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Abstract: In this paper, we provide a detailed local convergence analysis of a one-parameter family
of iteration methods for the simultaneous approximation of polynomial zeros due to Ivanov (Numer.
Algor. 75(4): 1193–1204, 2017). Thus, we obtain two local convergence theorems that provide sufficient
conditions to guarantee the Q-cubic convergence of all members of the family. Among the other
contributions, our results unify the latest such kind of results of the well known Dochev–Byrnev and
Ehrlich methods. Several practical applications are further given to emphasize the advantages of the
studied family of methods and to show the applicability of the theoretical results.

Keywords: simultaneous methods; local convergence; error estimates; basins of attraction; polynomial
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1. Introduction

Let f (z) = a0 zn + a1 zn−1 + · · ·+ an be a complex polynomial of degree n ≥ 2. In
1891, Weierstrass [1] established and studied the first iteration method for the simultaneous
determination of all zeros of f . The Weierstrass method is quadratically convergent and
defined as follows:

x(k+1) = x(k) −W(x(k)), k = 0, 1, 2, . . . , (1)

where Weierstrass iteration function W : D ⊂ Cn → Cn is given by W(x) = (W1(x), . . . , Wn(x))
with

Wi(x) =
f (xi)

a0 ∏j 6=i(xi − xj)
(i = 1, . . . , n), (2)

where a0 ∈ C is the leading coefficient of f . Here and throughout the whole paper, D shall
denote the set of all vectors in Cn with pairwise distinct components, that is, the set

D =
{

x ∈ Cn : xi 6= xj whenever i 6= j
}

. (3)

The first semilocal convergence theorem about the method (1) is due to Weierstrass
himself in the mentioned paper [1], and the first local convergence theorem in the literature
was proved by Dochev [2] in 1962. Thereafter, many papers have been dedicated to the
convergence of Weierstrass method, until 2016, when Proinov [3] proved local and semilocal
convergence theorems that generalize and improve all previous results about this method.
For more detailed historical survey about the Weierstrass method, we refer the reader to
the monograph [4] and the papers [3,5].

The second simultaneous method in the literature is due to Bulgarian mathematicians
Dochev and Byrnev [6]. The Dochev–Byrnev method is cubically convergent and can be
defined by the following fixed point iteration:

x(k+1) = T(x(k)) k = 0, 1, 2, . . . , (4)
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where the iteration function T is defined in Cn by T(x) = (T1(x), . . . , Tn(x)) with

Ti(x) = xi −
f (xi)

g′(xi)

(
2− f ′(xi)

g′(xi)
+

1
2

f (xi)

g′(xi)

g′′(xi)

g′(xi)

)
(5)

and the polynomial g is defined by

g(z) = co

n

∏
j=1

(z− xj). (6)

In 1972, Prešić [7] rediscovered the Dochev–Byrnev method (4) by defining its iteration
function in the following equivalent form:

Ti(x) = xi −Wi(x)

(
1−∑

j 6=i

Wj(x)
xi − xj

)
, (7)

where W is the Weierstrass correction (2). In 1974, Milovanović [8] gave an elegant derivation
of (4) while, in 1983, the method (4) was again rediscovered by Tanabe [9], where it became
widely known under the name Tanabe’s method (see, e.g., [4] and references therein). In fact,
the equivalence of the iteration functions (5) and (7) was proved only in 2016 by Proinov [10]
(Theorem 4.1). In the same paper [10], Proinov proved a semilocal convergence theorem
that generalizes and improves all previous such results about this method. On the other
hand, the local convergence of the Dochev–Byrnev method (4) was firstly studied by
Semerdzhiev and Pateva [11] and then by Semerdzhiev [12]. In 1982, Kyurkchiev [13]
(see also [14] (Theorem 19.1)) improved the results of the above mentioned authors while,
in 2022, Proinov and Marcheva [15] stated local and semilocal convergence results of a
family of iteration methods with an accelerated convergence that contains the Dochev-
Byrnev method. Thus, they improved all local convergence results of this method and put
an end to this research direction.

The third simultaneous method in the literature is due to Ehrlich [16] in 1967 and
was rediscovered by Börsch-Supan [17] in 1970. In 1982, Werner [18] proved that these
two methods are equivalent (see also Carstensen [19]). It is known that Ehrlich’s method is
cubically convergent and can be defined by the following iteration:

x(k+1) = Φ(x(k)), k = 0, 1, 2, . . . , (8)

where the iteration function Φ : D ⊂ Cn → Cn is defined by Φ(x) = (Φ1(x), . . . , Φn(x))

Φi(x) = xi −
1

f ′(xi)

f (xi)
−

n

∑
j 6=i

1
xi − xj

= xi −
Wi(x)

1 + ∑
j 6=i

Wj(x)
xi − xj

. (9)

In 2016, Proinov [10] and recently Proinov and Vasileva [20] proved semilocal and local
convergence results that generalize, improve and complement all of the existing results
about Ehrlich’s method (8).

