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Abstract: New technologies are developed inside today’s companies with the ascent of Industry 4.0
paradigm; Artificial Intelligence applied to Predictive Maintenance is one of these, helping factories
automate their systems in detecting anomalies. The deviation of statistical features from standard
operating conditions computed on collected data is a common investigation technique that companies
use. The information loss due to transformation from raw data to extracted features is a problem
of this approach. Furthermore, a common Predictive Maintenance framework requires historical
data about failures that often do not exist, neglecting the possibility of applying it. This paper
uses Artificial Intelligence as Machine Learning models to recognize when something changes in
the data’s behavior collected up to that moment, also helping companies to gather a preliminary
dataset for future Predictive Maintenance implementation. The aim concerns a framework in which
several sensors are used to collect data by adopting a sensor fusion approach. The architecture is
composed of an optimized software system able to enhance the computation scalability and the
response time regarding novelty detection. This article analyzes the proposed architecture, then
explains a proof-of-concept development using a digital model; finally, two real cases are studied
to show how the framework behaves in a real environment. The analysis done in this paper has an
application-oriented approach; hence a company can directly use the framework in its systems.

Keywords: predictive maintenance; prognostic; novelty detection; machine learning; fault detection;
anomaly detection; condition monitoring; industrial real case study

1. Introduction

Since the 2010s, Artificial Intelligence (AI) and Machine Learning (ML) have become
standard ways to tackle complex problems relating to Industry, Medical, Manufacturing, or
Economics. Flexibility, generality, and efficiency are only some of the qualities permitted by
AI to be adopted into multiple scenarios. Furthermore, academics have recently enhanced
learning programs, research programs, and collaboration projects with companies to re-
spond to the industrial world’s increasing AI and ML needs. With the upcoming Industry
5.0 paradigm, the term Predictive Maintenance (PdM) is becoming more common in the
language of companies today. This type of maintenance plays an interesting role in prevent-
ing machine failures and reducing the downtime cost in a preponderant way. The cost of
unplanned failure occurring in industrial machines is estimated at USD 50 billion annually
as reported in the analysis by Ref. [1]. An explanation of how predictive maintenance is
able to reduce the overall costs by 5–10% and the standard maintenance costs by 20–50% is
reported in Ref. [2], highlighting its impact on the company’s economic aspect.

Throughout the years, the term “Maintenance” has taken different shapes and termi-
nologies, as shown in (Figure 1) [3]:
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• Reactive/Corrective Maintenance: it intervenes after a problem has occurred and is
considered the oldest one;

• Aggressive Maintenance: it focuses on the performance improvement of production
equipment design;

• Proactive Maintenance: it prevents machine failures and is considered to be the
most used maintenance strategy today; two sub-maintenance strategies derive from
this approach:

– Preventive Maintenance: it is based on a periodic components’ substitution, gener-
ally the most used ones;

– Predictive Maintenance: it is able to predict when a problem will occur in the future.

Figure 1. Types of maintenance.

Since the first industrial revolution, the predictive maintenance branch has increased
companies’ and scientific community’s interest in an exponential way [4]. Predictive
Maintenance monitors the real status of the machine by employing events, states, and
sensor data. With this kind of maintenance, component substitution is done when it is truly
necessary. This approach represents the future trend of maintenance thanks to its ability to
estimate when a failure will occur, reducing the cost of useless substitution and harmful
downtime. Its main drawback concerns the need to collect numerous data to perform an
estimation with adequate accuracy.

Often, the term “Predictive Maintenance” is used improperly by engineers, blurring
it with Condition Monitoring (CM). There is a substantial difference between these two
methodologies [5]: CM is based on the overcome of specific thresholds computed by a
domain expert or on the datasheet basis; hence, if a warning appears, the maintainer
has to intervene in solving the anomaly. With CM, there is no prediction about future
issues, and an alarm is emitted when a problem has already appeared. CM is deeply
explored in different application domains, as reported in Refs. [6–8]. The PdM’s approach
is different from CM’s; using the collected data, PdM can predict when an issue will appear
in the future, giving time to the maintainer to intervene before the breakdown. These
two techniques are also related to two other common words: diagnostics and prognostics.
Diagnostics is related to analyzing the past collected data, studying which damage occurred
and the cause of that; similar to the medical environment, prognostics analyzes the data
collected in the past together with the present ones to predict issues and failures in the
future [9]. In detail, according to the definition of ISO 13381-1 [10], prognostics has the
quirk to predict the Remaining Useful Life (RUL) of the components analyzed. Different
models exist to perform a prognosis, as reported in Ref. [11], in which three different
variants are well explained. Today’s PdM methodologies use more complex algorithms
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than the statistical ones used in the past. Among these methodologies, Machine Learning
and Deep Learning (DL) cover part of today’s algorithms used to recognize anomalies
and predict the Remaining Useful Life (RUL) of components analyzed. The main and
common problem that companies have when working with standard algorithms concerns
the complete absence of data collection about failures encountered in the past (e.g., a new
machine). Hence, a standard ML algorithm cannot be applied due to the proper model
training unfeasibility. This approach requires a labeled dataset that is already collected and
well-known by an expert, in which each label represents the machine’s status; hence, the
label gives information about the component’s RUL. When a gathered dataset does not
exist (the failures labeled dataset is not present), a standard approach cannot be applied.
A recent research field—called “Novelty Detection” (ND)—responds to this demand by
searching for a solution to apply the PdM without a dataset collected. This paper concerns
a fast and easy implementation of the Novelty Detection Framework (NDF). The paper is
organized into different chapters: Section 2 presents the state-of-art and the “Related Works”
about this topic; Section 3 reports the framework’s architecture with the analysis performed
during the study; Section 4 concerns the Proof-of-Concept in which the framework is
applied to a digital model, and at the end, two real cases are analyzed in Section 5.

