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Abstract: Theory of mind (ToM) is the psychological construct by which we model another’s internal
mental states. Through ToM, we adjust our own behaviour to best suit a social context, and therefore
it is essential to our everyday interactions with others. In adopting an algorithmic (rather than a
psychological or neurological) approach to ToM, we gain insights into cognition that will aid us in
building more accurate models for the cognitive and behavioural sciences, as well as enable artificial
agents to be more proficient in social interactions as they become more embedded in our everyday
lives. Inverse reinforcement learning (IRL) is a class of machine learning methods by which to infer
the preferences (rewards as a function of state) of a decision maker from its behaviour (trajectories
in a Markov decision process). IRL can provide a computational approach for ToM, as recently
outlined by Jara-Ettinger, but this will require a better understanding of the relationship between ToM
concepts and existing IRL methods at the algorthmic level. Here, we provide a review of prominent
IRL algorithms and their formal descriptions, and discuss the applicability of IRL concepts as the
algorithmic basis of a ToM in AI.

Keywords: social cognition; theory of mind; inverse reinforcement learning; artificial intelligence;
cognitive science

1. Introduction

Our everyday interactions with others rely on us being aware of their mental states so
that we can adapt our behaviour to best suit a social context. The increasing complexity and
interconnectedness of our world requires that we interact with different types of agents and
systems, including other humans, autonomous artificial agents, companies, and institutions.
Theory of mind (ToM) is the psychological construct by which we infer the mental states
of others we see as intentional, based on their behaviour [1]. Taking an intentional stance
toward a system means treating it as a rational agent in order to predict or explain its
behaviour by the desires and beliefs it is assumed to have given its purpose, irrespective of
what the system is comprised of [2]. An agent is said to be rational when it acts so as to
fulfill a desire on the basis of their perception and beliefs, or in decision-theoretic terms,
when it seeks to optimise a measure of reward for the decisions it makes (noting that in the
context of machine intelligence, it is advisable to consider rich psychological concepts such
as ToM, desires, and beliefs with care [3]).

ToM can be cast as an information-processing problem—transforming raw information
from observations into representations that are useful for reasoning about others’ mental
states. As such, its function can be replicated algorithmically, but doing so requires knowing
what representations are useful, and from what information and what transformations
of it these representations can be obtained [4]. The design of these algorithms can be
aided by insights into the neural correlates of social cognition from functional imaging
studies [5], or from behavioural data [6]. A recent result for artificial agents on this front
is the achievement of human-level performance in the diplomacy game—a challenging
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task that requires inferring beliefs and intentions of other players from natural language
to negotiate and coordinate with them—by the Cicero AI agent [7]. A key step in their
approach is to model an agent’s action choices by assuming it simultaneously attempts
to maximise the expected value of an action given other players’ actions and minimise
the difference between its action choices and that of a model from human behaviour data,
in a reward function that is structurally similar to Equation (41) below. As artificial agents
become more embedded in the world, not only will humans need to take an intentional
stance toward them [8], but artificial agents will need to have that same ability toward
others [9–11]. With these points in mind, the ability to socially integrate AI is important for
its future development, and ToM will play a central role in achieving it.

An important part of such an AI ToM is the specification of desires (goals), beliefs,
and intentions that are fundamental to how agents make choices [12]. Early work in the
intersection between psychology and AI (published the same year as the first paper on
ToM [13]) provided algorithmic methods by which to infer goals and plan structures from
actions, by using linguistic descriptions of action sequences [14] and later extended to
account for differing beliefs between the actor (i.e., the agent whose internal states are
being modelled) and observer (i.e., the agent doing the modelling) [15]. Others showed
semantic representations of the relationship between intentions and beliefs [16]. Notable
work by Yoshida et al. [17] proposed a Game ToM model wherein the value function in
a Markov decision process (MDP) is defined over the joint state spaces of all agents in
the environment. This leads to a recursive optimisation of the joint value function in
each agent up to a certain level of sophistication. Under the assumption that the rewards
are the same for and known by all agents, instead of inferring rewards from behaviour,
it is sufficient to infer other’s level of sophistication in order to act strategically. More
recent and oft-cited computational implementations of ToM, Bayesian ToM [18,19] and
Machine ToM [20], seek to recover agent goals as well as their beliefs in an MDP setting.
A class of machine learning methods that is particularly designed to operate in the MDP
framework is inverse reinforcement learning (IRL), the objective of which is to infer the
reward function of an agent from its state–action trajectories. The potential suitability
of preference learning, and IRL in particular, as a computational approach for ToM was
recently outlined by Langley et al. [21] and Jara-Ettinger [22], respectively. IRL has seen
a recent resurgence of interest, with multiple reviews of methods appearing in the last
few years [23–27]. Simultaneously, a growing body of research focuses on computational
approaches to modelling other agents [28–30]. In spite of these contributions, a better
understanding of the relationship between ToM concepts and existing IRL methods at the
algorthmic level is required to adopt IRL as the algorithmic basis of ToM.

Here we provide a review of prominent IRL algorithms and their formal descrip-
tions and discuss the applicability of IRL concepts as foundations for an algorithmic ToM.
Section 2 provides background on IRL, including the conceptual formulation of the prob-
lem, its foundations on reinforcement learning (RL), important concepts and notation,
and its relation to ToM. Section 3 explains the connection between desires and rewards
and reviews algorithmic approaches to two issues that arise: how to discriminate between
different reward functions that equally explain observed behaviour (Section 3.1), and how
to characterise the reward function in the context of the problem (Section 3.2). Section 4
discusses the importance of beliefs in the IRL problem and their interpretation in this
context as relating to transition dynamics (Section 4.1) and state observability (Section 4.2).
Section 5 covers methods that relate to the intentions of an agent, including how suboptimal
behaviour (Section 5.1) and multiple intentions (Section 5.2) are accounted for. Section 6
highlights important and promising considerations for expanding IRL and making it more
suitable as an algorithmic approach to ToM.
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2. Background

RL algorithms learn to optimise agent actions given observations of the state of the
agent’s environment, with respect to a reward function. This reward function is the most
succinct representation of a task. We use the terms “reward” and “utility” interchangeably.
Utility has more general connotations and widespread use in economics and game theory,
whereas reward is more common in AI, and specifically in RL. Conceptual efforts in
economics led to development of theories of rational multiobjective decision making
based on the attributes of each available choice, in what is known as multiattribute utility
theory. A central pillar in this line of work is the quantification of the decision maker’s
preferences [31]. Russell [32] called to attention the lack of work on the computational
aspects of this problem, which he related to machine learning as the dual of RL and named
it IRL. The task was characterised as follows.

Given (1) measurements of an agent’s behaviour over time, in a variety of circumstances,
(2) if needed, measurements of the sensory inputs to that agent, (3) if available, a model of
the environment.
Determine the reward function being optimised.

Under the principle of rationality, a rational agent’s behaviour is driven by a tendency
to optimise for its desires given its beliefs. The intentional stance invokes this principle to
attribute causality for behaviour to mental states [33]. An agent’s reward function is the
driver of its behaviour and can therefore operate as a representation of its desires. On the
other hand, the agent’s beliefs about the world inform what behaviour is appropriate or
feasible, and play a crucial role in planning toward fulfilling its desires. IRL may serve as
an algorithmic paradigm for inferring the mental states (beliefs, desires) of others based on
their observed behaviour (i.e., ToM) [22].

2.1. Problem Formulation and Notation

The problem setting for IRL, as for RL, is a (finite) MDP, characterised by the tuple
(S ,A, T, D, γ, R) with

• S = {s1, s2, . . . }—a (finite) set of states
• A = {a1, a2, . . . , ak}—a finite set of k actions
• T = {Pr(s′|s, a) : s, s′ ∈ S , a ∈ A}—the state transition probabilities

when performing a in s
• D = {Pr(s0 = s) : s ∈ S}—a probability distribution over S from

which the initial state is drawn (s0∼D)
• γ ∈ [0, 1)—a time discount factor
• R : S ×A → R—a reward function whose absolute value

is bounded by Rmax.

Behaviour within an MDP is dictated by a policy. A deterministic policy is a function
π : S → A, yielding an action choice a for a given state s. A stochastic policy is a probability
distribution over actions given a state π(a|s) = P(a|s). A mixed policy ψ is a distribution
over a set of deterministic stationary policies Π, with λk = P(π = πk), or equivalently,
a convex combination with coefficients ∑k λk = 1. Mixed policies are executed by selecting
a policy πk with probability λk at the start of the MDP and following this policy for the
entirety of the problem. A policy is optimal when it maximises its associated value function,
or “expected sum of discounted rewards”,

Vπ = E(st ,at)∼dπ,T,t
[

∞

∑
t=0

γtR(st, at)|D, T, π] = Es0∼D[Vπ(s0)], (1)

where dπ,T,t is the state–action distribution at time t, a result of the agent’s policy and
the environment’s transition probabilities, with s0 drawn from D. The Bellman equation
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provides a way to recursively compute the values of states under a policy. For a given MDP,
Vπ satisfies

Vπ(s) = R(s) + γ ∑
s′∈S

T(s, π(s), s′)Vπ(s′) ∀s ∈ S , a ∈ A. (2)

An additional auxiliary function commonly used in MDP settings is the Q-function

Qπ(s, a) = R(s, a) + γ ∑
s′∈S

T(s, a, s′)Vπ(s′) ∀s ∈ S , a ∈ A, (3)

which defines the cumulative reward to be expected from performing action a while in
state s, and can be used to obtain an optimal policy π∗(s) ∈ arg maxa∈A Qπ(s, a; R) for a
given R.

A useful representation of a policy is its discounted state–action visitation distribution,
or occupancy. A policy π and its occupancy measure µπ can be used interchangeably for
a given environment—occupancy provides a representation of the policy as influenced
by the transition dynamics of the environment. By employing Kronecker delta notation
(δij = 1 if i = j, 0 otherwise), the occupancy is

µπ(s, a) = E(st ,at)∼dπ,T,t
[

∞

∑
t=0

γtδstsδata|D, T, π] (4)

and is sufficiently defined through the linear Bellman flow constraints [34]

µπ(s) = D(s) + γ ∑s′∈S ∑a∈A µπ(s′, a)T(s, a, s′) ,
µπ(s) = ∑a∈A µπ(s, a) ,
µπ(s, a) ≥ 0 .

(5)

These constraints define a set G of all the constraint-satisfying occupancies, each of
which can be represented as a vector µπ ∈ R|S×A| [35].

2.2. IRL Concepts

The notation MDP\R is used to denote an MDP where the reward function R is not
given. The IRL task consists in finding an R for which the agent’s observed behaviour is
optimal given an MDP\R, usually working within a parametric class {Rθ : θ ∈ Θ}. The
canonical approach to this is to use a linear approximation of R from features φ(s, a) ∈ Rd of
each state and action, with weights θ ∈ Rd, such that R(s, a) = θTφ(s, a). This is explained
in further detail, with alternative approaches, in Section 3.2. The idea of approximating
utility (reward) as a linear function of subutilities (features) dates back to the work of
Carmel and Markovitch [36], used for opponent modelling in extensive form games (chess),
and is closely related to earlier work in economics, such as in [37]. Often R, φ, are functions
of the state only, instead of state–action pairs. The extension to this setting is trivial if we
adopt the state–action formulation. Under a policy, we have feature expectations (expected
discounted value of features) vπ ∈ Rd:

vπ = E(st ,at)∼dπ,T,t
[

∞

∑
t=0

γtφ(st, at)|D, T, π]. (6)

A feature matrix F ∈ Rd×|S×A| can be employed to encapsulate the features for each
state–action pair F(·,s,a) = φ(s, a), resulting in vπ = Fµπ . Under a linear approximation
of the rewards, Vπ (Equation (1)) can alternatively be obtained from features (through
linearity of expectations) with

Vπ = θTvπ = θTFµπ . (7)
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Feature counts from a given trajectory τ provide a compact representation of the trajectory

Φj = Φ(τj) =

Hj

∑
t=0

γtφ(st, at) ∈ Rd. (8)

The measurements of the behaviour of the agent of interest (here actor or expert)
over time are given as demonstrations D, usually taking the form of an unordered set

D = {τπ
j }m

j=1 of sequential paths (i.e., trajectories) τπ
j = ((s, a)t)

Hj
t=0 of length Hj + 1.

Additional information may be provided in the demonstrations, including feature matrices,
occupancies, etc.

Empirical estimates of occupancy and feature expectations can be computed as average
counts from the observed trajectories

µ̃π(s, a |τj) =
1

Hj + 1

Hj

∑
t=0

γtδstsδata, (9)

ṽπ = Fµ̃π . (10)

The above results all apply to mixed policies through linearity of expectations.