In 2017, Ivanov [21] constructed a one-parameter family of simultaneous methods
that includes, as special cases, Weierstrass’ method (1), Dochev–Byrnev’s method (4) and
Ehrlich’s method (8), and obtained a semilocal convergence result that unifies the above
mentioned such results about Dochev–Byrnev’s and Ehrlich’s methods. Ivanov’s family of
simultaneous methods can be defined in Cn by the following iteration:

x(k+1) = Tα(x(k)), k = 0, 1, 2, . . . , (10)
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where the iteration function Tα : D ⊂ Cn → Cn is defined by

Tα(x) = (T1(x), . . . , Tn(x)) with Ti(x) = xi −Wi(x)

1 + (α− 1)∑
j 6=i

Wj(x)
xi − xj

1 + α ∑
j 6=i

Wj(x)
xi − xj

. (11)

Obviously, the domain of the iteration function Tα is the set

D =

{
x ∈ D : 1 + α ∑

j 6=i

Wj(x)
xi − xj

6= 0, i = 1, . . . , n

}
. (12)

As mentioned, the iteration (10) includes Weierstrass’ method (1) for α→ ∞, Dochev–
Byrnev’s method (4) for α = 0 and Ehrlich’s method (8) for α = 1.

In this paper, we prove two kinds of local convergence theorems (Theorems 3 and 4)
that supply sufficient conditions to guarantee the Q-cubic convergence of the family (10),
along with a priori and a posteriori error estimates and an estimate of the asymptotic error
constant. Moreover, our results unify the recent results of Proinov and Marcheva [15] and
Proinov and Vasileva [20] regarding Dochev–Byrnev and Ehrlich’s methods. Further, we
conduct some experiments in order to emphasize the convergence behavior of the methods
(10) and to show their applicability to some important real-world problems. At the end of
our study, we compare Dochev–Byrnev’s and Ehrlich’s methods with each other and with
some other members of the family (10) on the basis of their stability ([22]) and the obtained
theoretical result.

2. Notations and Preliminaries

To make the paper self-contained, in this section, we provide some previous results
that play a crucial role in our study.

Throughout the present study, C[z] denotes the ring of the univariate polynomials
over C, the vector space Rn is endowed with the standard coordinate-wise ordering �
defined by

x � y if and only if xi ≤ yi for each i = 1, . . . , n

and the space Cn is equipped with p-norm ‖ · ‖p for some 1 ≤ p ≤ ∞ and with the vector
norm ‖ · ‖ defined by

‖x‖p =

(
n

∑
i=1
|xi|p

)1/p

and ‖x‖ = (|x1|, . . . , |xn|).

In addition, we define the functions d : Cn → Rn and δ : Cn → R+ by

d(x) = (d1(x), . . . , dn(x)) with di(x) = min
j 6=i
|xi − xj| and δ(x) = min

i 6=j
di(x) (13)

and, for two vectors x ∈ Cn and y ∈ Rn, we use the denotation x/y for the vector in Rn

defined by
x
y
=

(
|x1|
y1

, · · · ,
|xn|
yn

)
provided that y has only nonzero components. For a given number p (1 ≤ p ≤ ∞), we
define the number q by

1 ≤ q ≤ ∞ with 1/p + 1/q = 1
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and, for a given n ∈ N, we use the denotations:

a = (n− 1)1/q, b = 21/q. (14)

Note that 1 ≤ a ≤ n− 1 and 1 ≤ b ≤ 2. For a non-negative integer k and r ≥ 1, Sk(r) stands
for the sum

Sk(r) = ∑
0≤ j< k

rj.

In addition, we assume that 00 ≡ 1 and we denote by R+ the set of non-negative numbers
and, with J, some interval in R+ containing 0. Finally, a vector ξ ∈ Cn is called root-vector
of f if

f (z) = a0

n

∏
i=1

(z− ξi) for all z ∈ C.

Definition 1 ([23,24]). Let J be an interval on R+ containing 0. A function ϕ : J → R+ is said to
be quasi-homogeneous of exact degree m ≥ 0 if it satisfies the following two conditions:

(i) ϕ(λt) ≤ λm ϕ(t) for all λ ∈ [0, 1] and t ∈ J;

(ii) lim
t→0+

ϕ(t)
tm 6= 0.

The next definitions outline two important classes of iteration functions that will be
used onwards.