2. State-of-Art and Related Works

PdM strategies used statistical parameters to study their deviation in the past, predict-
ing when they exceeded predefined thresholds, as reported in Ref. [12]. Concerning ML,
numerous algorithms could be used for this scope, from supervised, such as Refs. [13–15]
to unsupervised, such as Ref. [16] or Ref. [17]. Generally, the Supervised/Unsupervised
choice depends on how much and which type of data has been collected. In the case of a
small amount of data, ML and DL are quite similar from the prediction accuracy point of
view, as reported in Ref. [18]; as the number of data increases, the quality of DL predic-
tion increases too. An example of a DL algorithm can be the Long Short-Term Memory
LSTM—as reported in Ref. [19]—which requests a huge amount of data to perform PdM
predicting RUL in the best way. Other examples that use DL models can be Ref. [20],
where CNN is applied to a rotating machinery, or Ref. [21], where a gated recurrent unit
network is applied to three different use cases. Other techniques are also used for PdM
applications, such as the method used in Ref. [22] where an alternative approach performs
failures identification considering the environmental noise in which a typical industrial
machine is influenced (vibration due to wear or due to other vibrations coming from other
machines as examples). Another approach being developed these years involves applying
Reinforcement Learning algorithms to the PdM context, as reported in Ref. [23].

Most of the time, developed and known algorithms require failure data experience
already collected to train a model able to recognize anomalies, as reported in the previous
paragraph. Often, a common algorithm cannot be applied due to the absence of this failure
collection. This paper’s idea concerns solving this problem by developing an alternative
framework algorithm that does not need any past experience with failures to recognize
anomalies or problems. The technique is also known as Novelty Detection, a parallel
branch of Predictive Maintenance that can predict failures and changes without a dataset
already collected. ND can be applied in different situations depending on the data pattern
collected; it can be recognized in three main contexts [24]:

• Point pattern: where individual instances are different compared to the trained ones;
• Collective pattern: in which a small sub-dataset is a novelty concerning the whole distribution;
• Contextual pattern: in which novelty can happen within a specific context.

This paper concerns Contextual Pattern recognition; hence, the framework recognizes
a change in the data due to some external events (environment, maintenance operation).
Novelty detection has been developed in the scientific community thanks to its ability to
satisfy company requirements. Papers such as Refs. [5], [17], or [25] have worked on this
topic, framing this as a new research field to help companies implement a preliminary
framework to collect data until a real PdM infrastructure is built. This detection type can



Algorithms 2023, 16, 61 4 of 26

be applied in numerous domains such as medical, robotic/industrial, vision surveillance,
and other fields, as reported in Ref. [26] that deeply analyze this research topic.

A common Novelty Detection algorithm often uses complex algorithms to perform its
tasks, but sometimes, highly skilled systems are unavailable (e.g., embedded systems). The
work developed in this paper wants to give an alternative use of ML that differs from a
common utilization, able to perform novelty recognition in real-time, requiring very few
computational efforts. Easy mathematical computations allow us to use an embedded
device as a framework’s container, which is not common in the known approaches. The
alternative approach is based on a real-time ML error computation between predicted and
real data to understand if the incoming information is similar to the trained ones; in case of
deviations, a domain expert understands if the system’s status is healthy or faulty. This
technique can be used without statistical features but with proper raw data preprocess-
ing, as reported in the “Architecture paragraph” below. A comparison between known
algorithms and the one used in this paper can be resumed in the following clear steps:

• Low computational effort required: thanks to easy mathematical computations and the
models selected, this algorithm requires low energy in terms of computational effort;

• Real-time: thanks to the low computational effort, the system can work in real-time as
reported in the “Discussion paragraph” in which the resume table reports the small
time required for each framework’s stage;

• Flexibility and scalability: the framework has a general template in which different
sensors can collect data to understand if some of them are changing from the trained
one. The sensor adding is always possible without changing anything in the frame-
work but just retraining/updating the model with new data added (as explained in
the following paragraph);

• Data collection: using this framework, healthy and faulty collection can be collected
in order to build a complete dataset for a future PdM implementation.

3. Proposed Predictive Maintenance Architecture

The architecture proposed in this paper concerns a “Novelty Detection Framework”
(NDF). The system is divided into modules responsible for performing different tasks
(Figure 2). Every framework’s unit in this chapter is explained in detail to understand how
it works.

3.1. Maintained System

The elements of this section interconnect the machine’s parts under study with the
software framework. This module can be composed of sensors, cameras, machine logs,
and every element can help the data collection phase. As mentioned, this framework’s
essence is based on comparing the initial trained data to the actual ones to recognize if
some difference appears in the data pattern. In a real environment, two possible situations
can be found:

• A system that always works in the same condition with the same parameters, such as
a drilling machine’s asynchronous motor or an injection molding machine’s motor;

• A system in which the condition often changes, such as in car engines or linear motors
in which the speed and parameters can change at every time instant.

In the latter case, the conditions must lead to the same type to obtain a reference in
which a training process is consistent (an example can be the same motion of a linear motor
always with the same parameters). This unit is also responsible for performing another
important operation—the data sizing; every data collected by sensors must always be of
the same size to perform the prediction in the best way. In this paper, the word “Dataset”
will refer to a record with a number of samples that is always equal.



Algorithms 2023, 16, 61 5 of 26

Figure 2. PdM Generic Architecture.

3.2. Data Source Unit

This section is responsible for storing data on a database installed locally or in a remote
cloud. Every dataset uploaded to the database contains a specific format useful for the
framework; indeed, it is possible to imagine a sort of table in which every row represents a
single database record while the columns represent all the features used to characterize a
data pattern (such as temperature, acceleration, or sound). Data is labeled in every column
with the name of that specific feature, as reported in the following Table 1:

Table 1. Data labeling.

id Timestamp Fs Acc_1 Acc_2 ... Acc_n Sound_1 ... Sound_n

... ... ... ... ... ... ... ... ... ...
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Hence, more columns are present in the data frame used depending on the time and
the sampling frequency.

3.3. AI Unit

The AI Unit is shown in Figure 3, the framework’s “brain”. As a standard ML approach,
the parts that compose the process flow are represented in Figure 4:

Figure 3. PdM Artificial Intelligence Unit.

Figure 4. Machine Learning process flow.

As mentioned before, the idea of this paper is to give a different use of ML compared to
a normal flow. A common approach follows the standard way that a dataset is divided into
Training Set, Testing Set, and Validation Set; in this case, the framework continuously works
in testing mode to compute the prediction error for every dataset that arrives in the database.
Monitoring this error makes it possible to understand if a deviation occurs in the collected
dataset. Every time that data collected are similar to the ones used for Training, the error
obtained is low. In contrast, if an issue happens in the machine, the error tends to increase
due to different behavior in the data pattern collected. This type of detection does not
predict only problems; it can also understand when a novelty related to a change appears
in the dataset (typical in a real situation, an example can be environmental changes).

