing wearable sensor-based
HAR classification problems was demonstrated, and the directions for future works
employing the scalogram-based pre-training technique were proposed.

The paper is structured as follows: Section 2 reviews contemporary state-of-the-art
studies and approaches in the sensor-based HAR domain and outlines the research gaps in
this field. In Section 3, we explain the workflow of this study and describe the datasets,
methods, and techniques employed. In Section 4, we provide the results obtained from
the experiments. Section 5 includes analyses and discussions of the acquired results and
their implications. Finally, Section 6 outlines the conclusion and proposes directions for
future work employing the scalogram-based pre-training approach in the wearable-based
HAR domain.

2. Related Works

Various classification algorithms, such as logistic regression (LR), support vector
machine (SVM), K-nearest neighbors (KNN), random forest (RF), and XGBoost, have been
used to classify activities using features extracted from HAR datasets. For example, the
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authors of [26] used manual feature extraction with the LR, SVM, and KNN classifiers and
reached the maximum accuracy of 83.9%, 88.9%, and 95.3%, respectively, while recognizing
seven activities of daily living (ADL). In [15,27], the KNN algorithm was declared the
optimal method for classifying sensor-based HAR features due to its high accuracy and low
statistical error rate. However, like other models constructed using the traditional approach,
it was unable to effectively distinguish similar activities. In recent works that employ
manual feature engineering, the XGBoost classifier [11,28–30] and classifier stacking [31,32]
are gaining popularity due to their high efficacy.

With the proliferation and development of neural networks, deep learning (DL) meth-
ods began supplanting traditional methods for addressing HAR problems. In [17–20],
the authors used CNN for sensor-based HAR activity classification tasks and obtained
superior results compared to state-of-the-art models built using the traditional approach.
The authors of [19] compared the performance of 1D and 2D sequential CNN models for
HAR signal classification, concluding that 2D CNNs produce better results, outperforming
traditionally constructed models. In [33], the authors used various DL models, including
CNNs, recurrent neural networks (RNNs), and long short-term memory (LSTM), to classify
activities based on smartphone accelerometer signals and determined that LSTM is the
model with the best overall performance.

With the proliferation of HAR problems, various DL models that were constructed
specifically for HAR classification tasks emerged. In [34], the authors proposed the In-
noHAR model based on the combination of an Inception neural network (INN) and
an RNN. The iSPLInception [35] was inspired by Google’s Inception-ResNet architec-
ture and achieved high predictive accuracy while requiring fewer device resources to
address signal-based HAR problems. In the most recent research, hybrid models based on
LSTM and bi-directional LSTM (BiLSTM) [36–39] are gaining popularity for human activity
classification due to their ability to effectively extract spatial and temporal characteristics.

The main challenges faced by DL-based models are the need for extensive training
datasets, intra-class variations and similarity issues, and imbalanced training datasets.
Thus, training DL models on small datasets typically results in overfitting or underfitting
problems that result in poor performance on new data. Transfer learning (TL) is a promis-
ing solution to the problems mentioned. Currently, several papers propose pre-trained
models specifically for the sensor-based HAR classification problem. The authors of [40]
proposed a knowledge transfer approach called SA-GAN, which employs the generative
adversarial network (GAN) to perform cross-subject TL. This method outperformed other
state-of-the-art works in 66% of experiments; in the other 25%, it came in second. Another
approach was used in [41]. The authors measured the data distribution distance between
the source and target subjects using the Wasserstein distance metric and then employed the
DeepTransHHAR model for feature extraction and activity recognition. The authors of [42]
present a stratified TL framework for source domain selection and activity transfer based
on stratified distance and capture of the local attribute of the domains.

In the HAR domain, there are methods besides TL for mitigating the overfitting and
underfitting issues. In [43,44], the authors used self-supervised learning techniques that
utilize unlabeled data collected from wearable sensors, which resulted in an auspicious
increase in classification performance. However, despite not requiring large labelled
datasets, this approach is not applicable to small HAR datasets because it still requires
an extensive quantity of recorded sensor signals.

