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Abstract: For quadrotor control applications, it is necessary to rely on attitude angle changes to in-
directly achieve the position trajectory tracking purpose. Several existing literature studies omit
the non-negligible attitude transients in the position controller design for this kind of cascade system.
The result leads to the position tracking performance not being as good as expected. In fact, the tran-
sient behavior of the attitude tracking response cannot be ignored. Therefore, the closed-loop stability
of the attitude loop as well as the position tracking should be considered simultaneously. In this study,
the flight controller design of the position and attitude control loops is presented based on an integral
backstepping control algorithm. This control algorithm relies on the derivatives of the associated
virtual control laws for implementation. Examining existing literature, the derivatives of the virtual
control law are realized approximated by numerical differentiations. Nevertheless, in practical sce-
narios, the numerical differentiations will cause the chattering phenomenon of control signals in the
presence of unavoidable measurement noise. The noise-induced control signals may further cause
damage to the actuators or even diverge the system response. To address this issue, the analytic
form for the derivative of the virtual control law is derived. The time derivative virtual control law
is analyzed and split into the disturbance-independent compensable and disturbance-dependent
non-compensable terms. By utilizing the compensable term, the control chattering due to the differ-
entiation of the noise can be avoided significantly. The simulation results reveal that the proposed
control algorithm has a better position tracking performance than the traditional dual-loop control
scheme. Meanwhile, a relatively smooth control signal can be obtained for a realistic control algorithm
realization. Simulations are provided to illustrate the position tracking issue of a quadrotor and
to demonstrate the effectiveness of the proposed compromised control scheme.

Keywords: quadrotor position control; cascade system; integral backstepping control algorithm;
analytical solution of virtual controls

1. Introduction

The quadrotor has been widely used in economic, commercial, entertainment [1], and
military industries—for example, prospecting, documentary filming, spraying medicine,
reconnaissance, attack, and other tasks. As a result, quadrotors play an essential role in the
livelihoods, businesses, and the military for people. Position trajectory control is the key
to realizing these applications when flying in turbulent environments [2,3], flight path
planning [4], and avoiding dynamic obstacles [5].

Due to the maneuverability and applicability of the quadrotors, it has attracted exten-
sive research interest in recent years. The study [6] presented an adaptive controller that
introduced the artificial neural network to adjust the control gain adaptively. The study [7]
proposed a combination of backstepping and sliding model approaches based on a PID-
type sliding surface to address the position control problem of the quadrotors. In [8], an
optimal bounded robust control algorithm for secure autonomous navigation of a quadrotor
is proposed. Other related research includes: the backstepping controllers [9–14], sliding

Algorithms 2023, 16, 122. https://doi.org/10.3390/a16020122 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16020122
https://doi.org/10.3390/a16020122
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1721-2280
https://orcid.org/0000-0001-9239-6820
https://orcid.org/0000-0002-4068-0632
https://doi.org/10.3390/a16020122
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16020122?type=check_update&version=1


Algorithms 2023, 16, 122 2 of 30

mode controllers [15,16], and adaptive controllers [6,17,18]. Several research studies con-
sidered fuselage drag in the model [16,18]. The viscous drag force depends on the fluid
viscosity, air speed, humidity, and the fuselage design prototype. It is hard to make a deter-
ministic analysis of the effects of drag. In general, the quantitative results are estimated
by conducting the experimental studies [19,20]. Nevertheless, some researchers did not
consider the drag force in the external disturbances [8,9,11,15]. To fulfill the practical sce-
narios, the time-varying, and state-dependent external disturbances are considered in these
studies [21–23]. Some of the studies do not include measurement noise [6–8,10,15,18,24]
and actuator saturation limitations [25] in the numerical simulations. These imperfections
lead to mismatches between numerical simulation and practical implementations. In fact,
the saturation of actuators may lead to system instability. The measurement noise may
be amplified when conducting the numerical differentiation. This skill causes serious
control chattering of the control signals. With regard to the position flight controller, some
of the articles [7,9–11,13,18,26,27] separate the dynamics into the position loop and attitude
loop, and then design the controller individually. In these works, the attitude transients
are ignored based on the assumption that the attitude response is fast enough. However,
transient behavior in the attitude loop does exist due to the nature of the quadrotor flight
properties and finite inner-loop control bandwidth. Therefore, the tracking performance
of the position loop is limited due to the transient response of the attitude loop. To address
this cascade transition issue, the integral backstepping control algorithm is introduced
inspired by the work [28], where the integral term is applied to suppress the effects of dis-
turbances [29]. However, the construction of the virtual control law needs information
from unmeasurable states. The studies [9,14] conducted the numerical differentiation and
applied a low-pass filter. It should be mentioned that the drawback of a low-pass filter gives
rise to the phase delay. To avoid the control delay problem, the analytic form of virtual
controls is derived. The analytic form is obtained by dividing the virtual control into
a disturbance-independent term and a disturbance-dependent term and then applying
the compensation for the former. Simulation results reveal that the relatively smooth control
signals are available from the proposed analytic form of virtual controls.

The objective of this study aims to develop a position tracking control algorithm
for a quadrotor in the presence of both the disturbance and the measurement noise. Instead
of presenting a new robust control theory, the topic of this paper is to solve a controller
design issue when applying the backstepping scheme. In the existing backstepping control
algorithms, the virtual control inputs contain unmeasurable information. This issue can
be dealt with in two ways: taking the time derivative on the state variable directly or de-
signing an extra observer. On the one hand, taking the time derivative will induce serious
control chattering when the state variables contain measurement noise. On the other hand,
designing an extra state estimator or an observer would definitely increase realization
complexities. Therefore, in the paper, an analytic way is presented. The proposed ana-
lytic flight control algorithm, which uses available state information only, can be taken
as a compromised control law for practical consideration. Therefore, applying the virtual
input derivative as well as designing the observer design can be avoided. Most importantly,
the serious control chattering induced by measurement noise can be attenuated and thus
the control saturation can be avoided as well. This advantage makes a great contribution
to the position control closed-loop stability.

The contributions of this study are summarized as follows: (i) proposing the integral
backstepping control algorithm for the quadrotor position tracking demands; (ii) providing
the corresponding stability analysis based on Lyapunov theory in the presence of the un-
known disturbances; (iii) deriving the analytic form of the virtual controls so that more
smooth control signals can be obtained by the proposed analytic solution instead of using
the numerical differentiation directly; and (iv) highlighting the advantage of the proposed
flight controller with consideration of disturbances and measurement noise for compar-
ative studies. Simulation results reveal that the proposed integral backstepping control
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algorithm with the analytic virtual control law has a better trajectory tracking performance.
Meanwhile, smoother realizable control signals are obtained.

The organization of this study is concluded as follows: the dynamics modeling and
the actuator analysis are performed in Section 2; the proposed integral backstepping control
algorithm is derived in Section 3, the correlated stability analysis is provided; the compari-
son of the numerical simulations is presented in Section 4; finally, the conclusions are made
in Section 5.

2. Dynamics Modeling

In this paper, to address the design issue clearly, we focus on 3-DoF quadrotor dy-
namics. Hence, the simplified 3-DoF dynamics model is adopted rather than the 6-DoF
quadrotor systems. It is worth noticing that the considered 3-DoF model is a classical ex-
ample to illustrate the control difficulty for such cascade nonlinear systems subject to both
the matched and mismatched disturbances. To address this control problem, the 3-DoF dy-
namic model of a quadrotor is considered in this study to provide a deeper understanding
of the proposed algorithm. The dynamic configuration for a 3-DoF quadrotor system is
shown in Figure 1. The geometry parameters are summarized in Table 1.

Table 1. Explanation of the physical quantities of the quadrotor planar motion system.

Quantity Description Unit

m Mass kg
J Moment of inertia kg-m2

g Gravitational acceleration m/s2

L Distance between motors and
center of mass m

1F

2FL

L

bz

bx

G

θ θ

Z

X
Z

X

Y

mg

O
Figure 1. The dynamic configuration of the 3-DoF quadrotor system.