For this reason, the trained dataset must represent the whole machine’s behavior. The
number of datasets chosen for the training depends on the framework’s application: by
increasing the number of training datasets, the prediction’s accuracy increases too (the
risk of a false positive due to a change is low); however, training the framework with
a small number of datasets allows using it earlier, but the maintainer may work more
during the first days by updating it (the risk of detecting a change is higher). A trade-off
concerning the duration of the training process has to be defined. Generally, companies
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that design machines/components always have a period in which the machine/component
is calibrated and tested; this period can last from a few days to an entire month, and it
could be useful for the training process. An entire environmental changes cycle (such
as the morning, the afternoon, and the night) can be useful for gathering all the possible
components’ changes. Sometimes the data collected can change over the day: during the
morning, when the temperature is low, the machine has a certain accuracy that changes
during the afternoon due to the higher temperature reached. There is no general rule
explaining how many datasets are gathered; a possible hint is to collect one week’s worth of
data to record a consistent dataset. The best situation in which this framework can be trained
is at the beginning of the machine’s life (e.g., after the assembly process). Nevertheless, the
framework can also be trained after years of machine work; in this case, the framework
performs the training at that moment and cannot recognize preexisting faults due to
the absence of healthy datasets. However, the nature of failures leads to a machine’s
worsening over time, detecting them also if training is performed with a partially faulty
system; hence, thanks to the system’s adaptability, the absence of a healthy dataset is not
a problem, but it may afflict the framework’s accuracy. The first stage of the ML process
flow is preprocessing, which consists in taking every single dataset from the database and
recognizing which kind of features are stored (such as Acceleration, Sound, or Temperature).
Then the AI manager applies a windowing function for each type of feature recognized: the
windowing approach divides the large dataset’s features into a parametrized small number
of windows (for example, acceleration is divided into k1 windows, sound into k2 windows)
depending on the resolution wanted in the framework recognition: a higher number of
windows corresponds to a higher prediction’s resolution; on the other hand, the system
works more complexly due to the higher number of windows to predict. Each window
is associated with a predictor (AIUP), which uses ith window as a label and the others as
features (Figure 5). Thanks to the windowing approach, each window is used to perform
computation by condensing the initial amount of data (a cumulative sum is used for each
window in this paper). The mathematical representation of the windowing function and
cumulative absolute sum for each window is reported below:

[x1, x2, . . . , xn]− >


[x1, x2, . . . xm] with m < n
[xm+1, xm+2, . . . xm+k] with m < m + k < n
. . .
[xm+k+1, xm+k+2, . . . xn]

While the cumulative absolute sum function used is the following:
[x1, x2, . . . xm]

[xm+1, xm+2, . . . xm+k]

. . .
[xm+k+1, xm+k+2, . . . xn]

− >


∑m

i=1 |xi|
∑m+k

i=m+1 |xi|
. . .

∑n
i=m+k+1 |xi|

Figure 5. Features selection.
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The feature extraction and labeling phase follow the preprocessing stage. This block is
responsible for preparing data for the following ML model training. With a multi-threading
approach, a feature is extracted from the dataset by converting it to a label; this procedure
is done for each window/feature, creating a number of labels equal to the number of
windows and predictors. This rule is schematized in the following figure:

At the end of the preprocessing stage, a number of trainsets equal to the number of
windows are created; each trainset is used for the related ML model training. Then, the
testing phase follows the training one. The same preprocessing approach is applied to each
new dataset; in the end, the label related to ith model is predicted and compared with the
real one, computing the error used for novelty detection. Hence, the AI Unit can be divided
into two different macro-stages:

• The first part is related to the training process in which the system waits for a prede-
fined number of data to train the models;

• The second part is the testing process in which incoming data are continuously tested
to compute the predictions’ error results.

For the Training phase, three regressors are tested to visualize the potential differences
in the prediction behavior. The models used during the evaluation are:

• Linear Regressor;
• Decision Tree Regressor;
• Random Forest Regressor.

The “Low Lubrication Case” of the “Digital Model” (better explained in the following
paragraph) is used as a representative example to see how the mentioned models work
in order to compare them. Generally, a system works always in the same way: at the
beginning of life, when it is healthy, the error computed by the model’s prediction is low;
when the failure appears, the error’s prediction starts to increase. A further confirmation
that a general system works in this manner is shown in Section 5 in which the real cases
behave exactly like the digital model used for the proof-of-concept, starting with a low
error that increases at the end of the life when the failure appears. This general behavior
is shown in Figures 6 and 7: the former concerns the models’ selection, while the latter
represents the errors’ selection.

Figure 6. Machine Learning models evaluation.
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Figure 7. Errors evaluation.

The results obtained by comparing the three models are almost identical. In the
Linear Regressor model, the y-scale has a lower variance in terms of the range in which
the error can span, while in the other two models, the y-scale range is almost the same.
The user can choose one of the three models with no particular weakness; generally, the
tree models have better accuracy than the easier Linear Regressor, but this one has the
advantage of being faster when the training process is performed. Decision Tree Regressor
and Random Forest Regressor work similarly from a general point of view: the former
works only with decisions while the latter works with decision trees. The main difference
between them concerns the accuracy obtained and the computation’s complexity: a Decision
Tree Regressor has lower computational complexity and accuracy than a Random Forest
Regressor. The operator can choose one of the three models depending on the application
in which the framework operates: for example, if there are no “computational effort
thresholds”, such as a workstation or a computer, a Random Forest Regressor can be used
to obtain an accurate prediction, while if the aim is to deploy the framework in a stand-
alone embedded device, a Linear Regressor or a Decision Tree Regressor can be used in
order to reduce the overall computational effort. The paper’s framework is uploaded in a
workstation to compute the predictions and results; hence, a Random Forest Regressor is
chosen as the reference model.

Furthermore, different errors were also evaluated during the study: Squared Error
(SE), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute
Error (MAE), with the shape reported below:

SE(y, ŷ) = ∑n−1
i=0 (yi − ŷi)

2

MSE(y, ŷ) = 1
n ∑n−1

i=0 (yi − ŷi)
2

RMSE(y, ŷ) =
√

1
n ∑n−1

i=0 (yi − ŷi)2

MAE(y, ŷ) = 1
n ∑n−1

i=0 |yi − ŷi|

where yi is the real value while ŷi is the predicted one. Figure 7 shows different error
pictures computed on the same predictor using a Random Forest Regressor (RFR).