The continuous wavelet transform (CWT) is a promising technique for improving
the accuracy of CNN for signal classification. The notable feature of CWT is that it allows
the conversion of the 1D signal recognition problem into the image classification problem,
which has undergone significant development in recent years [45]. In biomedical signal
processing, CWT is commonly used in EEG signal classification [46–49] and is regarded
as a proven tool for improving the accuracy of CNN models. Considering the wearable
sensor-based HAR domain, the CWT was used in [50–52], which resulted in a promising
performance increase.
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Even though CWT is not a new tool in signal processing, and the combination of CWT
and CNN is widely used for EEG signal classification, no studies have yet investigated
the effect of transform parameters on neural network performance. Moreover, there are
currently no studies in the wearable sensor HAR domain comparing the performance of
different CNN architectures when classifying CWT-generated scalograms. Therefore, the
focus of this study is on analyzing the effect of CWT configurations on the performance of
well-known network architectures. On the basis of the results of the performed analysis,
we propose a DL model pre-trained on CWT-generated scalograms, which will make it
possible to train a deep CNN on relatively small HAR datasets by transferring knowledge
from a larger and more general source dataset. The proposed model was then evaluated on
a target dataset with varying numbers of frozen layers to determine its performance on
new data.

3. Materials and Methods

In this study, we adhered to the following workflow: first, time-domain samples
containing six-channel sensor readings were preprocessed using the CWT. Transform
configurations with different mother wavelets and scale values were considered, resulting
in the generation of eight scalogram sets. This operation was performed on both the
source KU-HAR dataset and the target UCI-HAPT dataset. In addition, the UCI-HAPT
dataset was preliminary preprocessed so that the sample size was identical to that of the
KU-HAR dataset.

Second, the generated scalograms were used to evaluate nine popular CNN archi-
tectures, yielding 72 possible combinations. In this study, the following network architec-
tures were considered: DenseNet121, DenseNet169, DenseNet201, ResNet50, ResNet101,
ResNet152, Xception, InceptionV3, and InceptionResNetV2. The mentioned architectures
were selected because they are among the most popular [53], with proven performance
and ready-to-use implementations in most ML and AI software packages. It is important to
note that the Xception, InceptionV3, and InceptionResNetV2 architectures have constraints
on the input sample shape; therefore, scalograms with scale values less than 128 could not
be utilized, resulting in a total of 60 feasible combinations tested. Each combination was
tried five times to avoid the problem of suboptimal local minima, resulting in the training
and evaluation of over 300 models. From the evaluated models, the best-performing com-
bination of the network architecture and CWT parameters was then chosen. Classification
accuracy was chosen as the criterion for model selection, as we consider all classes equally
important for classification and it is the most intuitive metric for selecting a model from
a group of comparable models. For the selected model, we provide other commonly used
metrics, such as precision, recall, AUC, and F1-score.

Third, the selected pre-trained model was evaluated with different numbers of frozen
layers on the scalograms generated from the target UCI-HAPT dataset. The whole UCI-
HAPT dataset and its subset were used to determine how the selected model performs
on the target datasets of various sizes. The obtained results were then compared to the
non-pre-trained control model with the same network architecture and input shape.

During the model selection and model testing, 70% of the respective datasets were ran-
domly selected for training and 30% for testing. For validation, 10% of the training subsets
were used. We used the Adam optimizer with the initial learning rate set to 1 ∗ 10−3 and
the categorical cross-entropy loss function. Additionally, the callback that decreases the
learning rate when the loss function stops improving (i.e., ReduceLROnPlateau) was em-
ployed. During model pre-training, the number of epochs was set to 50. During fine-tuning
and testing, this number was set to 100 for most models; however, it was increased to
120 for some models because of observed underfitting.

3.1. Employed Datasets

In this study, two state-of-the-art time-domain HAR datasets were employed. The
Khulna University Human Activity Recognition (KU-HAR) dataset [54,55] was chosen as
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the source dataset and was used for model selection and pre-training. The University of
California Irvine Human Activities and Postural Transitions (UCI-HAPT) dataset [12,56]
was chosen as the target dataset and was used for testing and fine-tuning the selected model.

