
Citation: Pourdarbani, R.; Sabzi, S.;

Dehghankar, M.; Rohban, M.H.;

Arribas, J.I. Examination of Lemon

Bruising Using Different CNN-Based

Classifiers and Local Spectral-Spatial

Hyperspectral Imaging. Algorithms

2023, 16, 113. https://doi.org/

10.3390/a16020113

Academic Editor: Frank Werner

Received: 6 January 2023

Revised: 6 February 2023

Accepted: 8 February 2023

Published: 14 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Examination of Lemon Bruising Using Different CNN-Based
Classifiers and Local Spectral-Spatial Hyperspectral Imaging
Razieh Pourdarbani 1,* , Sajad Sabzi 2 , Mohsen Dehghankar 2, Mohammad H. Rohban 2

and Juan I. Arribas 3,4,*

1 Department of Biosystems Engineering, College of Agriculture, University of Mohaghegh Ardabili,
Ardabil 56199-11367, Iran

2 Computer Engineering Department, Sharif University of Technology, Tehran 14588-89694, Iran
3 Castilla-León Neuroscience Institute, University of Salamanca, 37007 Salamanca, Spain
4 Department of Electrical Engineering, University of Valladolid, 47011 Valladolid, Spain
* Correspondence: r_pourdarbani@uma.ac.ir (R.P.); jarribas@tel.uva.es (J.I.A.)

Abstract: The presence of bruises on fruits often indicates cell damage, which can lead to a decrease
in the ability of the peel to keep oxygen away from the fruits, and as a result, oxygen breaks down
cell walls and membranes damaging fruit content. When chemicals in the fruit are oxidized by
enzymes such as polyphenol oxidase, the chemical reaction produces an undesirable and apparent
brown color effect, among others. Early detection of bruising prevents low-quality fruit from entering
the consumer market. Hereupon, the present paper aims at early identification of bruised lemon
fruits using 3D-convolutional neural networks (3D-CNN) via a local spectral-spatial hyperspectral
imaging technique, which takes into account adjacent image pixel information in both the frequency
(wavelength) and spatial domains of a 3D-tensor hyperspectral image of input lemon fruits. A total
of 70 sound lemons were picked up from orchards. First, all fruits were labeled and the hyperspectral
images (wavelength range 400–1100 nm) were captured as belonging to the healthy (unbruised) class
(class label 0). Next, bruising was applied to each lemon by freefall. Then, the hyperspectral images
of all bruised samples were captured in a time gap of 8 (class label 1) and 16 h (class label 2) after
bruising was induced, thus resulting in a 3-class ternary classification problem. Four well-known
3D-CNN model namely ResNet, ShuffleNet, DenseNet, and MobileNet were used to classify bruised
lemons in Python. Results revealed that the highest classification accuracy (90.47%) was obtained by
the ResNet model, followed by DenseNet (85.71%), ShuffleNet (80.95%) and MobileNet (73.80%); all
over the test set. ResNet model had larger parameter sizes, but it was proven to be trained faster than
other models with fewer number of free parameters. ShuffleNet and MobileNet were easier to train
and they needed less storage, but they could not achieve a classification error as low as the other two
counterparts.

Keywords: bruise; classification; 3D-CNN; fruit; hyperspectral imaging; lemon; machine learning;
tensor imaging

1. Introduction

Lemon fruit is well-known for having soluble dietary fiber that helps in healthy
digestion. More than half of the vitamin C needed by the body is provided using lemon
consumption, which aids in strengthen the immune system and reduces the risk of heart
disease and stroke [1,2]. The origins of lemon consumption probably date back to the south
of China and it has been cultivated in Asia for more than 2500 years. Main lemon producer
countries in the world are Spain, Mexico, the Netherlands, South Africa, and Turkey. It is
desirable to use fresh lemons because they are flavorful and all parts of lemons can be used.
For example, guaro drink is made from lemon juice or its peel is used as a seasoning in
desserts. Processed lemons (dehydrated peel, citric acid, pomace, pectin and limonene) are

Algorithms 2023, 16, 113. https://doi.org/10.3390/a16020113 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16020113
https://doi.org/10.3390/a16020113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-0766-8305
https://orcid.org/0000-0003-2439-5329
https://orcid.org/0000-0001-6589-850X
https://orcid.org/0000-0002-7486-6152
https://doi.org/10.3390/a16020113
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16020113?type=check_update&version=1

Algorithms 2023, 16, 113 2 of 20

used in the food and non-food industry. Lemon consumption is increasing in producing
and non-producing countries around the globe. However, bruised fruit does not constitute
a health hazard but it is displeasing in terms of visual appearance to consumers.

Post-harvest operations include a complex route from the garden to the market [3,4]
which includes various operations such as harvesting, packaging, sorting, storage, and
transportation. Although during these operations every effort is made not to damage the
fruit, nevertheless often fruit suffers from mechanical damage caused by either dynamic
or static load [5,6]. Lemon bruises are of great concern to the lemon industry and retailers
because they reduce not only the visual appearance, but also the quality of the fruit and
thus can cause significant economic losses. Bruising usually occurs in the tissue under the
fruit peel cover. The amount of bruising depends on a number of factors such as the time of
harvest, the maturity of the product, and the number of days after harvest. Physiological,
biochemical and environmental properties are affected by the sensitivity of a given fruit to
bruising [7].

Several studies, including hyperspectral imaging and near-infrared spectroscopy,
have been reported for bruising detection [8–11]. These optical techniques detect and
evaluate changes or differences in optical properties (i.e., reflection or transmission of light)
between normal and bruised tissues. However, reflection and transmission are not intrinsic
properties and their measurement often depends on the sensing configuration, lightning
conditions and the type of sensor. For instance, by the integration of image processing
and spectroscopy, a spatial map of spectral changes can be obtained which has promising
applications in the field of agricultural products quality assessment [12–14].

Convolutional neural networks (CNNs) are being widely used in computer vision
scientists because it is a type of deep learning (a part of the machine learning framework)
for processing structured arrays of data, such as images. They are able to properly recognize
patterns in the input image such as circles, lines, gradients and even faces of higher lever
structures with great success. Another advantage of this kind of CCN networks is that,
unlike previous computer vision algorithms, they do not need pre-processing, segmentation
and feature extraction and can work directly on an original image, but taking care that
overfitting to the training set is not present after training, since this would greatly limit the
generalization capability of the neural network to properly classify unseen input samples
belonging to the test set [15]. The inputs of CNN structure are directly the input images
of interest to be automatically analyzed. CNNs have 1D, 2D and 3D types, among others.
In 1D-CNN, the network moves in one direction. They are commonly used on time series
data analysis. In 2D-CNNs, the kernels move in two spatial independent directions, and
they are often used in image labeling and image processing (computer vision). 3D-CNN
has a kernel that moves in three independent spatial directions. Those are used in 3D
(volumetric) images of interest, such as MRI and CT body scans in the field of medicine.

Rivera [16] et al. studied on early detection of mango mechanical damage using
machine learning and near infrared (NIR) hyperspectral images. The inner properties of
healthy and damaged areas of mango were obtained in the range of 650–1100 nm and then
further analyzed to select the most effective wavelengths for proper discrimination (classifi-
cation). Results showed that the correct classification rate was 97.9% inside the three-day
time gap after the damage was done. Following the study conducted by [17] on persimmon
fruit to detect bruising using hyperspectral imaging in the range of 450–1040 nm, it is found
that an algorithm based on principal component analysis (PCA) was able to identify healthy
(90%) and damaged (90.8%) fruit at high correct classification rates. Also, they developed
a model based on partial least squares discriminant analysis (PLS-DA) that was able to
classify the fruits based the moment when bruising happened and thus the fruit classes
corresponding to 0, 1, 2 and 3 days after bruising took place were discriminated with an
overall mean accuracy of 99.4%. Che [18] et al. developed a pixel-based method to detect
bruised area in apple fruit. Hyperspectral images of 60 apples were taken at time intervals
of 0, 12, and 18 h after an artificial bruising process was conducted. After selecting the
region of interest (ROI), different recognition models were developed. Results stated that

Algorithms 2023, 16, 113 3 of 20

the random forest (RF) model had the highest correct classification rate (99.9%). Fan [19]
et al. developed a bruise detection system for blueberry fruit using a near-infrared (NIR)
hyperspectral (950–1650 nm) system. They captured images at 30 min, 2 h, 6 h, and 12 h
intervals after mechanical impact on blueberries had happened. A least squares support
vector machine (LS-SVM) based model was developed to compute the distribution of
spatial bruising. The overall classification accuracy for 30 min, 2 h, 6 h, and 12 h gaps was
77.5%, 83.8%, 92.5% and 95.0%, respectively. Li [20] et al., captured hyperspectral images of
peaches at 12, 24, 36, and 48 h after impact. To create a discrimination model, the spectrum
and properties of the samples were extracted. The results showed that according to the
PLS-DA algorithm, the correct classification rates were 96.67%, 96.67%, 93.33% and 83.33%
for 12, 24, 36 and 48 h, respectively.

Zheng et al. [21] proposed a classifier to separate healthy and bruised pear. A thermal
imaging system at the ranges of 8–14µm was used to capture images. The thermal images
were analyzed by the gray-level co-occurrence matrix. A total of 3246 and 1125 samples
were used as training and test data set, respectively. The best test prediction accuracy
obtained was 99.25%. Gai et al. [22] conducted a study based on 1D-convolutional neural
network integrated with hyperspectral images to detect apple bruises. The number of
20 wavelengths were determined to proper identification. The accuracy of system was
95.79% on the test set.