The quadrotor system contains two brushless direct currents (BLDC) motors to provide
the thrusts to drive the quadrotor system. In practical scenarios, each BLDC motor is
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controlled by the electric speed controller (ESC). The ESC controls the rotation speed
of the BLDC motor to the desired speed according to given pulse width modulation (PWM)
duty cycles. In other words, there exists a simple mapping relationship between desirable
rotor speeds and the given PWM duty cycles. Refer to [15,30,31], and the thrust Fi generated
by i-th rotor with the speed Ωi, i = 1, 2, is modeled as

Fi = CTΩ2
i (1)

where CT is the thrust coefficient. On the basis of (1), the total force F and torque M can be
expressed as [

F
M

]
= Γ

[
Ω2

1
Ω2

2

]
(2)

where the force distribution matrix Γ is defined as

Γ =

[
CT CT

LCT −LCT

]
(3)

The inverse mapping of (2) is given by[
Ω2

1
Ω2

2

]
= Γ−1

[
F
M

]
(4)

where

Γ−1 =

[
1

2CT
1

2CT L
1

2CT
− 1

2CT L

]
(5)

The system kinetic energy T includes the translation kinematic energy 1
2 m(ẋ2 + ż2)

and the rotational kinematic energy 1
2 Jθ̇2; the potential energy V with respect to the datum

z = 0 is mgz. Thus, the Lagrangian L = T − V can be represented by

L = T − V

=

[
1
2

m(ẋ2 + ż2) +
1
2

Jθ̇2
]
−mgz (6)

The Lagrange equation is

d
dt

(
∂L
∂η̇j

)
− ∂L

∂ηj
= Nj, j = 1, 2, 3 (7)

where the generalized coordinate ηj represents x, z, and θ; the generalized force Nj is
Fsθ + dx, Fcθ + dz, and M + dθ , respectively. The notations c(·) and s(·) represent cos(·) and
sin(·). The following time-varying and state-dependent disturbance models of the external
disturbances dx, dz, and dθ are considered:

dx(t, ẋ) = fx(t)− Cdx ẋ

dz(t, ż) = fy(t)− Cdz ż

dθ(t, θ̇) = fθ(t)− Cdθ θ̇

(8)

where fx(t), fy(t), and fz(t) are unknown time-varying disturbances used to simulate
the influence from the wind gusts; Cdx ẋ, Cdz ż, and Cdθ θ̇ are correlated to the state-dependent
aerodynamic drag forces. Cdx, Cdy, and Cdz are the associated viscous drag coefficients.

Substituting (6) into (7) gives the dynamic equations shown as follows:
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mẍ = Fsθ + dx (9)

mz̈ = Fcθ −mg + dz (10)

Jθ̈ = M + dθ (11)

Hence, on the basis of the dynamics (9)–(11), given the desired trajectories in x- and z-
directions, the control laws F and M are designed. Then, based on the actuator model (4),
the desired rotation speeds of BLDC are obtained to achieve the trajectory tracking demands.

It should be noticed that the BLDC motors have a command deadzone in the low-speed
region. This imperfection induces the undesired response and instability of the system.
To address this issue, the minimum motor speed command, Ωmin, is considered in this
study. Furthermore, to provide enough margin of control torque in the landing phase,
the minimum force Fmin and the maximum Fmax are imposed. The quantities of Fmax, Fmin,
and Ωmin are set by

Fmax = 3mg

Fmin =
mg
2

Ωmin = Ωidle

(12)

where Ωidle is the idle speed value that is dependent on the hardware configuration. From
(4) and (12), the maximum value of the magnitude of control torque can be given by

M−max = (F− 2CTΩ2
idle)L ≥ (Fmin − 2CTΩ2

idle)L (13)

M+
max = 2LCTΩ2

max − F ≥ 2LCTΩ2
max − Fmax (14)

where F is the desired control force to manipulate the z-directional flight dynamics and
will be designed later. M+

max and M−max are the maximum torques at the upper and
lower limits of the BLDC motor speed, respectively. Note that usually Ωmin is more
important to consider than Ωmax. This is because the motor speed cannot be negative.
Generally, M+

max and M−max satisfy

M+
max ≥ M−max (15)

Conclusively, the following saturation conditions are considered in the flight controller
implementation:

Fmax ≥ F ≥ Fmin (16)

Ωmax ≥ Ωi ≥ Ωmin (17)

|M| ≤ M−max (18)

for i = 1, 2.

3. Flight Controller Design

The 3-DoF quadrotor model has been derived in (9)–(11). The system contains two
independent control inputs: one is the translational force F and the other is the rotational
torque M. The main design task is to develop proper control laws to achieve the de-
sired flight demands. In this study, the control objective is the trajectory tracking control,
namely (x, z) → (xd, zd), and keeps the attitude θ stable simultaneously. In a physical
sense, the force F can be independently designed to achieve altitude tracking control.
However, the translation x relies on the change of the attitude θ making the system have
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the force component in the x-direction. Therefore, the system dynamics (9)–(11) are divided
into a fully-actuated subsystem S1 and an under-actuated subsystem S2 described as follows:

S1 : z̈ =
Fcθ

m
− g +

dz

m
(19)

S2 :


ẍ =

Fsθ

m
+

dx

m

θ̈ =
M
J
+

dθ

J

(20)

The control force F is designed for the subsystem (19) to achieve the desired altitude
zd. Based on the designed control force F, the control torque M is then designed for the sub-
system (20) to achieve the desired position xd. Meanwhile, the attitude θ remains stable.
For the convenience of the flight controller design, the stability analysis of the general error
dynamics in the presence of unknown perturbations is presented firstly. The altitude and
attitude controllers are then designed.

3.1. Stability Analysis of General Error Dynamics

Consider a class of the error system as follows:

ė = Aee + v (21)

where e ∈ Rn is the error state vector, Ae ∈ Rn×n is a Hurwitz system matrix, and v ∈ Rn

is an unknown perturbation. Assume that the perturbation ~v satisfies

‖v‖ ≤ v+ (22)

where ‖ · ‖ is the Euclidean 2-norm, and v+ > 0 is a known upper bound of the perturbation.
To perform the stability analysis, consider the Lyapunov function candidate

of the quadratic form:
V = eTPe (23)

where P = PT > 0. Taking the time derivative of (23) along the system trajectory (21), it
follows that

V̇ = 2eTPė

= eT
(

PAe + AT
e P
)

e + 2eTPv (24)

If there exists a feasible solution Q = QT > 0 to satisfy

PAe + AT
e P + Q < 0, (25)

then (24) becomes
V̇ ≤ −eTQe + 2eTPv (26)

From the Cauchy–Schwarz inequality, the term ‖eTP‖ satisfies

‖eTP‖ ≤ ‖eT‖‖P‖ (27)

Applying the matrix norm property, the symmetric matrix P can be related to its
maximum eigenvalue λmax(P); that is,

‖P‖ =
√

λmax(PTP) =
√

λmax(P2) =
√

λmax(P)2 = λmax(P) (28)

Based on (28), (27) becomes

‖eTP‖ ≤ λmax(P)‖e‖ (29)
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Rayleigh’s inequality gives λmin(Q)‖e‖2 ≤ eTQe ≤ λmax(Q)‖e‖2.
According to Rayleigh’s inequality, (22), and (29), (26) follows with:

V̇ ≤ −eTQe + 2‖eTP‖‖v‖
≤ −λmin(Q)‖e‖2 + 2λmax(P)‖e‖‖v‖
= −λmin(Q)‖e‖

(
‖e‖ − 2λmax(P)

λmin(Q)
‖v‖

)
≤ −λmin(Q)‖e‖(‖e‖ − ε)

(30)

where

ε =
2λmax(P)
λmin(Q)

v+ (31)

Equation (30) indicates that the stability is guaranteed when ‖e‖ > ε. However, there
is no conclusion when ‖e‖ < ε. Hence, it can be deduced that the error state vector e will
approach a regionW , i.e.,

‖e‖ → W as t→ ∞ (32)

where
W = ε (33)

The stability result for the general error system (21) is summarized as follows:

Theorem 1. Consider the general error system shown in (21). If the unknown perturbation v
satisfies the assumption (22) and there exists a feasible solution (P, Q) of LMI (25), then it can be
guaranteed that the error state vector e will approach a regionW described in (33) in the sense
of Lyapunov.