2.3. Boltzmann Policies

To make stochastic policies more robust to environmental changes, it is desirable that
they assign nonzero probabilities to actions other than the optimal to allow for exploration.
According to Jaynes’ Maximum Entropy Principle (MaxEnt) [38], to find a probability
distribution that minimises bias for a given partial set of information requires maximising
the amount of entropy (or uncertainty) in the distribution, subject to the known information.
Recall the definition of a deterministic optimal policy through the Q-function (Equation (3)).
To define a stochastic policy, a distribution over action choices can be determined from
their associated Q-values instead. Subject to moment matching constraints for the zeroth
and first moments

∑a∈A π(a|s) = 1 ∀s ∈ S ,
E[Qπ(s, a)] = ∑a∈A π(a|s)Qπ(s, a) ∀s ∈ S ,

the entropy-maximising distribution is the Boltzmann distribution, or “Boltzmann policy”
as it is known in the RL context,

π(a|s) = Pr(a|s, R, π) =
1
Z

exp(αQπ(s, a; R)), (11)

with normalising constant, or partition function Z(s, R, π, α) = ∑a′∈A exp(αQπ(s, a′; R))
and (negative) potential energy Qπ(s, a; R). The hyperparameter α serves as an inverse
temperature parameter defining the steepness of the policy distribution, or how “greedy”
for optimal Q-values it is. This greediness may be understood as the level of rationality
attributed to the agent by the ToM observer. This distribution is known as the Softmax
function in the machine learning literature.

A maximum entropy optimal policy can be obtained through the soft Q-function

Qπ
soft(s, a) = R(s, a) + γ ∑s′∈S T(s, a, s′)Vπ

soft(s
′)

Vπ
soft(s) , log ∑a∈A exp

(
Qπ

soft(s, a)
)
,

(12)

where the value function is defined through the LogSumExp function [39]. Actions with
higher Q-values reduce regret, which rational agents are expected to act in accordance



Algorithms 2023, 16, 68 6 of 42

with. An alternative and equivalent interpretation of this policy is as proportional to the
exponential advantage of an action

π(a|s) ∝ exp(Qπ(s, a)−Vπ(s)). (13)

The Boltzmann distribution provides a smooth parametric model for the action choice
distribution in a given state (i.e., a policy) that is shaped by the Q-function at the state.
These qualities, along with the alignment with MaxEnt and the degree of freedom in the
temperature hyperparameter, are desirable attributes in modelling rational agents. For
these reasons, a sizable proportion of IRL algorithms resort to a Boltzmann assumption
when characterising the policy (e.g., Sections 3.1.1.6, 3.1.2.2, 3.1.2.3, 3.1.3.2 and 3.1.6.3). It
is common practice to assume the Q-function is given in a converged state or obtained
through dynamic programming (value iteration) or RL methods (e.g., Q-learning). In the
ToM interpretation, the accuracy of the Q-function with respect to the true values of the
MDP encode, in part, the accuracy of the agent’s beliefs—a core mental attitude of ToM,
as discussed in Section 4. Another core mental attitude in models of ToM are desires,
which are encoded as rewards in rational agent models. In the following section, we
review IRL algorithms whose emphasis is on recovering these rewards, and discuss how
they can provide an effective computational approach to inferring an agent’s desires from
their behaviour.

3. Inferring an Agent’s Desires

The problem of inferring an agent’s desires with computer science methods was first
approached by Russell [32], which coined IRL broadly, suggesting a possible algorithmic
direction based on the use of a parametric form of the reward function, as is common
in econometrics. In the IRL problem setting, this function can be fitted using Pr(τ|Rθ),
the likelihood of observing behaviour τ if the true reward function were Rθ , as a loss
function. The parameterisation (or lack thereof) of R offers a design choice (see Section 2.2).
Any optimisation method can be employed given this formulation, usually involving
interleaving policy optimisation and reward function selection. However, there may
exist multiple reward functions for which the observed trajectories are optimal, including
degenerate solutions. This issue was the first to be addressed in the IRL literature [40],
and provides our first classification axis for algorithms, namely by how they discriminate
between plausible reward functions, as covered in Section 3.1. Another important concern
is how the reward function can be characterised beyond a linear parameterisation, which
we explore in Section 3.2.

3.1. Reward Function Discrimination

The first algorithmic treatment of the IRL task was by Ng and Russell [40], proving
IRL soluble for moderately sized discrete and continuous state spaces. They characterised,
analytically, the set of all reward functions for which a given policy is optimal for finite
state spaces, and suggested heuristics to constrain said set of reward functions in the
form of penalties for the cost of single-step deviations from the given (optimal) policy
and regularisation of the rewards (modulated by hyperparameter λ). For finite state
spaces, R (and any other function of the states) can be represented as a vector R whose ith
element is R(si). Similarly, the state transition probabilities can be encapsulated in a tensor
T ∈ [0, 1]|S|×|S|×|A|, which can be indexed by action to obtain a matrix Ta where each (i, j)
element is the probability of transitioning from state si to state sj upon performing action a.
In the resulting formulation, including the penalties, the goal is to find the R that maximises

∑
s∈S

min
a∈A\a1

{(Ta1 − Ta)(I− γTa1)
−1R} − λ||R||1 (14)
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with a1 ≡ π(s) and subject to the constraints

(Ta1 − Ta)(I− γTa1)
−1R � 0 ∀a ∈ A \ a1,

|R(s)| ≤ Rmax ∀s ∈ S ,

where � represents elementwise inequality (for all elements).

3.1.1. Maximum Margin Methods
3.1.1.1. Foundational Work

To extend the method to infinite state spaces, the authors resorted to a linear approxi-
mation of R with given fixed features. This approach to the problem is the canonical form
of the so-called maximum-margin class of IRL techniques, the goal of which is to estimate a
reward function that maximises the difference between an optimal policy and the rest of
the available policies [27], or equivalently, a set of weights θ that parameterise a reward
function Rθ , such that under Rθ , Vπ∗ ≥ Vπ for all π. This particular method requires a
way to approximate the value of Vπ under any MDP. Invoking Equation (7), the task is
then to find the θ that maximises, for a sample S0 ⊂ S of the state space

∑
s∈S0

min
a∈A\a1

{p(Es′∼T(s,a1)
[Vπ(s′)]−Es′∼T(s,a)[V

π(s′)])} (15)

with
|θi| ≤ 1 i = 1, 2, . . . , d

p(x) =
{

x x ≥ 0
2x x < 0,

where p is a penalty function for states in which π is not optimal under R̂. The penalty
weight value of 2 in p is arbitrarily chosen. The original paper asserts that results were not
sensitive to this value.

Finally, further generalising the method, they introduced an algorithm to find R̂ such
that a policy π to be determined maximises Vπ when a set D of trajectories τ through S is
given in lieu of πE. This algorithm requires (i) a way to approximate Vπ (as above), (ii) a
way to find an optimal policy πk under any R (techniques from the RL literature can be
employed to this end), and (iii) the ability to simulate trajectories starting from s0 under
policy π in the MDP.

Approximations of the feature expectations and the value function can be obtained
by performing m Monte Carlo trajectories of length H under π, and averaging over their
values (for a large H, the difference as compared with an infinite time horizon is negligible):

ṽπ(s0) =
1
m

m

∑
j=1

Hj

∑
t=0

γtφ(s(j)
t ) (16)

Ṽπ(s0) = θTṽπ(s0). (17)

Similarly, we can obtain approximations for the expert’s feature expectations, but note
that their accuracy is contingent on the size of the set of demonstrations provided, as well
as the fact that some states may not be visited in some cases.

In their final algorithm, shown in Algorithm 1, the optimisation step is similar to
Equation (15), with the same constraints, but replacing the expectation by the empirical
average Ṽπ from Equation (17), and the domain S ×A \ a1 by the set of policies Π. The ini-
tial state s0 is fixed for all the trajectories, but this results in no loss of generality if we let s0
be a dummy state and set T(s0, a, s1) = D(s1) for all a ∈ A.



Algorithms 2023, 16, 68 8 of 42

Algorithm 1: Algorithm from [40]

Algorithm MaxMargin(D = {s0, s(j)
1 , . . . , s(j)

H }m
j=1, φ)

1 θ ← RandomVector(Θ) Initialisation
2 Π← {}
3 for k← 1 to K do
4 R̂← θTφ

5 πk ← OptimalPolicy(MDP\R, R̂) Find best π under R̂
6 Π← Π + {πk}
7 τπk ← GatherTrajectories(MDP\R, R̂, πk, m)
8 θ ← UpdateWeights(θ, φ, τπk, τπ∗, Π)

end
9 return R̂

Procedure UpdateWeights(θ, φ, τπ , τπ∗)
1 ṽπ ← EstimateFeatureExpectations(τπ, φ) Equation (16)
2 ṽπ∗ ← EstimateFeatureExpectations(τπ∗, φ)
3 L← ∑πi∈Π p(θTṽπi − θTṽπ∗) Equation (15), (17)
4 θ ←Optimise(L, θ : |θi| ≤ 1 i = 1, . . . , d)
5 return θ

In the context of ToM, the given trajectories represent the observer’s knowledge of
the actor’s behaviour. The longer the trajectories and the larger the set of trajectories
(hyperparameters H and m, respectively), the better the observer can be said to know
the actor. The resultant R̂ is the observer’s model of what drives the actor’s behaviour
(i.e., its utilities), which may be used in conjunction with policy estimates π ∈ Π (i.e., its
probabilities) to predict its future behaviour. In Figure 1, we group these two variables
together conceptually as the observer’s model of the agent (green, dashed outline). The
rationality of the actor is based on these two sources of information [41]. The observer
requires a model of the environment (MDP\R) to be able to estimate the model of the
agent. This is a sensible requirement for any agent. In Algorithm 1, it is assumed to
be completely faithful to the real environment (Figure 1, yellow with dashed and solid
outlines, respectively).

One outstanding question is the meaning of the basis functions, or environment fea-
tures, φi in the context of ToM. We place them conceptually within the observer, as depicted
in Figure 1 (orange). The cardinality d of the space Θ in which we perform the linear
approximation of the reward function, and thus its expressivity, depends on how many
features the observer makes use of. Intuitively, they stand for the perceptual acuity of the
observer—the number of different “stimuli” the observer can differentiate amongst and
attribute value to. They are likely to differ to that of the actor; that is, if the actor does have
them in the first place—it may not know its subutilities and simply be guided by its reward
function. Simple examples of features in the scenario of an agent crossing the road include
whether there is a car present, the speed of the car, the state of the pedestrian crossing
traffic lights, etc. Moreover, not only the features, but the state observations themselves
may differ between the actor and the observer (e.g., first-person vs. third-person point of
view). In Ng and Russell [40] they are “given” and fixed.

As new trajectories are observed, the same algorithm can be used to update the weights
if the current θ and πk are used instead of randomly initialising them. We call attention
to the fact that, although this was not stated in the algorithm as presented, it can yield
the set of policies π ∈ Π, as well as their respective ṽπ , Ṽπ , and different reward function
estimates R̂ under which each of the policies were optimised.



Algorithms 2023, 16, 68 9 of 42

Figure 1. Diagram of the max-margin IRL algorithm (see Algorithms 1 and 2). Given trajectories τE,
the observer constructs a model of the actor comprising a policy π and reward function R (dashed
green), employing a model of the environment (i.e., a model of the MDP\R, dashed yellow, which is
usually assumed to be a priori known by the observer and equal to the actual environment, yellow)
to generate candidate trajectories τπ . Both trajectories are compared (blue) with the aid of features
φ (orange) that are intrinsic to the observer to update the weights θ. The weights characterise the
reward function in conjunction with the features. Iteratively repeating this process yields a suitable
reward function.

3.1.1.2. Feature Expectation Matching

Abbeel and Ng [42] contributed modifications to the max-margin approach under some-
what stricter constraints: R is bounded in absolute value to 1, which requires ||θ∗||1 ≤ 1,
and therefore ||θ∗||2 ≤ 1. Casting the problem as apprenticeship learning (AL), deviating
slightly from the IRL premise, their goal is to find a policy π that performs close to the
expert policy under the unknown reward function R∗. Their focus is on the feature ex-
pectations: the estimated policy π must obtain (empirical) feature expectations close to
the expert’s, i.e., satisfy ||vπ − vπE ||2 ≤ ε. In other words, the true goal is not uncovering
the reward function: although the algorithm guarantees finding a policy, the feature ex-
pectations of which are within ε of the expert’s, the reward function recovered as part of
this process may not be correct. Because the `2-norm of the linear approximation weights
θ is restricted to be less than 1, this is equivalent to minimising the difference between
the value functions of the expert’s (πE) and estimated (π) policies. Such policy (and per-
taining feature expectations) can be obtained almost identically to Algorithm 1, with the
key difference being in the weights’ update step, as per Algorithm 2, and the change in
the loop exit condition to t < ε. They provide an additional, simpler algorithm based on
computing the orthogonal projection of the feature expectations onto the segment between
previous iterations’ expectations and demonstrate its faster convergence compared to their
max-margin method.