Scientists believe that up to 35% of bruises occur during harvesting and transporta-
tion [23]. In order to minimize post-harvest losses, proper management, transportation,
and storage techniques are needed. The bruised fruit does not only cause a decrease in
marketable value, but also during the storage period, it is susceptible to various diseases
due to peel/tissue damage and to the watery nature of the bruised tissue, thus making it
necessary to separate bruised fruits from healthy (sound, undamaged) ones.

Application of convolutional neural networks on images is widely used and proven
to achieve state-of-the-art performance on image tasks like classification, object detection,
noise reduction, etc. CNNs help in extracting information from different channels of input
images (3 channels in the case of RGB) by considering the spatial relation of pixels and
providing encoding features from the image.

As it can be inferred from the literature review, studies on this field and topic can be
divided into two categories: first category are those conducted on bruise detection after a
few days (long period of time). In this case, the fruit piece is discolored and high accuracy
will be obtained to distinguish between sound and bruised fruits. The second category are
those conducted on fruits such as apples which will discolor in a rather short period of
time, so it can be expected that the healthy and bruised samples will be classified with high
accuracy only after a short period of time has passed from damage instant. Present paper
deals on early identification of bruised lemons using 3D convolutional neural networks.
Lemon is one of the fruits in which the visible symptoms of bruising appear at a later
phase. Our methodology concatenates different spectra and create a 3D tensor image for
each sample in input dataset. This can represent a 3D (volumetric) image similar to a
human body medical imaging systems output. Furthermore, the 3D -NN layers are used
to extract information from this 3D tensor image by considering the spatial information
of the pixels in all three spatial dimensions. As a result, the relation of pixels in a single
spectrum and its adjacent spectra values (similar wavelengths), as well as the near (local)
spatial neighbor pixels in different spectrums, are considered while in the image encoding
process of the CNN layers. Consequently, both local spectra and local spatial relevant
information of different spectrums and spatial points, are considered and taken into account
simultaneously in the final out classification decision of the automatic machine learning
classification models here introduced.

2. Materials and Methods

An illustration of classification task workflow is given in Figure 1. The dataset con-
tains only 210 images in 3-dimensions. Some images were corrupted or do not have

Algorithms 2023, 16, 113 4 of 20

enough spectrum signatures similar to the average. Next, all the samples were resized to
(f,x,y) = (174,160,120) hyperspectral 3D tensor images size, for frequency bands (f wave-
lengths, frequency resolution), and x-axis and y-axis spatial coordinate system, with above
mentioned frequency (wavelength bands) and space resolution (pixel) values, respectively.
To overcome the small sample size of the dataset, data augmentation techniques were
applied to increase the dataset size.

Algorithms 2023, 16, x FOR PEER REVIEW 4 of 21

2. Materials and Methods
An illustration of classification task workflow is given in Figure 1. The dataset con-

tains only 210 images in 3-dimensions. Some images were corrupted or do not have
enough spectrum signatures similar to the average. Next, all the samples were resized to
(f,x,y) = (174,160,120) hyperspectral 3D tensor images size, for frequency bands (f wave-
lengths, frequency resolution), and x-axis and y-axis spatial coordinate system, with above
mentioned frequency (wavelength bands) and space resolution (pixel) values, respec-
tively. To overcome the small sample size of the dataset, data augmentation techniques
were applied to increase the dataset size.

Figure 1. An illustration of our machine learning framework classification task workflow.

2.1. Collecting the Samples
A total of 70 healthy and intact lemons were obtained from orchards. In order to

avoid bruising during transport from the garden to laboratory, the fruits were protected
inside the covers. First, all fruit was labeled and the hyperspectral images of all were cap-
tured as the healthy class (class label 0). Next all lemons were drop from a height of 30 cm
hitting the ground producing artificial bruising. Then, the hyperspectral images of all
bruised samples were captured at 8 (class label 1) and 16 h (class label 2) after bruising.

2.2. Hardware System for Data Collection
A hyperspectral camera with software and built-in scanner (Noor Imen Tajhiz Co.;

https://hyperspectralimaging.ir/, accessed on 2 February 2023, made in Iran-Kashan) were
used. The spectral range of the camera was 400 to 1100 nm and its spectral resolution was
2.5 nm. The type of camera scan was angular scan and the accuracy of spatial resolution
for an object at a distance of 1 m was equal to 250 microns. In order to avoid ambient light
noise, a chamber was used with artificial illumination by 2 lamps placed opposite to each
other (20 W), c.f. Figure 2. To prevent the brightness of the sample, the light should not
directly illuminate the sample, but it should be installed in such a way that it illuminates
the space inside the chamber uniformly.

Figure 1. An illustration of our machine learning framework classification task workflow.

2.1. Collecting the Samples

A total of 70 healthy and intact lemons were obtained from orchards. In order to avoid
bruising during transport from the garden to laboratory, the fruits were protected inside
the covers. First, all fruit was labeled and the hyperspectral images of all were captured as
the healthy class (class label 0). Next all lemons were drop from a height of 30 cm hitting
the ground producing artificial bruising. Then, the hyperspectral images of all bruised
samples were captured at 8 (class label 1) and 16 h (class label 2) after bruising.

2.2. Hardware System for Data Collection

A hyperspectral camera with software and built-in scanner (Noor Imen Tajhiz Co.;
https://hyperspectralimaging.ir/, accessed on 2 February 2023, made in Iran-Kashan) were
used. The spectral range of the camera was 400 to 1100 nm and its spectral resolution was
2.5 nm. The type of camera scan was angular scan and the accuracy of spatial resolution
for an object at a distance of 1 m was equal to 250 microns. In order to avoid ambient light
noise, a chamber was used with artificial illumination by 2 lamps placed opposite to each
other (20 W), c.f. Figure 2. To prevent the brightness of the sample, the light should not
directly illuminate the sample, but it should be installed in such a way that it illuminates
the space inside the chamber uniformly.

https://hyperspectralimaging.ir/

Algorithms 2023, 16, 113 5 of 20Algorithms 2023, 16, x FOR PEER REVIEW 5 of 21

Figure 2. Setup of proposed hardware system to perform input samples hyperspectral imaging.

2.3. Removal of the Noisy Spectral Data
Images captured by the hyperspectral camera were at the range of 400–1100 nm. Due

to various reasons such as ambient noise, light effect and others, the beginning and the
end of the spectrum range were highly noisy. Therefore, those noisy frequency bands data
were discarded since they did not provide useful information (see a number of hyperspec-
tral image examples in Figure 3. At the end, a total of 174 spectral images where picked
from each individual input fruit sample, at a range of 550–900 nm and selected to be fur-
ther analyzed.

Figure 3. Some examples of hyperspectral images at the wavelength range of 400–1100 nm: as is
apparent from images, both initial and final frequency bands were considered irrelevant and thus
discarded.

2.4. The 3-Dimensional (3D) Structure of the Hyperspectral Imaging Fruit Samples
Figure 4 shows an example of a lemon input tensor 3D hyperspectral image. After

preprocessing, there are 174 spectrums for each sample data, and each spectrum has 160
by 120 spatial pixels (19,200 pixels). The example below shows the spectrum of a lemon
training sample tensor image.

Figure 2. Setup of proposed hardware system to perform input samples hyperspectral imaging.

2.3. Removal of the Noisy Spectral Data

Images captured by the hyperspectral camera were at the range of 400–1100 nm. Due
to various reasons such as ambient noise, light effect and others, the beginning and the end
of the spectrum range were highly noisy. Therefore, those noisy frequency bands data were
discarded since they did not provide useful information (see a number of hyperspectral
image examples in Figure 3. At the end, a total of 174 spectral images where picked from
each individual input fruit sample, at a range of 550–900 nm and selected to be further
analyzed.

Algorithms 2023, 16, x FOR PEER REVIEW 5 of 21

Figure 2. Setup of proposed hardware system to perform input samples hyperspectral imaging.

2.3. Removal of the Noisy Spectral Data
Images captured by the hyperspectral camera were at the range of 400–1100 nm. Due

to various reasons such as ambient noise, light effect and others, the beginning and the
end of the spectrum range were highly noisy. Therefore, those noisy frequency bands data
were discarded since they did not provide useful information (see a number of hyperspec-
tral image examples in Figure 3. At the end, a total of 174 spectral images where picked
from each individual input fruit sample, at a range of 550–900 nm and selected to be fur-
ther analyzed.

Figure 3. Some examples of hyperspectral images at the wavelength range of 400–1100 nm: as is
apparent from images, both initial and final frequency bands were considered irrelevant and thus
discarded.

2.4. The 3-Dimensional (3D) Structure of the Hyperspectral Imaging Fruit Samples
Figure 4 shows an example of a lemon input tensor 3D hyperspectral image. After

preprocessing, there are 174 spectrums for each sample data, and each spectrum has 160
by 120 spatial pixels (19,200 pixels). The example below shows the spectrum of a lemon
training sample tensor image.

Figure 3. Some examples of hyperspectral images at the wavelength range of 400–1100 nm: as is
apparent from images, both initial and final frequency bands were considered irrelevant and thus
discarded.

2.4. The 3-Dimensional (3D) Structure of the Hyperspectral Imaging Fruit Samples

Figure 4 shows an example of a lemon input tensor 3D hyperspectral image. After
preprocessing, there are 174 spectrums for each sample data, and each spectrum has 160
by 120 spatial pixels (19,200 pixels). The example below shows the spectrum of a lemon
training sample tensor image.