3.2. Altitude Proportional-Integral-Derivative Controller Design

Consider the fully-actuated subsystem S1 shown in (19). Assume that the change rate
of disturbance is bounded by

|ḋz| ≤ ḋ+z (34)

where ḋ+z > 0 is a known value. Define the tracking errors ez1 and ez2 as

ez1 = z− zd

ez2 = ż− żd
(35)

The error dynamics is then obtained:

ėz1 = ez2

ėz2 =
Fcθ

m
− g +

dz

m
− z̈d

(36)

Design the proportional-integral-derivative (PID) control law as

F =
m
cθ

uz (37)

where

uz = z̈d − kpzez1 − kiz

∫ t

0
ez1(τ) dτ − kdzez2 + g (38)

and the control gain pair (kpz, kiz, kdz) > 0. Substituting the control law (37) into (36) gives
the closed-loop system as

ėz1 = ez2

ėz2 = −kpzez1 − kiz

∫ t

0
ez1(τ) dτ − kdzez2 +

dz

m

(39)
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To analyze the stability, define an extended state ez0 as follows:

ez0 =
∫ t

0
ez1(τ) dτ − dz

mkiz
(40)

Then, the extended closed-loop system (39) can be described by

ėz = Azez + vz (41)

where ez = [ez0, ez1, ez2]
T is the augmented error state vector, vz = [− ḋz

mkiz
, 0, 0]T is the ex-

tended disturbance vector, and the closed-loop system matrix is

Az =

 0 1 0
0 0 1
−kiz −kpz −kdz,

 (42)

respectively.
Obviously, (41) is the standard form of the general error system described in (21).

Therefore, by Theorem 1, the design problem is to choose the control gain pair (kpz, kiz, kdz)
properly such that the matrix Az is Hurwitz. As a consequence, there exists a Lyapunov
function Vz = eT

z Pzez, where Pz = PT
z > 0 and thereby V̇z ≤ −λmin(Qz)‖ez‖(‖ez‖ − εz) is

achieved, where Qz = QT
z > 0 is the feasible solution of (25):

PzAz + AT
z Pz + Qz < 0 (43)

Moreover, εz =
2λmax(Pz)
λmin(Qz)

ḋ+z
mkiz

according to (31).
As a result, the tracking error ez will approach a region εz eventually, i.e.,

‖ez‖ → εz as t→ ∞. (44)

Remark 1. Note that providing the external disturbance dz satisfies the slow time-varying condi-
tion, i.e., ḋz → 0, and it can be deduced from (44) that ε→ 0 and V̇z ≤ −λmin(Qz)‖ez‖2, which
further implies that the fully-actuated subsystem S1 is asymptotically stable.

3.3. Position Integral Backstepping Controller Design

Consider the under-actuated subsystem S2 described in (20). Assume that the distur-
bances dx and dθ satisfy

|ḋx| ≤ ḋ+x
|dx| ≤ d+x
|dθ | ≤ d+θ

(45)

where ḋ+x , d+x , and d+θ > 0 are known constants. Since the control force F has already been
designed for the subsystem (19) to achieve the desired altitude zd, the control torque M
should be further designed for the subsystem (20) to achieve the desired position xd and
to keep the attitude θ stable. What follows is the illustration of the integral backstepping
controller (IBC) design procedure used to highlight the tracking control problem for such
cascade system (20).

Following the similar manners presented in the previous section, define the position
tracking errors ex1 and ex2 as follows:

ex1 = x− xd

ex2 = ėx1 = ẋ− ẋd
(46)
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Then, the position tracking error dynamics are given by

ėx1 = ex2 (47)

ėx2 =
Fsθ

m
+

dx

m
− ẍd (48)

θ̈ =
M
J
+

dθ

J
(49)

For the above error dynamics, the position integral backstepping control algorithm is
proposed as follows:

Theorem 2. Consider the error dynamics (47)–(49). The closed-loop system is stable in the
sense of bounded input bounded output (BIBO) if there exist the feasible solution of the matrices
Px = PT

x > 0 and Qx = QT
x > 0 satisfying the following LMIs:

PxAx + AT
x Px + Qx < 0 (50)

Qx −

 F2
max

m2kz1
p2

23x 0 0
0 0 0
0 0 0

 > 0 (51)

where the closed-loop system matrix

Ax =

 0 1 0
0 0 1
−kix −kpx −kdx

 (52)

with the control gains (kpx, kix, kdx) > 0, and the matrix Px composed by the following specific structure:

Px =

[
P1x P2x
PT

2x P3x

]
(53)

where p1x > 0, P2x = [p22x, p23x] ∈ R1×2, P3x ∈ R2×2. Then, based on the integral backstepping
control algorithm, the control torque is designed as

M = J
(

ϕ̇2 − cθ(sθ − ϕ1)− kz2
(
θ̇ − ϕ2

)
− w sign

(
θ̇ − ϕ2

))
(54)

where

ϕ2 =
1
cθ

[
ϕ̇1 − 2eT

x12P3xgx1 − kz1(sθ − ϕ1)
]

(55)

ϕ1 =
m
F

ux (56)

ux = ẍd − kpxex1 − kix

∫ t

0
ex1(τ) dτ − kdxex2 (57)

gx1 =
[
0 F

m
]T (58)

ex12 =
[
ex1 ex2

]T (59)

with the control gains kz1 > 0, kz2 > 0, and

w =
d+θ
J

+ η, η > 0 (60)

If the control law (54) is realizable, then the error of (47)–(49) will approach a region εxz, i.e.,∥∥∥∥[ ex
sθ − ϕ1

]∥∥∥∥→ εxz as t→ ∞ (61)
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where

εxz =
λmax(Pxz)

λmin(Qxz)

ḋ+x
mkix

(62)

and

ex =
[∫ t

0 ex1(τ) dτ − dx
mkix

ex1 ex2

]T
(63)

Pxz =

[
Px 03×1

01×3 1

]
(64)

Qxz =

[
Qx MT

2
M2 kz1

]
(65)

M2 =
[
− F

m p23x 0 0
]
. (66)

Proof of Theorem 2. Consider the system state sθ as the virtual control input ϕ1 of the inner
systems (47) and (48). Design the virtual control ϕ1 like the form of (56):

sθ = ϕ1 =
mux

F
(67)

where ux is defined in (57). Replacing sθ in (48) with the virtual control (56) produces
the following virtual error system:

ėx1 = ex2

ėx2 = −kpxex1 − kix

∫ t

0
ex1(τ) dτ − kdxex2 +

dx

m

(68)

Introduce the extended state ex0 as

ex0 =
∫ t

0
ex1(τ) dτ − dx

mkix
(69)

Then, the virtual error system (68) becomes

ėx = Axex + vx (70)

where ex = [ex0, eT
x12]

T = [ex0, ex1, ex2]
T is the extended position tracking error vector,

vx = [− ḋx
mkix

, 0, 0]T is the extended disturbance vector, and the closed-loop system matrix is
revealed in (52). By properly designing the control gain (kpx, kix, kdx), Theorem 1 indicates
that there exists a Lyapunov function Vx = eT

x Pxex such that

V̇x = 2eT
x Px(Axex − vx) ≤ −λmin(Qx)‖ex‖(‖ex‖ − εx) (71)

where the matrices Px = PT
x > 0 and Qx = QT

x > 0 are the feasible solution pair of the Lya-
punov equation, shown as (50). The error boundary εx is

εx =
2λmax(Px)

λmin(Qx)

ḋ+x
mkix

(72)

Equation (71) implies that the magnitude of the extended position tracking error vector
ex will approach a region described by εx.

However, sθ is coupled by the system state variable, not a control input. In other
words, the virtual control ϕ1 in (56) can be realized if sθ = ϕ1 can be fulfilled. Towards this
aim, define the error variable z1 as follows:

z1 = sθ − ϕ1 (73)
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Then, the system (ex, θ) is transformed into the domain of (ex, z1):

ėx = fx + gx ϕ1 + gxz1 + Dx (74)

ż1 = cθ θ̇ − ϕ̇1 (75)

where

fx =

ex1
ex2
0

, gx =

[
0

gx1

]
=

 0
0
F
m

, Dx =

 − ḋx
mkix
0

dx
m − ẍd

 (76)

Apparently, once the error variable z1 converges to zero, it means that the term sθ

converges to the desired virtual control input ϕ1. Then, the error vector ‖e‖ will converge
to a region described in (72). Follow the standard steps of the integral backstepping control
algorithm, treat θ̇ in (75) as the virtual control input ϕ2, and then design a proper ϕ2 such
that the system (ex, z1) is stable.