Algorithm 2: Excerpt from the algorithm in [42], with adapted notation.

Procedure UpdateWeights(θ, φ, τπ , τπE)
1 ṽπ ← EstimateFeatureExpectations(τπ, φ) Equation (16)
2 ṽπE ← EstimateFeatureExpectations(τπE, φ)
3 L← minπk∈Π{θT(ṽπE − ṽπk )}
4 θ ← Optimise(L, θ : ||θ||2 ≤ 1)
5 t← L(θ) Terminal condition in loop
6 return θ
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3.1.1.3. Multiplicative Weights Apprenticeship Learning

Syed and Schapire [43] expand on the apprenticeship learning algorithm in [42] with
algorithmic tools from game theory. Further constraining the ranges of φ(s) ∈ [−1, 1]d and
θ ∈ ΘC = {θ ∈ Rd : ||θ||1 = 1 and θ � 0} allows for defining the margin Vπ − VπE ≥
mini{vπ

i − vπE
i } to be maximised. The goal is defined through the game value (note the

difference in symbols ν, v)

ν∗ = max
ψ∈Ψ

min
θ∈ΘC

(
θTvψ − θTvE

)
, (18)

i.e., ψ∗ is the mixed policy that maximises Vψ −VπE for the worst-case possibility for θ∗,
a sensible constraint because θ∗ is unknown. This allows for a zero-sum game formulation,
though only abstractly, so the “players” are not the observer and actor, but the rewards
and the policy (this is the foundational concept of adversarial IRL methods, reviewed in
Section 3.1.7). “Min player” sets the reward by choosing θ, and “max player” chooses a
mixed policy ψ, adversarially. As such, the game can be defined via a d× |Π| game matrix
with G(i, k) = vk(i)− vE(i), where i indices over the feature dimensions d and k over the
policies in Π, the space of policies π. From this, we have

ν∗ = max
ψ∈Ψ

min
θ∈ΘC

θTGψ = min
θ∈ΘC

max
ψ∈Ψ

θTGψ ≥ 0 (19)

in Von Neumann’s minimax form [44]. The 0 lower bound is explained as follows. The
stricter constraint setting θ ∈ ΘC is equivalent to assuming all the features “got the sign
right” in relation to how they contribute to the reward (because the weights are all positive).
This assumption results in ψ∗ having higher value than πE when vψ∗ � vπE regardless of
the value of the actual weights θ∗.

To solve this optimisation problem, they adapt the multiplicative weights algorithm
from [45]. This algorithm has two main steps. (1) Given min player “strategy” θ, find
ψ∗ = arg maxψ∈Ψ θTGψ (i.e., find an optimal policy in the MDP with known R, through

any MDP solver); (2) Given max player “strategy” ψ, compute (θ̇(i))TGψ for each of the d
pure (i.e., one-hot) strategies θ̇(i) (i.e., compute the feature expectations v ∈ Rd of the given
policy ψ, which can be done by solving d systems of linear equations, or approximated
iteratively). These steps in Algorithm 3 are equivalent to the projection algorithm from [42].
The complexity of these steps scales with the size of MDP\R, and not with G. There is
similarity in the higher bound approximation step in [46] (Algorithm 4, line 12).

The mixed policy returned by the Multiplicative Weights AL algorithm consists of
a uniform distribution over estimated policies π̂ that are επ-optimal, meaning |V(π̂)−
V(π∗)| ≤ επ . The game matrix G is slightly modified and makes use of εv-good feature
expectations estimates, meaning ||v̂− vπ ||∞ ≤ εv.

3.1.1.4. Linear Programming Apprenticeship Learning

The nondeterministic nature of mixed policies may not be desirable. Later work by
Syed et al. [34] demonstrated that stationary policies can be obtained from Algorithm 3
by finding the optimal policies through linear programming, showing up to two orders
of magnitude improvement in running time. The resultant linear program to find the
maximum margin is

max
ν∈R,µπ∈G

ν

subject to
vi ≤ Fi(µπ − µE) i = 1, . . . , d (20)

with resulting stationary policy
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π(a|s) = µπ(s, a)
∑a∈A µπ(s, a)

. (21)

Empirical estimates for occupancy values can be obtained from given trajectories by using
Equation (9).

Algorithm 3: Multiplicative Weights Apprenticeship Learning (MWAL) Algo-
rithm [43]

Algorithm MultiplicativeWeightsAL(MDP\R, ṽE)

1 β← (1 +
√

2 ln d
T )−1

2 G̃ ← ((1− γ)(v− ṽE) + 2)/4 v ∈ Rd

3 Π̂← {}
4 W(1) ← 1 W(t) ∈ Rd

5 for t← 1 to T do
6 θ(t) ← W(t)

||W(t) ||1
7 R← (θ(t))Tφ

8 π̂(t) ← eOptimalPolicy(MDP\R, R, επ)
9 v̂(t) ← eEstimateFeatureExpectations(MDP\R, π̂(t), φ, εv)

10 W(t+1) ←W(t) exp
(

ln(β)G̃(v̂(t))
)

11 Π̂← Π̂ + {π̂(t)}
end

12 ψ̄← Uniform(Π̂)
13 return ψ̄

The last three methods we reviewed [34,42,43] are instances of AL. Although the
objective in AL is to learn a policy that resembles the expert’s, as opposed to learning the
reward function, AL and IRL are largely overlapping and share core techniques, specifically
in the two main tasks of policy estimation from observed behaviour (goal of AL), and the
inference of rewards from a given policy (goal of IRL). Knowing an agent’s policy may also
be considered a form of ToM, as it is internal to the agent and reflects their intentions/modus
operandi. The use of these two core tasks in ToM may be better understood through a
simile with the “theory theory” and the simulation theory accounts of mentalising. The
theory theory perspective assumes that we make inferences about hidden mental states
through logic and abstraction, as we do in the natural sciences for the unobservable
causal phenomena of the world. This is similar to the reward learning approach. In the
“simulation theory” account, mental states are represented through perspective-taking, by
using our own cognitive resources to simulate another’s [47,48]. This is similar to the AL
approach (e.g., [42,49]), as well as the less-sophisticated behavioural cloning (BC), whereby
agents learn state–action mappings through supervised learning (with the limitation in
applicability to observed state–action pairs only). The simulation account can be extended
to IRL. For example, in [50] the observer models a human’s reward function by proposing
counterfactual scenarios.

3.1.1.5. Maximum Margin Planning

The use of (estimated) state–action occupancy measure from demonstrations is fur-
ther extended by Ratliff et al. [49], whose goal is to find a reward function under which
the optimal policy is similar to the expert’s. To do so, they cast the problem as struc-
tured prediction, relying on a loss-augmented reward function Rl = θTFj + lTj , where

lj ∈ R+
|S×A| is a loss vector defining the cost of deviating from the expert policy for every

state–action pair.
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Each demonstration may be generated in a different MDP, and is given by
D = {(S ,A, F,G, µ, l)j}m

j=1. From this, they introduce an objective function measuring the

difference in performance between a policy with occupancy µθ = arg maxµ∈Gj
(θTFj + lTj )µ

(optimal under the loss-augmented reward function), and the given demonstration µj (with-
out loss-augmentation), based on a quadratic programming formulation (in accordance
with the hinge loss form)

cq(θ) =
1
m

m

∑
j=1

β j

((
θTFj + lTj

)
µθ − θTFjµj

)q
+

λ

2
||θ||2. (22)

The form of the loss function imposes a margin by which the solution obtained is
better than any other possible solutions. Using the occupancy measures from the expert
policy has the effect of making rewards for high occupancy state–action pairs larger, which
in turn encourages similarity between the policies, as well as discouraging degenerate
solutions [51]. The optimisation of the weights θ is performed through gradient descent by
using the subgradient of the objective function

gq
θ =

1
m

m

∑
j=1

qβ j

((
θTFj + lTj

)
µθ − θTFjµj

)q−1
Fj(µθ − µj) + λθ, (23)

where β j is a data-dependent normalisation coefficient, q ∈ {1, 2} is a choice of slack penalty
type (for `1- and `2-loss, respectively). Boularias and Chaib-draa suggest the use of a loss
vector l(s, a) = 1− µj(s, a) [35]. The (near-)optimal policy πθ is obtained with RL methods
in the particular MDP\R under the loss-augmented reward function, and provides the
occupancy µθ . Optionally, the weights θ can be projected on to additional problem-specific
constraints after every update. The weights can be learned offline from a training set D,
or online for each observation Dj. The occupancies µj can be obtained equivalently from
trajectories τj when the demonstrations are in said format instead.

Prior knowledge can be included in the form of further constraints on θ, such as by
explicitly penalising certain features, or regularising the learning procedure around a prior
belief about θ instead of approximately 0. Additionally, it can be included through the loss
vector l if certain state–action pairs are known to be poor choices [49].

When there is no single reward function that maximises the margin, such as when
the agent’s behaviour is suboptimal or no data is available for parts of the state space, this
method is limited [52].

3.1.1.6. Policy Matching

Neu and Szepesvári [53] set out to find a θ for which πθ matches the expert policy πE,
or rather the empirical occupancy estimate µ̃πE thereof, through gradient descent on a loss
function (similar to [49]). Thus, their performance measure is the difference between the
proposed and expert policies, as opposed to the proposed policy’s performance with respect
to the original reward function as is the case in [42]. They select the squared loss function

L(µθ ; µE) = ∑
s∈S ,a∈A

(µθ(s, a)− µE(s, a))2 (24)

and assert it can be approximated by

L(µθ ; µE|τE) = ∑
s∈S ,a∈A

(µθ(s, a)− µ̃E(s, a |τE))
2. (25)

Obtaining the occupancies µθ requires a policy πθ . They employ a Boltzmann policy
(Section 2.3), acting as a smooth map from the parameter space to the policy space. As
in [49], the parameterised policy πθ is trained through an MDP solver to be (near-)optimal
under R in the MDP\R. The reward function parameters are obtained through gradient
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descent on the loss function. Others have taken a similar approach of matching the expert’s
state occupancy through gradient techniques [54].

3.1.2. Probabilistic Methods

Probabilistic methods cast the IRL problem as a (Bayesian) inference problem, aiming
to find an estimate for R that best explains the given demonstrations (interpreted as noisy
observations of the expert’s policy) [55]. The agent’s action choice probabilities Pr(a|s, RE)
are modelled as a Boltzmann distribution (Section 2.3) (or alternatively made deterministic
as arg maxa∈A Q∗(s, a; RE)). This allows us to define the likelihood of a pair (s, a) ∈ S ×A
under any given R as

Pr((s, a)|R) = exp(αQ∗(s, a; R))
∑a∈A exp(αQ∗(s, a; R))

. (26)

Under an assumption of independence between state–action pairs in a given demon-
stration (based on a stationarity assumption for the agent’s policy), the likelihood of the
demonstration is

Pr(D|R) = ∏
(st ,at)∈D

Pr((st, at)|R). (27)

Combining the likelihood from the demonstrations with a given prior over rewards
P(R), we can obtain a posteriori

Pr(R|D) = Pr(D|R)Pr(R). (28)

Two solution methods are used to find this posterior in the literature: gradient-based
methods are used to directly find an (approximate) maximum a posteriori estimate for R,
and Markov chain Monte Carlo (MCMC) methods to approximate the entire posterior dis-
tribution of R [55]; more recently, variational inference-based methods have been proposed
to this end, e.g., [56–58].

3.1.2.1. Tree Traversal

Chajewska et al. [46] provide the first algorithm to treat the reward as a random
variable. Of further interest to this review, they show the usefulness of their method for
strategic interactions in the two-player game setting. They work with a game decision
tree instead of an MDP (though the method can equivalently be applied in the MDP
setting), allowing the observer to consider the actor’s actions as well as their own and
“nature”/chance decision nodes.

Similarly to [40], they use τE to fit linear constraints on Θ, a space of coefficient values
for a linear approximation of R. They set out to obtain a posterior distribution q(θ|τ)
over a constrained region of the parameter space ΘC , by conditioning a prior p(θ) on
the evidence from the demonstrations Pr(τ|θ). The constrained region ΘC is contained
in Θ∗ ⊆ [0, 1]d, the polytope defined by Vπ∗ ≥ Vπ ∀π ∈ Π. The prior p(θ) over Θ∗

is obtained through density estimation on population reward function data (from many
actors, as in e.g., [41]). Because q(θ|τ) can be prohibitively complex to compute, the method
approximates it through an MCMC procedure (Algorithm 4), specifically by using the
Metropolis–Hastings (MH) algorithm over a quantisation of the convex set ΘC , with p as the
acceptance probability distribution.