Algorithms 2023, 16, 113 6 of 20Algorithms 2023, 16, x FOR PEER REVIEW 6 of 21

Figure 4. A sample tensor 3D hyperspectral image at a particular fixed spectrum frequency band:
dataset consisted of 174 wavelength band images like the one here depicted, with a spectral resolu-
tion of 2.5 nm between frequency bands inside (550–900 nm) wavelength range, and (160 × 120)
spatial resolution pixels, totaling 19,200 spatial pixels in each spectral band image.

2.5. 3D-Convolutional Neural Network Classifiers
Convolutional Neural Networks (CNN) are a special type of Neural Networks de-

signed for detecting image-specific features and patterns from pixels inside the image. As
illustrated in Figure 5, given an input image that may contain multiple channels (3 chan-
nels in the case of RGB images), CNN encodes image-specific features required for making
inferences on inputs in image tasks. This encoding is done using fixed-sized kernels ‘walk-
ing’ (convolution) through the whole image space. As a result, usage of CNN provides a
state-of-the-art method for tasks like image classifications, object detection, image recon-
struction, etc.

Figure 5. Convolutional Neural Networks (CNN) layer with a kernel size 3 and its generated en-
coded output after convolution.

A convolutional layer with kernel k and image matrix can be formalized as Equation
(1) [24]: 𝑧 , , = 𝜔 𝑥 , 𝑏 (1)

where x is image matrix, T stands for vector transpose, z is the feature value (i,j) of layer l
and the kernel k of the output feature matrix and ω and b are weight vector and bias matrix
of kernel k and layer l, respectively.

The most important limitation of Artificial Neural Network (ANN) is their complex-
ity and efficiency when dealing with high-dimensional inputs like image pixels. If each
input is represented by a 64 × 64 pixel image, the number of weights needed by a neuron
in the first layer would be 12,288 [24]. This makes CNN a suitable choice for image tasks.

In an image classification task, a model can use CNN layers to extract spatial infor-
mation from images and generate encoded feature matrices (feature extraction). After

Figure 4. A sample tensor 3D hyperspectral image at a particular fixed spectrum frequency band:
dataset consisted of 174 wavelength band images like the one here depicted, with a spectral resolution
of 2.5 nm between frequency bands inside (550–900 nm) wavelength range, and (160 × 120) spatial
resolution pixels, totaling 19,200 spatial pixels in each spectral band image.

2.5. 3D-Convolutional Neural Network Classifiers

Convolutional Neural Networks (CNN) are a special type of Neural Networks de-
signed for detecting image-specific features and patterns from pixels inside the image. As
illustrated in Figure 5, given an input image that may contain multiple channels (3 channels
in the case of RGB images), CNN encodes image-specific features required for making in-
ferences on inputs in image tasks. This encoding is done using fixed-sized kernels ‘walking’
(convolution) through the whole image space. As a result, usage of CNN provides a state-
of-the-art method for tasks like image classifications, object detection, image reconstruction,
etc.

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 21

Figure 4. A sample tensor 3D hyperspectral image at a particular fixed spectrum frequency band:
dataset consisted of 174 wavelength band images like the one here depicted, with a spectral resolu-
tion of 2.5 nm between frequency bands inside (550–900 nm) wavelength range, and (160 × 120)
spatial resolution pixels, totaling 19,200 spatial pixels in each spectral band image.

2.5. 3D-Convolutional Neural Network Classifiers
Convolutional Neural Networks (CNN) are a special type of Neural Networks de-

signed for detecting image-specific features and patterns from pixels inside the image. As
illustrated in Figure 5, given an input image that may contain multiple channels (3 chan-
nels in the case of RGB images), CNN encodes image-specific features required for making
inferences on inputs in image tasks. This encoding is done using fixed-sized kernels ‘walk-
ing’ (convolution) through the whole image space. As a result, usage of CNN provides a
state-of-the-art method for tasks like image classifications, object detection, image recon-
struction, etc.

Figure 5. Convolutional Neural Networks (CNN) layer with a kernel size 3 and its generated en-
coded output after convolution.

A convolutional layer with kernel k and image matrix can be formalized as Equation
(1) [24]: 𝑧 , , = 𝜔 𝑥 , 𝑏 (1)

where x is image matrix, T stands for vector transpose, z is the feature value (i,j) of layer l
and the kernel k of the output feature matrix and ω and b are weight vector and bias matrix
of kernel k and layer l, respectively.

The most important limitation of Artificial Neural Network (ANN) is their complex-
ity and efficiency when dealing with high-dimensional inputs like image pixels. If each
input is represented by a 64 × 64 pixel image, the number of weights needed by a neuron
in the first layer would be 12,288 [24]. This makes CNN a suitable choice for image tasks.

In an image classification task, a model can use CNN layers to extract spatial infor-
mation from images and generate encoded feature matrices (feature extraction). After

Figure 5. Convolutional Neural Networks (CNN) layer with a kernel size 3 and its generated encoded
output after convolution.

A convolutional layer with kernel k and image matrix can be formalized as
Equation (1) [24]:

zl
i,j,k = ωl T

k xl
i,j + bl

k (1)

where x is image matrix, T stands for vector transpose, z is the feature value (i,j) of layer l
and the kernel k of the output feature matrix and ω and b are weight vector and bias matrix
of kernel k and layer l, respectively.

The most important limitation of Artificial Neural Network (ANN) is their complexity
and efficiency when dealing with high-dimensional inputs like image pixels. If each input
is represented by a 64 × 64 pixel image, the number of weights needed by a neuron in the
first layer would be 12,288 [24]. This makes CNN a suitable choice for image tasks.

In an image classification task, a model can use CNN layers to extract spatial informa-
tion from images and generate encoded feature matrices (feature extraction). After some
layers of CNN, it will use fully connected neural network layers to provide a predicted label
given these encoded features (classification). This process is illustrated in Figure 6 [25].

Algorithms 2023, 16, 113 7 of 20

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 21

some layers of CNN, it will use fully connected neural network layers to provide a pre-
dicted label given these encoded features (classification). This process is illustrated in Fig-
ure 6 [25].

Figure 6. An example of an image classification by a CNN network architecture.

At the present paper, 3D-CNN network was leveraged so that it accepts 3D images
as inputs. The input tensor to this network has 4 dimensions, including the number of
channels (Figure 7) [26].

Figure 7. Example of a 3D-CNN with a 3D kernel depicted as an orange box.

Different 3D-CNN models such as ResNet, ShuffleNet, DenseNet, and MobileNet at
the PyThon programing framework, were used to predict the output class labels, as de-
tailed next.

2.5.1. ResNet Architecture
Using deep networks introduces several problems in the training phase, like the deg-

radation problem that causes the model to be harder to train and reduces the output clas-
sification accuracy of the model. ResNet model solves this problem by defining residual
connections. This helps define deep networks without those optimization problems and
still have a model which could easily be trained and maintain its high output accuracy
[27]. The building block of this model is represented in Figure 8. These connections en-
hance the gradient flow in backpropagation and prevent degradation problems like gra-
dient vanishing.

Figure 6. An example of an image classification by a CNN network architecture.

At the present paper, 3D-CNN network was leveraged so that it accepts 3D images
as inputs. The input tensor to this network has 4 dimensions, including the number of
channels (Figure 7) [26].

Algorithms 2023, 16, x FOR PEER REVIEW 7 of 21

some layers of CNN, it will use fully connected neural network layers to provide a pre-
dicted label given these encoded features (classification). This process is illustrated in Fig-
ure 6 [25].

Figure 6. An example of an image classification by a CNN network architecture.

At the present paper, 3D-CNN network was leveraged so that it accepts 3D images
as inputs. The input tensor to this network has 4 dimensions, including the number of
channels (Figure 7) [26].

Figure 7. Example of a 3D-CNN with a 3D kernel depicted as an orange box.

Different 3D-CNN models such as ResNet, ShuffleNet, DenseNet, and MobileNet at
the PyThon programing framework, were used to predict the output class labels, as de-
tailed next.

2.5.1. ResNet Architecture
Using deep networks introduces several problems in the training phase, like the deg-

radation problem that causes the model to be harder to train and reduces the output clas-
sification accuracy of the model. ResNet model solves this problem by defining residual
connections. This helps define deep networks without those optimization problems and
still have a model which could easily be trained and maintain its high output accuracy
[27]. The building block of this model is represented in Figure 8. These connections en-
hance the gradient flow in backpropagation and prevent degradation problems like gra-
dient vanishing.

Figure 7. Example of a 3D-CNN with a 3D kernel depicted as an orange box.

Different 3D-CNN models such as ResNet, ShuffleNet, DenseNet, and MobileNet
at the PyThon programing framework, were used to predict the output class labels, as
detailed next.

2.5.1. ResNet Architecture

Using deep networks introduces several problems in the training phase, like the
degradation problem that causes the model to be harder to train and reduces the output
classification accuracy of the model. ResNet model solves this problem by defining residual
connections. This helps define deep networks without those optimization problems and
still have a model which could easily be trained and maintain its high output accuracy [27].
The building block of this model is represented in Figure 8. These connections enhance
the gradient flow in backpropagation and prevent degradation problems like gradient
vanishing.

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 21

Figure 8. Example of Residual Connections in the building block of ResNet architecture.

2.5.2. ShuffleNet Architecture
ShuffleNet is an extremely efficient network that uses Pointwise Group Convolution

and Channel Shuffle to achieve an efficient performance for environments with limited
available resources [28]. An example of ShuffleNet building block is illustrated in Figure
9.