Consider the Lyapunov function candidate as follows:

V1 = Vx +
1
2

z2
1 (77)

Taking the time derivative of (77) along the trajectories (74)–(75) and introducing (71), it
follows that

V̇1 = 2eT
x Pxėx + z1ż1

= 2eT
x Px(fx + gx ϕ1 + gxz1 + Dx) + z1

(
cθ θ̇ − ϕ̇1

)
= 2eT

x Px(fx + gx ϕ1 + Dx) + 2eT
x Pxgxz1 + z1

(
cθ θ̇ − ϕ̇1

)
= 2eT

x Px(Axex) + 2eT
x Pxvx + 2eT

x Pxgxz1 + z1
(
cθ θ̇ − ϕ̇1

)
(78)

Consider the specific structure of Px shown in (53), and then (78) becomes

V̇1 = 2eT
x Px(Axex) + 2eT

x Pxvx + 2
[

ex0
ex12

]T[P1x P2x
PT

2x P3x

][
0

gx1z1

]
+ z1

(
cθ θ̇ − ϕ̇1

)
= −eT

x Qxex + 2eT
x Pxvx + 2

(
ex0P2xgx1z1 + eT

x12P3xgx1z1

)
+ z1

(
cθ θ̇ − ϕ̇1

)
= −eT

x Qxex + 2eT
x Pxvx + 2ex0P2xgx1z1 + z1

(
cθ θ̇ − ϕ̇1 + 2eT

x12P3xgx1

)
(79)

Design a virtual control input θ̇ = ϕ2 like (55). Substituting (55) into (79) gives

V̇1 = −eT
x Qxex + 2eT

x Pxvx + 2ex0P2xgx1z1 − kz1z2
1

= −eT
x Qxex + 2eT

x Pxvx + 2ex0 p23x
F
m

z1 − kz1z2
1

= −
[

ex
z1

]T [Qx MT
2

M2 kz1

]
︸ ︷︷ ︸

,Qxz

[
ex
z1

]
+

[
ex
z1

]T [ Px 03×1
01×3 1

]
︸ ︷︷ ︸

,Pxz

[
vx
0

]

= −
[

ex
z1

]T

Qxz

[
ex
z1

]
+

[
ex
z1

]T

Pxz

[
vx
0

]
(80)

Based on the Schur complement [32], Qxz > 0 is guaranteed if and only if

Qx > 0 and Qx −MT
2 k−1

z1 M2 > 0 (81)
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or, equivalently,

Qx > 0 and Qx −

 F2

m2kz1
p2

23x 0 0
0 0 0
0 0 0

 > 0 (82)

In the sense of the worst-case design, replacing F in (82) with Fmax yields (51).
If there exist the feasible matrices Px and Qx to fulfill (50) and (51), as mentioned

in (30), (80) is governed by

V̇1 ≤ −λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
(83)

where εxz is shown as (62). Equation (83) shows that the system (ex, z1) is stable in the sense
of BIBO. As a result, the error vector will approach a region εxz eventually. As mentioned
earlier, θ̇ is the system state, not a control input that can be directly assigned. Thus, define
the error variable

z2 = θ̇ − ϕ2. (84)

Then, the system (ex, z1, θ̇) described in (74) and (75) can be transformed into the do-
main of (ex, z1, z2):

ėx = fx + gx ϕ1 + gxz1 + Dx (85)

ż1 = cθ(ϕ2 + z2)− ϕ̇1 (86)

ż2 =
M
J
+

dθ

J
− ϕ̇2 (87)

The objective is to seek the control torque M so that the overall error systems (85)–(87)
are stable. Consider the composite Lyapunov function candidate as

V = V1 +
1
2

z2
2 = eT

x Pxex +
1
2

z2
1 +

1
2

z2
2 (88)

Taking the time derivative of (88) along the system trajectories (85)–(87) and introduc-
ing (80) and (83), it follows that

V̇ = 2eT
x Pxėx + z1ż1 + z2ż2

= 2eT
x Px(fx + gx ϕ1 + gxz1 + Dx) + z1(cθ(ϕ2 + z2)− ϕ̇1) + z2ż2

= 2eT
x Px(fx + gx ϕ1 + Dx) + z1

(
cθ ϕ2 − ϕ̇1 + 2eT

x Pxgx

)
+ z2(ż2 + cθz1)

= 2eT
x Px(Axex + vx) + z1

(
cθ ϕ2 − ϕ̇1 + 2eT

x Pxgx

)
︸ ︷︷ ︸

≤−λmin(Qxz)

∥∥∥∥∥
[
ex
z1

]∥∥∥∥∥
(∥∥∥∥∥
[
ex
z1

]∥∥∥∥∥−εxz

)
+z2

(
M
J
+

dθ

J
− ϕ̇2 + cθz1

)

≤ −λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
− kz1z2

1 + z2

(
M
J
+

dθ

J
− ϕ̇2 + cθz1

)
(89)

Designing the control torque M like (54), substituting (54) into (89) yields
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V̇ ≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
− kz1z2

1 + z2

(
J(ϕ̇2 − cθz1 − kz2z2 − w sign(z2))

J
+

dθ

J
− ϕ̇2 + cθz1

)
≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
− kz1z2

1 + z2

(
ϕ̇2 − cθz1 − kz2z2 − w sign(z2) +

dθ

J
− ϕ̇2 + cθz1

)
≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
− kz1z2

1 − kz2z2
2 + z2

(
−w sign(z2) +

dθ

J

)
≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
− kz1z2

1 − kz2z2
2 − wz2 sign(z2) + z2

dθ

J

≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
− kz1z2

1 − kz2z2
2 − w|z2|+ |z2||

dθ

J
|

≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
− kz1z2

1 − kz2z2
2 − |z2|

(
w−

d+θ
J

)
(90)

By choosing w which is shown in (60), (90) meets

V̇ ≤ −λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
− kz1z2

1 − kz2z2
2 − η|z2| (91)

and consequently V̇ < 0 if [
ex
z1

]
/∈ E1 (92)

where

E1 =

{[
ex
z1

]
∈ R4×1 :

∥∥∥∥[ex
z1

]∥∥∥∥ ≤ εxz

}
(93)

The control force (37) can be realized because it depends on the system states and
parameters only. However, the control torque proposed in (54) needs the information
of ϕ̇1 and ϕ̇2. Refs. [9,12,13] perform the numerical differentiation to estimate ϕ̇1 and ϕ̇2
from ϕ1 and ϕ2, and then apply the low-pass filter to inhibit the effects of the measurement
noise. However, a phase delay will be induced inevitably due to the use of a low-pass
filter. Instead of taking the numerical differentiation, in this study, an analytical form
of the position integral backstepping controller is proposed. The associated detailed
derivations are presented in the next section.

3.4. Proposed Analytic Form of the Proposed Position Integral Backstepping Controller

The analytic form of ϕ̇1 and ϕ̇2 will be obtained by introducing the system dynamics
(9)–(11). Then, split the terms ϕ̇1 and ϕ̇2 into a disturbance-independent compensable
term and a disturbance-dependent term, respectively. By utilizing the compensable terms
to construct ϕ̇1 and ϕ̇2, the control chattering due to the differentiation of the noise can
be avoided significantly. For readability, the results of the proposed analytic integral
backstepping controller (AIBC) are summarized in the following theorem; afterward,
the comments and proofs are provided.
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Theorem 3. Consider the systems (47)–(49). The IBC (54) presented in Theorem 2 is modified
by the following analytic form, namely AIBC:

M =
Jc3

θ F2

c3
θ F2 + m2sθuxuz

(
ϕ̇2,0 − cθ(sθ − ϕ1)− kz2

(
θ̇ − ϕ2

)
− w sign

(
θ̇ − ϕ2

))
(94)

where

ϕ̇2,0 =
1
cθ

(
ϕ̈1,0,0 − 2eT

x12P3x

[
0
Ḟ0
m

]
− 2gT

x1P3x

[
ex2

Fsθ
m − ẍd

]
− kz1

(
cθ θ̇ − ϕ̇1,0

))

+
sθ θ̇

c2
θ

(
ϕ̇1,0 − 2eT

x12P3xgx1 − kz1(sθ − ϕ1)
)

(95)

ϕ2 =
1
cθ

(
ϕ̇1,0,0 − 2eT

x12P3xgx1 − kz1(sθ − ϕ1)
)

(96)

ϕ1 =
m
F

(
ẍd − kpxex1 − kix

∫ t

0
ex1(τ)dτ − kdxex2

)
(97)

ϕ̈1,0,0 = m
üx,0

F
+ m

2ux Ḟ2
0

F3 −m
ux F̈0

F2 −m
2u̇x,0 Ḟ0

F2 (98)