ΘC is obtained by traversing the tree and assigning upper (Vhi(s)) and lower (Vlo(s))
bounds on the value of each node, Vlo(s) ≤ V(s) ≤ Vhi(s), with the set of constraints C built
with constraints Vhi(s) ≥ Vlo(s′) from each of the expert’s decision nodes. We use S(s) as
shorthand for the subset of S that is reachable from s, i.e., S(s) = {s′ : T(s, a, s′) > 0 ∀a ∈
A}. The use of π 6E(s) denotes choices that are perceived as chance by the expert, including
the observer’s actions and nature’s actions (passive dynamics). Although the original paper
did not, we make use of the Bellman equations in our elucidation of the algorithm where
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applicable, for closer correspondence with IRL. The algorithms are equivalent if γ = 1 and
φ(s) = 0 for all s that are not leaf nodes.

Algorithm 4: Metropolis–Hastings-based approach to approximate q(θ|τ)
from [46]

.
Algorithm SampleWeights(ΘC , p)

1 R ← [0, 1]d/δ Partition with step size δ
2 Ω← {} To store θ samples
3 t← 1
4 b← 0
5 x(t−1) ← ArbitrarySample(ΘC)
6 while |Ω| < K do
7 W ← {neighbours of x(t−1) inR} |W| = 2d

8 y←
{

x(t−1) with probability 1
2

w with probability 1
4d ∀w ∈W (i.e., w ∼ Uniform(W))

9 x(t) ← x(t−1)

10 if y ∈ ΘC then
11 x(t) ← y with probability min{1, p(y)

p(x(t−1))
}

12 if t > mixing phase and b = B then
13 θ(t) ← chosen from hypercube corresponding to x(t)

14 if θ(t) is consistent with A’s trajectory then
15 Ω← Ω + {θ(t)}
16 b← 0
17 t← t + 1
18 b← b + 1

end
19 return Ω

Procedure TraverseTree(θ, φ, τ)
1 for node in τ do
2 if node is leaf then
3 V(s) = θTφ(s)
4 else if node is chance then Transition s→ s′

5 V(s) = θTφ(s) + γ ∑s′∈S T(s, π 6E(s), s′)V(s′)
6 else if node is observed decision then
7 Vlo(s) = θTφ(s) + Vlo(s′)
8 Vhi(s) = θTφ(s) + Vhi(s′)
9 C ← C + {Vhi(s) ≥ Vlo(ζ) : ζ ∈ S(s)} Constraints

10 else if node is unobserved decision then
11 Vlo(s) = θTφ(s) + ∑d

i=1 θi mins′∈S(s){φi(s′)}
12 Vhi(s) = θTφ(s) + ∑d

i=1 θi maxs′∈S(s){φi(s′)}
end

13 return C

3.1.2.2. Policy Walk

Ramachandran and Amir [59] formally state the problem as Bayesian inference (here-
after Bayesian IRL). Their PolicyWalk MH algorithm (Algorithm 5) allows for domain
knowledge to be incorporated in the prior, with the potential for further improvement in
estimation accuracy.
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Their approach models the likelihood of state–action pairs as the occupancy under
the expert’s policy Pr((st, at)|R) = µE(st, at) with a Boltzmann distribution assumption
(Section 2.3). Unlike its use in [53] (Section 3.1.1.6), here the normalisation in the likelihood
has to be done over all (st, at) ∈ τ, which may be intractable depending on the state
space. Fortunately, because the algorithm only uses ratios of the densities, the normalising
constant Z can be discarded, and the resultant likelihood is

Pr(τ|R, π) ∝ exp

α ∑
(st ,at)∈τ

Qπ(st, at; R)

; (29)

hence, the posterior is

Pr(R, π|τ) ∝ p = exp

α ∑
(st ,at)∈τ

Qπ(st, at; R)

Pr(R), (30)

where p is used as the acceptance probability distribution in the MH procedure.

Algorithm 5: Policy Walk Algorithm [59]

Algorithm PolicyWalk(τ, P)
1 p← exp

(
α ∑(si ,ai)∈τ Qπ(si, ai, R)

)
Pr(R)

2 R ← R|S|/δ Partition with step size δ
3 R← RandomVector(R)
4 π ← PolicyIteration(MDP\R, R)
5 while k < K do
6 W ← {neighbours of R inR} |W| = 2|S|
7 R̃ ∼ Uniform(W)

8 Qπ,R̃ ← Qπ(s, a, R̃) ∀(s, a) ∈ S ×A Store Q-values in matrix
9 if ∃(s, a) ∈ S ×A, Qπ,R̃(s, π(s)) < Qπ,R̃(s, a) then

10 π̃ ← PolicyIteration(MDP\R, R̃, π) Update π wrt R̃
11 else
12 π̃ ← π

end

13 (R, π)← (R̃, π̃) with probability min{1, p(R̃,π̃)
p(R,π)

}
end

14 return R

For the prior Pr(R), they invoke the principle of maximum entropy to assume the
rewards are independent and identically distributed. Three different prior distribution
candidates are proposed:

• for prior-agnostic context, a uniform distribution over [−Rmax, Rmax]|S| or an improper
prior Pr(R) = 1 over R|S|;

• for real-world MDP with parsimonious reward structures, a Gaussian or Laplacian
prior (over R|S|); and

• for planning-type problems, where most states can be expected to have low or negative
rewards, with some having high rewards, a Beta distribution (over R|S|).
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An important distinction is that the PolicyWalk algorithm estimates the value of R
at each of the states directly, and therefore it does not make use of features or a (linear)
function approximator for R as in the previously discussed methods. Although they show
substantial improvements over the method in [40] for |S| ≤ 1000, larger (or infinite) state
spaces may not be feasible to learn over with this approach. The loss functions used in their
evaluation experiments are the `2-norm between the estimated and true reward functions
R, and the `1-norm for the estimated policy π evaluated under the true R. Bayesian IRL
methods are limited in scalability, as they have to define probabilities and/or calculate
value or quality function values for every point in the state–action space. Furthermore,
as in other previous methods, large computational overheads are associated with the need
to optimise the policy in the MDP.

The authors posit that the max-margin method from [40] is a special case of Bayesian
IRL where the obtained R is the MAP estimate with a Laplacian prior. This argument is
later extended by Choi and Kim [60] (Section 3.1.4). The solution space for this method is
the same as in [53], as per the analysis in [61].

3.1.2.3. Structured Generalisation

Rothkopf and Dimitrakakis [62] contribute a principled generalisation of the Bayesian
IRL approach (Section 3.1.2.2) with structured priors on rewards and policies. Given a
controlled Markov process ν = {S ,A, T} and a discount factor γ (or priors thereof), a prior
for a stochastic reward function Pr(ρ|ν) over the space of reward functionsR, and a prior
for the policy Pr(π|ρE, ν) over the policy space Π; with joint prior ∀π ∈ P ⊂ Π, ρ ∈ R ⊂ R

Pr(π, ρ|ν) ,
∫

ρ∈R
Pr(π|ρ, ν)d Pr(ρ|ν) (31)

the posterior on reward functions is

Pr(ρ|τ, ν) = Pr(ρ|s1:H , a1:H , ν) =

∫
ρ

∫
Π π(a1:H |s1:H)d Pr(π|ρ, ν)d Pr(ρ|ν)∫

R
∫

Π π(a1:H |s1:H)d Pr(π|ρ, ν)d Pr(ρ|ν)
. (32)

With this statistical model and the usual Boltzmann action choice probability as-
sumption (Section 2.3), they derive two MH algorithms: direct sampling from the joint
posterior distribution Pr(π, ρ|τ), and a hybrid Gibbs sampler procedure with a reward
sequence augmentation of the model with Pr(rt|st, at, ρE). These algorithms do not require
the demonstrations to be optimal, and are capable of finding policies that outperform the
agent’s actual policy with respect to its reward function, as well as revealing policies that
perform better than those recovered with previous IRL methods.

3.1.3. Maximum Entropy Methods

Bayesian IRL methods compute the likelihood as the total probability over each
action choice in a trajectory. This fails to account for global interdependencies of choices
along a trajectory. Maximum entropy methods focus on modelling the likelihood of entire
trajectories Pr(τ|R) as a whole, as opposed to individual action choices. They resolve the
ambiguity between trajectories, constrained to matching feature counts by maximising the
entropy of the distribution.

3.1.3.1. Maximum Entropy IRL

Ziebart et al. [52] provided a definitive method by which to discriminate between
reward function candidates by focusing on the characterisation of the likelihood Pr(τ|θ).
Although previous probabilistic approaches worked with distributions over policies, in-
evitably focusing on local action choices [53,59], this method is based on a distribution over
entire trajectories that is normalised globally. Multiple trajectories with the same feature
counts may obtain the same rewards under a given Rθ . Through the principle of maximum
entropy, they obtain a distribution that removes any preferences for trajectories beyond the
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requirement of matching feature counts, thereby resolving the ambiguity. It attributes equal
probabilities to trajectories with equal rewards, and exponentially higher probabilities to
trajectories with higher rewards, and does so globally over the trajectories (as opposed to
locally at the action level as is the case in [49,59]).

For observed trajectory realisations τE
j=1:m, this is equivalent to maximising the like-

lihood of the observed trajectories under a maximum entropy exponential family of
distributions (exp

(
θTΦ(τ)

)
)θ∈Θ. Thus, learning from observation entails finding θ∗ =

arg maxθ L(θ), where
L(θ) = ∑

τE
j=1:m

log Pr(τE
j |θ, T). (33)

With a partition function Z assumed constant for all (s, a, s′), and assuming the ef-
fects of transition dynamics on behaviour are negligible, the distribution of interest for
nondeterministic MDPs (which extends trivially to deterministic MDPs) is

Pr(τ|θ, T) = ∑
(s,a,s′)∈τ

T(s, a, s′)
exp

(
θTΦ(τ)

)
Z(θ, s, a, s′)

≈
exp

(
θTΦ(τ)

)
Z(θ, T) ∏

(s,a,s′)∈τ

T(s, a, s′).

(34)

The gradient of L(θ) is the difference between the average feature counts from ob-
served trajectories and the expected feature counts over all trajectories in the MDP. The lat-
ter can be expressed equivalently taking the expectation over states in the MDP instead,
requiring the state visitation frequencies µθ(s)

∇L(θ) =
1
m

m

∑
j=1

∑
st∈τE

j

φ(st)−∑
τ

[Pr(τ|θ, T) ∑
s∈τ

φ(s)]

= Φ̃(τE
j=1:m)−Eτ [Φ(τ)|θ, T]

= Φ̃(τE
j=1:m)−Es[φ(s)|θ, T]

=
1
m

m

∑
j=1

Φ(τE
j )−∑

s∈S
µθ(s)φ(s).

(35)

Thus, for the optimal θ, the feature expectations over the MDP match the empirical feature
expectations from the observed trajectories. The state visitation frequencies µθ(s) for an infi-
nite time horizon can be approximated for a large time horizon H by using a sample-based
algorithm (Algorithm 6). The above is equivalent to calculating the feature expectations
ṽπ with γ = 1; thus, here too we try to minimise the difference between trajectory values
between observed trajectories and trajectories from parameterised policy, but avoid actually
computing the policy in favor of using state occupancies obtained with Algorithm 6.

This approach is resilient to expert behaviour being suboptimal (cf. Section 5.1), as well
as the stochasticity of the environment. Although the algorithm is efficient by using all paths
below a fixed length, in their experiments with taxi driver path data Ziebart et al. [52] work
within a smaller, fixed class of reasonable trajectories resulting in significant improvements
in speed.
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Algorithm 6: Maximum Entropy IRL Algorithm [52]

Algorithm GetStateVisitationFreq(θ, T, D)
1 Zsi ← 1
2 for t← 1 to H do Backward pass

3 Zaij ← ∑sk
T(si, aij, sk) exp

(
θTφ(si)

)
Zsk cf. Equation (34)

4 Zsi ← ∑aij
Zaij

end

5 Pr(aij|si)←
Zaij
Zsi

Local action probability computation

6 µθ(si)
(t) ← D(si)

7 for t← 1 to H do Forward pass
8 µθ(si)

(t+1) ← ∑aij ∑sk
µθ(sk)

(t) Pr(aij|si)T(si, aij, sk)

9 t← t + 1
end

10 µθ(si)← ∑t µθ(si)
(t) Summing frequencies

11 return µθ

3.1.3.2. Maximum Causal Entropy IRL

Transition dynamics play an important role in MDPs. Ziebart et al. [39] frame the
agent’s decision making in the MDP as two interacting stochastic processes: the envi-
ronment’s transition dynamics T (assumed to be known—given or estimated from data),
and the agent’s policy π (unknown in the IRL problem). For each time step t in the sequence
(1, . . . , H), the state and action values are random variables St, At. These can be collected
into the random sequences S1:H , A1:H , respectively, and they determine the interaction
between the processes. When considered together, they form a trajectory τ.