Figure 9. Building block of ShuffleNet depicted with Channel Shuffle and Pointwise Group Convo-
lution in it.

2.5.3. DenseNet Architecture
In the DenseNet network, each layer is connected to every other preceding layer. This

helps in preventing the vanishing gradient problem and also strengthens feature propa-
gation [29]. Figure 10 illustrates the building blocks of DenseNet also known as Dense
Blocks. Additionally, DenseNet helps in using fewer parameters in the learning process.
Leveraging the knowledge of previous layers also reduces the redundancy in the learned
feature maps.

Figure 8. Example of Residual Connections in the building block of ResNet architecture.

Algorithms 2023, 16, 113 8 of 20

2.5.2. ShuffleNet Architecture

ShuffleNet is an extremely efficient network that uses Pointwise Group Convolution
and Channel Shuffle to achieve an efficient performance for environments with limited
available resources [28]. An example of ShuffleNet building block is illustrated in Figure 9.

Algorithms 2023, 16, x FOR PEER REVIEW 8 of 21

Figure 8. Example of Residual Connections in the building block of ResNet architecture.

2.5.2. ShuffleNet Architecture
ShuffleNet is an extremely efficient network that uses Pointwise Group Convolution

and Channel Shuffle to achieve an efficient performance for environments with limited
available resources [28]. An example of ShuffleNet building block is illustrated in Figure
9.

Figure 9. Building block of ShuffleNet depicted with Channel Shuffle and Pointwise Group Convo-
lution in it.

2.5.3. DenseNet Architecture
In the DenseNet network, each layer is connected to every other preceding layer. This

helps in preventing the vanishing gradient problem and also strengthens feature propa-
gation [29]. Figure 10 illustrates the building blocks of DenseNet also known as Dense
Blocks. Additionally, DenseNet helps in using fewer parameters in the learning process.
Leveraging the knowledge of previous layers also reduces the redundancy in the learned
feature maps.

Figure 9. Building block of ShuffleNet depicted with Channel Shuffle and Pointwise Group Convolu-
tion in it.

2.5.3. DenseNet Architecture

In the DenseNet network, each layer is connected to every other preceding layer.
This helps in preventing the vanishing gradient problem and also strengthens feature
propagation [29]. Figure 10 illustrates the building blocks of DenseNet also known as
Dense Blocks. Additionally, DenseNet helps in using fewer parameters in the learning
process. Leveraging the knowledge of previous layers also reduces the redundancy in the
learned feature maps.

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 21

Figure 10. Example of Dense Blocks depicted in DenseNet architecture.

2.5.4. MobileNet Architecture
Similar to ShuffleNet, MobileNet introduces a new architecture to efficiently learn on

embedded and mobile applications with limited resources available [30]. It uses depth-
wise separable convolutions that reduce the number of parameters compared to simple
CNN networks. A depth-wise separable convolution is illustrated in Figure 11 containing
Depthwise convolution and Pointwise convolution layers.

Figure 11. Building block of MobileNet containing Depthwise Convolution and Pointwise Convo-
lution boxes.

2.6. Train, Test and Validation Disjoint Sets: A Partition of the Input Dataset
The input image hyperspectral dataset is split into the disjoint train, test, and valida-

tion sets with portions of 70%, 10%, and 20% of the total, respectively. The number of
samples in the dataset for each label (class) is as follows (before augmentation), see Table
1.

Table 1. Number (#) of samples in the dataset and in train/test/validation disjoint sets.

Name # of Total Samples
(Before Augmentation)

of Class Label 0
(Healthy,

Undamaged)

of Class Label 1
(8 h after Bruising)

of Class Label 2
(16 h after Bruising)

Train 147 49 49 49
Test 21 7 7 7

Validation 42 14 14 14
Total 210 70 70 70

Figure 10. Example of Dense Blocks depicted in DenseNet architecture.

2.5.4. MobileNet Architecture

Similar to ShuffleNet, MobileNet introduces a new architecture to efficiently learn on
embedded and mobile applications with limited resources available [30]. It uses depth-
wise separable convolutions that reduce the number of parameters compared to simple
CNN networks. A depth-wise separable convolution is illustrated in Figure 11 containing
Depthwise convolution and Pointwise convolution layers.

Algorithms 2023, 16, 113 9 of 20

Algorithms 2023, 16, x FOR PEER REVIEW 9 of 21

Figure 10. Example of Dense Blocks depicted in DenseNet architecture.

2.5.4. MobileNet Architecture
Similar to ShuffleNet, MobileNet introduces a new architecture to efficiently learn on

embedded and mobile applications with limited resources available [30]. It uses depth-
wise separable convolutions that reduce the number of parameters compared to simple
CNN networks. A depth-wise separable convolution is illustrated in Figure 11 containing
Depthwise convolution and Pointwise convolution layers.

Figure 11. Building block of MobileNet containing Depthwise Convolution and Pointwise Convo-
lution boxes.

2.6. Train, Test and Validation Disjoint Sets: A Partition of the Input Dataset
The input image hyperspectral dataset is split into the disjoint train, test, and valida-

tion sets with portions of 70%, 10%, and 20% of the total, respectively. The number of
samples in the dataset for each label (class) is as follows (before augmentation), see Table
1.

Table 1. Number (#) of samples in the dataset and in train/test/validation disjoint sets.

Name # of Total Samples
(Before Augmentation)

of Class Label 0
(Healthy,

Undamaged)

of Class Label 1
(8 h after Bruising)

of Class Label 2
(16 h after Bruising)

Train 147 49 49 49
Test 21 7 7 7

Validation 42 14 14 14
Total 210 70 70 70

Figure 11. Building block of MobileNet containing Depthwise Convolution and Pointwise Convolu-
tion boxes.

2.6. Train, Test and Validation Disjoint Sets: A Partition of the Input Dataset

The input image hyperspectral dataset is split into the disjoint train, test, and validation
sets with portions of 70%, 10%, and 20% of the total, respectively. The number of samples
in the dataset for each label (class) is as follows (before augmentation), see Table 1.

Table 1. Number (#) of samples in the dataset and in train/test/validation disjoint sets.

Name # of Total Samples
(Before Augmentation)

of Class Label 0
(Healthy, Undamaged)

of Class Label 1
(8 h after Bruising)

of Class Label 2
(16 h after Bruising)

Train 147 49 49 49
Test 21 7 7 7

Validation 42 14 14 14
Total 210 70 70 70

3. Results
3.1. 3D-CNN Model Parameter, NN Size and Training Time

Multiple CNN models (3D versions), ResNet, ShuffleNet, MobileNet, and DenseNet,
were used. They had different training times and parameter sizes (See Table 2).

Table 2. 3D-CNN model parameter sizes and training time per epoch.

Model Name Parameter Set Size (MB) Train Time Per Epoch (seconds)

ResNet 242 24
ShuffleNet 5 7
DenseNet 43 46
MobileNet 12 7

The ShuffleNet model [28] uses Channel Shuffle Operation and Pointwise Group
Convolution to be highly efficient. As a result, it consumes less amount of resources, less
computational load and it can be trained faster with less memory usage in comparison
to other models, like DenseNet. DenseNet uses Dense Blocks that help each layer collect
the knowledge from all preceding layers [29]. ResNet model uses Residual Connections
between its layers [27]. This enhances the training time as the gradient flow would be
highly optimized. As a result, a deeper ResNet model with a larger parameter size has a
faster training time in comparison with the DenseNet model. MobileNet is also used for
embedded applications where there is a limited computational power. It uses depth-wise
separable convolutions to reduce the model size and at the same time make it more efficient.

3.2. The Final Deep Network Classifiers Structure

The batch size was 4 and also they were accumulated 2 epochs before one step in
optimization (resulting in an effective batch size of 8). The well-known CrossEntropyLoss

Algorithms 2023, 16, 113 10 of 20

loss (error) function was used as the optimization criterion. In addition, the Adadelta
optimizer with an exponential learning rate was applied that helped in achieving faster
convergence and increased stochastic nature of the training process. It was started with a
learning rate of 0.1 and was then reduced exponentially by a gamma factor of 0.95.

In order to use all the spatial information of the hyperspectral images, we concatenated
the spectrums of each sample and created a 3D image. As a result, the input to our models
is an image of size 174 × 160 × 120 pixels. One important hyper-parameter for our classifier
in the training phase is the batch size. We had some limitations in the GPU memory storage
(Google Colab. Environment). Additionally, the 3D-CNN models consume more memory
storage space than 2D-CNN models because of the larger trainable parameters in these 3D
model kernels and pooling layers. In order to overcome this limitation, we used a batch
size of 4 with a gradient accumulation of two back propagations. This provides an effective
batch size of 8 in our training phase, as already mentioned.

We used CrossEntropyLoss cost function to compute the error of the models. The last
layer of the classifier uses a Softmax layer to provide a prediction probability for each of
the classes. By using the cross-entropy loss, these logits (probabilities) are compared with
the expected label vector which is a one-hot vector with one single non-zero value on the
index of the expected label and zero on all other indices of the vector. As a result, if an
error is introduced on these logits, it will go back to update model parameters through the
backpropagation learning algorithm.