Definition 2 ([24] (Definition 9)). A function F : D ⊂ Cn → Cn is said to be an iteration func-
tion of first kind at a point ξ ∈ D if there is a quasi-homogeneous function φ : J → R+ of exact
degree m ≥ 0 such that, for each vector x ∈ Cn with E(x) ∈ J, the following conditions hold:

x ∈ D and ‖ F(x)− ξ ‖ � φ(E(x)) ‖x− ξ ‖, (15)

where the function E : Cn → R+ is defined by

E(x) =
∥∥∥∥ x− ξ

d(ξ)

∥∥∥∥
p

(1 ≤ p ≤ ∞) (16)

with d defined by (13). The function φ is said to be the control function of F.

Definition 3 ([24] (Definition 10)). A function F : D ⊂ Cn → Cn is called an iteration function
of second kind at a point ξ ∈ Cn if there is a nonzero quasi-homogeneous function β : J → R+ such
that, for each vector x ∈ D with E(x) ∈ J, the following conditions hold:

x ∈ D and ‖ F(x)− ξ ‖ � β(E(x)) ‖x− ξ ‖, (17)

where the function E : D→ R+ is defined by

E(x) =
∥∥∥∥ x− ξ

d(x)

∥∥∥∥
p

(1 ≤ p ≤ ∞). (18)

The function β is called the control function of F.

To prove our local convergence result of the first kind, we shall use the following result
of Proinov [24].
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Theorem 1 ([24] (Theorem 3)). Suppose T : D ⊂ Cn → Cn and ξ ∈ Cn is a fixed point of T with
pairwise distinct components. Let T be an iteration function of first kind at ξ ∈ Cn with control
function φ : J → R+ of exact degree m ≥ 0, and let x(0) ∈ Cn be an initial guess of ξ such that

E(x(0)) ∈ J and φ(E(x(0))) < 1.

Then, the Picard iteration x(k+1) = T(x(k)), k = 0, 1, 2, . . ., is well defined and converges to ξ with
Q-order r = m + 1 and with the following error estimates for all k ≥ 0:

‖x(k) − ξ ‖ � λSk(r) ‖x(0) − ξ ‖ and ‖x(k+1) − ξ ‖ � λrk ‖x(k) − ξ ‖,

where λ = φ(E(x(0))). In addition, the following estimate of the asymptotic error constant holds:

lim sup
k→∞

‖x(k+1) − ξ ‖p

‖x(k) − ξ ‖r
p
≤ 1

δ(ξ)m lim
t→0+

φ(t)
tm . (19)

To prove our local convergence result of the second kind, we need the following
general local convergence result of Proinov [24]:

Theorem 2 ([24] (Theorem 4)). Let T : D ⊂ Cn → Cn be an iteration function of second kind at
a point ξ ∈ Cn with a nonzero control function β : J → R+ of exact degree m ≥ 0 and let x(0) ∈ D

be an initial guess satisfying

E(x(0)) ∈ J and Ψ(E(x(0))) ≥ 0,

where the function Ψ : J → R is defined by

Ψ(t) = 1− bt− β(t)(1 + bt) (20)

with b = 21/q. Then, the vector ξ is a fixed point of T with distinct components and the Picard iter-
ation x(k+1) = T(x(k)), k = 0, 1, 2, . . ., is well defined and converges to ξ with Q-order r = m + 1
and with the following error estimates for all k ≥ 0:

‖x(k) − ξ ‖ � θkλSk(r) ‖x(0) − ξ ‖ and ‖x(k+1) − ξ ‖ � θλrk ‖x(k) − ξ ‖

where λ = φ(E(x(0))), θ = ψ(E(x(0))) and the functions ψ and φ are defined by

ψ(t) = 1− bt(1 + β(t)) and φ(t) = β(t)/ψ(t). (21)

We end this section with several useful technical lemmas.

Lemma 1 ([25]). Let x, y, ξ be three vectors in Cn, and let ξ have pairwise distinct components. If
‖y− ξ ‖ � α ‖ x− ξ ‖ for some α ≥ 0, then, for all i, j = 1, . . . , n, we have

|xi − yj| ≥
(

1− (1 + αq)1/q
∥∥∥∥ x− ξ

d(ξ)

∥∥∥∥
p

)
|ξi − ξ j|.

Lemma 2 ([25]). Let x, y, ξ be three vectors in Cn and x have pairwise distinct components. If
‖ y− ξ ‖ � α ‖ x− ξ ‖ for some α ≥ 0, then, for all i 6= j, we have

|xi − yj| ≥
(

1− (1 + α)

∥∥∥∥ x− ξ

d(x)

∥∥∥∥
p

)
|xi − xj|.

The following lemma provides an inequality that plays an important role in our study.
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Lemma 3. Let x, y ∈ Cn be vectors with pairwise distinct components, λ ≥ 0 and 1 ≤ p ≤ ∞.
Then, for all i 6= j, we have

|xi − yj| ≥
(

1− (1 + λq)1/q
∥∥∥∥ x− y

d(y)

∥∥∥∥
p

)
|xi − xj|.