In the MaxEnt approach [52], information is lost by failing to consider causality (time
direction) in the trajectory distribution Pr(τ|θ, T) ≡ Pr(S1:H , A1:H). This is addressed
in [39,63] by proposing to use an alternative way to decompose this joint probability by
using causally conditioned probabilities [64],

Pr(S1:H , A1:H) = Pr(S1:H ||A1:H−1)Pr(A1:H ||S1:H)

=
H

∏
t=1

Pr(St|S1:t−1, A1:t−1)
H

∏
t=1

Pr(At|A1:t−1, S1:t)
(36)

wherein future state variable outcomes have no effect on preceding variables. The state
transition dynamics follow the Markov property, and thus have a causally conditioned
probability T(S1:H ||A1:H−1) = ∏H

t=1 T(St, |St−1, At−1). An agent’s policy can also be mod-
elled as a causally conditioned probability distribution, though the factors in the product of
probabilities may not be Markovian, so π(A1:H ||S1:H) = ∏H

t=1 π(At, |A1:t−1, S1:t). The goal
in this framing of the IRL problem is to find the maximum causal entropy (MaxCausalEnt)
policy estimator

π̂∗ = arg max
π̂(A1:H ||S1:H)

Eτ [− log π̂(a1:H ||s1:H)], (37)

such that
Eτ [Φ(τ)] = Φ̃(τE),

∑
At

Pr(At|S1:t, A1:t−1) = 1 ∀S1:t, A1:t−1.
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Assuming, as is usually the case, that the features decompose linearly in time makes the
optimisation much simpler. The distribution (first-order Markovian policy) that optimises
this constrained problem is a Boltzmann policy (Section 2.3) and takes the recursive form

πθ(At | St) =
ZAt |St ,θ

ZSt ,θ

log ZAt |St ,θ = θTφ(St, At) + ∑
St+1

P(St+1 | St, At) log ZSt+1,θ

log ZSt ,θ = log ∑
At

ZAt |St ,θ = LogSumExpAt
{log ZAt |St ,θ}.

(38)

An estimate of θ can be obtained through optimisation on the gradient computed
through the calculation procedure in Algorithm 7. MaxCausalEnt was later expanded to
the infinite time horizon setting [65,66].

Algorithm 7: Maximum causal entropy algorithm [63,67]

Algorithm MaxCausalEntInference(θ)
1 for t← H to 1 do
2 if t = H then
3 log ZAt |St ,θ ← θTφ(St, At) ∀At, St

4 else
5 log ZAt |St ,θ ← θTφ(St, At) +ESt+1 [log ZSt+1,θ |St, At] ∀At, St

end
6 log ZSt ,θ ← softmaxAt log ZAt |St ,θ ∀St

7 Pr(At|St)←
ZAt |St ,θ

ZSt ,θ
∀At, St

end
8 return Pr(A|S)

Procedure GradientCalculation(Pr(A|S))
9 for t← 1 to H do

10 if t = 1 then
11 µθ(St, At)← Pr(St)Pr(At|St) ∀At, St

end
12 else
13 µθ(St, At)←

∑St−1,At−1
µθ(St−1, At−1)Pr(At|St−1, At−1)Pr(At|St) ∀At, St

end
14 E[Φ]← E[Φ] + ∑St ,At µθ(St, At)φ(St, At)

end
15 ∇θ log Pr(Ã||S̃)← Φ̃(τE)−E[Φ(τ)]

3.1.3.3. Extensions

Though the MaxEnt approach was groundbreaking and has been adopted as the de
facto canonical model for IRL, it shares shortcomings with other previous methods, such as
reliance on the feature map φ being given, and on a defined model T of the environment’s
transition dynamics. Work that addresses these issues is exposed in Sections 3.2 and 4.1,
respectively. Boularias et al. [68] provide a model-free method based on minimising
the relative entropy (KL-divergence) between the empirical distribution of trajectories
produced by a baseline policy and the distribution of demonstrated trajectories produced
by a learned policy. With p(τ) = Pr(τ) defined over the space of possible trajectories,
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and pπ,T(τ) = Pr(τ|π, T) the probability of a trajectory under a policy and transition
dynamics, the objective is

min
p ∑

τ

p(τ) ln
p(τ)

pπ,T(τ)
(39)

with constraints
|Eτ [Φ(τ)]− Φ̃i(τE)| ≤ εi ∀i = 1, . . . , d
p(τ) ≥ 0 ∀τ

∑τ p(τ) = 1.
(40)

The objective is minimised through stochastic gradient descent, and this method is
capable of learning from small demonstration samples. More recently, Snoswell et al. [69]
provide a model-free MaxEnt IRL method based on a unified view of the MaxEnt and
relative entropy methods that is capable of handling trajectories of variable lengths (with
time complexity linear in longest trajectory length), state-dependent action spaces, and non-
linear reward characterisations (Section 3.2). An approach that is similiar to MaxEnt IRL
and extends to continuous time and continuous state and action spaces is presented in [70].
Others have explored the use of semisupervised techniques by including unsupervised
trajectories in addition to expert trajectories in training [71]. Connections of MaxEnt IRL
with GAN and energy-based models have been drawn [72].

The MaxCausalEnt IRL method has been improved by including both (labelled) suc-
cessful and failed demonstrations [73], and by considering its performance degradation
as a result of diverging transition dynamics models in the agent and observer [74]. Its
connections to other methods from econometrics have been studied under a unified per-
spective [75].

3.1.4. MAP Inference Generalisation

We have seen ways to obtain the posterior reward distribution for given trajectories
through Bayesian and maximum entropy methods. Choi and Kim [60] analyse how best to
obtain point estimates for the reward function from the posterior. Although the posterior
mean is commonly used because it minimises the mean squared error, this measure entails
integrating over the entire space of reward functions, including those that are not consistent
with observed behaviour. Motivated by this issue, the authors suggest the MAP estimate
as a more robust alternative and introduce a gradient method by which to obtain MAP
estimates of the reward function, based on the (sub)differentiability of the distribution. In
an effort to unify previous methods under the Bayesian perspective, they demonstrate that
most of the IRL methods can be alternatively viewed as finding the MAP estimate, because
they work by maximising an objective (equivalent to the posterior in Bayesian terms) that
is comprised of an assessment term measuring compatibility between the reward and the
demonstrations (equivalent to the likelihood in Bayesian terms), and a regularisation term
measuring preference over realisations of the reward function (equivalent to the prior in
Bayesian terms).

The ability to use prior knowledge to model an agent’s reward function is an important
point from the ToM perspective. Actions alone do not provide enough information about
the desires driving them, and there is great advantage in utilising information from other
sources, such as task context or the type of actor [22], which can be incorporated in the form
of priors in probabilistic approaches. For example, in the algorithm in [59] (Section 3.1.2.2)
the observer has two “preconceptions” of the actor: the temperature α, representing how
capable of choosing high-valued actions the observer expects the actor to be, and the prior
Pr(R), a distribution over the reward functions that may be chosen based on the type of
actor or environment. Moreover, working with uncertainties may be useful to the observer.
In an interactive setting, they may choose to act more conservatively when there are high
uncertainties, or act to elicit more information from the actor to improve the confidence in
the reward function estimate.
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3.1.5. Linearly-Solvable MDPs

A severe limitation of the approaches we have reviewed thus far is their requirement
to solve the forward MDP on each iteration, which comes at a high computational cost. Dvi-
jotham and Todorov [76] present a method based on linearly solvable MDPs (LMDP) [77],
which was the first to not require solving the forward problem. LMDP provide an approx-
imation to MDPs that enables finding solutions faster at a small cost in accuracy. This is
achieved through a decomposition of the dynamics into the environment’s passive dynam-
ics Pr(s′|s) (not to be confused with transition dynamics Pr(s′|s, a)), assumed to be given,
and the control dynamics π(s′|s) (not to be confused with the policy π(a|s), though they
are closely related).

The reward function (here, cost to be minimised) R comprises a state term r(s) ≥ 0 (to
be inferred) and a control term that is the KL-divergence between the control dynamics
and the passive dynamics (in order for the KL divergence to be defined, it is required that
π(s′|s) = 0 when Pr(s′|s) = 0, a condition that is imposed),

R(s, π(·|s)) = r(s) + DKL(π(·|s)||Pr(·|s)). (41)

A desirability function z(s) = exp(−V(s)) is used to define the optimal control dynamics

π∗(s′|s) = Pr(s′|s)z(s′)
∑ζ Pr(ζ|s)z(ζ) . (42)

When the demonstration sample size is larger than the number of states, the method
can recover the value function analytically, as the MLE of the unconstrained, convex function

Pr(τ|V) = ∑
s′

µ̃E(s′)V(s′) + ∑
s

µ̃E(s) log ∑
s′

Pr(s′|s) exp
(
−V(s′)

)
, (43)

which is uniquely defined. The policy and reward function are subsequently recovered
from the value function estimate through z(s). When the size of the demonstration sample
is smaller than the number of states, the (negative) likelihood can be optimised with respect
to z(s) instead, although the resulting function is nonconvex and its optimisation is slower
and susceptible to local minima.

The value function can be represented as a look-up table or approximated as a linear
function of features. Additionally, they suggest a method to automatically initialise and
adapt the features in continuous space, employing Gaussian radial basis function kernels.
A further potential advantage of this method is that it does not require trajectories (s, a),
operating over state transitions (s, s′) instead.

Under passive dynamics, Pr(τ|s0) = ∏H
t=1 Pr(st|st−1) is the probability of a trajectory.

For the same trajectory to occur when the control dynamics are applied, the probability is

Pr(τ|s0, π) =
Pr(τ|s0) exp

(
−∑H

t=0 r(st)
)

z(s0)
. (44)

Note the similarity with MaxEnt IRL. Under uniform passive dynamics, MaxEnt IRL
is an equivalent approach for LMDP.

3.1.6. Direct Methods

Direct methods take a more analytical approach to solving the IRL problem, exploiting
the algebraic structure of the problem definition. Two classification methods proposed by
Klein et al. [78,79] address the important limitation in previous work of needing to solve
the MDP at every iteration. Orthogonally, two policy search methods operate through
direct loss minimisation [80] and policy gradient minimisation [81].
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3.1.6.1. Structured Classification-Based IRL

In Klein et al. [78], a multinomial classification with output labels for each action
a ∈ A is trained to yield a classification score given the states. The critical insight is
that the classification score q(s, a) can be interpreted as a proxy for the Q(s, a) function,
assigning a value to each state–action pair. This additionally affords a policy approximator
πC(s) = arg maxa q(s, a) (Equation (3)). The training dataset comes from expert trajectories
DC = {(st, at = πE(st))t}.

3.1.6.2. Cascaded Supervised IRL

Subsequent work by Klein et al. [79] retrieve a reward function estimate by chaining
two generic supervised learning steps. First, a multinomial classification step yields a
Q-function surrogate q, as in [78]. If the transition dynamics for the environment are
known, a reward function can be obtained directly based on the Bellman equation from
this classifier:

R(s, a) = q(s, a)− γ ∑
s′

T(s, a, s′)q(s′, πC(s′)). (45)

A key contribution of this work is removing the requirement of knowing the transi-
tion dynamics by approximating R through regression, as the second step in the process.
Although the regressors (s, a) are provided, this requires a response variable r̂, obtained
from the Bellman equation with

{r̂t = q(st, at)− γq(st+1, πC(st+1))}t. (46)

The resultant dataset is DR = {(st, at), r̂t}t. However, samples for state–actions that
differ from the expert’s (sk, a′ 6= ak) are needed to reduce the regression error. The authors
address this with a synthetic augmentation of the regression dataset with artificial samples
((st = sk, a′), rlo)t,∀a′ 6=πE(st). The reward for these samples is set to ensure it is always lower
than that of the expert’s samples: rlo = mink r̂k − 1.

3.1.6.3. Empirical Q-Space Estimation

Melo et al. [61] provide analytical solutions to the IRL problem through constraints
imposed by the policy observations, which can be optimal, perturbed, or incomplete. The
so-called inverse Bellman equation

R(s, a) = Q∗(s, a)− γ ∑
s′∈S

T(s, a, s′) ∑
a′∈A

π∗(s, a)Q∗(s, a) (47)

shows a one-to-one relationship between Q-functions and rewards. If the transition dynam-
ics are known, all we need to obtain a valid R is the Q-function, because the optimal policy
is assumed to be either deterministic (Equation (3)) or Boltzmann (Equation (11)). Given
the demonstrations and a prior on policies we can obtain an empirical Bayesian estimate of
the policy π̂(s, a). If the optimal policy is known for a given state, we have Q(s, ·) = 0 for
actions that are suboptimal and uniform across the optimal actions. If the optimal policy is
noisy, Q(s, a) = log(π̂(s,a))

α +V(s) and we can set V arbitrarily. If no information is available
for the policy at a given state, invoking the advantage function A(s, a) = Q(s, a)−V(s) we
have multiple degrees of freedom: arbitrary V(s), and A(s, ·) constrained to be ≤ 0 and
have at least one zero-valued element because every state has at least one optimal action.