As the training optimizer, we used Adadelta [31]. Adadelta adapts the learning rate
dynamically over time and has two major benefits: there is no need to manually select a
global learning rate and addresses the problem of the continual decay of learning rates
throughout training. We used an exponential scheduler for our optimizer and it helped
the mode to faster converge to an optimal point in the loss function. We started with a
base value of 0.1 for the learning rate and after each training epoch, this learning rate is
multiplied by a gamma value of 0.95. The learning rate for epoch number n (n ≥ 1) can be
calculated from initial learning rate easily using the following formula:

lrn = lr0 × γn−1 (2)

Using larger gamma values (0.95 to 0.99) results in high learning rates in the first 100
epochs which in turn results in larger gradient steps that reduce the training robustness
of the model. Using small values of gamma increases the training time as well as reduces
the chance to escape a local optimum in the loss function. As a result, it will take longer to
reach high classification accuracy values.

3.3. The Behavior and Performance of All Four Deep Learning Classifiers after the Training Phase:
Cross Entropy (CE) Loss Function and Output Classification Accuracy (%)

Figure 12 illustrates the behavior of the classifiers after the training phase. As shown,
the DenseNet model has many oscillations in both the training and validation phase losses.
In addition, the DenseNet model is a complex model which needs much more time and
epoch numbers to train to achieve an accuracy equivalent to the ResNet case.

Algorithms 2023, 16, 113 11 of 20

Algorithms 2023, 16, x FOR PEER REVIEW 11 of 21

multiplied by a gamma value of 0.95. The learning rate for epoch number n (n ≥ 1) can be
calculated from initial learning rate easily using the following formula: 𝑙𝑟 = 𝑙𝑟 × 𝛾 (2)

Using larger gamma values (0.95 to 0.99) results in high learning rates in the first 100
epochs which in turn results in larger gradient steps that reduce the training robustness
of the model. Using small values of gamma increases the training time as well as reduces
the chance to escape a local optimum in the loss function. As a result, it will take longer
to reach high classification accuracy values.

3.3. The Behavior and Performance of all Four Deep Learning Classifiers after the Training
Phase: Cross Entropy (CE) Loss Function and Output Classification Accuracy (%)

Figure 12 illustrates the behavior of the classifiers after the training phase. As shown,
the DenseNet model has many oscillations in both the training and validation phase
losses. In addition, the DenseNet model is a complex model which needs much more time
and epoch numbers to train to achieve an accuracy equivalent to the ResNet case.

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 21

Figure 12. Train (solid orange) and validation (solid blue) cross-entropy (CE) loss and classification
accuracy (%) examples, after 100 epochs: ResNet, DenseNet, ShuffleNet, MobileNet.

The MobileNet model converges after 40 epochs and there was no noticeable further
improvement in the validation loss after that epoch. This shows us that the 3D version of
MobileNet does not have a high generalization power or in other words, this model can
easily overfit to our small training dataset.

ShuffleNet is almost as efficient as MobileNet as illustrated in Table 2 in terms of both
the training time and parameter set size. In contrast, it achieves higher accuracy on the
training set, as compared to MobileNet. The reduction of training loss in the ShuffleNet is
smoother and more robust than MobileNet and it converges after 60 epochs. As a result,
there is an even higher chance to improve the accuracy of this model by increasing the
training time.

None of the DenseNet and MobileNet models could achieve a lower loss on the train-
ing set when compared to ResNet. This shows us the power of ResNet models in reaching
high accuracy in a limited amount of time and limited resources.

Both ShuffleNet and MobileNet use special structures to create an efficient model for
embedded applications. Although they are easier and faster to train, we can see that there
is a tradeoff for their generalization capability to the validation set in these two cases, since
none of them can achieve a high classification accuracy, contrary to what DenseNet and
ResNet models were able to do, over the validation set.

The ResNet model achieves lower loss in the training set as compared to all other
models. This tells us that the residual connections in this model and using larger depths

Figure 12. Cont.

Algorithms 2023, 16, 113 12 of 20

Algorithms 2023, 16, x FOR PEER REVIEW 12 of 21

Figure 12. Train (solid orange) and validation (solid blue) cross-entropy (CE) loss and classification
accuracy (%) examples, after 100 epochs: ResNet, DenseNet, ShuffleNet, MobileNet.

The MobileNet model converges after 40 epochs and there was no noticeable further
improvement in the validation loss after that epoch. This shows us that the 3D version of
MobileNet does not have a high generalization power or in other words, this model can
easily overfit to our small training dataset.

ShuffleNet is almost as efficient as MobileNet as illustrated in Table 2 in terms of both
the training time and parameter set size. In contrast, it achieves higher accuracy on the
training set, as compared to MobileNet. The reduction of training loss in the ShuffleNet is
smoother and more robust than MobileNet and it converges after 60 epochs. As a result,
there is an even higher chance to improve the accuracy of this model by increasing the
training time.

None of the DenseNet and MobileNet models could achieve a lower loss on the train-
ing set when compared to ResNet. This shows us the power of ResNet models in reaching
high accuracy in a limited amount of time and limited resources.

Both ShuffleNet and MobileNet use special structures to create an efficient model for
embedded applications. Although they are easier and faster to train, we can see that there
is a tradeoff for their generalization capability to the validation set in these two cases, since
none of them can achieve a high classification accuracy, contrary to what DenseNet and
ResNet models were able to do, over the validation set.

The ResNet model achieves lower loss in the training set as compared to all other
models. This tells us that the residual connections in this model and using larger depths

Figure 12. Train (solid orange) and validation (solid blue) cross-entropy (CE) loss and classification
accuracy (%) examples, after 100 epochs: ResNet, DenseNet, ShuffleNet, MobileNet.

The MobileNet model converges after 40 epochs and there was no noticeable further
improvement in the validation loss after that epoch. This shows us that the 3D version of
MobileNet does not have a high generalization power or in other words, this model can
easily overfit to our small training dataset.

ShuffleNet is almost as efficient as MobileNet as illustrated in Table 2 in terms of both
the training time and parameter set size. In contrast, it achieves higher accuracy on the
training set, as compared to MobileNet. The reduction of training loss in the ShuffleNet is
smoother and more robust than MobileNet and it converges after 60 epochs. As a result,
there is an even higher chance to improve the accuracy of this model by increasing the
training time.

None of the DenseNet and MobileNet models could achieve a lower loss on the
training set when compared to ResNet. This shows us the power of ResNet models in
reaching high accuracy in a limited amount of time and limited resources.

Both ShuffleNet and MobileNet use special structures to create an efficient model for
embedded applications. Although they are easier and faster to train, we can see that there
is a tradeoff for their generalization capability to the validation set in these two cases, since
none of them can achieve a high classification accuracy, contrary to what DenseNet and
ResNet models were able to do, over the validation set.

The ResNet model achieves lower loss in the training set as compared to all other
models. This tells us that the residual connections in this model and using larger depths
provide us with a highly generalizable model that can perform well on both the training
and validation sets. None of the other models achieved a training loss of less than 0.05.

3.4. ResNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall Curves

In this section and the following ones, we evaluate the classifiers’ performance using
their confusion matrix and the precision-recall curve on the test data. The confusion matrix
illustrates the predicted labels of the model over the test data for each class. The element in
the i’th row and j’th column of this matrix shows the number of samples in i’th class that
are mis-classified as the j’th class by the model, over the test set.

The precision-recall curve (pr-curve) is a way of representing the behavior of a binary
classifier. It is most useful whenever the classes sample are imbalanced (number of samples
of one class clearly dominant over the others). The Average Precision (AP) summarizes
such a plot as the weighted mean of precisions achieved at each output detection threshold,
with the increase in recall from the previous threshold used as the weight. For a multi-class
classifier, this curve can be plotted for each class C by considering other classes as a new
class different from C (binarized problem, one class versus the remainder). Then AP can be
calculated by micro-averaging on all classes.

Algorithms 2023, 16, 113 13 of 20

The confusion matrix of the ResNet classifier is illustrated in Table 3. The large values
on the diagonal of this matrix show that most of the predictions of this model on the test
dataset were correct. The hardest label for this model was Class 2 because as we can see 2
of the samples were wrongly predicted out of all 7 samples for this class. This might be due
to a problem in the test dataset since the number of misclassifications is small compared
to other values. This model achieves an Average Precision of 0.95. We can see the AP for
this model per class in Figure 13. The best average precision is for Class 1 which is 0.99.
This means that it is easier for the model to classify Class 1 and distinguish it from all other
classes. In contrast, finding the difference and distinguishing Class 0 from other classes is
harder. This was shown in the confusion matrix too, where we can see that there are both
Class 1 and Class 2 samples that are misclassified as Class 0.

Table 3. Confusion matrix for ResNet (test set). Class 0, 1 and 2 refer to healthy, 8 and 16 h after
induction of bruising, respectively.

Class 0 Class 1 Class 2

ResNet
Class 0 6 0 1
Class 1 1 6 0
Class 2 1 1 5

Algorithms 2023, 16, x FOR PEER REVIEW 13 of 21

provide us with a highly generalizable model that can perform well on both the training
and validation sets. None of the other models achieved a training loss of less than 0.05.

3.4. ResNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall Curves
In this section and the following ones, we evaluate the classifiers’ performance using

their confusion matrix and the precision-recall curve on the test data. The confusion ma-
trix illustrates the predicted labels of the model over the test data for each class. The ele-
ment in the i’th row and j’th column of this matrix shows the number of samples in i’th
class that are mis-classified as the j’th class by the model, over the test set.