Proof. Set E(x, y) = ‖(x − y)/d(y)‖p. The claimed inequality is obvious if E(x, y) ≥ 1/
(1 + λq)1/q. Let E(x, y) < 1/(1 + λq)1/q. Then, from the triangle inequality and Lemma 1
with ξ = y and α = 0, we obtain

|xi − xj| = |xi − yj + yj − xj| ≤ |xi − yj|
(

1 +
|xj − yj|
|xi − yj|

)
≤ |xi − yj|

(
1 +

|xj − yj|
(1− E(x, y))dj(y)

)

≤ |xi − yj|
(

1 +
E(x, y)

1− E(x, y)

)
=
|xi − yj|

1− E(x, y)
≤

|xi − yj|
1− (1 + λq)1/q E(x, y)

which completes the proof.

3. Convergence Analysis

In this section, we prove two local convergence theorems about the family (10) to
supply sufficient conditions that guarantee the Q-cubic convergence of all members of the
family and provide a priori and a posteriori error estimates together with an estimate of
the asymptotic error constant of the methods.

The next lemma gives a useful representation of the iteration function (11).

Lemma 4. Let f ∈ C[z] be a polynomial of degree n ≥ 2 with only simple roots in C, ξ ∈ Cn be a
root-vector of f and Tα : D ⊂ Cn → Cn be the iteration function defined by (11). Suppose x ∈ D
is a vector with distinct components such that f (xi) 6= 0. Then, the following relation holds:

Ti(x)− ξi = σi(xi − ξi) (22)

where σi is defined by

σi =
(1− α)C2

i − (1 + αCi) Bi

(1− Bi)(1 + αCi)
=

(1− α)[(Ai − 1)2 − A2
i Bi]− αAi Bi

1− α + αAi(1− Bi)
(23)

with

Ai = ∏
j 6= i

(
xi − ξ j

xi − xj

)
, Bi = (xi − ξi)∑

j 6=i

xj − ξ j

(xi − ξ j)(xi − xj)
and Ci = ∑

j 6=i

Wj(x)
xi − xj

. (24)

Proof. We start with the proof of the first equality of (23). Thus, using the known relation
(see, e.g., [20] (Lemma 2))

f ′(xi)

f (xi)
−

n

∑
j 6=i

1
xi − xj

=
1− Bi
xi − ξi

(25)

together with the second equality of (9), we obtain

Wi(x)
xi − xj

=
1 + Ci
1− Bi

. (26)
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From this and (11), we obtain

Ti(x)− ξi =

(
1− 1 + Ci

1− Bi

1− Ci + α Ci
1 + α Ci

)
(xi − ξi)

=
(1 + α Ci)(1− Bi)− 1 + (1− α)C2

i − α Ci

(1− Bi)(1 + α Ci)
(xi − ξi)

= σi(xi − ξi)

which proves the first equality of (23). The second equality of (23) follows immediately
from the relation Ci = Ai(1− Bi)− 1, which, in turn, follows from (26) and the known
identity Ai = Wi(x)/(xi − ξi) (see [26] (Equation (28))).

3.1. Local Convergence of the First Kind

Let f ∈ C[z] be a polynomial of degree n ≥ 2 with n simple roots and let ξ ∈ Cn be a
root-vector of f . In this section, we study the convergence of the iteration (10) regarding
the function of initial conditions E : Cn → R+ defined by (16).

Let a and b be the numbers (14). For the needs of the main result, we define the real
functions γ, η, µ : [0, 1/b)→ [1, ∞) by

γ(t) =
(

1 +
a t

(n− 1)(1− bt)

)n−1
, η(t) =

a t2

(1− t)(1− bt)
and µ(t) = (γ(t)− 1)2 + γ(t)2 η(t). (27)

Using these functions, we define φα by

φα(t) =



|1− α| µ(t) + |α| γ(t) η(t)
|1− α| − |α| γ(t) (1 + η(t))

for Re(α) < 1/2,

|α| ν(t)2 + η(t) (1 + |α| ν(t))
(1− η(t))(1− |α| ν(t)) for Re(α) = 1/2,

|1− α| µ(t) + |α| η(t) (1− t)n−1

|α| (1− η(t))(1− t)n−1 − |1− α| for Re(α) > 1/2,

(28)

where ν is defined by

ν(t) =
a γ(t) t
1− b t

. (29)

The following lemma shows that Tα is an iteration function of first kind at a point ξ.

Lemma 5. Let f ∈ C[z] be a polynomial of degree n ≥ 2 that has only simple zeros in C, and let
ξ ∈ Cn be a root-vector of f . Then, Tα : D ⊂ Cn → Cn defined by (11) is an iteration function of
first kind at ξ with control function φα defined by (28).