ϕ̇1,0 = m
Fu̇x,0 − ux Ḟ0

F2 (99)

F̈0 = m
(

üz,0,0

cθ
+

θ̇2uz

cθ
+

2θ̇2sθ
2uz

cθ
3 +

2θ̇sθ u̇z,0

cθ
2

)
(100)

üx,0,0 = x(4)d − kpx

(
Fsθ

m
− ẍd

)
− kizex2 − kdx

(
Ḟ0sθ + Fcθ θ̇

m
− x(3)d

)
(101)

üz,0,0 = z(4)d − kpz

(
Fcθ

m
− g− z̈d

)
− kizez2 − kdz

(
Ḟ0cθ − Fsθ θ̇

m
− z(3)d

)
(102)

Ḟ0 = m
cθ u̇z,0 + uzsθ θ̇

c2
θ

(103)

u̇z,0 = z(3)d − kpzez2 − kizez1 − kdz

(
Fcθ

m
− g− z̈d

)
(104)

u̇x,0 = x(3)d − kpxex2 − kixex1 − kdx

(
Fsθ

m
− ẍd

)
(105)

The terms ex12, gx1, P3x, uz, and ux are the same as given in (38), (53), (57), (58), and (59),
respectively. The corresponding control gains (kpz, kiz, kdz, kpx, kix, kdx) > 0, and

w =
d+θ
J

+ M+ + η1, η1 > 0 (106)

where M+ > 0 is the upper bound of the absolute value of those disturbance-dependent non-
compensable terms. Notice that ϕ2 in (96) is different from (55). The control law (94) guarantees
that the extended error vector e = [eT

x , z1]
T will approach a region εxz0, i.e.,∥∥∥∥[ex

z1

]∥∥∥∥→ εxz0 as t→ ∞ (107)

where

εxz0 =
λmax(Pxz)

λmin(Qxz)

√(
ḋ+x

mkix

)2

+

(
kdxd+x
Fmin

+
kdzd+z

cθ+ Fmin
|ϕ1|

)2

(108)

and θ+ is the upper bound of the attitude angle θ, that is,

|θ| ≤ θ+ (109)
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It is assumed that the upper bound θ+ < π/2 during the flight mission.

Proof of Theorem 3. When realizing the IBC (54), it can be found from (55) that ϕ̇2 re-
quires second derivatives of ϕ1. From (56), it implies that the information of F is needed
to construct ϕ1. In other words, to derive the analytic form of IBC (54), namely AIBC,
it is necessary to compute the first and second derivatives of F and ϕ1, respectively. Next,
construct ϕ̇2 such that the analytic form of IBC (54) can be obtained. When performing
the time derivatives, the appeared terms ẍ, z̈, and θ̈ are replaced by the system dynamic
equations (9)–(11). The terms correlated to the disturbance will be expressed as a unified
variable starting with 4, and the remaining terms can be compensated since it is state-
dependent, which is denoted as the subscript 0. Finally, the AIBC is constructed in terms
of state-dependent terms only.

As mentioned above, to obtain the first derivative of F and ϕ1, differentiate uz in (38)
and ux in (57) as follows:

u̇z = u̇z,0 +4uz,0

u̇x = u̇x,0 +4ux,0
(110)

where u̇z,0 is shown in (104), u̇x,0 is shown in (105), and

4uz,0 = −kdz
dz

m

4ux,0 = −kdx
dx

m
,

(111)

respectively. Thus, the time derivatives of F in (37) and ϕ1 in (97) are

Ḟ = Ḟ0 +4F0 (112)

ϕ̇1 = ϕ̇1,0 +4ϕ1,0 (113)

where Ḟ0 is shown as (103), ϕ̇1,0 as shown in (99), and

4F0 = − kdzdz

cθ
(114)

4ϕ1,0 =
kdxdx

F
− muxkdzdz

cθ F2 =
kdxdx

F
− kdzdz

cθ F
ϕ1 (115)

respectively.
According to (109),4ϕ1,0 satisfies

|4ϕ1,0|≤
kdxd+x
Fmin

+
kdzd+z

cθ+ Fmin
|ϕ1| (116)

Replacing ϕ̇1 in (55) with ϕ̇1,0, it follows that

θ̇ = ϕ2 =
1
cθ

(
ϕ̇1,0 − 2eT

x12P3xgx1 − kz1z1

)
(117)

Substituting (117) into (79) gives

V̇1 = −eT
x Qxex + 2eT

x Pxvx + 2ex0P2xgx1z1 − kz1z2
1 + z14ϕ1,0

= −eT
x Qxex + 2eT

x Pxvx + 2ex0 p23x
F
m

z1 − kz1z2
1 + z14ϕ1,0

= −
[

ex
z1

]T[Qx MT
2

M2 kz1

][
ex
z1

]
+

[
ex
z1

]T[ Px 03×1
01×3 1

][
vx
4ϕ1,0

]
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= −
[

ex
z1

]T

Qxz

[
ex
z1

]
+

[
ex
z1

]T

Pxz

[
vx
4ϕ1,0

]
≤ −λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz0

)
(118)

where εxz0 is shown in (108). To obtain ϕ̈1,0 and F̈0, taking the time derivative of u̇x,0 in (105)
and u̇z,0 in (104) as follows:

üz,0 = üz,0,0 +4uz,1

üx,0 = üx,0,0 +4ux,1
(119)

where üz,0,0 is shown in (102), üx,0,0 is given by (101), and

4uz,1 = −kpz
dz

m
− kdz

4F0cθ

m

4ux,1 = −kpx
dx

m
− kdx

4F0sθ

m
,

(120)

respectively.
Taking the time derivative of Ḟ0 in (103) yields

F̈0 = F̈0,0 + FM M +4F1 (121)

where M is the AIBC to be determined later, F̈0,0 is shown as (100), and

FM =
msθuz

Jcθ
2

4F1 = m
4uz,1

cθ
+ m

dθsθuz

Jcθ
2

(122)

Substituting F̈0 in (121) into the time derivative of ϕ̇1,0 in (99) gives

ϕ̈1,0 = m
(

üx,0,0 +4ux,1

F
− u̇x,0 Ḟ0

F2 − u̇x,04F0

F2

)
−m

(
(u̇x,0 +4ux,0)Ḟ0 + ux

(
F̈0,0 + FM M +4F1

)
F2 −

2ux Ḟ0
(

Ḟ0 +4F0
)

F3

)

= ϕ̈1,0,0 +4ϕ1,1 −m
uxFM M

F2 (123)

where ϕ̈1,0,0 is shown as (98) and

4ϕ1,1 = m
4ux,1

F
+ m

2ux Ḟ04F0

F3 −m
ux4F1

F2 −m
4ux,0 Ḟ0 + u̇x,04F0

F2
(124)

Taking the time derivative of ϕ2 in (96) gives
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ϕ̇2 =
d
dt

(
1
cθ

(
ϕ̇1,0 − 2eT

x12P3xgx1 − kz1z1

))
=

1
cθ

(
ϕ̈1,0,0 +4ϕ1,1 −m

uxFM M
F2 − 2eT

x12P3x

[
0

Ḟ0+4F0
m

]

−2gT
x1P3x

[
ex2

Fsθ
m + dx

m − ẍd

]
− kz1

(
cθ θ̇ − ϕ̇1,0 −4ϕ1,0

))
+

sθ θ̇

c2
θ

(
ϕ̇1,0 − 2eT

x12P3xgx1 − kz1z1

)
=

1
cθ

(
ϕ̈1,0,0 − 2eT

x12P3x

[
0
Ḟ0
m

]
− 2gT

x1P3x

[
ex2

Fsθ
m − ẍd

]
− kz1

(
cθ θ̇ − ϕ̇1,0

))
︸ ︷︷ ︸

, ϕ̇2,0a

+
sθ θ̇

c2
θ

(
ϕ̇1,0 − 2eT

x12P3xgx1 − kz1z1

)
︸ ︷︷ ︸

, ϕ̇2,0b

−m
uxFM M

cθ F2

+
1
cθ

(
4ϕ1,1 − 2eT

x12P3x

[
0
4F0

m

]
− 2gT

x1P3x

[
0
dx
m

]
+ kz14ϕ1,0

)
︸ ︷︷ ︸

,∆ϕ2,0

= ϕ̇2,0 +4ϕ2,0 −m
uxFM M

cθ F2 (125)

where ϕ̇2,0 = ϕ̇2,0a + ϕ̇2,0b is described in (95) and

4ϕ2,0 =
1
cθ

(
4ϕ1,1 − 2eT

x12P3x

[
0
4F0

m

]
− 2gT

x1P3x

[
0
dx
m

]
+ kz14ϕ1,0,

)
(126)

respectively.
Consider the composite Lyapunov function candidate in (88). Taking the time derivative

of (88) along the system trajectories (85)–(87) and introducing (118) and (125) leads to