3.1.6.4. Direct Loss Minimisation

Doerr et al. [80] propose performing direct (deterministic) policy search on a reward
function Rj(τ) = −L(τj, τ) that reflects the loss between observed (τj) and proposed (τ)
trajectories. That is, optimise the reward parameterisation weights through
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c(θ) =
M

∑
j

Rj(τ) (48)

where τ is a trajectory under parameters θ (e.g., generated by the optimal policy for Rθ) in
the same MDP as the demonstrations. Any off-the-shelf policy search method can be used
to optimise θ, with the authors employing the covariance matrix adaptation evolutionary
strategy (CMA-ES) optimiser.

3.1.6.5. Policy Gradient Minimisation

An alternative direct method is to find the reward function for which the parameterised
policy gradient is minimised, as is done by Pirotta and Restelli [81] and Metelli et al. [82].
This removes the need for solving the MDP.

3.1.7. Adversarial Methods

Ho and Ermon [83] introduced a model-free adversarial framework to learn a policy,
which is trained through RL under a reward function obtained through MaxCausalEnt IRL.
Although this work did not contribute new IRL algorithms, it proposed a new framing of
the problem analogous to generative adversarial networks (GAN) [84].

In tasks with large state–action spaces or unknown transition dynamics, the com-
putation of the partition function in the MaxEnt objective is intractable [85]. Adversar-
ial IRL methods [72,86] approximate the MaxEnt objective through sampling. A syn-
thetic policy πω generates trajectories maximising an entropy-regularised policy objective
E[∑t R̂θ(st, at)− log πω(at|st)], whereas a binary discriminator

Dθ(s, a) =
exp

(
R̂θ(s, a)

)
exp

(
R̂θ(s, a)

)
+ πω(a|s)

(49)

discerns between synthetic and expert trajectories. The two networks are trained adver-
sarially, resulting in a reward function approximator R̂θ and a policy πω. This shares
similarities with the earlier approach in [43] (Section 3.1.1.3).

The adversarial IRL approach has been extended for metalearning [85,87] (Section 6);
improved with an information bottleneck [88], semantic rewards [89], or end-to-end differ-
entiability through self-attention [90]; and adapted to language-conditioned tasks [91].

In this subsection, we have outlined the many approaches that have been proposed
to discriminate between the several reward functions that could explain a given set of
behavioural demonstrations. Maximum margin methods do so by attempting to maximise
the margin between the chosen reward function and any other alternatives (Section 3.1.1).
Probabilistic methods interpret the rewards as a random variable and the state–action pair
demonstrations as evidence, framing the problem as Bayesian inference to obtain a posterior
distribution over rewards (Section 3.1.2). This is extended in maximum entropy methods,
which seek to account for interdependencies between action choices at the trajectory level
to provide a more accurate way to select from plausible reward functions (Section 3.1.3). A
gradient method is proposed to obtain a MAP estimate of the rewards without needing to
integrate over the entire solution space, showing how most previous methods can be unified
under this perspective (Section 3.1.4). Others, by approximating the environment by using
the LMDP construct, are able to recover the reward function without needing the actions to
be given in the demonstrations (Section 3.1.5). A class of more direct methods exploit the
algebraic definition of the IRL problem to find solutions by means of optimisaion techniques
(Section 3.1.6). Finally, adversarial methods train a synthetic policy to generate trajectories
and a discriminator to discern between expert and synthetic trajectories, converging into a
useful reward approximator (Section 3.1.7). All of these approaches assume the solution
space for reward functions is defined a priori. In what ways may this solution space be
defined? In other words, how may these reward functions be characterised?
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3.2. Reward Function Characterisation

Early IRL methods assumed linear approximations of the reward function over basis
functions, or features φ(s, a). Features have a natural interpretation as elements of the
environment that can be perceived and on the basis of which decisions are made. Each
feature may be more or less valuable to the decision-making process given context and
goals, and they may have complex, logical, hierarchical relationships amongst them and
with respect to the rewards (beyond linear). Some approaches include “raw” or “primi-
tive” features that can simply be enumerated without taking their relevance into account,
and which form the basis on which to compose more complex or abstract features. In
most IRL methods, R defines how to combine and how much value to attribute to features,
placing them at the core of the problem. Important considerations arise from this, such as
whether they are perceived equally by the actor and the observer, including issues of partial
observability, beliefs, perspective taking, and differing ways to interpret and combine raw
features. A notable exception in early methods is Bayesian IRL [59] (Section 3.1.2.2), which
constructs a Markov chain in R space to sample from the space directly, avoiding the use
of features.

Although functions of features afford the possibility of using kernelisation to incorpo-
rate nonlinearity, the kernel versions of these functions can have intractable computation
and memory requirements. Methods based on matching feature expectations or feature
counts do not hold when the reward function is nonlinear in the features. The policy
matching method [53] (Section 3.1.1.6) used linear functions in the experiments but applies
to any R that is differentiable with respect to θ. They show their method to produce results
even when the knowledge of the features is incomplete, through experiments with features
that are transformed (linearly) and perturbed (by uniform noise).

Ratliff et al. [92] introduce an algorithmic boosting procedure based on maximum mar-
gin planning [49] (Section 3.1.1.5) to learn a nonlinear mapping from a set of feature primi-
tives that is capable of inducing new features, thereby reducing the feature engineering prob-
lem to a simple classification problem. The loss vector lsa = (1− I[(s, a) ∈ τE]) ∈ {0, 1}d,
where I is the indicator function, provides the loss for failing to match the demonstrations
τE. The procedure iterates through the following.

1. From current features Fk, optimise c(θ; Fk) (Equations (22) and (23)) and compute the
loss-augmented reward function Rθ = θTFk + lT.

2. Train πθ under current Rθ and obtain the best loss-augmented µθ . Early on in the
process, this may differ greatly from the given µE, as the features are not yet expres-
sive enough.

3. Gather a training dataset Dφ of features for the classifier, comprising:

(a) {(φ(s, a), 1)}, positive examples from {(s, a) : µθ(s, a) > 0},
(b) {(φ(s, a),−1)}, negative examples from {(s, a) : µE(s, a) > 0}.

4. Train a classifier on this data Dφ to generalise to other (s, a) /∈ Dφ.
5. Update the feature matrix Fk (expanding in d) by classifying every (s, a) ∈ S ×Awith

the classifier.

Subsequent work by the authors [93] generalises the boosting technique with a func-
tional approach, with a simpler and nonlinear variant with faster convergence and better
performance in experiments. They do so by replacing the cost term θTFjµ in the maximum
margin planning objective function by a more general ∑(s,a)∈S×A R(φj(s, a))µ(s, a); thus,
the objective becomes a functional in R and can be optimised through functional gradi-
ent descent. Additionally, they derive an exponentiated functional gradient algorithm to
ensure R is positive everywhere, with the aim to make it compatible with path-planning
algorithms such as A∗.
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A method to automatically initialise and adapt feature parameterisations in contin-
uous space is proposed in Dvijotham and Todorov [76] (Section 3.1.5). The features are
normalised Gaussian radial basis function kernels

φi(s; θφ) =
exp

(
θTφi

G(s)
)

∑j exp
(

θTφj
G(s)

) (50)

with G(s) = [1, sk, sksl ] ∀k ≤ l. The value function is linear in the kernels

V(s; θV , θφ) = θTV φ(s; θφ). (51)

In Levine et al. [94], the observer learns a regression tree over S to represent the reward
function, with the branching determined by (binary) feature primitives φ(0)(s) ∈ {0, 1}d0 ,
yielding features φ that are logical combinations of these primitives. This way, instead of
minimising a measure of deviation from expert demonstrations as in previous methods,
their algorithm discovers regions of the state–action space where the expressiveness of the
features is insufficient with respect to R, and updates the features accordingly, by iteratively
alternating between an R optimisation step and a φ fitting step. The tree has d leaf nodes
each containing a set of states Si ⊆ S , for i = 1, . . . , d. The features can be interpreted
as indicator functions φi(s) = I(s ∈ Si). Features deeper in the tree are more complex
combinations of feature primitives.

For the optimisation step, R is constrained by D, because the optimal policy under
R must be consistent with the demonstrations; the current features φ, so that R must
minimise the sum of squares error with its projection onto the feature space. The projection
is performed by means of GRφ ∈ Rd×|S| and GφR ∈ R|S|×d, defined to be

GRφ(Si, s) =

{
|Si|−1 if s ∈ Si

0 otherwise
GφR(s, Si) =

{
1 if s ∈ Si

0 otherwise

so that the vector GφRGRφR ∈ R|S| encodes the reward for each state, computed as the
average reward over the states in the Si that s belongs to. They set the optimisation step as
a sparse quadratic program

min
R,Rφ ,V

1
|S||A| ||R− GφRRφ||22 +

λ

K
||NRφ||1, (52)

such that

Rφ = GRφR
V(s) = R(s, a) + γ ∑s′ T(s, a, s′)V(s′) ∀(s, a) ∈ D
V(s) ≥ R(s, a) + γ ∑s′ T(s, a, s′)V(s′) + ε ∀s ∈ D, (s, a) /∈ D
V(s) ≥ R(s, a) + γ ∑s′ T(s, a, s′)V(s′) ∀s /∈ D,

where the regularisation term discourages similar features from taking new values by
employing a sparse matrix N ∈ RK×d of feature distances where each row k out of K =
d(d− 1)/2 corresponds to a pair of features, and Nk,i = −Nk,i′ = ∆(φi, φi′). The use of
`1-penalty for this term is justified by the preference for potentially mergeable features
to be very similar to each other, rather than having minimal distance to all others. In the
feature optimisation step, a reward function candidate is computed at each node with

R̂(s, a) =

{
|Si|−1 ∑s∈Si

R(s, a) if s ∈ Si

R(s, a) otherwise
(53)
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and the pertaining optimal policy trained with value iteration. If the optimal policy for
R̂ is consistent with D, set node as leaf node, R ← R̂, and terminate the iteration. The
feature distance measure ∆(φi, φi′) is defined to be proportional to the depth of the deepest
common parent node for φi and φi′ and acts as a measure against overfitting. Additionally,
the maximum allowed depth of the tree is increased with each iteration.

Their algorithm reaches convergence in very few iterations consistently. It does not
scale to continuous space because it needs to enumerate all s ∈ S for the optimisation
step, though approximation techniques may be used to construct a tractable set of con-
straints to allow for this. Incorporating priors in the fitting step may make learning more
efficient. Other regression techniques (including neural networks) can be used instead of
regression trees.

A limitation of the above nonlinear reward function methods is that they assume
optimal demonstrations. Two concurrent but differing works [95,96] leverage Gaussian
processes (GP) to learn nonlinear reward functions of the features that do not require the
expert behaviour to be optimal. Furthermore, unlike the above methods, which use the
max-margin heuristic to discriminate between reward functions, they are probabilistic.
Jin et al. [95] extend [42]’s projection method to continuous spaces by using kernels (GP).
The use of kernel machines has issues with scalability, with complexity increasing in the
amount of data, and requiring large numbers of training samples for tasks with high
variability in the reward structure [97]. Grounded on the MaxEnt perspective, the algo-
rithm in Levine et al. [96] learns a reward function and a kernel function by means of a
probabilistic model of the demonstrations and a GP prior on rewards. The learned kernel
function comprises feature weights that capture the relevance of each feature to the agent’s
reward function, an important capability from the ToM perspective. Though they use the
mean posterior of the learned reward distribution, they suggest that the entire distribution
could be used for different exploration/exploitation tradeoffs in policies, or to elicit more
information for regions of high uncertainty. Because it is linear in state, it may not converge
in large spaces. This was addressed in subsequent work by local approximation of the
reward function likelihood [98].

Kim and Park [99] extend the original AL method [42] with kernels (reproducing
kernels), simplifying the training and making it robust to local optima and both robust to
and efficient with small demonstration samples.

Choi and Kim [100] propose a nonparametric method to construct the features based on
Bayesian IRL. These features are again constructed from logical combinations of primitives.
The number of features does not need to be defined beforehand. The prior is an Indian
buffet process (IBP).

An alternative proposed by Michini and How [101] is to partition the demonstra-
tions into smaller subtrajectories to simplify the complexity requirements of the reward
function approximator. Interpreting them as subgoals, simpler reward functions are then
obtained for each. They contribute a Bayesian, nonparametric algorithm that automates
the partitioning based on a generative model. With a Chinese restaurant process (CRP)
prior, the number of partitions does not need to be predetermined and has no limitation in
number. This has a number of advantages. A subgoal may be as simple as a single state or
feature, so sparse reward functions can be obtained through this method. It also removes
sequential dependencies, making it robust to changes in the initial conditions and better
able to handle cyclic trajectories.