Proof. First, let us define the functions gα, hα and lα by

gα(t) = |1− α| − |α| γ(t) (1 + η(t)),

hα(t) = (1− η(t))(1− |α| ν(t)),
lα(t) = |α| (1− η(t))(1− t)n−1 − |1− α|. (30)

Now, let x ∈ Cn be such that E(x) < 1/b with gα(t) > 0 for Re(α) < 1/2, hα(t) > 0
for Re(α) = 1/2 or lα(t) > 0 for Re(α) > 1/2. According to Definition 2 and Lemma 4, we
ought to prove that

x ∈ D and |σi| ≤ φα(E(x)) for each i = 1, . . . , n, (31)

where the number σi is defined by (23).
We divide the proof into two cases.
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Case 1. Let Re(α) = 1/2. Note that, in this case, we have |α| = |1− α|. Thus, from the first
identity of (23), the triangle inequality and the following inequalities:

|Bi| ≤
a E(x)2

(1− E(x))(1− bE(x))
= η(E(x)) and |Ci| ≤

aγ(E(x))E(x)
1− bE(x)

= ν(E(x)) (32)

we obtain

|σi| ≤
|1− α| |Ci|2 + |1 + αCi| |Bi|

|1− Bi| |1 + αCi|
≤ |α| ν(E(x))2 + η(E(x)) (1 + |α| ν(E(x)))

hα(E(x))
= φα(E(x))

which completes the proof of this case. Observe that the first inequality of (32) can be found in [24]
(Lemma 4) whereas the second one follows from Lemma 1 and the known inequalities (see, e.g., [26]
(Equation (30)))

|Wj| ≤ γ(E(x))|xj − ξ j| and ∑
j 6=i

xj − ξ j

xi − xj
≤ aE(x)

1− bE(x)
.

Case 2. Let Re(α) 6= 1/2. If Re(α) < 1/2, then, from the first inequality of (32) and |Ai| ≤ γ(E(x))
(see the last identity in the proof of Lemma 4 and the penultimate inequality in the previous case),
we obtain

|σi| ≤
|1− α|(|Ai − 1|2 + |Ai|2 |Bi|) + |α| |Ai| |Bi|

|1− α| − |α| |Ai| |1− Bi|
≤ |1− α| µ(E(x)) + |α| γ(E(x)) η(E(x))

gα(E(x))
= φα(E(x)). (33)

If Re(α) > 1/2, we use Lemma 3 with y = ξ and λ = 0 to obtain the inequality

|Ai| = ∏
j 6= i

∣∣∣∣∣ xi − ξ j

xi − xj

∣∣∣∣∣ ≥ (1− E(x))n−1

which, together with the above used upper estimates of |Ai| and |Bi|, leads us to

|σi| ≤
|1− α|(|Ai − 1|2 + |Ai|2 |Bi|) + |α| |Ai| |Bi|

|α| |Ai| |1− Bi| − |1− α|

≤ |1− α| µ(E(x)) + |α| η(E(x))(1− E(x))n−1

lα(E(x))
= φα(E(x)). (34)

This completes the proof of the lemma.

The following is our first main result in this paper.

Theorem 3. Let f ∈ C[z] be a polynomial of degree n ≥ 2 with only simple zeros and ξ ∈ Cn be a
root-vector of f . Suppose that x(0) ∈ Cn is an initial approximation satisfying

E(x(0)) =

∥∥∥∥∥ x(0) − ξ

d(ξ)

∥∥∥∥∥
p

<
1
b

and φα(E(x(0))) < 1, (35)

where the function φα is defined by (28). Then, the iteration (10) is well defined and Q-cubically
convergent to ξ with the following error estimates for all k ≥ 0:

‖x(k+1) − ξ ‖ � λ3k ‖x(k) − ξ ‖ and ‖x(k) − ξ ‖ � λ
3k−1

2 ‖x(0) − ξ ‖, (36)
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where λ = φ(E(x0)). In addition, we have the following estimate of the asymptotic error constant:

lim sup
k→∞

‖x(k+1) − ξ‖p

‖x(k) − ξ‖3
p
≤



a (|1− α|+ |α|)
(|1− α| − |α|) δ(ξ)2 for Re(α) < 1/2,

a
δ(ξ)2 for Re(α) = 1/2,

a (|1− α|+ |α|)
(|α| − |1− α|) δ(ξ)2 for Re(α) > 1/2.

(37)

Proof. The proof straightforwardly follows from Lemma 5 and Theorem 1.

3.2. Local Convergence of the Second Kind

In the present section, we study the convergence of the iteration (10) under the function
of initial conditions E : D ⊂ Cn → R+ defined by (18).