3.1.1. KU-HAR Dataset

The KU-HAR dataset [54] was utilized for model selection and pre-training. It was
released in 2021 and includes 20,750 non-overlapping time-domain samples from 18 classes,
namely: stand, sit, talk-sit, talk-stand, stand-sit, lay, lay-stand, pick, jump, push-up, sit-up,
walk, walk backwards, walk-circle, run, stair-up, stair-down, and table tennis. The sensor
signals were collected from 90 volunteers aged 18 to 34 using a waist-attached smartphone
and contain raw signals from a triaxial accelerometer and gyroscope. Each sample lasts 3 s
and consists of six channels collected at a sampling rate of 100 Hz using a smartphone.

During data acquisition, the gravitational acceleration was discarded, and neither denoising
nor filtering was performed. KU-HAR is regarded as a realistic dataset, as it is an unbalanced
dataset with no overlap between the samples and no denoising operations performed.

3.1.2. UCI-HAPT Dataset

The UCI-HAPT dataset [12] was used as a benchmark for the selected pre-trained
model. It was published in 2014 and is an expanded version of the University of California
Irvine Human Activity Recognition (UCI-HAR) dataset [57], supplemented with postural
transitions. A waist-mounted smartphone with a triaxial accelerometer and gyroscope at
the sampling rate of 50 Hz was used to collect the data from 30 volunteers aged 19–48.
UCI-HAPT contains data for 12 activities, namely: walking, walking upstairs, walking
downstairs, sitting, standing, laying, stand-to-sit, sit-to-stand, sit-to-lie, lie-to-sit, stand-to-
lie, and lie-to-stand, 6 of which do not belong to the KU-HAR dataset.

The dataset contains 10,929 samples of 561-feature vectors with time and frequency
domain variables, as well as unsampled 6-channel sensor readings. The median and low-
pass Butterworth filters were utilized to perform signal denoising. In this study, we did not
use the supplied feature vectors, but manually obtained the time-domain samples from the
row sensor readings.

One of the requirements of TL is that the sample shape of the source and target datasets
must be identical. To fulfil this requirement, we preprocessed the UCI-HAPT dataset with
the following procedures: first, the sampling rate of the raw sensor readings was increased
from 50 to 100 Hz by inserting the average value between two adjacent points. Second,
we extracted the time-domain samples using a non-overlapping 3-s windowing technique,
yielding 4847 six-channel time-domain samples.

To evaluate the performance of the selected model on target datasets of varying sizes,
we utilized the entire preprocessed UCI-HAPT dataset and its subset, which contained 30%
of randomly selected samples, totaling 1652. Figure 1 illustrates the class distributions of
the whole preprocessed UCI-HAPT dataset and its subset.

As can be seen from Figure 1, the preprocessed UCI-HAPT dataset and its subset are
imbalanced. Because the sensor readings in the UCI-HAPT dataset were denoised using
low-pass Butterworth and median filters and the sampling rate was artificially doubled,
it can be stated that the UCI-HAPT target dataset has significant differences in terms of
signal representation from the source KU-HAR dataset. This implies that if the selected
pre-trained model performs positive knowledge transfer to the UCI-HAPT target dataset, it
would be reasonable to use the proposed model for other time-domain data with similar
distinctions. It would be beneficial, for example, for cross-position activity recognition
problems where the sensor readings are gathered from different body parts.
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3.2. Scalogram Generation

The continuous wavelet transform (CWT) of a function x(t) can be defined by the
following integral:

Xω(a, b) =
1
|a|1/2

∫ +∞

−∞
x(t)ψ

(
t− b

a

)
dt, (1)

where ψ(t) is called a mother wavelet, which is a continuous function in both the time and
frequency domains; a is called a scale value, a > 0, a ∈ R+∗; and b is called a translational
value, b ∈ R. The operation of the complex conjugate is represented by an overline.