V̇ = 2eT
x Pxėx + z1ż1 + z2ż2

= 2eT
x Px(Axex + vx) + z1

(
cθ ϕ2 − ϕ̇1 + 2eT

x Pxgx

)
︸ ︷︷ ︸

≤−λmin(Qxz)

∥∥∥∥∥
[
ex
z1

]∥∥∥∥∥
(∥∥∥∥∥
[
ex
z1

]∥∥∥∥∥−εxz0

)
+z2

(
M
J
+

dθ

J
− ϕ̇2 + cθz1

)

≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz0

)
− kz1z2

1

+ z2

(
M
J
+

dθ

J
− ϕ̇2,0 −4ϕ2,0 + m

uxFM M
cθ F2 + cθz1

)
≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz0

)
− kz1z2

1

+ z2

(
cθ F2 + JmuxFM

Jcθ F2 M +
dθ

J
− ϕ̇2,0 −4ϕ2,0 + cθz1

)
(127)
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Hence, design the control torque M as follows:

M =
Jcθ F2

cθ F2 + JmuxFM
(ϕ̇2,0 − cθz1 − kz2z2 − w sign(z2))

=
Jcθ F2

cθ F2 + Jmux
msθ uz

Jcθ
2

(ϕ̇2,0 − cθz1 − kz2z2 − w sign(z2)) (128)

Collating (128) gives the AIBC algorithm shown in (94).
Substituting (94) into (127) yields

V̇ ≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz0

)
− kz1z2

1 + z2

(
dθ

J
−4ϕ2,0 − kz2z2 − w sign(z2)

)
≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz0

)
− kz1z2

1 − kz2z2
2 − wz2 sign(z2) + z2

(
dθ

J
−4ϕ2,0

)
(129)

Assume that4ϕ2,0 in (126) is bounded and satisfies

|4ϕ2,0| ≤ M+ (130)

Then, (129) can be rewritten as

V̇ ≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
− kz1z2

1 − kz2z2
2 − w|z2|+ |z2||

d+θ
J

+ M+|

≤ − λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz

)
− kz1z2

1 − kz2z2
2 − |z2|

(
w−

d+θ
J
−M+

)
(131)

Therefore, by choosing w shown in (106), (131) becomes

V̇ ≤ −λmin(Qxz)

∥∥∥∥[ex
z1

]∥∥∥∥(∥∥∥∥[ex
z1

]∥∥∥∥− εxz0

)
− kz1z2

1 − kz2z2
2 − η1|z2| (132)

As a result, the subsystem S2(ex, z1, z2) is stable if[
ex
z1

]
/∈ E2 (133)

where

E2 =

{[
ex
z1

]
∈ R4 :

∥∥∥∥[ex
z1

]∥∥∥∥ ≤ εxz0

}
(134)

Equations (108) and (132) reveal that the asymptotic stability is guaranteed when
the disturbances dx and dz vanish. There are several ways to improve the tracking perfor-
mance, integral gain kix, or considering larger Fmin.

In practical scenarios, the measured states are always contaminated with the measurement
noise. The advantage of the proposed AIBC is that it avoids differentiating the virtual controls
ϕ1 and ϕ2 directly. An analytic form of ϕ̇2 is provided by (95), which consists of measurable
states without any numerical differentiation. A smoother control signal is thus obtained.
Meanwhile, the proposed AIBC is less prone to inducing control signal saturation since it does
not amplify noise effects induced by numerical differentiation. In other words, the proposed
AIBC allows higher control gain to suppress the error boundary εxz.
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According to the actuator configuration, there exist upper bounds for the control
inputs, which implies that the system states are bounded. Therefore, one can deduce that
there exists a positive value M+ to satisfy (130) so that the state-disturbance coupled terms
∆φ2,0 in (126) are bounded.

In the design of the IBC (54) and the proposed AIBC (94), the signum function is intro-
duced to reject the matched perturbations. In fact, (54) and (94) can be further interpreted
as the sliding mode controllers. The existence proofs of the sliding modes for the IBC and
the AIBC are derived in Appendix B.

Remark 2. The derivation procedures of the proposed AIBC for the extension to the 6-DoF drone are
described as follows: (i) First of all, the 6-DoF quadrotor model will be divided into an underactuated
subsystem and a fully actuated one, as shown in (19) and (20), respectively. Generally, the underac-
tuated subsystem consists of the translation dynamics (X, Y) and the roll and pitch dynamics (φ, θ).
As for the fully actuated subsystem, it contains the altitude dynamics Z and yaw dynamics ψ.
(ii) Next, apply the integral backstepping control algorithm to derive the position control law, similar
to Sections 3.2 and 3.3. (iii) Finally, follow the procedures from Section 3.4 to introduce the system
dynamics to obtain the analytic form of the position integral backstepping controller derived in the
previous step.

4. Numerical Simulations

In the following simulations, the fourth-order Runge–Kutta (RK4) algorithm with
a step size of 0.001 seconds is applied in the Matlab environment. The system starts
from rest, and the desired flight trajectory is generated from the start point (xd, zd) = (0, 0)
to the end point(xd, zd) = (1, 1) through a command pre-filter, which guarantees the conti-
nuity of the associated flight profiles. The profiles of xd and its successive derivatives are
shown in Figure 2, where zd uses the trajectory generation scheme. The system parameters
are summarized in Table 2.
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Figure 2. Desired output xd to its fourth differentiation.

Table 2. System parameters.

m L J CT g Cdx, Cdz Cdθ

Unit kg m kg-m2 N/(rad/s)2 m/s2 (N/(m/s) N.m/(rad/s)

0.6 0.25 3.544× 10−3 1.339× 10−6 9.8 1× 10−3 1.2× 10−4

The altitude controller is constructed from (37). For comparison, three different
position controllers are used:

• Cascade PID controller (CPID). The cascade PID control presented in Appendix A is used;
• Integral backstepping controller (IBC). The position integral backstepping controller

derived from Theorem 2 is used, where the time derivatives of the virtual controls,
ϕ̇1 and ϕ̇2, are calculated by the approximated differentiator (APD) as illustrated
in Appendix A;

• Analytic integral backstepping controller (AIBC). The proposed analytic integral backstep-
ping controller presented in Theorem 3 is applied.
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For CPID, the control gains are kpx = kpz = 24, kix = kiz = 18, kdx = kdz = 9.5,
kpθ = 36, kiθ = 42, and kdθ = 10.5, respectively. The feasible solution pair (Pθ , Qθ) that
satisfies (A13) is

Pθ =

2.2220 0.9223 0.0183
0.9223 1.1954 0.0441
0.0183 0.0441 0.0241

, Qθ =

0.7706 0.1506 0.1413
0.1506 0.6885 0.0646
0.1413 0.0646 0.2089

 (135)

For IBC, the control gains are kz1 = 10, kz2 = 5, kpx = kpz = 24, kix = kiz = 18, and
kdx = kdz = 9.5, respectively. The resulting feasible solution pair (Pz, Qz) that satisfies (43) is

Pz =

1.3252 0.2021 0.0348
0.2021 1.1050 0.0442
0.0348 0.0442 0.0335

, Qz =

0.6258 0.1520 0.3657
0.1520 0.8575 0.0420
0.3657 0.0420 0.2742

 (136)

The feasible solution pair (Px, Qx) that satisfies (50) is

Px =

1.3252 0.2021 0.0348
0.2021 1.1050 0.0442
0.0348 0.0442 0.0335

, Qx =

0.6258 0.1520 0.3657
0.1520 0.8575 0.0420
0.3657 0.0420 0.2742

 (137)

According to (53), the matrix P3x is

P3x =

[
1.1050 0.0442
0.0442 0.0335

]
(138)

The switching gain in IBC w = 18 > 1.2 max(dθ)
J = 16.69 is used to fulfill (60). The pro-

posed AIBC is not sensitive to measurement noise. Therefore, higher control gains for the po-
sition loop in x-direction are considered to inhibit the effects of disturbances. The control
gains are kz1 = 10, kz2 = 5, kpz = 24, kiz = 18, kdz = 9.5, kpx = 242, kix = 720, and kdx = 27,
respectively. The corresponding feasible solution pair (Px, Qx) is