The precision-recall curve (pr-curve) is a way of representing the behavior of a binary
classifier. It is most useful whenever the classes sample are imbalanced (number of sam-
ples of one class clearly dominant over the others). The Average Precision (AP) summa-
rizes such a plot as the weighted mean of precisions achieved at each output detection
threshold, with the increase in recall from the previous threshold used as the weight. For
a multi-class classifier, this curve can be plotted for each class C by considering other clas-
ses as a new class different from C (binarized problem, one class versus the remainder).
Then AP can be calculated by micro-averaging on all classes.

The confusion matrix of the ResNet classifier is illustrated in Table 3. The large values
on the diagonal of this matrix show that most of the predictions of this model on the test
dataset were correct. The hardest label for this model was Class 2 because as we can see 2
of the samples were wrongly predicted out of all 7 samples for this class. This might be
due to a problem in the test dataset since the number of misclassifications is small com-
pared to other values. This model achieves an Average Precision of 0.95. We can see the
AP for this model per class in Figure 13. The best average precision is for Class 1 which is
0.99. This means that it is easier for the model to classify Class 1 and distinguish it from
all other classes. In contrast, finding the difference and distinguishing Class 0 from other
classes is harder. This was shown in the confusion matrix too, where we can see that there
are both Class 1 and Class 2 samples that are misclassified as Class 0.

Table 3. Confusion matrix for ResNet (test set). Class 0, 1 and 2 refer to healthy, 8 and 16 h after
induction of bruising, respectively.

 Class 0 Class 1 Class 2

ResNet
Class 0 6 0 1
Class 1 1 6 0
Class 2 1 1 5

(a)

Algorithms 2023, 16, x FOR PEER REVIEW 14 of 21

(b)

Figure 13. Precision-Recall curve for ResNet model. (a): for the trained model, (b): for model sepa-
rated by each class.

3.5. DenseNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall
Curves

Table 4 shows the confusion matrix for DenseNet classifier. This classifier predicts all
Class 1 samples correctly but has difficulties in classifying Class 0 and Class 2 objects.
There are samples from Class 0 and Class 2 which are misclassified as other classes. The
Average Precision for this model is 0.91 which is less than that of ResNet model (AP =
0.95).

Table 4. Confusion matrix for DenseNet (test set): Class 0, 1 and 2 refer to healthy, 8 and 16 h after
induction of bruising, respectively.

 Class 0 Class 1 Class 2

DenseNet
Class 0 5 1 1
Class 1 0 7 0
Class 2 1 1 5

As a result, this model does not have the accuracy and power of ResNet model. We
can check the precision-recall curve of this model in Figure 14. The best distinguishable
class for this model is Class 1, similar to ResNet model, but Class 2 and Class 0 are harder
to distinguish. In contrast to the ResNet model, DenseNet can distinguish Class 0 better
than Class 2. This tells us that there are different encoded features considered by these
two models in the classification layers.

Figure 13. Precision-Recall curve for ResNet model. (a): for the trained model, (b): for model
separated by each class.

Algorithms 2023, 16, 113 14 of 20

3.5. DenseNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall Curves

Table 4 shows the confusion matrix for DenseNet classifier. This classifier predicts
all Class 1 samples correctly but has difficulties in classifying Class 0 and Class 2 objects.
There are samples from Class 0 and Class 2 which are misclassified as other classes. The
Average Precision for this model is 0.91 which is less than that of ResNet model (AP = 0.95).

Table 4. Confusion matrix for DenseNet (test set): Class 0, 1 and 2 refer to healthy, 8 and 16 h after
induction of bruising, respectively.

Class 0 Class 1 Class 2

DenseNet
Class 0 5 1 1
Class 1 0 7 0
Class 2 1 1 5

As a result, this model does not have the accuracy and power of ResNet model. We
can check the precision-recall curve of this model in Figure 14. The best distinguishable
class for this model is Class 1, similar to ResNet model, but Class 2 and Class 0 are harder
to distinguish. In contrast to the ResNet model, DenseNet can distinguish Class 0 better
than Class 2. This tells us that there are different encoded features considered by these two
models in the classification layers.

Algorithms 2023, 16, x FOR PEER REVIEW 15 of 21

(a)

(b)

Figure 14. Precision-Recall curve for DenseNet model. (a): for the trained model, (b): for model sep-
arated by each class.

3.6. ShuffleNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall
Curves

The confusion matrix for ShuffleNet model is shown in Table 5. Similar to DenseNet,
this model has no difficulty in predicting the correct labels of Class 1 samples in the test
set. In contrast, ShuffleNet cannot predict Class 2 samples correctly and most of them are
misclassified as Class 1. The ShuffleNet model has an Average Precision of 0.73. Com-
pared two ResNet and DenseNet, this average precision is low and this tells us about the
low generalization power of ShuffleNet model which could also be concluded from its
confusion matrix. The precision-recall curve of ShuffleNet is plotted in Figure 15. By
checking this curve, we conclude that this model can distinguish Class 1 better than all
other classes but has problems with discriminanting Class 0 and Class 2.

Table 5. Confusion matrix for ShuffleNet (test set): Class 0, 1 and 2 refer to healthy, 8 and 16 h after
induction of bruising, respectively.

 Class 0 Class 1 Class 2

ShuffleNet
Class 0 6 1 0
Class 1 0 7 0
Class 2 1 2 4

Figure 14. Precision-Recall curve for DenseNet model. (a): for the trained model, (b): for model
separated by each class.

Algorithms 2023, 16, 113 15 of 20

3.6. ShuffleNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall Curves

The confusion matrix for ShuffleNet model is shown in Table 5. Similar to DenseNet,
this model has no difficulty in predicting the correct labels of Class 1 samples in the test
set. In contrast, ShuffleNet cannot predict Class 2 samples correctly and most of them are
misclassified as Class 1. The ShuffleNet model has an Average Precision of 0.73. Compared
two ResNet and DenseNet, this average precision is low and this tells us about the low
generalization power of ShuffleNet model which could also be concluded from its confusion
matrix. The precision-recall curve of ShuffleNet is plotted in Figure 15. By checking this
curve, we conclude that this model can distinguish Class 1 better than all other classes but
has problems with discriminanting Class 0 and Class 2.

Table 5. Confusion matrix for ShuffleNet (test set): Class 0, 1 and 2 refer to healthy, 8 and 16 h after
induction of bruising, respectively.

Class 0 Class 1 Class 2

ShuffleNet
Class 0 6 1 0
Class 1 0 7 0
Class 2 1 2 4

Algorithms 2023, 16, x FOR PEER REVIEW 16 of 21

(a)

(b)

Figure 15. Precision-Recall curve for ShuffleNet model. (a): for the trained model, (b): for model
separated by each class.

3.7. MobileNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall
Curves

The confusion matrix for MobileNet model is shown in Table 6. This model cannot
predict Class 2 as it is shown inside this matrix. Most of these samples are misclassified as
Class 0 or Class 1 and the model is only an expert in classifying Class 1 samples. The
Average Precision for this model is 0.75. It is a little better than the ShuffleNet model but
still far behind from those in ResNet and MobileNet. This tells us about the sacrifice
(tradeoff) of generalization power for efficiency in the MobileNet model. As it is shown
in Figure 16, this model cannot distinguish the Class 2 samples correctly.

Table 6. Confusion matrix for MobileNet (test set): Class 0, 1 and 2 refer to healthy, 8 and 16 h after
induction of bruising, respectively.

 Class 0 Class 1 Class 2

MobileNet
Class 0 6 1 0
Class 1 0 7 0
Class 2 2 2 3

Figure 15. Precision-Recall curve for ShuffleNet model. (a): for the trained model, (b): for model
separated by each class.

Algorithms 2023, 16, 113 16 of 20

3.7. MobileNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall Curves

The confusion matrix for MobileNet model is shown in Table 6. This model cannot
predict Class 2 as it is shown inside this matrix. Most of these samples are misclassified
as Class 0 or Class 1 and the model is only an expert in classifying Class 1 samples. The
Average Precision for this model is 0.75. It is a little better than the ShuffleNet model
but still far behind from those in ResNet and MobileNet. This tells us about the sacrifice
(tradeoff) of generalization power for efficiency in the MobileNet model. As it is shown in
Figure 16, this model cannot distinguish the Class 2 samples correctly.

Table 6. Confusion matrix for MobileNet (test set): Class 0, 1 and 2 refer to healthy, 8 and 16 h after
induction of bruising, respectively.

Class 0 Class 1 Class 2

MobileNet
Class 0 6 1 0
Class 1 0 7 0
Class 2 2 2 3

Algorithms 2023, 16, x FOR PEER REVIEW 17 of 21

(a)

(b)

Figure 16. Precision-Recall curve for MobileNet model. (a): for the trained model, (b): for model
separated by each class.

By checking all these four precision-recall curves, we can also conclude that the most
difficult class of lemon hyperspectral images is Class 2, as most of the models cannot dis-
tinguish them from other samples. In contrast, Class 1 samples are easier to distinguish.
They can be distinguished easier even with human eyes but the difference between Class
2 and other classes is not easily determined. Finally, the ResNet model has the best gener-
alization capability and Average Precision either on each class or overall.

3.8. Comparison of Lemon Bruising Classification Performance over the Four Deep Learning
Architectures Considered: Accuracy (%), F1-Score, and AP

The overall results of these models are presented in Table 7, including the classifica-
tion Accuracy, F1-score [32–34], area under the ROC curve (AROC), and the calculated
AP per each label as well as the micro-averaged AP, computed over all three lemon clas-
ses. Figure 17 shows the classification Receiver Operation Characteristic (ROC) curves.
These ROC curves illustrate the performance of each classifier by considering various
threshold settings for each label versus the others. Consequently, it measures the success
of the model in distinguishing each class from other two classes in a ternary classification.