As shown in Figure 7 there is a substantial difference between the obtained results; the
last two graphs are more disrupted than the first two because they follow the prediction’s
behavior faster. As in the AI model selection case, there is no particular rule for the error
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model selection. A possible solution could be to configure all four error models to monitor
the deviation by creating dedicated predictor agents to perform the computation, but this
creates waste from a computational energy point of view. The latter two error models show
very similar behavior because of the huge likeness in the formula behind them; with the
same number of samples, the MAE has 1/n while RMSE has

√
1/n, multiply the square

root member. The similarity in the graphs above is due to the number of data used for
the computation: when the number is low, the 1/n and

√
1/n are very comparable, also

bringing a similarity in the results obtained. In this case, the operator can again choose
which error model or which error models the framework has to use to monitor the behavior
of the machine. In this paper and the following case studies, the error chosen for the
evaluation is the MAE. Figure 8a,b show two examples in which the error is computed
with two sample ranges n; Figure 8a shows the last two records while Figure 8b shows the
last five records:

(a) (b)
Figure 8. (a) Error computation on the last two records; (b) Error computation on the last five records.

A two-sample error is chosen for the following experimental executions because of its
ability to predict quickly. Another ability of the main framework concerns the possibility of
updating or retraining the already trained models: as explained above, Novelty Detection
can understand when something new happens in the system; this change can be related to
an issue or a change does not create any problem. For this reason, when a novelty appears,
the maintainer has to examine if the problem truly exists in order to choose one of the
following procedures:

• Models Update: in the case in which the data collected are different from the trained
ones, but this change is not related to an issue in the machine, the maintainer can
update the framework with the last parametrized n data, considering the incoming
data as good ones. Thanks to the models’ update, a substantial reduction of the error
value is performed;

• Models Retrain: when a problem or a component substitution is performed in the
machine, the retraining process is necessary due to the inevitable data change in
the prediction (a common change could be a shift error in the data collected). The
maintainer can decide to retrain the models by neglecting all previous ones and
returning to the beginning phase.

An example of the update/retrain function is shown in the following “Digital Model”
paragraph. The model update function also collects consistent datasets of the component
under study to help the beginning data collection, which is useful to create the machine’s
behavior history for future PdM implementation.

Recapping the AI Unit’s phases (Figure 3):
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• Data Fetching Phase: in a continuous loop, the Unit waits for new data uploaded in
the local/remote database to take them for the following Training or Testing phase;

• Training Phase: when a predefined number of datasets are uploaded to the database
(depending on how long the train dataset collection lasts), the framework understands
that the training process can start. After the Training process, several models are
created as a function of the features extracted (hence depending on the number of
windows of the windowing function);

• Testing Phase: after the training phase, every dataset uploaded is processed by the
framework with a number of predictors equal to the number of models previously
created. Then, every predictor estimates its label with an error; the upcoming failures
conduct the dataset to change its shape, increasing the error in the prediction. The
number of predictors equal to the number of features can help in error recognition by
covering all the data distribution.

• Retraining/Updating Phase: in some cases, the model error deviates without a real
problem on the machine; in this case, the maintainer can update the models trained,
considering incoming new data as “normal”, resetting the error value. The retraining
process is necessary when a maintenance operation is performed; then, past data are
neglected, and only new data are used for future predictions.

3.4. Storage Unit

After the elaboration done by the AI Unit, the results obtained are stored again in a
database; this way, it is always possible to see the history of data collected till that moment.

3.5. Maintenance Control Unit

The Maintenance Control Unit (MCU) is developed as a software Multi-Agent System
(MAS), composed of a system and an application level. This section analyzes the MCU
system and application levels from an architectural, functional, and procedural point of
view by entering into its implementation details.

As presented, NDF measures the evolution over time of a system using a set of metrics
and predicts the time in which these measures become relevant to detect system model
changes. As explained above, two main modules can be identified in the NDF environment:
AIU and MCU. AIU computes raw data and provides information about model accuracy
over time using prediction error. MCU monitors this model’s accuracy degradation over
time to detect relevant changes in system behavior compared to the trained ones. Hence,
MCU performs:

• Sensing error over time, produced by AIUPs;
• Evaluating current AIUPs’ errors by applying a set of condition-action rules;
• Performing time predictions of AIUPs’ errors degradation through their most recent

data result;
• Producing maintenance events to notify AIUPs’ models changes.

AIU consumes raw data from a system and provides different error data types. MCU
processes these results to detect changes, making the Remaining Time to Retrain (RTR)
predictions. RTR is similar to RUL in a PdM environment; however, it is related to a different
type of prediction: in RUL, the prediction concerns the computation of the remaining time
before the occurrence of a failure; on the other end, RTR concerns the computation of the
remaining time before exceeding a threshold defined as a warning value.

MCU performs its task by separately analyzing all errors collected by AIU. Since
the results collected are related to different AIUPs, MCU can be divided into smaller
independent units (agents), and each of them computes a result for a fixed model (AIUP)
(Figure 9). For this reason, MCU is developed as a software MAS.
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Figure 9. Maintenance control unit.

Two main “actors” can be identified in the architecture’s MAS:

• Agent Manager (AM) detains control flow of the system process and manages the life
cycle of single agents. It is responsible for maintaining, scheduling, and executing
each agent over time;

• Agents interfaced with the Agent Manager: they solve their designed job by executing
their Agent Program (AP) into the system process. Each agent holds its intelligence
internally in terms of capabilities and features.

Generally, AM acts as a dummy entity, and the whole complexity of the system is
moved onto the agents. Furthermore, a secondary actor appears in the MCU, the Agent
System (AS). AS controls AM and is responsible for initializing and configuring agents,
launching AM execution, and waiting into sleep mode until AM execution ends or an AM
exception occurs.

AM is implemented in the MCU system control layer and is not involved in the
MCU application process. During AS initialization, the AM and all agents are loaded.
Until AS launches AM, the AM main process will start, and AS will go idle. As shown
in Figure 10 the AM main process comprises a stoppable loop of three sequential phases
identified as agents scheduling, executing, and waiting for the next scheduling. During
agents scheduling, AM collects ready agents and computes the Wait Time for the Next
Scheduling (WTNS). During agents execution, AM executes the collected ready agents.
To increase MCU’s reliability, the AM will wait for a Maximum Wait Time for Execution
(MWTE). Finally, AM will sleep for WTNS time units before the next scheduling.
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Figure 10. The Agent Manager main process that schedules and executes all ready agents.