Px =

15.8665 3.1698 0.0062
3.1698 1.5796 0.0220
0.0062 0.0220 0.0046

, Qx =

4.4330 0.7453 0.1592
0.7453 2.1634 0.0629
0.1592 0.0629 0.1025

 (139)

From (53), the matrix P3x is

P3x =

[
1.5796 0.0220
0.0220 0.0046

]
(140)

Assume M+ = 2.5 in AIBC; then, w = 20 > 1.2
(

max(dθ)+
J + M+

)
= 19.61 is used

to satisfy (106). The step-wise procedures to implement the control law are briefly summa-
rized as follows:

1. Given the desired position and altitude trajectory xd, zd, and their successive deriva-

tives, (ẋd, ẍd, x(3)d , x(4)d ) and (żd, z̈d, z(3)d , z(4)d );
2. Given the control gain pair (kpz, kiz, kdz), then determine the control force F from (37);
3. Determine the control torque M:

(a) For CPID, calculate the desired attitude θd from (57) and (A3). Then, the control
torque is obtained from (A7). It should be noticed that the derivative of desired
attitude, θ̇d and θ̈d, is obtained by using the APD to θd;

(b) For IBC, given the control gain pair (kpx, kix, kdx), solve the LMI (50) and then
verify (51). Then, the control torque can be obtained from (54). It should be
noticed that the derivative of virtual controls, ϕ̇2 and ϕ̇1, is obtained by using
the APD from ϕ2 and ϕ1, respectively;
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(c) For AIBC, given the control gain pair (kpx, kix, kdx), solve the LMI (50) and
then verify (51). Then, the control torque can be obtained from (94) so that
the related quantities can be found in (95)–(105) accordingly;

4. Based on the calculated control force and control torque, compute the desired motor
speed from (2);

5. Feed the desired speed to BLDC to generate the computed controls (F, M).

The simulation results are shown in Figures 3–11. The evolution of external distur-
bances is shown in Figure 3. Figure 3a,b depicted the time-varying disturbances and
the state-dependent viscous drags, respectively. Figure 3a implies that the properties
of external disturbances are max(| fx|) = 0.2243, max(| fz|) = 0.2612, max(| fθ |) = 0.049,
max(| ḟx|) = 0.3321, max(| ḟx|) = 0.2938, and max(| ḟθ |) = 0.056. The zero-mean Gaussian
white noise with variances of 10−3 and 10−5 are considered for the measurement noise
of (x, ẋ, z, ż) and (θ, θ̇), respectively. The measured and actual states are illustrated in
Figure 4. The actual states are collected from the integral of the system dynamics based
on different control approaches. The measured states are the actual states that add the mea-
surement noise, which will be used in the feedback control process. For the CPID, the APD
is used for estimating the desired angular velocity θ̇d and the desired angular acceleration
θ̈d from desired attitude θd defined in (A3). For IBC, the APD is utilized to estimate the time
derivative of virtual controls, that is, estimate ϕ̇1 and ϕ̇2 from ϕ1 and ϕ2 by the APD.
Both APDs with a cutoff frequency of 10 Hz are considered. On the contrary, regarding
the proposed AIBC, it does not need to use the APD since the time derivatives of the virtual
controls are acquired by the analytic approach.

The comparison of tracking performance for different approaches is revealed
in Figures 5 and 6, respectively. The corresponding root–mean–square error (RMSE)
of the resulting tracking errors is summarized in Table 3. The results reveal that the pro-
posed AIBC has the best tracking performance compared with the CPID and IBC. In fact,
due to the numerical differentiations, the rotor speeds of CPID and IBC are saturated,
which may induce flight instability.

Table 3. The RMSE of tracking errors for different approaches.

CPID IBC (Proposed) AIBC

x-direction 0.0314 0.0229 0.0037
z-direction 0.0055 0.0145 0.0043
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Figure 3. Evolution of external disturbances. (a) the time-varying disturbances; (b) the state-
dependent viscous drags.
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Figure 4. Comparison of measured and actual states for different approaches. (a) CPID; (b) IBC; (c) AIBC.
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Figure 5. Comparison of the desired command and system response in the x-direction for different
approaches. (a) desired command and actual states; (b) tracking errors.
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Figure 6. Comparison of the desired command and system response in the z-direction for different
approaches. (a) desired command and actual states; (b) tracking errors.
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Figure 7. Comparison of computed and truly allowed controls and rotor speeds for the CPID.
(a) comparison of the computed and truly allowed controls (CPID); (b) square of computed rotor
speeds; (c) truly allowed rotor speeds.
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Figure 8. Comparison of computed and truly allowed controls and rotor speeds for the IBC.
(a) comparison of the computed and truly allowed controls (IBC); (b) square of computed rotor
speeds; (c) truly allowed rotor speeds.
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Figure 9. Comparison of computed and truly allowed controls and rotor speeds for the proposed
AIBC. (a) comparison of the computed and truly allowed controls (AIBC); (b) square of computed
rotor speeds; (c) truly allowed rotor speeds.
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Figure 10. Comparison of computed control force and torque for different approaches. (a) com-
puted control force; (b) computed control torque.
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Figure 11. Virtual controls of the IBC and AIBC.

Figures 7–9 compare the computed and truly allowed controls for CPID, IBC, and
AIBC, respectively. In Figure 7a, the computed force and torque both are denoted as a green
line and are obtained from (37) and (A7); in Figure 8a, the computed force and torque both
are denoted as a green line and are obtained from (37) and (54); the control laws shown
in Figure 9a are obtained from (37) and (94), respectively. From the actuator configuration,
the square of the computed rotor speed is computed from (4). Note that negative rotor
speeds are not allowed in the practical scenarios. To meet the real situation, the negative
rotor speed will be saturated by Ωmin and then, by (2), the truly allowed control force and
torque are generated by the rotor speeds reversely, as shown in Figures 7a, 8a, and 9a with
a brown line, magenta line, and blue line, respectively. It can be found that the computed
controls cannot be achieved due to the control signal saturation. The root of the matter
is the amplified control signal due to differentiating the noisy feedback states. A similar
phenomenon can be observed in Figure 8. In contrast to CPID and IBC, the proposed
AIBC avoids the numerical differentiation and thereby the AIBC without inducing the con-
trol signal saturation. The computed and truly allowed controls are matched as shown
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in Figure 9a. Figure 10 compares the computed controls for different approaches. The re-
sults reveal that the proposed AIBC has a smooth-feasible profile, which is helpful for con-
troller implementations.

Figure 11 shows the virtual controls of the IBC and AIBC. Results indicate that the con-
trol chattering can be significantly reduced by utilizing the proposed AIBC rather than
using IBC with APD. Meanwhile, the proposed AIBC enables allowing larger control gains
to improve the trajectory tracking performance because it without involves any numerical
differentiation. It is worth pointing out that applying larger control gains will induce more
series control chattering since the numerical differentiation is used for estimating the time
derivative of virtual controls. In summary, the proposed AIBC has a smoother profile,
which is superior from a control realization point of view.

5. Conclusions

In this paper, an integral backstepping control algorithm called AIBC is proposed
for the quadrotor trajectory tracking demands. The related stability analysis based
on the Lyapunov theory in the presence of matched as well as mismatched disturbances is
also presented. Compared with the conventional cascade control algorithm, the proposed
control algorithm has a better tracking performance since the developed methods consider
the dynamics of the position loop and the attitude loop simultaneously. Moreover, the ana-
lytic form of the virtual control laws is derived. To alleviate the noise amplification issue,
the analytic method avoids the use of numerical differentiation of the virtual control law.
As a consequence, a smoother control signal can be obtained from the proposed analytic
solution. In summary, the proposed AIBC control algorithm has better trajectory track-
ing performance and is able to generate reasonable/realizable control signals. Moreover,
control saturation can be avoided as well. Simulation results reveal the effectiveness and
feasibility of the presented control algorithm. The proposed methodology can be extended
to a 6-DoF position control of quadrotor systems. In addition, the model uncertainties will
be taken into the control design considerations in our future advanced studies.
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Appendix A. Derivation of Conventional Cascade PID Flight Controller

One of the control methodologies for quadrotor positioning control is conventional
cascade control. The cascade control designs the position controller and attitude controller
separately [21]. The tracking error of the position loop will be turned into the desired
attitude command and fed through it to the attitude loop. For this algorithm, the transient
response of the attitude loop is ignored. However, due to the imperfections of modeling
and sensing, there always exist tracking errors in the attitude loop. It leads to the pre-
cision of the positioning being limited to the tracking performance of the attitude loop.
In the following, the algorithm of the conventional cascade control is presented.