The results of the CWT can be represented as a heat map, also known as a scalogram,
by placing the a-values along the y-axis, the b-values along the x-axis, and the intensity of
each point determined by (1). Figure 2 demonstrates a transformed accelerometer x-axis
signal from the KU-HAR dataset. The parameters of the illustrated transform are the Morlet
mother wavelet and scale values from 0 to 128.
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The CWT has a number of advantages over Fourier-related transforms, which are
commonly used in HAR problems for feature extraction. First, it provides a more accurate
representation of signals with sharp spikes and breaks, which are typical in wearable
sensor signals and are often important characteristics for activity classification. Second,
CWT overcomes the issue of the nonstationary nature of the signals by simultaneously
representing temporal and local spectral information. Consequently, it is reasonable to
employ the wavelet transform in HAR-related problems as a powerful technique for
frequency and time domain feature extraction.

To improve the models’ accuracy and mitigate the overfitting and underfitting prob-
lems that frequently arise during pre-training and fine-tuning, we used various scalogram
sets generated using CWT. The parameters considered for the CWT are the scale values
ranging from 0 to 32, 64, 128, and 256 using Mexican hat and Morlet mother wavelets. Thus,
the performance of the models was evaluated using eight CWT configurations.

3.3. Knowledge Transfer and Model Testing

The TL was performed according to the following workflow: first, the top fully
connected (FC) layer of the selected pre-trained model was removed and replaced with
a new one. The number of neurons in the new FC layer corresponds to the number of
classes in the target dataset (12 in the UCI-HAPT dataset), and the weights were set using
the Glorot uniform initializer. Second, the performance of the model was evaluated by
fine-tuning it on the preprocessed UCI-HAPT dataset and its subset with varying numbers
of frozen layers.

Layer freezing is a commonly employed technique in TL for overcoming the overfitting
problem. The number of layers to freeze typically depends on how similar the source and
target datasets are. If the datasets are comparable, it may be sufficient to freeze all the
network layers except the top FC layer. Therefore, more layers of the pre-trained network
must be trainable during fine-tuning as the diversity of the datasets increases.

In this work, the number of frozen layers was picked in accordance with the architec-
ture of the chosen model. As discussed in the later sections, the selected model has the
DenseNet121 architecture, which consists of a conv block, four dense blocks, and an FC
layer. Hence, the following configurations were considered: only the top FC layer is train-
able; the first 308 layers are frozen (conv, dense 1, dense 2, and dense 3 blocks); the first
136 layers are frozen (conv, dense 1, dense 2 blocks); and all the layers are trainable. The
described methodology is illustrated in Figure 3.
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4. Results

This section outlines the experimental outcomes obtained using the methods described
in the preceding section. First, we describe the results of the model selection procedure and
the classification results of the selected model on the KU-HAR source dataset. Second, the
selected pre-trained model is evaluated using scalograms generated from the preprocessed
UCI-HAPT target dataset and its subset. The performance of the model was assessed with
various numbers of frozen layers to estimate how their presence impacts the classification
results for diverse target dataset sizes.

4.1. Model Selection Results

We evaluated nine network architectures using eight scalogram sets generated from
the KU-HAR dataset. To avoid the suboptimal local minima problem, each of the 60 possible
combinations was attempted five times, resulting in the training of 300 models. Table 1
contains the highest classification accuracy achieved in five attempts for each combination.

Table 1. The highest accuracy achieved in 5 attempts for each combination (in percentages).

Mother Wavelet Mex. Hat
32

Mex. Hat
64

Mex. Hat
128

Mex. Hat
256

Morlet
32

Morlet
64

Morlet
128

Morlet
256Scale Value

ResNet50 96.21 95.79 96.06 96.27 94.06 95.47 96.15 96.71
ResNet101 95.84 96.13 96.32 96.31 94.46 95.79 96.15 96.90
ResNet152 95.78 96.11 96.45 96.63 92.77 95.18 96.24 96.63
Xception - - 97.33 97.29 - - 96.93 97.16

InceptionV3 - - 95.81 95.49 - - 96.34 96.40
InceptionResNetV2 - - 95.81 95.58 - - 96.48 96.32

DenseNet121 97.27 96.96 97.11 97.24 95.81 96.82 96.87 97.48
DenseNet169 97.16 96.95 97.04 97.03 95.52 96.68 96.84 97.41
DenseNet201 97.03 96.77 97.00 96.85 95.66 96.85 96.85 97.24

As can be observed, the combination of the DenseNet121 architecture, Morlet mother
wavelet, and the scale value ranging from 0 to 256 achieved the highest classification
accuracy of 97.48%. Hence, this model will be considered the selected one. Table 2 contains
metrics of the classification performed using the selected model.