Let a and b be the numbers (14). For the needs of the main result, we define the real
functions γ, η, ν, µ : [0, 1)→ [1, ∞) by

γ(t) =
(

1 +
a t

n− 1

)n−1
, η(t) =

a t2

1− t
, ν(t) = a t γ(t) and µ(t) = (γ(t)− 1)2 + γ(t)2 η(t). (38)

Using these functions, we define βα by

βα(t) =



|1− α| µ(t) + |α| γ(t) η(t)
|1− α| − |α| γ(t) (1 + η(t))

for Re(α) < 1/2,

|α| ν(t)2 + η(t) (1 + |α| ν(t))
(1− η(t))(1− |α| ν(t)) for Re(α) = 1/2,

|1− α| µ(t) + |α| η(t) (1− t)n−1

|α| (1− η(t))(1− t)n−1 − |1− α| for Re(α) > 1/2.

(39)

The following lemma shows that Tα is an iteration function of second kind at a point ξ.

Lemma 6. Let f ∈ C[z] be a polynomial of degree n ≥ 2 that has only simple zeros in C, and
ξ ∈ Cn be a root-vector of f . Then, Tα : D ⊂ Cn → Cn defined by (11) is an iteration function of
second kind at ξ with control function βα defined by (39).

Proof. The proof is performed the same way as the one of Lemma 5. One just has to use
the inequalities

|Bi| ≤
a E(x)2

1− E(x)
= η(E(x)) and |Ci| ≤ aγ(E(x))E(x) = ν(E(x))

instead of (32). The first of these inequalities can be found in [24] (Lemma 6), whereas the
second one follows from Lemma 1 and the known inequalities

|Wj| ≤ γ(E(x))|xj − ξ j| and ∑
j 6=i

xj − ξ j

xi − xj
≤ aE(x).

Now, we are ready to introduce our second main result.
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Theorem 4. Let f ∈ C[z] be a polynomial of degree n ≥ 2 with only simple zeros and ξ ∈ Cn be a
root-vector of f . Suppose that x(0) ∈ Cn is an initial approximation satisfying

E(x(0)) =

∥∥∥∥∥ x(0) − ξ

d(x(0))

∥∥∥∥∥
p

< 1 and Ψα(E(x(0))) ≥ 0, (40)

where the function Ψα : J → R is defined by

Ψα(t) = 1− bt− βα(t)(1 + bt) (41)

with βα defined by (39). Then, the iteration (10) is well defined and Q-cubically convergent to ξ
with the following error estimates for all k ≥ 0:

‖x(k) − ξ ‖ � θkλ(3k−1)/2 ‖x(0) − ξ ‖ and ‖x(k+1) − ξ ‖ � θλ3k ‖x(k) − ξ ‖

where λ = φ(E(x(0))), θ = ψ(E(x(0))) and ψ and φ are defined by

ψ(t) = 1− bt(1 + βα(t)) and φ(t) = βα(t)/ψ(t). (42)

Proof. The conclusions of the theorem follow directly from Lemma 6 and Theorem 2.

4. Computational Aspects and Applications

In the present section, we show the practical applicability of the theoretical results
obtained in the previous section and then apply several particular members of the family
(10) to solve some important real-world problems. For convenience, we shall consider the
case p = ∞.

4.1. Comparative Analysis

Here, we use Theorem 3 to compare the convergence domains and the error estimates
of some particular methods of the family (10).

Define the function φα by (28) in the case p = ∞; that is, with γ, η, ν and µ defined by

γ(t) =
(

1 +
t

1− 2t

)n−1
, η(t) =

(n− 1) t2

(1− t)(1− 2t)
, ν(t) =

(n− 1) γ(t) t
1− 2 t

and
µ(t) = (γ(t)− 1)2 + γ(t)2 η(t).

Evidently, the initial condition (35) can be presented in the form E(x0) < R, where R
is the unique solution of the equation φα(t) = 1 in the interval (0, 1/2). Thus, the bigger
the number R, the larger the convergence domain and the better the error estimates of the
respective method.

Further on, we compare Dochev–Byrnev’s method (4) (α = 0) and Ehrlich’s method
(8) (α = 1) with each other and with three other members of the family (10), obtained for
α = 1/2 and for the complex numbers α = α1 = 0.722+ 0.126i and α = α2 = 0.238− 0.004i,
which were randomly chosen from the rectangles

{z ∈ C : 0.5 < Re(z) ≤ 1 and |Im(z)| ≤ 1} and {z ∈ C : − 1 ≤ Re(z) < 0.5 and |Im(z)| ≤ 1}.

Note that the last three values of α were chosen to cover the three different cases in (28).
The graphs of the functions φ0, φ1/2, φ1, φα1 and φα2, obtained for n = 5, are depicted

in Figure 1. It can be clearly seen from the figure that Ehrlich’s method (8) has the largest
convergence domain and the best error estimates among the considered methods. However,
despite the randomness of the choice, the method obtained for α = α1 has a very large
convergence domain and relatively good error estimates.
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Figure 1. Graph of the functions φ0, φ1/2, φ1, φα1 and φα2 for n = 5.