Figure 16. Precision-Recall curve for MobileNet model. (a): for the trained model, (b): for model
separated by each class.

Algorithms 2023, 16, 113 17 of 20

By checking all these four precision-recall curves, we can also conclude that the most
difficult class of lemon hyperspectral images is Class 2, as most of the models cannot
distinguish them from other samples. In contrast, Class 1 samples are easier to distinguish.
They can be distinguished easier even with human eyes but the difference between Class
2 and other classes is not easily determined. Finally, the ResNet model has the best
generalization capability and Average Precision either on each class or overall.

3.8. Comparison of Lemon Bruising Classification Performance over the Four Deep Learning
Architectures Considered: Accuracy (%), F1-Score, and AP

The overall results of these models are presented in Table 7, including the classification
Accuracy, F1-score [32–34], area under the ROC curve (AROC), and the calculated AP
per each label as well as the micro-averaged AP, computed over all three lemon classes.
Figure 17 shows the classification Receiver Operation Characteristic (ROC) curves. These
ROC curves illustrate the performance of each classifier by considering various threshold
settings for each label versus the others. Consequently, it measures the success of the model
in distinguishing each class from other two classes in a ternary classification.

Table 7. Results of deep learning models evaluation comparison by their classification accuracy
(%), F1-score, Average Precision (AP) and Area under the ROC curve (AROC): ResNet, DenseNet,
ShuffleNet, and MobileNet.

Model Name Accuracy % F1-Score AP AROC

ResNet 90.47 0.9046 0.95 0.97
DenseNet 85.71 0.8547 0.91 0.95
ShuffleNet 80.95 0.7974 0.73 0.85
MobileNet 73.80 0.7147 0.75 0.85

Based on the results, it is shown that the best accuracy is achieved by leveraging
residual connections in the neural network, i.e., using ResNet. Although this model
has larger parameter sizes, it can be trained faster rather than other models with fewer
parameters. For instance, ResNet takes only 24 s in each training iteration, while DenseNet
takes more than 40 s with number of parameters less than half of those in ResNet. This
shows us that using the Residual Connections helps us achieve larger models in case
of their generalization power and parameter size but still has better accuracy compared
to the DenseNet model which takes longer to train and has also less robustness in the
training phase.

As it has been seen, when using 3D-CNN layers in the models, it could be more
difficult to train compared to standard CNN baseline models for 2D images. In addition,
3D-CNN models consume larger values of GPU memory because of larger parameters
size and their training complexities. Thus, smaller batch sizes were used to overcome this
limitation. Using smaller batch sizes alongside the difficulty of training 3D-CNN models
results in lower accuracy for architectures with complex training paths like DenseNet.
Similarly, this results in higher accuracy for the models that overcome this difficulty by
leveraging Residual Connections.

Finally, some models are trying to leverage different techniques like Channel Shuffle
Operation and Pointwise Group Convolution [35,36] to provide highly efficient models
which could be used on embedded environments, like ShuffleNet and MobileNet. In
contrast, these models sacrifice their generalization capacity power. Although they were
easier to train and less storage is required for them, they could not achieve a lower loss, not
even on the training set.

Algorithms 2023, 16, 113 18 of 20

Algorithms 2023, 16, x FOR PEER REVIEW 18 of 21

Table 7. Results of deep learning models evaluation comparison by their classification accuracy (%),
F1-score, Average Precision (AP) and Area under the ROC curve (AROC): ResNet, DenseNet, Shuf-
fleNet, and MobileNet.

Model Name Accuracy % F1-Score AP AROC

ResNet 90.47 0.9046 0.95 0.97
DenseNet 85.71 0.8547 0.91 0.95
ShuffleNet 80.95 0.7974 0.73 0.85
MobileNet 73.80 0.7147 0.75 0.85

(a) (b)

(c) (d)

Figure 17. Receiver Operation Characteristic (ROC) curve for each model (Micro averaged on all
classes and for each class): (a) ResNet, (b) DenseNet, (c) ShuffleNet, and (d) MobileNet.

Based on the results, it is shown that the best accuracy is achieved by leveraging re-
sidual connections in the neural network, i.e., using ResNet. Although this model has
larger parameter sizes, it can be trained faster rather than other models with fewer param-
eters. For instance, ResNet takes only 24 s in each training iteration, while DenseNet takes
more than 40 s with number of parameters less than half of those in ResNet. This shows
us that using the Residual Connections helps us achieve larger models in case of their
generalization power and parameter size but still has better accuracy compared to the
DenseNet model which takes longer to train and has also less robustness in the training
phase.

As it has been seen, when using 3D-CNN layers in the models, it could be more dif-
ficult to train compared to standard CNN baseline models for 2D images. In addition, 3D-
CNN models consume larger values of GPU memory because of larger parameters size
and their training complexities. Thus, smaller batch sizes were used to overcome this lim-
itation. Using smaller batch sizes alongside the difficulty of training 3D-CNN models re-

Figure 17. Receiver Operation Characteristic (ROC) curve for each model (Micro averaged on all
classes and for each class): (a) ResNet, (b) DenseNet, (c) ShuffleNet, and (d) MobileNet.

4. Conclusions

In this paper, four 3D-CNN model architectures were used to predict and classify
lemon hyperspectral images in search of their freshness (bruises). The most important
results obtained in this study are summarized next to conclude:

1. The input dataset was small and the use of specific augmentations helped in general-
izing the model’s prediction. Thus, we used two kind of data augmentation in this
work: RandomHorizontalFlip and Color Jitter.

2. There were limitations in the case of GPU memory resources and they were solved by
accumulating gradients of smaller batches. With this method, we were able to train
the networks with batch size 8, which is useful in the training phase.

3. Using 3D-CNN layers helps us extract useful information from the 3D structure
of concatenated hyperspectral images and leverage the spatial information within
nearby pixels of the images and spectrums, thus having a double spectral-spatial
classification.

4. The best result is achieved from models with Residual Connections such as ResNet.
These connections enhance the flow of gradients in these models. As a result, the
model can be deeper without suffering the degradation problems like vanishing
gradients and deeper models provide higher generalization power.

5. Using exponential schedulers instead of a fixed learning rate helps to dynamically
adapt the learning rate based on the epoch number. Furthermore, this scheduler
enhances the process of finding an optimal point on our loss function by using
big steps at the start of training and reducing the step sizes as we converge in the
following epochs.

Algorithms 2023, 16, 113 19 of 20

6. Changing the architecture of the models in order to make them more efficient, like
ShuffleNet and MobileNet, will sacrifice their performance and generalization power
in complex tasks like 3D-CNN classifications in favor of their simplicity.

7. The easiest label to distinguish in our dataset is Class 1 (8 h after bruising). Both Class
0 (healthy, un-bruised) and Class 2 (16 h after bruising) labels are harder to distinguish
and need more powerful networks like ResNet and DenseNet to be correctly classified.

Author Contributions: Conceptualization, R.P.; methodology, S.S. and M.H.R.; software, M.D.;
validation, S.S. and M.H.R.; formal analysis, R.P. and S.S.; investigation, R.P.; writing—original draft
preparation, R.P.; writing—review and editing, J.I.A.; visualization, S.S.; supervision, M.H.R.; project
administration, R.P. and S.S.; funding acquisition, R.P. and S.S. All authors have read and agreed to
the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data is unavailable due to privacy or ethical restrictions.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or
in the decision to publish the results.

References
1. Rico, D.; Martin-Diana, A.B.; Barat, J.; Barry-Ryan, C. Extending and measuring the quality of fresh-cut fruit and vegetables: A

review. Trends Food Sci. Technol. 2007, 18, 373–386. [CrossRef]
2. Gulsen, O.; Roose, M.L. Lemons: Diversity and relationships with selected Citrus genotypes as measured with nuclear genome

markers. J. Am. Soc. Hortic. Sci. 2001, 126, 309–317. [CrossRef]
3. Issa, I.M.; Munishi, E.J.; Mubarack, K. Post-harvest Losses for Urban Fresh Fruits and Vegetables along the Continuum of Supply

Chain Functions: Evidence from Dar es Salaam City-Tanzania. Can. Soc. Sci. 2021, 17, 75–87.
4. Firdous, N. Post-harvest losses in different fresh produces and vegetables in Pakistan with particular focus on tomatoes. J. Hortic.

Postharvest Res. 2021, 4, 71–86.
5. Li, Z.; Thomas, C. Quantitative evaluation of mechanical damage to fresh fruits. Trends Food Sci. Technol. 2014, 35, 138–150.

[CrossRef]
6. Stropek, Z.; Gołacki, K. A new method for measuring impact related bruises in fruits. Postharvest Biol. Technol. 2015, 110, 131–139.

[CrossRef]
7. Hussein, Z.; Fawole, O.A.; Opara, U.L. Harvest and postharvest factors affecting bruise damage of fresh fruits. Hortic. Plant J.