Table 2. Metrics of the classification performed using the selected model.

Accuracy (%) Precision (%) Recall (%) AUC (%) F1-Score (%)

97.48 97.62 97.41 99.60 97.52

It can be observed that the F1-score, unaffected by dataset imbalance, is relatively close
to the accuracy value, indicating the reliability of the classification results of the proposed
model. Given that the KU-HAR is a realistic dataset (i.e., an unbalanced dataset with no
denoising performed), we consider the performance of the proposed model to be rather
promising. Figure 4 is a box plot depicting the classification accuracy results of five tries for
each tested combination.

As shown in Figure 4, the dispersion of accuracy values highly depends on the archi-
tecture and CWT configuration chosen. Nevertheless, it is observable that the ResNet101
and ResNet150 are more prone to accuracy scattering. For instance, the difference between
the highest and lowest accuracy achieved in five tries for the ResNet101 architecture and
the Morlet 32 CWT configuration is 1.88%. At the same time, the accuracy “window” for
the selected model is only 0.18%, which indicates the stability and dependability of the
proposed combination.
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Considering the selected model architecture, the DenseNet (Densely Connected Convolu-
tional Network) was proposed in [58]. Within a dense block, each layer is connected to every
other layer in a feed-forward manner that encourages feature reuse, mitigates the vanishing
gradient problem, reduces the number of parameters, and enhances feature propagation.
DenseNets are frequently used for magnetic resonance imaging (MRI) analysis [59,60], radiol-
ogy image classification [61,62], and cancer image detection [63]; however, few studies have
employed DenseNet-based models in the sensor-based HAR domain [64,65]. Furthermore, in
these works, the models were trained on 1D input data, which may have hindered the model’s
performance, given that the DenseNet architecture was designed for image classification. In
this study, the DenseNet121 architecture, which is DenseNet with 121 trainable layers, yielded
the best results when trained on the Morlet-256 configurations, outperforming the ResNet
and InceptionNet-based models, which indicates the potential of the DenseNet-based models
to address the HAR problems and perform the 2D transformed signals classification.

Considering the CWT configuration, using a scalogram set with the Morlet wavelet
and the scale values from 0 to 256 resulted in the best model performance, indicating that
the usage of the Morlet wavelet may represent the wearable sensors’ signals more accurately
than the commonly used Mexican hat. However, it was observed that the Morlet wavelet
requires a broader scale value range to represent low-frequency signal characteristics than
the Mexican Hat wavelet, whose classification results are not significantly affected by
a change in the scale value range.

Figure 5 depicts the confusion matrix of the classification conducted using the
selected model.

As seen in Figure 5, the cluster of classification errors consists of the classes stand, sit,
and talk-sit. All of these classes represent static activities, which are difficult to differen-
tiate. Therefore, the construction of HAR classification models that consider such static
activities separately is a promising area for future research and can significantly improve
classification accuracy.
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4.2. Model Testing Results

The whole UCI-HAPT dataset and its subset were used for assessing the performance
of the selected pre-trained model. The subset consists of 30% of randomly selected samples
from the preprocessed UCI-HAPT dataset. Configurations with various numbers of frozen
layers were considered, namely, only the top layer trainable, the first 308 layers frozen,
the first 136 layers frozen, and all layers trainable. Table 3 compares the best classification
results achieved in five attempts obtained by the pre-trained and non-pre-trained models.

Table 3. Performance comparison of pre-trained and non-pre-trained models during fine-tuning.