Consider the x-direction dynamics of the under-actuated subsystem shown in (20):

ẍ =
Fsθ

m
+

dz

m
(A1)
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where F has been assigned for the altitude tracking; let θ = θd be the desired attitude such
that the desired dynamics of (A1) can be compensated. Hence, (A1) becomes

ẍ =
Fsθd

m
+

dz

m
(A2)

Design sθd in the form of (56); by inverse mapping, the desired attitude is then obtained:

θd = sin−1 mux

F
(A3)

To fulfill the state limitation (109), the saturation of desired attitude command |θd| ≤ θ+

is imposed. If (A3) can be achieved, it has been proven from (56)–(71) that the tracking
error of the position loop is bounded by (72). The desired angular velocity θ̇d and the de-
sired angular acceleration θ̈d are obtained by the approximated differentiator (APD) [21].
The transfer function of APD is given by

T(s) =
s

εs + 1
(A4)

where ε = 1
2π fc

is the time constant, and fc is the cutoff frequency.
In that follows, the attitude controller is designed to track the desired attitude. Define

the tracking errors
eθ1 = θ − θd

eθ2 = θ̇ − θ̇d
(A5)

Then, the error dynamics are

ėθ1 = eθ2

ėθ2 =
M
J
+

dθ

J
− θ̈d

(A6)

Design the control torque M as

M = J
(

θ̈d − kiθ

∫ t

0
ez1(τ) dτ − kpθeθ1 − kdθeθ2

)
(A7)

where the control pairs (kpθ , kiθ , kdθ) > 0. Substituting (A7) into (A6) gives the closed-loop
dynamics as follows:

ėθ1 = eθ2

ėθ2 = −kpθeθ1 − kiθ

∫ t

0
eθ1(τ) dτ − kdθeθ2 +

dθ

J
(A8)

Define the virtual extended state eθ0 as

eθ0 =
∫ t

0
eθ1(τ) dτ − dθ

Jkiθ
(A9)

Then, the closed-loop dynamics (A8) can be written as

ėθ = Aθeθ + vθ (A10)

where eθ = [eθ0, eθ1, eθ2]
T is the augmented error vector, vθ = [− ḋθ

Jkiθ
, 0, 0]T is the augmented

disturbance vector, and the closed-loop system matrix is

Aθ =

 0 1 0
0 0 1
−kiθ −kpθ −kdθ

 (A11)
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Applying Theorem 1, it can be concluded that the attitude tracking error eθ will
approach a region εθ , i.e.,

‖eθ‖ → εθ , εθ = 2
λmax(Pθ)

λmin(Qθ)

ḋ+θ
Jkiθ

, as t→ ∞ (A12)

where the matrices Pθ = PT
θ > 0 and Qθ = QT

θ > 0 are the feasible solution of

PθAθ + AT
θ Pθ + Qθ < 0 (A13)

Equation (A12) reveals that the asymptotic stability cannot be guaranteed due to the
external disturbance ḋθ . It means that the desired attitude (A3) cannot be realized perfectly,
resulting in the precision of position tracking decreases.

Appendix B. Existence Proof of Sliding Mode

In the sense of the sliding mode control, the error variable z2 defined in (84) can be
interpreted as the sliding surface. The control laws (54) and (94) are the sliding mode
controller because they enable forcing the system states to reach the sliding surface z2.
Consider the sliding dynamics (87), and select a Lyapunov function candidate as

Vz2 =
1
2

z2
2 (A14)

Taking the time derivative of (A14) along the trajectory (87), it follows that

V̇z2 = z2ż2

= z2

(
M
J
+

dθ

J
− ϕ̇2

)
(A15)

In what follows, the IBC (54) and AIBC (94) will be respectively substituted into (A15)
to show the approaching condition. First, substituting (54) into (A15) obtains

V̇z2 = z2

(
ϕ̇2 − cθ(sθ − ϕ1)− kz2

(
θ̇ − ϕ2

)
− w sign(z2) +

dθ

J
− ϕ̇2

)
= z2

(
−cθz1 − kz2z2 − w sign(z2) +

dθ

J

)
= −kz2z2

2 − w|z2|+ z2

(
−cθz1 +

dθ

J

)
≤ −kz2z2

2 − w|z2|+ |z2|
(
|cθz1|+

d+θ
J

)

≤ −kz2z2
2 − |z2|

(
w− |cθz1| −

d+θ
J

)
(A16)

Equation (A16) indicates that the approaching condition is fulfilled by choosing
the switching gain shown in (60), which η should be

η = |cθz1|+ η̃. (A17)

Then, (A16) becomes
V̇z2 ≤ −kz2z2

2 − η̃|z2| (A18)
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where η̃ > 0 is a parameter to be designed. Therefore, the sliding surface z2 exponentially
converges to zero within the finite time t f . With the aid of (A14) and (A18), the finite time
can be solved by

t f ≤
1

kz2
ln
(

1 +
kz2

η̃
|z2(0)|

)
(A19)

For (A17), it guarantees that the approaching condition is satisfied for any initial
condition; then, the sliding dynamics (87) converge to zero within the finite time described
in (A19). In fact, the control parameter η > 0 can be arbitrarily assigned since the stability
of the overall systems (47)–(49) has been guaranteed by (88) and (91). In the presence
of mismatched disturbances, the switching gain (60) for any η > 0 does not guarantee
the approaching condition ż2z2 < 0. However, when the disturbances vanish, the state θ
and z1 will converge until the condition η − |cθz1| > 0 such that the approaching condition
holds. Eventually, the sliding motion occurs.

Next, we are going to analyze the approaching condition for the proposed AIBC (94).
According to (125), replacing ϕ̇2 in (A15) with ϕ̇2,0 +4ϕ2,0 −m ux FM M

cθ F2 , it follows that

V̇z2 = z2ż2

= z2

[
M
J
+

dθ

J
−
(

ϕ̇2,0 +4ϕ2,0 −m2 sθuxuz M
cθ F2

)]
= z2

[(
1
J
+ m2 sθuxuz

cθ F2

)
M +

dθ

J
− (ϕ̇2,0 +4ϕ2,0)

]
= z2

(
cθ F2 + sθuxuz

Jcθ F2 M +
dθ

J
− ϕ̇2,0 −4ϕ2,0

)
(A20)

Substituting (94) into(A20) yields

V̇z2 = z2

(
ϕ̇2,0 − cθz1 − kz2z2 − w sign(z2) +

dθ

J
− ϕ̇2,0 −4ϕ2,0

)
= z2

(
−cθz1 − kz2z2 − w sign(z2) +

dθ

J
−4ϕ2,0

)
= −kz2z2

2 − w|z2|+ z2

(
−cθz1 +

dθ

J
−4ϕ2,0

)
≤ −kz2z2

2 − w|z2|+ |z2|
(
|cθz1|+

d+θ
J

+ M+

)

≤ −kz2z2
2 − |z2|

(
w− |cθz1| −

d+θ
J
−M+

)
(A21)

Therefore, by designing η in (106) as

η = |cθz1|+
d+θ
J

+ M+ + η̃′, (A22)

then (A21) becomes
V̇z2 ≤ −kz2z2

2 − η̃′|z2| (A23)

for η̃′ > 0. As mentioned above, (A22) guarantees that the approaching condition is
fulfilled for any initial condition. However, the systems (47)–(49) are still stable for any
η > 0. It has been proven in (88) and (132). In the absence of mismatched disturbances,
the system states converge. It implies that the η − |cθz1| −M+ > 0 will be satisfied, and
then the approaching condition is fulfilled. Eventually, the sliding motion occurs.

Introducing the signum function makes it possible to reject the matched disturbance.
Meanwhile, the price of robustness is the chattering phenomenon of the control signal.
To avoid the chattering caused by the signum function in the control law, the saturation
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function [33] or a hyperbolic tangent [34,35] can be used in practical implementations.
Applying the higher-order sliding mode control [35,36] may also be a feasible solution
for the chattering reduction compared to the conventional sliding mode control.
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