Model Change Detector Agent (MCDA) architecture is developed as an agent that
perceives the environment and its state, applies some condition-action rules, and executes
a given action. Each agent executes its program by performing the following operations:

• Sense environment and obtains k errors back in time, related to a given AIUPs’.
• Applies a condition-action-based rule to evaluate the last error value and detect model

changes. The agent works in a specific operative range composed of low and high
thresholds (lowest and highest bounds). The lowest bound represents when the agent
starts its prediction, while the highest bound represents the maximum error allowed.
This last value is used for the RTR prediction;

• Performs an “Average” computation of the parametrized k errors selected back in time;
when the lowest bound is overcome, the system triggers the related software agent
that takes the last k errors back in time, dividing this errors-set into two different parts,
an “oldest” and a “newest” part; at the end, an error and time average are computed
for both the first and the second part selected, obtaining two points useful for the
following trend identification phase;

• Performs the trend degradation analysis by training a Linear Regressor (LR) on the
two points computed in the phase before and making a prediction on the time of
reaching a certain error value;

• Apply a condition-action-based rule on the predicted time to degradation value to
decide whether the model changes. The notification is performed if the predicted
time is closer to a parametrized notification prevention tolerance time. Otherwise,
the agent program ends. This approach avoids notifying model changes, which error
threshold value will most likely be reached in a long time;

• Notify model change for a given predictor and error type. The notification is performed
thanks to the interface actuation function that permits emitting a notification with a
related message. The notification message contains the detected predictor that changes
with the time prediction of reaching the error threshold value.

The MCU application architecture is composed of different MCDAs that operate
independently over time. Each MCDA executes its AP periodically.

To summarize, MCU is implemented as a leader-follow, time-triggered agent system.
Both system and application architecture are entirely developed using multi-threading and
Object Oriented Programming approaches. Additionally, inheritance and polymorphism
are used to develop the hereditary hierarchy of agents. Thanks to its code reusability
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optimization and extendability, this MAS allows the development of new applications
easily through new agents.

The framework’s code will be available at the following link: https://github.com/
PIC4SeR/PdM_NoveltyDetectionFramework.git (accessed on 1 November 2022).

4. Proof of Concept—Digital Model

For the proof-of-concept and validation of the whole framework, a multibody digital
model is developed using Simulink’s toolbox to generate datasets for training and testing.
The model developed consists of a rotating shaft with two bearings at the extremities and
a gear in the middle dedicated to the torque transmission. The aim concerns the design
of a complete digital model that simulates failures to test the framework’s response and
prediction ability. In Figure 11, the digital model designed is shown:

Figure 11. 3D Digital Model.

The digital model is voluntarily simplified because the aim concerns understanding
how NDF works during a change in the data pattern. A realistic mechanical model runs
away from this paper. The vibration propagation is a fundamental property that the model
must possess; this property allows sensing vibrations from other components far from
the noise source (an example can be a vibration felt by the right bearing with the left
bearing subjected to the noise source). For this scope, “virtual accelerometers” are used to
understand how vibrations affect the shaft and bearings to recognize failure conditions or
problems during the rotation. The material used for all the components is the same, which
is steel with the following properties (Table 2):

Table 2. Material Configuration.

Density 7500 kg/m3

Young’s Modulus 210 GPa

Poisson’s Ratio 0.30

In the following sections, each component is analyzed in further detail.

4.1. Shaft

The shaft is divided into different components representing each section diameter
change; hence, a rigid connection is used to link all the “fragments” together, assembling
the whole shaft. A discretization of two finite elements reduces the model simulation
complexity. The gear affects the shaft with a radial force and a torque; bearings are

https://github.com/PIC4SeR/PdM_NoveltyDetectionFramework.git
https://github.com/PIC4SeR/PdM_NoveltyDetectionFramework.git
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responsible for the noise generation represented by a random uniform force impulse, which
affects radial x and y directions.

4.2. Bearings

Each bearing is divided into two parts: an internal ring linked to the shaft by means
of a rigid joint and an outer ring rigidly connected to the fixed reference frame of the
“environment”. The representation of the roller vibration is performed using a planar joint
with three degrees of freedom (dof) that gives the possibility to move in x and y directions
but also around z with predefined stiffness and damping values. Hence, x and y directions
represent the vibration directions generated by each sphere during rotation designed as
small impulses acting on the inner ring; the motion around z represents the rotational
viscous damping due to the bearing’s lubricant. The remaining dof are neglected to simplify
the computations done by the simulator.

4.3. Simulations

Numerous simulations are performed to represent different fault cases. The chosen
tests performed on the framework are the following:

• Low Lubrication: a lubrication degradation condition is simulated inside bearings.
This situation is represented by increasing the variance range of the impulse’s force
acting on the shaft. Two accelerometers are placed on the bearings and on the shaft
to measure vibrations emitted and transmitted. Hence, in every simulation, the
accelerometers measure an increase in general noise with a reduction of rotational
viscous damping around z. The parameters change in each simulation in the same
manner for the left and the right bearing. It can imagine that every simulation has
different time instants in which a maintainer takes data from the machine to monitor;
for this reason, each simulation is delayed by one day. This case is represented in
Figure 12a,b in which the lubricated and not completely lubricated bearings are shown.
The vibrations shown are measured on the right bearing:

• Inner Race Faults: as reported in Ref. [27], a general rolling bearing has four standard
types of fault that can occur over time; these faults are “translated” as frequencies
with the following names and shapes:

– Ballpass frequency outer race (BPFO), a fail occurs in the bearing’s outer race:

BPFO = n fr
2 (1− d

D cosφ)

– Ballpass frequency inner race (BPFI): a fail occurs in the bearing’s inner race:

BPFI = n fr
2 (1 + d

D cosφ)

– Fundamental train frequency (FTF): a fail occurs in the bearing’s cage:

FTF = fr
2 (1−

d
D cosφ)

– Ball spin frequency (BSF): a fail occurs in the bearing’s rolling elements:

BSF = D
2d (1− ( d

D cosφ)2)

where fr is the shaft speed, n is the number of spheres, φ is the angle of the load with
respect to the radial plane, d is the sphere diameter, and D is the bearing’s radius
between two rings.
For the proof-of-concept of this paper and to test the framework in different situations,
an Inner Race Fault is simulated, as shown in Figure 13a,b. Hence, this kind of
simulation works similarly to the low lubrication one with the difference in the force
application. In the low lubrication case, the force’s impulse acts with a random
amplitude at high frequency, while in this case, it acts with a period depending on the
BPFI computed with the above formula. Similar to the low lubrication case, the force’s
amplitude increases in each simulation, reproducing a failure’s worsening. The initial
and final simulation gives the following results:
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(a) (b)
Figure 12. (a) Lubricated bearing noise; (b) Low lubricated bearing noise.