4.2. Applications to Some Real-World Problems

In this part, some computer implementations are performed to show the applicability
of four particular methods of the family (10) to some important real-world problems, as
well as to emphasize the convergence behavior of the chosen methods.

Suppose that f ∈ C[z] is a polynomial of degree n ≥ 2 and x(0) ∈ Cn is an initial
approximation with pairwise distinct coordinates. In order to compute all of the zeros of f
simultaneously, in the examples below, we apply four members of the family (10), namely
the ones obtained for α = 0 (Dochev–Burnev’s method), α = 1 (Ehrlich’s method), α = 1/2
and α = 0.766 + 0.484i. The penultimate value of α was chosen because of its ‘border’ role
in the proof of the theoretical results, whereas the last one was randomly chosen from
the square

{z ∈ C : |Re(z)| ≤ 1 and |Im(z)| ≤ 1}.

In the performed examples, we used the following theorem of [27] as a stopping crite-
rion.

Theorem 5 ([27] (Theorem 5.1)). Let f ∈ C[z] be a polynomial of degree n ≥ 2 and (x(k))∞
k=0 be

an iterative sequence in Cn consisting of vectors with pairwise distinct components. Then, for every
k ≥ 0, there exists a root-vector ξ ∈ Cn of f such that

E f (x(k)) < τ =
1

(1 +
√

n− 1)2

implies
‖ x(k) − ξ ‖∞ ≤ εk = α(E f (x(k))) ‖W f (x(k)‖∞

where the function E f is defined by E f (x) = ‖W(x)/d(x)‖∞ and α : [0, τ]→ R+ is defined by

α(t) =
2

1− (n− 2)t +
√
(1− (n− 2)t)2 − 4t

. (43)

In 2000, Weerakoon and Fernando [28] (Definition 2.2) gave a definition for the com-
putational order of convergence (COC) of an iterative sequence. A main drawback of this
definition is the involvement of the exact roots of f . In order to avoid this problem, Cordero
and Torregrosa [29], and later on Grau-Sánchez et al. [30] (Definition 2), used some approx-
imations of COC that do not involve the roots of f . Following these ideas, together with
Theorem 5, we made use of the following practically applicable COC (see also [25]):

rk =
ln(εk+1/εk)

ln(εk/εk−1)
. (44)
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In the considered examples, we calculated the smallest k that satisfies the following
stopping criterion:

E f (x(k)) < τ and εk < 10−10 (45)

In the tables below, for any of the tested polynomials, we exhibit the values of k,
E f (x(k)), τ, εk, εk+1 and rk with at least six decimal digits.

Example 1 (Quarter car suspension model). The shock absorber is an element of the suspension
system that is also used to control the transient behavior of the vehicle mass and the suspension
mass (see Pulvirenti [31], Konieczny [32]). It is one of the most complex parts of the suspension
system due to its nonlinear behavior. In fact, the damping force of the dampers is described by an
asymmetric nonlinear hysteresis loop (Liu [33]). For the purposes of the present example, the vehicle
characteristics are represented by a two-degrees-of-freedom quarter-car model to study the damper
effect based on linear and nonlinear damping characteristics. Since simpler models such as linear
and piecewise linear models are ineffective in describing the behavior of the damper, it is essential to
develop a damper model that describes the nonlinear hysteresis characteristics of the damper such as
a polynomial model. The equations of the motion of the masses are given as follows:

ms ẍs + ks(xs − xu) + F = 0

mu ẍu − ks(xs − xu)− kt(xr − xu)− F = 0, (46)

where ms and mu are over-sprung and under-sprung masses, xs and xu are the displacement
variables for ms and mu, respectively, xr describes disturbances from road bumps and ks and kt are
coefficients connected to the stiffness of the suspension’s system spring and the tire stiffness. The
damper force F in (46) can be fitted by the following polynomial (see Barethiye [34]):

f (z) = −77.14 z4 + 23.14 z3 + 342.7 z2 + 956.7 z + 124.5. (47)

For the simultaneous approximation of all of the zeros of f , we apply the above mentioned four
members of the family (10) with Aberth’s initial approximation x(0) ∈ Cn defined by ([35])

x(0)j = − a1

n
+ rei θj , θj =

π

n

(
2j− 3

2

)
, j = 1, . . . , n, (48)

where r = 14, a1 is the second coefficient and n is the degree of the corresponding polynomial.

One can see from Table 1 that, for α = 1 (Ehrlich’s method), the stopping criterion
(45) is satisfied at the eighth iteration with an error estimation of less than 10−24, and, at
the ninth step, the roots are found with an accuracy of 10−74. It is also seen that the
obtained COC confirms the theoretical order of convergence proven in Section 3. The
approximation trajectories for this example calculated for α = 1 (Ehrlich’s method) and
α = 0.766 + 0.484i are plotted in Figure 2a,b, where the blue points are the coordinates of
the initial approximation and the red ones are the zeros of f .