2020, 6, 1–13. [CrossRef]
8. Zhou, X.; Ampatzidis, Y.; Lee, W.S.; Zhou, C.; Agehara, S.; Schueller, J.K. Deep learning-based postharvest strawberry bruise

detection under UV and incandescent light. Comput. Electron. Agric. 2022, 202, 107389. [CrossRef]
9. Yin, H.; Li, B.; Zhang, F.; Su, C.-T.; Ou-Yang, A.-G. Detection of early bruises on loquat using hyperspectral imaging technology

coupled with band ratio and improved Otsu method. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 283, 121775. [CrossRef]
10. Guo, W.; Gao, M.; Cheng, J.; Zhou, Y.; Zhu, X. Effect of mechanical bruises on optical properties of mature peaches in the

near-infrared wavelength range. Biosyst. Eng. 2021, 211, 114–124. [CrossRef]
11. Huang, X.; Meng, Q.; Wu, Z.; He, F.; Tian, P.; Lin, J.; Zhu, H.; Zhou, X.; Huang, Y. Detection of early bruises in Gongcheng

persimmon using hyperspectral imaging. Infrared Phys. Technol. 2022, 125, 104316. [CrossRef]
12. Pourdarbani, R.; Sabzi, S.; Kalantari, D.; Paliwal, J.; Benmouna, B.; García-Mateos, G.; Molina-Martínez, J.M. Estimation of

different ripening stages of Fuji apples using image processing and spectroscopy based on the majority voting method. Comput.
Electron. Agric. 2020, 176, 105643. [CrossRef]

13. Sabzi, S.; Pourdarbani, R.; Rohban, M.H.; García-Mateos, G.; Paliwal, J.; Molina-Martínez, J.M. Early detection of excess nitrogen
consumption in cucumber plants using hyperspectral imaging based on hybrid neural networks and the imperialist competitive
algorithm. Agronomy 2021, 11, 575. [CrossRef]

14. Wieme, J.; Mollazade, K.; Malounas, I.; Zude-Sasse, M.; Zhao, M.; Gowen, A.; Argyropoulos, D.; Fountas, S.; Van Beek, J.
Application of hyperspectral imaging systems and artificial intelligence for quality assessment of fruit, vegetables and mushrooms:
A review. Biosyst. Eng. 2022, 222, 156–176. [CrossRef]

15. Benmouna, B.; Pourdarbani, R.; Sabzi, S.; Fernandez-Beltran, R.; García-Mateos, G.; Molina-Martínez, J.M. Comparison of Classic
Classifiers, Metaheuristic Algorithms and Convolutional Neural Networks in Hyperspectral Classification of Nitrogen Treatment
in Tomato Leaves. Remote Sens. 2022, 14, 6366. [CrossRef]

16. Rivera, N.V.; Gómez-Sanchis, J.; Chanona-Pérez, J.; Carrasco, J.J.; Millán-Giraldo, M.; Lorente, D.; Cubero, S.; Blasco, J. Early
detection of mechanical damage in mango using NIR hyperspectral images and machine learning. Biosyst. Eng. 2014, 122, 91–98.
[CrossRef]

http://doi.org/10.1016/j.tifs.2007.03.011
http://doi.org/10.21273/JASHS.126.3.309
http://doi.org/10.1016/j.tifs.2013.12.001
http://doi.org/10.1016/j.postharvbio.2015.07.005
http://doi.org/10.1016/j.hpj.2019.07.006
http://doi.org/10.1016/j.compag.2022.107389
http://doi.org/10.1016/j.saa.2022.121775
http://doi.org/10.1016/j.biosystemseng.2021.09.002
http://doi.org/10.1016/j.infrared.2022.104316
http://doi.org/10.1016/j.compag.2020.105643
http://doi.org/10.3390/agronomy11030575
http://doi.org/10.1016/j.biosystemseng.2022.07.013
http://doi.org/10.3390/rs14246366
http://doi.org/10.1016/j.biosystemseng.2014.03.009

Algorithms 2023, 16, 113 20 of 20

17. Munera, S.; Rodríguez-Ortega, A.; Aleixos, N.; Cubero, S.; Gómez-Sanchis, J.; Blasco, J. Detection of Invisible Damages in ‘Rojo
Brillante’Persimmon Fruit at Different Stages Using Hyperspectral Imaging and Chemometrics. Foods 2021, 10, 2170. [CrossRef]

18. Che, W.; Sun, L.; Zhang, Q.; Tan, W.; Ye, D.; Zhang, D.; Liu, Y. Pixel based bruise region extraction of apple using Vis-NIR
hyperspectral imaging. Comput. Electron. Agric. 2018, 146, 12–21. [CrossRef]

19. Fan, S.; Li, C.; Huang, W.; Chen, L. Detection of blueberry internal bruising over time using NIR hyperspectral reflectance imaging
with optimum wavelengths. Postharvest Biol. Technol. 2017, 134, 55–66. [CrossRef]

20. Li, X.; Liu, Y.; Jiang, X.; Wang, G. Supervised classification of slightly bruised peaches with respect to the time after bruising by
using hyperspectral imaging technology. Infrared Phys. Technol. 2021, 113, 103557. [CrossRef]

21. Zeng, X.; Miao, Y.; Ubaid, S.; Gao, X.; Zhuang, S. Detection and classification of bruises of pears based on thermal images.
Postharvest Biol. Technol. 2020, 161, 111090. [CrossRef]

22. Gai, Z.; Sun, L.; Bai, H.; Li, X.; Wang, J.; Bai, S. Convolutional neural network for apple bruise detection based on hyperspectral.
Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 279, 121432. [CrossRef] [PubMed]

23. Dunno, K.; Stoeckley, I.; Hofmeister, M. Susceptibility of impact damage to whole apples packaged inside molded fiber and
expanded polystyrene trays. Foods 2021, 10, 1980. [CrossRef]

24. Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J. Recent advances in convolutional
neural networks. Pattern Recognit. 2018, 77, 354–377. [CrossRef]

25. O’Shea, K.; Nash, R. An introduction to convolutional neural networks. arXiv 2015, arXiv:1511.08458.
26. Huang, J.; Zhou, W.; Li, H.; Li, W. Sign language recognition using 3D convolutional neural networks. In Proceedings of the 2015

IEEE International Conference on Multimedia and Expo (ICME), Turin, Italy, 29 June–3 July 2015; pp. 1–6.
27. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition 2016, Las Vegas, NV, USA, 26 June–1 July 2016; pp. 770–778.
28. Zhang, X.; Zhou, X.; Lin, M.; Sun, J. Shufflenet: An extremely efficient convolutional neural network for mobile devices. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018, Salt Lake City, UT, USA, 18–22 June 2018;
pp. 6848–6856.

29. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition 2017, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

30. Howard, A.G.; Zhu, M.; Chen, B.; Kalenichenko, D.; Wang, W.; Weyand, T.; Andreetto, M.; Adam, H. Mobilenets: Efficient
convolutional neural networks for mobile vision applications. arXiv 2017, arXiv:1704.04861.

31. Zeiler, M.D. Adadelta: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
32. Sabzi, S.; Abbaspour-Gilandeh, Y.; Javadikia, H. The use of soft computing to classification of some weeds based on video

processing. Appl. Soft Comput. 2017, 56, 107–123. [CrossRef]
33. Sabzi, S.; Pourdarbani, R.; Arribas, J.I. A computer vision system for the automatic classification of five varieties of tree leaf

images. Computers 2020, 9, 6. [CrossRef]
34. Waldamichael, F.G.; Debelee, T.G.; Schwenker, F.; Ayano, Y.M.; Kebede, S.R. Machine Learning in Cereal Crops Disease Detection:

A Review. Algorithms 2022, 15, 75. [CrossRef]
35. Pizzolante, R.; Carpentieri, B. Visualization, Band Ordering and Compression of Hyperspectral Images. Algorithms 2012, 5, 76–97.

[CrossRef]
36. Liu, G.; Zhang, C.; Xu, Q.; Cheng, R.; Song, Y.; Yuan, X.; Sun, J. I3D-Shufflenet Based Human Action Recognition. Algorithms 2020,

13, 301. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/foods10092170
http://doi.org/10.1016/j.compag.2018.01.013
http://doi.org/10.1016/j.postharvbio.2017.08.012
http://doi.org/10.1016/j.infrared.2020.103557
http://doi.org/10.1016/j.postharvbio.2019.111090
http://doi.org/10.1016/j.saa.2022.121432
http://www.ncbi.nlm.nih.gov/pubmed/35660156
http://doi.org/10.3390/foods10091980
http://doi.org/10.1016/j.patcog.2017.10.013
http://doi.org/10.1016/j.asoc.2017.03.006
http://doi.org/10.3390/computers9010006
http://doi.org/10.3390/a15030075
http://doi.org/10.3390/a5010076
http://doi.org/10.3390/a13110301

	Introduction
	Materials and Methods
	Collecting the Samples
	Hardware System for Data Collection
	Removal of the Noisy Spectral Data
	The 3-Dimensional (3D) Structure of the Hyperspectral Imaging Fruit Samples
	3D-Convolutional Neural Network Classifiers
	ResNet Architecture
	ShuffleNet Architecture
	DenseNet Architecture
	MobileNet Architecture

	Train, Test and Validation Disjoint Sets: A Partition of the Input Dataset

	Results
	3D-CNN Model Parameter, NN Size and Training Time
	The Final Deep Network Classifiers Structure
	The Behavior and Performance of All Four Deep Learning Classifiers after the Training Phase: Cross Entropy (CE) Loss Function and Output Classification Accuracy (%)
	ResNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall Curves
	DenseNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall Curves
	ShuffleNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall Curves
	MobileNet Lemon Bruising Classifier Results: Confusion Matrix and Precision-Recall Curves
	Comparison of Lemon Bruising Classification Performance over the Four Deep Learning Architectures Considered: Accuracy (%), F1-Score, and AP

	Conclusions
	References