(a) (b)
Figure 13. (a) Bearing without fault; (b) Bearing with Inner Race Fault.

The framework is tested for both simulations to understand how it works. Figure 14a
represents the framework application on the low lubrication data, while Figure 14b repre-
sents the application on the BPFI fault:

(a) (b)
Figure 14. (a) Prediction with low lubrication fault; (b) Prediction with BPFI bearing fault.
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The blue dashed line represents the result obtained from the AIU, while the red lines
represent the predictions computed by the MCU. Starting from Figure 14a, the MCU is
applied to the low lubrication case. An increase in the noise generated by the model
corresponds to an increase in the error computed by the AIU, subjecting this to a substantial
difference compared to the elements trained at the beginning. The parameters set for this
evaluation are the following (Table 3):

Table 3. Low Lubrication Framework Configuration.

Windows 20

Average 4

Lowest Bound 5

Highest Bound 40

The average value gives the “speed” of the prediction: an MCU with a small average
creates predictions that are able to better follow the real system’s volatility; a high number
of the average corresponds to a slower prediction response, compensating for the volatility
and outliers of the real measures. The configuration used for the digital model allows
for fast predictions that are able to follow the error trend. As reported in the previous
paragraph, each predictor monitors a window computed after the preprocessing stage.
When the error in a window crosses the lowest bound, the related predictor is triggered;
hence, a prediction is performed every time the obtained error is higher than the lowest
bound. Each predictor computes when the error will reach the highest bound using
the Linear Regressor explained in the previous paragraph. If the error keeps rising, the
predictions will accordingly fit even better. According to Figure 14a, this window crosses
the lowest bound 20 days before the failure, and the framework gives a warning to the
maintainer that something has changed compared to the training phase; 10 days before the
failure, the prediction performed by the MCU fits well with the real behavior, alerting the
maintainer that the change will become too relevant. In Figure 14a, the framework is tested
on a bearing inner race defect type. In this case, the bearing behaves differently compared
to the low lubrication one; as explained, the fault manifests itself as periodical impulses
with high amplitude in this second configuration. This fault might not be detected from all
AIUPs because it occurs only in specific time ranges. In this case, the configuration set is
the following (Table 4):

Table 4. BPFI Framework Configuration.

Windows 20

Average 4

Lowest Bound 1

Highest Bound 5

The error computed is quite disrupted, but the framework accurately predicts when
the bearing’s change becomes relevant in error deviation. As before, the MCU triggers its
agents 20 days before the final failure with low accuracy; the prediction fits well about
10 days before the final failure.

An example of the update/retrain function is shown in Figure 15 in which, around
July 2021, the update function is executed by the user; the error decreases drastically,
reducing itself to a value close to zero, expanding the trained data and transferring the
information that the last k datasets acquired are healthy and the framework should not
send any warning to alert the maintainer.
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Figure 15. Maintenance Control Unit.

By tuning the framework’s parameters properly (better explained in the following
paragraph), the maintainer could be called often or only sometimes, depending on the
accuracy wanted during the recognition. A “faster framework” detects changes in the
data pattern, also giving more false positives, alerting the maintainer many times after
the training process. A “lower framework” detects changes only when these become too
relevant. A trade-off by opportune tuning has to be done during the training process to
understand which parameters work better for the application. Generally, the maintainer’s
work is reduced by properly training the models.

Generally, the amount of data is destined to increase over time. Companies and
researchers can understand if the model chosen is ready and well-tuned thanks to the
feedback sent by the framework. False positives are strictly related to a low amount of data
used for training and/or a not well-tuned framework; hence, if the framework works well,
giving no warning at the beginning means the tuning and the amount of data are good
enough for the model chosen and for the prediction process.

5. Real Case Study

In order to validate the framework on a real case study, a real bearing dataset is considered.
The collection created by the NSF I/UCR Center for Intelligent Maintenance Systems (IMS) [28]
is chosen as a real case study dataset suitable for the framework application. The advantage
of using this collection concerns the possibility of having the complete bearing’s life from the
normal behavior to the failed one to test the framework, simulating a real environment.

5.1. Setup and Dataset Description

The IMS Bearing setup is configured with four Rexnord ZA-2115 double-row bearings
on a rotating shaft, as shown in Figure 16. An AC motor is coupled with the shaft by rub
belts in the proximity of bearing number 1 to keep the shaft moving at the required speed.
Datasets are withdrawn at a constant rotational speed for the AC motor, corresponding to
2000 RPM. A radial load of 27,000 N is applied through a spring mechanism onto bearings
2 and 3. The four bearings are force lubricated.
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Figure 16. Real Case Setup.

5.2. Bearings

The dataset is collected using High Sensitivity Quartz ICP accelerometers sampling
data at 20 kHz. The dataset is composed of files in which every file corresponds to
20,480 measures sampled every 10 min (except for he first 43 files taken every 5 min).
After 100 million revolutions, an inner race defect occurred in bearing 3.

5.3. Framework Application

The framework is tested on the IMS dataset to test the recognition ability regarding
the inner race failure on bearing 3. The database used for both Data Source Unit and
Storage Unit is MongoDB, a Non Relational database. The AIU Configuration used for the
evaluation is the following (Table 5):

Table 5. AIU Configuration—Real Case.

Train Elements 200

Test Elements 2

Windows 20

As in the case of the Digital Model, the parameters are set to have a good trade-off
between responsiveness and prediction accuracy. AIU’s models are ready and trained after
30 h by using this configuration; then, the framework starts the error evaluation for each
model to monitor the bearings’ status. Concerning the MCU Configuration, the settings
used are the following (Table 6):

Table 6. MCU Configuration—Real Case.