Metelli et al. [82] induce the features which, taken as basis functions, span the subspace
of reward functions for which the policy gradient is zero (i.e., under which the policy is
optimal). The reward function for which deviations from the demonstrations has the
highest penalty is selected from this subspace.
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The advent of deep architectures provided a way to learn reward functions directly
from “raw” state representations (such as images). In Ref. [97] leverage neural networks
trained through backpropagation, under the MaxEnt paradigm, to approximate complex,
nonlinear reward functions. The features may be learned by the network (e.g., convolu-
tional NN for visual states), without having to rely on handcrafted (given) feature functions.
Neural networks aptly scale to complex reward structures in large state spaces. As the
computational complexity of this method does not increase with the number of demon-
strations, it is suitable for lifelong learning—a desideratum for ToM-IRL. However, it
requires access to the MDP to train a policy at each iteration. Wulfmeier et al. [102] extend
their deep MaxEnt IRL approach [97] with new architectures for more complex environ-
ments. Their approach is shown to be scalable to large demonstration datasets. Similarly,
Bogdanovic et al. [103] demonstrate learning to play simple video games in pixel state
spaces from expert demonstrations with deep AL. They also show that their method can be
extended with an approach similar to [79] to retrieve the reward function [104]. NN are
also used to approximate R in [105], avoiding the need to solve the MDP at each iteration.
Others propose a binomial logistic regression classifier-based method to learn the value
and (nonlinear) reward functions without needing to solve the forward MDP [106].

Training models through Bayesian variational inference has been successful in un-
covering nonlinear reward functions. Jin et al. [56] employ deep GP to concurrently learn
abstract representations of state features and the reward function. The reward function
is modelled as a zero-mean GP prior as in [96], and representations are learned through
stacked latent GP layers. Bayesian neural networks (BNN) are finite-dimensional equiv-
alents to GP. Roa-Vicens et al. [57] apply BNN to solve the IRL problem by exploiting
their ability to robustly and efficiently characterise a reward function from point estimates
obtained by MaxCausalEnt. The process consists of an inference step optimising the likeli-
hood of the demonstrations to obtain point estimates of the rewards, and a learning step
that uses the point estimates to train a BNN mapping features to rewards.

Two approximations to MaxCausalEnt IRL for tasks with unknown dynamics have
been proposed: Finn et al. [107] address these issues with an adversarial, sample-based
approximation algorithm for MaxEnt IRL that is capable of learning nonlinear reward
functions as well as efficiently scaling to continuous, high-dimensional state spaces, with-
out relying on a transition dynamics model. Fu et al., introduce adversarial IRL (AIRL) [86].
Focusing on scalability to large, high-dimensional tasks, with unknown dynamics. their
algorithm obtains reward functions with robustness to changes in environment dynamics,
thereby being able to generalise better beyond training. Following [97], they use a NN
as a reward function approximator (i.e., there is no need for feature map). Furthermore,
by estimating the gradient through sampling, it does not require a transition dynamics
model to be given (but it requires the MDP to simulate in).

In this subsection, we have seen the important role that features play in characterising
the reward function. The expressivity of the reward function has a direct dependency on
the complexity of the features and their relationships. It is important for our discussion
to note that the features in the algorithms belong, phenomenologically, in the observer.
Though the agent’s decision making does indeed depend on features—things in the world
that can be perceived by it—there may or may not be an overlap in the features that the
agent and the observer perceive, depending on how the problem is framed conceptually.
As a simple illustrative example, consider a blind person walking on the street. As they
navigate by using tactile and auditory features, one may infer their “reward” function
(e.g., where they want to go) based on visual features that they are certainly not making use
of. Future IRL approaches in the context of ToM could benefit from preemptively selecting
features based on the type the agent is perceived to be, as a form of perspective-taking. This
could be achieved by means of the priors that some of the algorithms above have available
as “stored sources” of information, to be used in combination with “immediate sources”
observed from the external world [108]. Sections 4.1 and 4.2 provide support for this point
of view.
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Learning an agent’s exact R∗ is usually not possible, nor is it necessary, because the
use of knowing R is to act strategically in the context of a particular interaction [46]. This is
supported by Samuelson’s Theory of Revealed Preferences [37], which states that consumer
behaviour is the most reliable indicator of their preferences (read utilities or rewards).
The identifiability of the reward function was flagged and addressed as a fundamental
problem in IRL since its conception, but only recently analysis of the problem has been
undertaken. Kim et al. [109] formalise the problem and show its relation to properties of
the MDP, providing algorithms to establish whether an MDP’s rewards are identifiable.
This analysis is extended by Cao et al. [110], finding that a single reward function is not
identifiable even if the optimal policy is fully known, and that because the value function
parameterises the reward space, it is all that is required in conjunction with the optimal
policy to recover a suitable reward function (cf. Section 3.1.6.1). Interestingly, they also
show that, in the absence of a value function, rewards can be uniquely identified up to a
constant if a policy under different discount factors or transition dynamics is given. This
highlights the importance of parameters of the MDP (γ, T) beyond the reward function.
These recent findings ought to be incorporated into any new IRL algorithms.

4. Inferring an Agent’s Beliefs

The relationship between desires and beliefs is tightly coupled and influences an
agent’s perceived rationality—an agent’s behaviour that appears irrational under a set of
beliefs may turn out to be completely rational under another. The majority of work in IRL
has focused on recovering the reward function of the agent (i.e., its desires), and has mostly
neglected its beliefs. On the other hand, the beliefs of agents can be inferred by observing
their behaviour [111].

In the structural estimation of MDPs [112], the econometrics counterpart of IRL that
inspired its conception, an agent is represented by the tuple of “primitives” (R, T, γ), and in
conjunction with its policy π results in a “controlled stochastic process” {(st, at)}t=1,.... The
discount factor γ has an effect on the value function, capturing the agent’s time preference.
As such, it may be a parameter of interest in modelling an agent’s decision-making in ToM,
but IRL attempts at inferring this parameter are scarce. Using a prior over γ has been
suggested [62], or jointly optimising R and γ [113]. Other work addresses the challenge
of entanglement of rewards over time [110] and bias for short-term rewards [114]. Note
that in contrast to the assumption we have seen in IRL algorithms so far, the transition
dynamics T are modelled as part of the agent, i.e., they represent the agent’s subjective
beliefs about the outcomes of its actions. Seeing a given set of trajectories as realisations
of the controlled stochastic process, the goal is to uncover the driving policy and the
primitives that generated it (including both its desires and beliefs about the effects of its
actions on the environment). Other agent beliefs to be considered are those about the actual
state of the environment—observations alone may not be sufficient to know with certainty
the exact state of the environment. In this section, we review how IRL methods have
addressed beliefs as relating to the transition dynamics in Section 4.1 and state observability
in Section 4.2.

4.1. Transition Dynamics

A strong assumption of previous IRL methods is that the transition dynamics model
of the agent is known by the observer (e.g., [40,59]), or assumed to have a negligible effect
on the agent’s decision making (e.g., [52]) [115]. Numerous model-free IRL methods have
been proposed (e.g., [106,116–118]). Here we are interested in how differences between the
actual dynamics and the expert’s beliefs thereof may be modelled. IRL methods to estimate
the environment’s actual transition dynamics T(s, a, s′) = Pr(s′|s, a) and the agent’s belief
about them TE(s, a, s′) = Pr(s′|s, a) as well as the rewards have been proposed: by mapping
transition probabilities to distributions over features [115]; maximising the likelihood of
demonstrations with respect to parameters for the reward function, real transition dy-
namics, and agent’s belief about the transition dynamics θ = (θR, θT , θE) [119]; or by first
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observing the agent in tasks with known rewards and subsequently learning the parameter-
isation θ = (θj=1:m, θE) (requiring the real transition dynamics to be known) [120]. Others
perform reward learning with biased beliefs about dynamics [121], study degradation in
performance as the transition functions differ between actor and observer [74], or study
the impacts of changes in the environment dynamics [122,123]. In earlier work, internal
dynamics models are learnt from demonstrations without learning the reward, in a subset
of tasks with linear-Gaussian dynamics and quadratic rewards [124], or selecting from a
discrete set of candidate models [125,126].

4.2. State Observability

False belief tasks are prominent ToM assessment tasks [6]. MDPs, while providing a
compact paradigm for the study of rational decision making, have a critical limitation in
the context of algorithmic approaches to ToM: agents’ beliefs about the state of the world
are always accurate [19]. Partially observable MDPs (POMDP) are an extension of the
MDP construct in which states may not be fully identified by the agent from perceptual
information. Instead, agents have a belief distribution b(s) over S , given the evidence up to
the current time step, denoting the agent’s belief that a given state is the actual current state.
The formal definition of a POMDP entails a tuple (S ,A, T, D, γ,R, Ω,O). The elements
that differentiate it from a MDP are a space of observations Ω and an observation distribu-
tion O = Pr(o|s) over Ω encoding what actual states are consistent with an observation
(percept). The uncertainty stemming from incomplete state information provides a context
in which to model the beliefs of an agent.

Several IRL methods have been proposed under the POMDP formulation, including
a general framework to extend existing IRL methods where agents act according to their
beliefs, as opposed to the actual state, so policies are a mapping π : ∆ → A, where ∆ is
the belief simplex in |S| − 1 dimensions [127]. Others specifically provide a computational
implementation of ToM, using Bayesian inference to reconstruct agents’ joint belief state
and desires [19]. In this approach, the observer encodes this joint distribution in a dynamic
Bayesian network (DBN) with world state (Y), agent state (X), percept (O), belief (B), reward
(R), and action (A) variables. The world and agent states result from a decomposition
of the MDP state S, because the agent state x ∈ X is fully observed, but the world state
y ∈ Y is not. The agent’s belief at a given time t is a probability b(y) over Y denoting
the agent’s belief that a given y is the actual state of the world (fixed for the entirety of a
given episode). The observer’s joint distribution (conditioned on a given sequence up to
time T ≥ t) of belief at time t and reward function can be recovered from the DBN. Beliefs
are smoothed retrospectively: the observer’s model of the beliefs of the agent at time t is
informed by behaviour up to time T ≥ t, bearing similarity to how humans model other’s
beliefs. Earlier work by the authors under the name of Bayesian inverse planning [33,128],
is a subset of the IRL problem, wherein the reward function is known to be constrained to
R(s) = −1 ∀s ∈ S \ sg, where sg is the absorbing goal state.

To summarise, one cannot assume that agents have perfect knowledge of the effects
of performing an action (i.e., their transition dynamics model may not match that of the
environment), or what the actual state of the world is (i.e., their beliefs about the current
state may be a more or less accurate distribution over states based on observations of the
environment). Furthermore, from a ToM perspective, the observer’s transition dynamics
and current state models may differ from both the actual environment’s and the agent’s.
For IRL methods that rely on the actual state and transition dynamics being given to be
suitable in the ToM context, they need to be expanded to incorporate these considerations
about beliefs.

Orthogonally, there is yet another factor to be considered. Even if an agent were to
have a clearly defined reward function and perfectly accurate beliefs, its behaviour may
not be in accordance with them, be it due to a lack of skill or due to other extrinsic effects.
Bridging the gap between desires and beliefs on the one hand and behaviour (actions) on
the other are an agent’s intentions.
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5. Agent’s Intentions

Intentions reflect an agent’s commitment to acting, guided by their beliefs, toward
states of the world that align with their desires. In the MDP formulation, intentions manifest
as the selection of actions so as to maximise expected utility, i.e., in the agent’s policy. Here
we take a brief look at IRL methods that have taken the agent’s intentions into account, be
it through considering potentially suboptimal behaviour with respect to the true rewards
(Section 5.1), or the possibility that agents have multiple intentions (Section 5.2).

5.1. Suboptimal Demonstrations

The policy is ultimately what generates behaviour (trajectories). Although, under the
assumption of rationality, the policy is expected to choose actions so as to maximise value,
it may not achieve this optimally, reflecting the skill of the agent. This creates a challenge
for the recovery of a reward function; we may recover a reward function under which
the observed behaviour is optimal, but the behaviour may not have been optimal with
respect to the true reward function in the first place. Some methods avoid dealing with
this by making their goal to mimic the expert directly, in a manner agnostic about the
underlying MDP and R (although they employ policy occupancies obtained in the MDP
under the proposed rewards) [49] (Section 3.1.1.5). Another example [98], designed for
large state spaces, requires local optimality only. The use of Boltzmann policies in many
of the methods reviewed (e.g., [53,59]) entails a certain level of suboptimality given by
the stochasticity of the policy—the agent’s rationality is captured, to some degree, in the
temperature parameter that defines the bias of the action choice distribution for higher
expected value actions. This may also be related to curiosity or openness to risk.