Model
UCI-HAPT UCI-HAPT Subset

Accuracy (%) F1-Score (%) Accuracy (%) F1-Score (%)

Not pre-trained DenseNet121 92.23 92.19 86.29 86.38
Pre-trained DenseNet121, only top layer trainable 80.00 77.99 75.60 64.08
Pre-trained DenseNet121, first 308 layers frozen 92.44 92.52 86.90 87.11
Pre-trained DenseNet121, first 136 layers frozen 92.23 92.24 89.11 89.27

Pre-trained DenseNet121, all layers trainable 91.89 91.92 88.31 88.26

As seen in Table 3, model pre-training led to superior classification accuracy in both
the preprocessed UCI-HAPT dataset and its subset. Concerning the whole target dataset,
the usage of the pre-trained model led to a maximal accuracy and F1 increase of 0.21%
and 0.33% using 308 layers of freezing, respectively. For other configurations, however,
pre-training resulted in a decreased performance. This indicates that the preprocessed UCI-
HAPT dataset is sufficiently large to potentially degrade the performance of the pre-trained
model and result in a negative transfer. Concerning the UCI-HAPT subset, all pre-trained
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models, with the exception of the one with the only top trainable, produced superior results
compared to the control model. Usage of the pre-trained model with 136 frozen layers led
to the highest performance increases of 2.82% and 2.89% for classification accuracy and
F1, respectively. Figure 6 illustrates the typical progress of the accuracy and loss metrics
during the training of the raw DenceNet121 and the pre-trained models.
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It can be seen in Figure 6 that the process of gradient descent of the pre-trained model
is more stable compared to the non-pre-trained model, which can be observed in the
advancement of the validation loss value. In Figure 6, for instance, the non-pre-trained
model reaches the “stable point” after approximately 50 epochs. At the same time, about
30 epochs are enough for the pre-trained model. As a result, the usage of the proposed
model results in faster learning compared to the control model.

5. Discussion

Figure 7 represents the classification results obtained during the model selection
(Table 1) in the form of a radar chart. The configurations of CWT are notated as <Mother
wavelet> <maximal scale value> (for example, “Morlet 32”).

Observably, most models trained on the CWT configuration with the Morlet wavelet
and the scale value from 0 to 256 performed better than models trained on other CWT
configurations. The exceptions are models with the InceptionResNetV2 and Xception
architectures, which produced the best results when trained using the Morlet 128 and
Mexican Hat 128 configurations, respectively.

The lowest results were produced by models trained on the Morlet 32 configuration,
indicating that scale values from 0 to 32 are insufficient for the Morlet-based CWT to
represent low-frequency signal characteristics. Therefore, the Morlet wavelet with the scale
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value from 0 to 256 can be regarded as the optimal CWT configuration for wearable-based
signal classification using DL models. Regarding the network architecture, in addition to
the DenseNet121, models with the DenseNet169, DenseNet201, and Xception architectures
also produced high results. In contrast, the InceptionV3, InceptionResNetV2, and ResNet-
based architectures seem unsuitable for the classification of CWT-transformed wearable
sensor signals.
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Table 4 compares the results obtained with the KU-HAR dataset in recent state-of-
the-art works. As can be noticed, the proposed pre-trained model outperformed the
majority of state-of-the-art studies that employed the KU-HAR dataset. This fact verifies
the effectiveness of the selected model and the potential of the strategy of employing
CWT-generated scalograms together with CNNs to address wearable sensor-based HAR
classification problems.

Table 4. Comparison of the results obtained with the KU-HAR dataset in previous studies.

Study Accuracy (%) F1-Score (%)