Average 16

Lowest Bound 10

Highest Bound 150

The result obtained after the framework application is reported in Figure 17a,b in
which the blue dashed line corresponds to the x and y error degradation of bearing 3 com-
puted on acceleration data and red lines represent the predictions performed by the MCU.
As reported on the graphs, the error obtained at the beginning is low; at the end, when the
bearing failure appears, the error also increases accordingly. The system recognizes the
relevant change 1/2 days before; the trigger could be set lower to wake up the framework
earlier, but the number of “positive false” increases accordingly. Predictions fit better over
time, as represented by red lines, in which the monotony increases close to the complete
breakdown. The advantage of having different predictors as the features number allows
for compensating possible “positive false”; the framework can be programmed to send
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a warning only if more than k predictors detect a change. In the same figures, the long
straight lines in the graph represent data missing during that period; using a line plot
instead of a scatter plot can be useful to understand if a shift appears in the pattern. For
example, a shift could be related to a maintenance operation or a component substitution
performed on the machine. The framework’s update function is shown in Figure 18 to
see how it behaves. The difference can be noted by comparing Figure 18 with Figure 17b
around 11/21. The trainset is updated with 200 other datasets, reaching 400 as the total
number of datasets collected. After the model update, the error computed by the AIU
decreases, reaching a value close to zero. The maintainer can perform this procedure when
the model detects a change without a real problem on the machine/component.

(a) (b)
Figure 17. (a) Predictions with BPFI fault [xacc]; (b) Predictions with BPFI fault [yacc].

Figure 18. Predictions with BPFI fault [yacc] and update.

5.4. First Industrial Prototype Implementation

Furthermore, another real case is analyzed by implementing the whole framework
on an industrial machine provided by Spea Spa—a company that designs systems able to
test electrical and electronic devices—to validate the prototype on a real industrial case.
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The machine chosen is a multi-purpose machine with x/y/z motion capabilities, used by
the company to perform different tasks, from MEMS to spring probes tests. This latter
ability regards the main focus of the data collection and framework implementation. The
company designs a stress program to test the probe’s wear over time. Usually, probes
are considered spoiled after a given number of cycles using a preventive maintenance
approach. Spea chose this threshold considering the past probes’ electrical resistance value
degradation. If the resistance exceeds the minimum threshold, the probe is intended to be
worn. The company has wanted to change this approach by applying the framework to
evaluate when the probe deviates in an anticipated manner following a predictive method.
The Spea’s machine keeps a set of probes as the main tool. It measures the electrical
resistance of probes by knocking them repeatedly on a conducting test surface. The
machine executes this operation continuously, collecting raw data during the process.

A customized raw dataset template has been built. It is composed of sampling each
probe’s resistance and the related time references. The AIU preprocessing task trans-
forms the custom raw dataset into the standard AIU data format treated by AIUP. Each
dataset comprises 10 resistance values collected for each probe over time. The same frame-
work’s storage is maintained for this experiment: MongoDB as Storage and Data Source
Unit database.

The AIU Configuration used for this evaluation is the following (Table 7):

Table 7. AIU Configuration—Spea Prototype.

Train Elements 50

Test Elements 2

Windows 5

The MCU configuration is set with the following parameters (Table 8):

Table 8. MCU Configuration—Spea Prototype.

Average 2

Lowest Bound 0.20

Highest Bound 1

As for the previous experiments, AIU trains its models on a set of initial raw data
coming from the machine, producing results related to the model’s errors. The result
obtained after this framework application is reported in Figure 19.

The result of AIU computation is the blue dashed line in the graphs above, correspond-
ing to the MAE error degradation of a probe computed on electrical resistance data over
time. MAE is stable and fixed around zero; apart from a few low amplitude disturbances,
no degradation appeared on the dataset. Hence, there are no significant changes from the
initial trained model, meaning that the probe is not worn. As explained in the real case, the
blue straight dashed lines that appear in the data pattern are due to data missing during
that period. The data acquisition lasts a few hours, while the idle period without acquisi-
tions lasts numerous days; this different scale range creates long lines. The graph reported
in Figure 19 shows that no shift appears in the data pattern; finally, no general deviation
appears, which is a symptom that no relevant changes or problems are happening. This
prototypical application confirms that incoming data does not change from the training
ones. Hence, future works regard the ongoing collection of other data to identify possible
future changes related to failures.
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Figure 19. Spring Probe Error Resistance.

6. Discussion

In order to have an idea about the framework’s performances and better see the
scalability property, two tables are compiled with Train, Test, and Preprocess time
with different configurations. This analysis is performed for both the AIU and the MCU.
Tables 9 and 10 report the results of this analysis.

Table 9. AIU time performance indicator W, strain, stest and [min, max] time statistics for Preprocess,
Train, Test.

Features W strain stest ttrain tpreprocess ttest

[s] min [s] max [s] min [s] max [s]

120 20 5 2 0.9880 0.9296 1.4058 0.4927 0.6483

120 20 5 5 0.9857 1.8990 2.2966 0.7211 0.5164

120 20 5 10 1.0237 0.3692 0.6698 0.4664 0.7705

120 20 10 2 1.04 1.8848 2.2882 0.5146 0.5387

120 20 10 10 1.0764 1.8849 2.2882 0.4696 0.4882

120 20 20 2 1.2819 0.3692 0.4345 0.4689 0.4967

120 20 50 2 1.3426 0.3681 0.4476 0.4680 0.5377

120 20 70 2 1.3275 0.9265 1.0170 0.4974 0.5057

120 20 70 5 2.6040 0.9265 1.0170 1.3399 1.3878

300 50 70 5 4.4466 0.9281 1.0314 1.3418 1.4066

600 100 70 2 12.6561 0.3772 0.4523 2.5674 2.7112

Table 10. MCU time performance indicator. It shows the statistics µ and σ calculated over all MCDAs
Execution, Train, Predict operations.

texecution ttrain tpredict

µ [ms] σ [ms] µ [ms] σ [ms] µ [ms] σ [ms]