Relaxing the assumption that behaviour needs to be consistent with rewards allows for
modelling suboptimal agents in an influence diagram framework (including agents with
changing desires) [129], through a model-free relative-entropy approach [68]. Alternatively,
suboptimal behaviour may in fact be optimal with respect to an agent’s incorrect belief
about the transition dynamics (see Section 4.1) [120], or it may otherwise be attributed
to random perturbations in the environment [130,131], or modelled as different experts
with a common underlying reward function [132]. Other work seeks a balance between
how compatible a reward function is with demonstrations, and how effective it is for
learning a policy [113]. If an approximate ranking of demonstrations is provided, a reward
function that explains the ranking can be extrapolated to train policies that outperform the
demonstrator [133]. Others have shown the usefulness of (labelled) successful and failed
demonstrations for learning [73]. The importance of modelling biases in human behaviour
(beyond noisy rationality or simplicity assumptions) has been highlighted in [134].

5.2. Multiple Intentions

When inferring an agent’s reward function from its behaviour, it is important to take
context into account. There may be different types of agents, or agents with different
preferences for achieving the same goal, with different skills [135] or options [136] or
intentions [116], or different types of goal for a single agent, so being able to produce
multiple reward functions is desirable. Thus, in what is known as multiple intention IRL
(MI-IRL), two problems need to be solved: clustering trajectories based on their intentions,
and recovering the reward function for each of the clusters. Methods to achieve this can be
classified by whether the number of distinct reward functions is known ex-ante or not.

Parametric methods require the number of reward functions to be known ex-ante.
Unsupervised clustering via expectation–maximisation (EM) can be employed to discern
common intentions to find a Rθk for each cluster k, with the assumption that there are K < m
clusters [137]. This approach has been extended with gradient methods by constraining the
optimisation problem to rewards that are stationary points of the value function, with the
selected reward being the MLE of the estimated policy gradient [116]. Subsequent work
built on this method to account for nonstationarity in the environment and the expert’s
policy [138]. To scale Bayesian IRL to complex environments with large, high-dimensional
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state spaces (e.g., robotics), others propose metalearning the reward function parameters,
finding a parameterisation for each of the provided demonstrations by assuming the reward
weights are close to the mean of the weights over the tasks [139].

Nonparameteric methods do not require the number of different reward functions to
be known beforehand. Bayesian nonparametric methods have been proposed to achieve
this, extending previous parametric clustering methods with the structured generalisation
of Bayesian IRL from [62] in [140], or using a Dirichlet process mixture model to draw
cluster assignments and reward functions for each cluster through a MCMC algorithm,
with the ability to transfer modelled information to new observations [141]. MaxEnt
methods combining Dirichlet process-based clustering of demonstrations have also been
proposed, including a gradient-based solution based on a Lagrangian relaxation of the re-
sulting nonlinear optimisation problem [142], and employing a deep reward network [143].
Others extend this thinking to continuous action spaces via the path integral MaxEnt
method from [70] with hierarchical clustering [144]. A more recent method based on con-
textual MDPs is able to learn from different experts with nonstationary policies without an
assumption of optimality employing subgradient-based optimisation [145].

As we have seen, mentalising complex agents in the real world will require algorithms
that can handle discrepancies between intentions and behaviour—manifesting as subop-
timal behaviour with respect to the true reward function, as well as the possibility that
agents have multiple intentions they behave in accordance with, and whose number may
be unknown. Despite the number of operational issues that IRL needs to overcome to be
a practicable algorithmic basis for ToM, our review has shown that there is a wealth of
methods that aptly address each or some combination of them. What remains to be accom-
plished is the development of methods capable of modelling not only desires, but beliefs
and intentions too, and to do so in large and complex spaces with degrees of uncertainty.
For these methods to be truly effective, they ought to heed the considerations in the fol-
lowing section, toward which valuable contributions have been made independently, as
we outline.

6. Further Considerations

Having reviewed the main approaches to IRL and how they relate to desires, beliefs,
and intentions, here we outline some remaining important considerations and open chal-
lenges. IRL approaches to ToM need to be able to handle vast, complex state spaces to be
successful in the real world. A number of methods made advances toward extrapolating to
a large state space from demonstrations in a small subset of the space, through minimising
the relative entropy between the observed and a learned policy’s trajectories [68], by using
local approximations of the reward function [98], or employing deep neural networks
(DNN) as reward function approximators [102,146] or feature encoders [147]. Others scale
Bayesian IRL to large state spaces, through approximate variational inference (with the
additional advantage of not requiring it to solve the forward MDP at each iteration) [58],
or leveraging multiple RL algorithms with different configurations as approximators to
create a multifidelity Bayesian optimization framework [148]. Recent work has shown
promising results in large state spaces such as pixel inputs in the Atari suite [133,147,149],
or real-world driving data [69,150].

The number of demonstrations required for accurate modelling is an important con-
sideration for inference, and thus for ToM algorithms. Feature expectation estimates can
be obtained from observed trajectories, and (under a linear reward parameterisation) the
number of expert demonstrations required scales with the dimensions of the features d,
but not with |S| or the complexity of πE. Estimating the actor’s policy from empirical
averages has the advantage of not requiring transition dynamics model to be known. On
the other hand, it requires large amounts of trajectory data to be accurate, as well as being
limited to states that are visited by the actor. This may be addressed through synthetic data,
such as generating trajectories from the learned reward function mimicking the expert to
generalise the expert’s actions to unseen state space regions [35]. Sample efficiency also
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affects adaptation to new tasks (e.g., new agents, or new contexts). Metalearning methods
seek to uncover the structural similarities of different tasks to be able to more readily
adapt to new tasks.It has been used to learn effective initialisation of the reward network
parameters in AIRL [87,139], and to learn the similarities between tasks to build a prior,
showing good performance in navigation tasks from pixels [151], or to small and state-only
demonstration samples by conditioning the function approximators on context [152]. These,
however, require known transition dynamics, a shortcoming addressed by disentangling
the reward function from the environment dynamics through probabilistic embeddings,
adapting to different tasks from single demonstrations through conditioning the rewards
and policy on a latent context variable [85].

Another important consideration is how noisy or incomplete the observations are.
The effect of noise in features can be mitigated by propagating information between
states [153]. Incomplete trajectories, for example due to occlusion, have been addressed
with a generalisation of the MaxEnt IRL approach [154]. Work has gone to establish
whether an observation is sufficient to recover a (linear) reward function, allowing for
new information to be included incrementally and identifying irrelevant features [155].
Both occlusions in trajectories and noisy perception by the observer are addressed with an
approach grounded in Bayesian IRL (Section 3.1.2.2) and the MAP inference generalisation
(Section 3.1.4) [156]. In more realistic settings, the actions at each timestep may not be
available and the observer may need to work with state-only trajectories. This is known as
the imitation from observation (IfO) problem (see [157] for a recent review). Some existing
IRL algorithms naturally extend to this setting, e.g., [76,149,152]. IfO considers challenges
relevant to ToM, such as perceptual encoding (vision, proprioception) [158], embodiment
mismatch [159], and differences in viewpoint [160].

A clear direction for expansion of IRL methods, and especially so for their applicability
as algorithmic ToM, is to settings where the observer not only observes but also acts in
the environment or is able to communicate with the actor. In the cooperative setting,
although the reward function may be common to both, the policies must complement
each other in maximising rewards [161]. Incorporating human feedback in the learning
process can be done by querying the expert for action at specific states [55], correcting
suboptimal behaviour as it occurs [162], providing pairwise preferences between segments
of trajectories [163], or evaluating counterfactual (“what if?”) scenarios generated by the
observer and thus reducing the number of interactions with the environment [50]. Human
expertise can also be used to teach features to the observer [164].

The natural and most promising extension of the participative setting is to interactions
where both agents have ToM abilities. This gives raise to game-theoretic considerations
as both agents model each other’s strategies. In psychological game theory, payoffs asso-
ciated with emotions such as guilt or anger are operationalised into the utility function,
going beyond the material payoff-based utility of classical game theory [29]. This frame-
work has been used to predict behaviour in cooperative games [165] and to model the
perception of other’s intentions [166,167]. Emotions and mental states are closely interre-
lated, and computational ToM approaches may benefit from incorporating empathy and
affective mentalising, as well as providing a foundation to develop standalone models
thereof [168,169].

The overlap between IRL and game theory is studied in the game identification
literature in econometrics [170,171], wherein the payoffs are estimated from behaviour an-
alytically. Others do so algorithmically, by employing the game-theoretic concept of regret
in conjunction with MaxEnt [172], or efficient linear programming in succinct games [173],
or learning both the system dynamics and the reward function of multiagent nonzero-sum
multistage games [174]. The extension from two-player games to the multiagent setting
(e.g., [118,175–177]) is nontrivial and may result in emergent phenomena, particularly when
sophisticated ToM is present.
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An interesting application of algorithmic ToM is as applied to oneself, i.e., as a means
to introspection [178]. Behaviour-rating methods for reward learning (e.g., [121]) could
provide a way for an agent to rate their own behaviour retrospectively and adjust their
own mental models accordingly. Most of the considerations, issues, and extensions covered
in this review may be applicable to the introspection application of algorithmic ToM,
providing an avenue for more sophisticated artificial agents with better social abilities.

Priors and inductive biases are built into IRL algorithms and play an important role
in narrowing down the space of reward function candidates. These afford a degree of
flexibility for encoding relevant ToM heuristics in an algorithm’s design, such as normative
assumptions [134,179], neurophysiological correlates [21,180,181], or models of human
decision-making [182] and habits [183]. More generally, an observer may include their
experiences into the prior over time, and develop different structured priors in a hierarchical
model, selecting them based on the agent’s perceived “type” [184,185]. Furthermore,
beyond generalisation, the observer may build agent-specific models that encode their
idiosyncrasies, refined through repeated interactions [22].

Models for planning, including ToM, must be abstract, causal, and structured [11].
The IRL approach to ToM is highly abstract—compressing an agent’s mental dispositions
as a single reward function and environment model. The MDP framework in which it is
modelled provides a causal structure, and prominent foundational algorithms, e.g., [39,63],
place emphasis on this causality. Some work has gone to incorporate further structure into
IRL-ToM, including the use of structured priors [62], dynamic Bayesian networks [19,128],
compositional desires [186], hierarchical IRL [136,187,188], or the extension of IRL to rela-
tional domains [122,189] and contextual MDPs [145]. However, the expressiveness of MDPs
as a way to encapsulate the decision-making task may be limited. Others have explored IRL
and similar problems in alternative tasks’ representations such as decision trees [46], influ-
ence diagrams, [129], Markov random field-based graphs [153], adaptive state graphs [190],
and and–or graphs [191]. These and other more structured representations afford an avenue
for further research for IRL-ToM.

Although the last two decades have produced a substantial amount of IRL methods
with practical results, the algorithms are highly specific to the tasks and environments for
which they are trained [29]. For IRL algorithms to be useful for ToM, they must be able to
make use of different cues available in different contexts [4]. Environments from the field
of control have provided a useful basis on which to develop foundational IRL methods,
but there is promise in expanding to more dynamic environments involving other agents,
such as lane switching for autonomous driving [146], games with strategic modelling of
others [192], and specific benchmarks for evaluation [143,193–196]. We need environments
in which we can test both the individual differences in ToM and the degree to which some
tasks require ToM more than others [197].

7. Conclusions

We have provided background on the IRL problem, reviewed the main algorithmic
approaches with their formal descriptions, and discussed the applicability of IRL concepts
as the algorithmic basis of a ToM in AI. The main goal in the IRL problem is to retrieve
the reward function that best explains an agent’s behaviour—the agent’s desires in the
ToM context. The foremost challenge in IRL comes from it being an ill-posed problem:
a policy may be optimal under any number of reward functions, including degenerate
ones; therefore, algorithms must incorporate heuristics to discriminate between solutions.
Another important consideration is how the reward function is characterised, usually as a
function of features of the environment. Different approaches have been taken to define
the features and structure that characterise this function.
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Some IRL methods also address other core ToM attitudes: beliefs about the environ-
mental dynamics modelled as the transition probabilities and about the states in the form
of observations, and intentions, with considerations of potentially suboptimal observed
behaviour with respect to the true agent goals and the modelling of multiple intentions.
Further considerations have been addressed in IRL algorithms, including the size and
complexity of the state space, sample efficiency and robustness to noisy or incomplete
observations, the participation of the observer in the environment and its game-theoretical
and recursive consequences, ToM as introspection, the incorporation of prior knowledge
and structured representations, and the environments and benchmarks available for further
research and applications.

As demonstrated in this review, the IRL framework encapsulates the core elements of
ToM succinctly while providing enough flexibility for many and various solution meth-
ods and extensions to be developed. As such, it holds great promise as a cradle for the
algorithmic basis of a ToM in AI.
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