[66] 89.5 80.67
[54] 89.67 87.59
[41] - 94.25
[11] 94.76 94.73
[19] 96.67 96.41

Proposed 97.48 97.52
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In [66], the authors used the “vector point of three axes” and “absolute distance”
feature selection techniques on the KU-HAR dataset, which significantly reduced the
dimension of the input sample. Then, the RF classifier was utilized, resulting in maximal
accuracy and F1 values of 89.5% and 80.67%, respectively. Using the proposed dimension
reduction techniques resulted in faster learning, but the classification accuracy decreased
significantly compared to the original dataset. In [54], the authors aimed to demonstrate
the classification capabilities of the proposed KU-HAR dataset. Utilizing the fast Fourier
transform (FFT) for feature extraction and the RF algorithm for classification resulted in the
recall, precision, and F1 values of 84.7%, 90.7%, and 87.7%, respectively, as well as more
explicit clustering on the t-SNE graph. The authors of [41] used an adaptive DL model with
a convolutional layer and gated recurrent unit (GRU). The KU-HAR and HHAR datasets
were investigated using the inter-domain activity analysis with the Wasserstein metric
criteria for the “activity representatives” and “activity followers” selections. On the KU-
HAR dataset, this method yielded an average F1-score of 94.25%; the average classification
accuracy was not provided. In [11], the authors used the RF, Gradient Boost, XGBoost,
CatBoost, and LightBoost algorithms for the KU–HAR dataset activity classification. The
wavelet package transform was used for feature extraction, and the genetic algorithm was
used for feature selection. The best results were achieved using the LightBoost classifier
and the Haar mother wavelet, yielding accuracy, precision, recall, and an F1 score of 89.98%,
89.96%, 89.98%, and 89.67%, respectively. The authors of [19] employed a sequential deep
learning model with 2D convolutional layers. Circular shifting was used to transform the
1D input samples from the KU-HAR dataset into a 2D matrix, which resulted in promising
accuracy and the F1 score of 96.67% and 96.41%, respectively. Finally, in this study, the
selected CWT-based model with the DenseNet121 architecture, Morlet wavelet, and the
scale value from 0 to 256 achieved the highest classification accuracy and an F1 score of
97.48% and 97.52%, respectively.

Despite its performance, the proposed approach has certain limitations related to
computational resources. First, the generation of scalograms using CWT is more compu-
tationally expensive and requires significantly more memory than the usage of 1D time
domain signals, which is especially problematic when pre-training or fine-tuning on mas-
sive datasets. Nevertheless, the proposed model is intended for fine-tuning on relatively
small datasets, so it should not be a major concern. Secondly, due to memory and computa-
tional resource constraints, the deep 2D CNN may be too computationally expensive for
use in embedded systems and intelligent wearable devices, such as smartphones, smart-
watches, and fitness bracelets. Nevertheless, cloud computing and distributed computing
can significantly mitigate the aforementioned problems.

Summarizing the information discussed in this section, it can be claimed that the usage
of the proposed pre-trained model, especially with layer freezing, results in a more stable
gradient descent, faster training, and improved performance on small datasets. However,
the usage of the pre-trained model with datasets of medium and large sizes may result in
an accuracy decrease and, therefore, a negative transfer.

In this study, a general case of research was conducted. The proposed methods and
models can be used, for example, to recognize repetitive movements of production per-
sonnel in enterprises. Therefore, it is anticipated that future research will expand the
recognition of personnel movements, such as component assembly while seated, collabora-
tive robot assembly operations while standing, and personnel position changes.

6. Conclusions and Future Work

In this study, we propose a novel pre-trained model targeted specifically for sensor-
based HAR problems. To perform the model selection, nine popular CNN architectures
were tested using eight CWT-generated scalogram sets. As a result, 60 possible combina-
tions and over 300 models were trained and evaluated. We performed the analysis of the
impact of CWT parameters, such as mother wavelet and scale values, on the performance
of network architectures.
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It was determined that the model with the DenseNet121 architecture, Morlet mother
wavelet, and scale values ranging from 0 to 256 produced the best results on the target KU-
HAR dataset. The classification accuracy and F1 score of the selected model reached 97.48%
and 97.52%, respectively, outperforming the majority of state-of-the-art works employing
this dataset.

The selected model was tested using the UCI-HAPT dataset and its subset to determine
its performance on target datasets of varying sizes and with substantial differences from
the source dataset. Usage of the proposed model resulted in a maximal accuracy and F1
score increase of 0.21% and 0.33%, respectively, on the entire UCI-HAPT dataset and 2.82%
and 2.89%, respectively, on the subset compared to the non-pre-trained models.

It was concluded that the usage of the proposed model, especially with layer freezing,
results in a more stable gradient descent, faster training, and improved performance on
small datasets. However, the usage of the pre-trained model with datasets of medium and
large sizes may result in an accuracy decrease and, therefore, a negative transfer.

In the upcoming studies, we intend to design and analyze heterogeneous pre-trained
models using the gated recurrent unit (GRU) or long short-term memory (LSTM) layers.
Additionally, the construction of models with the separated handling of static activities is
promising, which may significantly increase the performance on sensor-based HAR data.
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