16.6287 5.0196 0.0106 0.1027 0.0067 0.0813
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The table results lead to the idea of how the system works efficiently. The training
stage requires a very small amount of time, thanks to the easy models used. This time also
gives the possibility to maintain the framework in real-time when other sensors are added
to the machine. Indeed, the order of magnitude about time always remains around seconds
when performing the computation. The AIU requires more time than the MCU due to the
higher computational effort; the training process is the hardest computation processed by
the AIU. All the performances strictly depend on the number of windows elaborated: a
high number of windows corresponds to high requirements in terms of time performance.
Concerning the MCU, Table 10 refers to the agent’s mean and variance time performances
during the execution of its task on a single window. Each agent requires a small amount
of time to perform a prediction compared to AIU. MCU works each agent one at a time,
following a time scheduling approach (when it concludes with one agent, it can start with
the following one); for this reason, the number of windows influences the MCU’s time
performance in a preponderant way. This computation can be performed by multiplying
the execution time of each agent by the total number of windows:

Tm = Te · w

Tm is the Total MCU Time, Te is the execution time, and w is the windows number.
The different domain examples proposed in this paper prove the flexibility and adapt-
ability of the framework in any domain where it is adopted. Bearing degradations are
analyzed for both Simulink simulations and real case, in which the framework was able
to understand when the system deviates excessively, alerting the maintainer before the
breakdown. Different types of faults are used to test the framework’s capability: low
lubrication increases the system’s noise in terms of vibration captured by the sensors and
processed by the framework, giving an estimation of when this vibration becomes too
high. Then, a ball-pass-inner-race-fault is tested to prove the framework’s flexibility, in
which a force impulse acts on the bearing with a specific period; hence, these impulses
can be seen only in some of the windows that include them. The predictors related to
such windows recognized that something was changing from the trained data, alerting
the maintainer. While in the first case, all predictors showed a general error increase, only
some showed this behavior in the second test, as wanted. Finally, the framework is tested
in a completely different real environment, a resistance test, always to show flexibility and
adaptability properties. In this case, the framework has to work with another physical
variable, understanding if some probes’ resistance is changing from the beginning and
giving an alert to the maintainer when the probe will be worn. As shown, the framework
works well again in finding that probes are healthy till that moment without a false positive
warning sent to the maintainer. As reported in Section 2, thanks to the algorithm’s ease and
adaptability, it can be used in numerous domains by comparing the trained data with the
actual ones. To summarize, the framework’s advantages are as follows:

• Experience and data history is not necessary: this framework can detect novelties in
observed data such as errors, faults, problems, and changes related to machines, as
well as environmental data such as vibrations or noises, temperature, or magnetic field
comparing to the trained ones. Furthermore, this property can help collect datasets
and maintenance warnings for future definitive PdM applications;

• Flexibility/Scalability: the framework is very flexible and scalable; a maintainer can
add a sensor in the machine anytime by updating or retraining the framework creating
a new starting point, but always recording past data for a future PdM application;

• Low computational effort required: the framework uses straightforward ML models
to estimate when and how the trained and current data differ with low computational
effort, facilitating a future implementation on embedded devices.

Future Research Directions

Future research and optimizations regarding this framework involve different enhance-
ments: optimization can be obtained by neglecting useless predictors for the prediction,
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hence lightening the overall payload of the MCU, reducing the time to perform prediction,
and consequently, the framework’s real-time efficiency. Another consideration to develop
as a next step can be related to the application of this framework in a multi-domain dataset
with features sampled with different sampling times (an example can be the vibration mea-
sured by an accelerometer and the temperature measured by a thermometer sampled with
less order of magnitude). Adapting this framework not only to the same motion but also to
a system’s random/general motion will be an important enhancement. Furthermore, future
research concerns deploying this framework on real embedded devices by optimizing the
framework developed, evaluating how tiny ML models work, and obtaining an intelligent
edge device to mount directly on the component to analyze. As a final future step, after
implementing the mentioned framework’s enhancements, a baseline comparison will be
performed to better understand the differences compared to standard and well-known
algorithms concerning speed and accuracy.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artificial Intelligence
AIU Artificial Intelligence Unit
AIUP Artificial Intelligence Unit Predictor
AM Agent Manager
AP Agent Program
AS Agent System
BPFO Ballpass frequency Outer
BPFI Ballpass frequency Inner
BSF Ball Spin Frequency
CM Condition Monitoring
CNN Convolutional Neural Network
DL Deep Learning
dof Degrees of Freedom
FTF Fundamental Train Frequency
LSTM Long Short-Term Memory
LR Linear Regressor
MAE Mean Absolute Error
MAS Multi-Agent system
MCU Maintenance Control Unit
MCDA Model Change Detector Agent
ML Machine Learning
MSE Mean Squared Error
MWTE Maximum Wait Time for Execution
ND Novelty Detection
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NDF Novelty Detection Framework
PdM Predictive Maintenance
RFR Random Forest Regressor
RMSE Root Mean Squared Error
RUL Remaining Useful Life
RTR Remaining Time to Retrain
SE Squared Error
WTNS Wait Time for Next Scheduling
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24. Miljković, D. Review of novelty detection methods. In Proceedings of the 33rd International Convention MIPRO, Opatija, Croatia,
24–28 May 2010; pp. 593–598.

25. Oliveira, M.A.; Filho, E.F.S.; Albuquerque, M.C.S.; Santos, Y.T.B.; da Silva, I.C.; Farias, C.T.T. Ultrasound-based identification of
damage in wind turbine blades using novelty detection. Ultrasonics 2020, 108, 106166. [CrossRef]

26. Pimentel, M.A.F.; Clifton, D.A.; Clifton, L.; Tarassenko, L. A review of novelty detection. Signal Process. 2014, 99, 215–249.
[CrossRef]

27. Randall, R.; Jérôme Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520.
[CrossRef]

28. Qiu, H.; Lee, J.; Lin, J.; Yu, G. Wavelet filter-based weak signature detection method and its application on rolling element bearing
prognostics. J. Sound Vib. 2006, 289, 1066–1090. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.ultras.2020.106166
http://dx.doi.org/10.1016/j.sigpro.2013.12.026
http://dx.doi.org/10.1016/j.ymssp.2010.07.017
http://dx.doi.org/10.1016/j.jsv.2005.03.007

	Introduction
	State-of-Art and Related Works
	Proposed Predictive Maintenance Architecture
	Maintained System
	Data Source Unit
	AI Unit
	Storage Unit
	Maintenance Control Unit

	Proof of Concept—Digital Model
	Shaft
	Bearings
	Simulations

	Real Case Study
	Setup and Dataset Description
	Bearings
	Framework Application
	First Industrial Prototype Implementation

	Discussion
	References