Table 1. Numerical results for Example 1.

Method k E f (x(k)) τ εk εk+1 rk

α = 0 9 2.060× 10−15 0.133975 3.841× 10−15 3.256× 10−44 3.000205

α = 1 8 1.546× 10−25 − 2.882× 10−25 4.487× 10−75 3.000012

α = 1/2 8 2.224× 10−15 − 4.147× 10−15 3.057× 10−44 3.001956

α = 0.766 + 0.484i 9 6.258× 10−18 − 1.166× 10−17 5.851× 10−52 3.000188
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(a) (b)

Figure 2. Trajectories of approximations for Example 1. (a) For α = 1 (Ehrlich’s method). (b) For
α = 0.7669 + 0.4847i.

In this example, we also compare the stability of the considered four methods (see
e.g., [22]). For this purpose, the basins of attraction of the roots of (47) are obtained in the
rectangle

{z ∈ C : − 2 < Re(z) ≤ 3.2 and |Im(z)| ≤ 2}

which contains the root-vector ξ = (−0.136743,−1.32692− 1.43467i,−1.32692 + 1.43467i,
3.09056) of f . The dynamical planes, using a mesh of 200× 200 points with k iterations, are
obtained and depicted in Figure 3. The sets of the initial approximations that generate itera-
tion sequences to fulfill the accuracy criterion max1≤i≤4 | f (x(k)i )| < 10−10 at the preset itera-
tions (k = 30 for Dochev–Byrnev’s method (α = 0), k = 10 for Ehrlich’s method (α = 1) and
k = 18 for the methods obtained with α = 1/2 and α = 0.7669 + 0.4847i) are green-colored,
the initial approximations that generate sequences such that max1≤i≤4 | f (x(k)i )| ≥ 1010 at
the mentioned iterations are red-colored and the rest are in blue. It can be seen from the
figure that Ehrlich’s method and the random method behave better than the other two
methods. It can also be seen that Dochev-Byrnev’s method behaves the worst for this
polynomial.

(a) (b)

Figure 3. Cont.
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(c) (d)

Figure 3. Basins of attraction for Example 1. (a) Dochev–Byrnev’s method (α = 0). (b) Ehrlich’s
method (α = 1). (c) The method by α = 1/2. (d) The method by α = 0.7669 + 0.4847i.

Example 2 (Thermo-denaturation of milk proteins). To study the behavior of the milk polydis-
perse system and the change in its structure while turning into gel during enzymatic coagulation,
Kabadzhov [36] (Ch. 4) sequentially measured the optical density and permeability of natural
skimmed fresh milk (NSFM). Note that, during heat-denaturation, the protein molecule passed
through several stages (usually four or five) of structural changes before turning into gel, and thence
into a food product (cheese, yellow cheese, etc.). In the optical spectra, this is observed as maximums
(see Figure 4), which correspond to the maximal values of the heat capacity.

The endothermic temperature characteristic of the thermo-denaturation process during all
stages can be easily and quickly found by means of a non-destructive turbidimetric method performed
on a specially constructed fiber-optic measuring device [36] (Figure 3.1a).

Using the OriginePro 8.5 software product, a correlation analysis of the dependence of the
optical density on temperature was made at the used wavelengths in the range from 650 nm to
850 nm in the temperature interval from 60◦ to 80◦. The function of the dependence between the
optical density and the heating temperature during the kinetic process was approximated by the
following polynomial (see Figure 4):

f (z) = −1.006× 10−10 z9 − 1.937× 10−8 z8 + 2.867× 10−5 z7 − 0.008 z6 + 1.286 z5

−117.529 z4 + 6749.614 z3 − 239750.379 z2 + 4.832× 106z− 4.241× 107. (49)

In this example, we applied the above mentioned members of the family (10) for the simultaneous
computing of all zeros of f starting from Aberth’s initial approximation (48) with r = 160.

Figure 4. Dependence between the optical density and the temperature.
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The data in Table 2 show that Ehrlich’s method and the random one give better results
than the other two methods. It is interesting to note that, for this example, the random
method behaves better than Ehrlich’s method and much better than Dochev–Burnev’s
method. The approximation trajectories for Ehrlich’s method and the random method are
plotted in Figure 5a,b. Despite the similarity of the convergence behaviors, the trajectories
of the approximations of the two methods are highly different. It is worth noting that,
in Figure 5a, the coordinate starting from the initial point −138.564− 79.999i ‘jumps away’
to the point −849.322 + 1560.620i before turning back towards the root.

Table 2. Numerical results for Example 2.

Method k E f (x(k)) τ εk εk+1 rk

α = 0 23 7.876× 10−13 0.06822 1.003× 10−11 1.244× 10−35 3.000619

α = 1 14 1.043× 10−20 − 4.847× 10−18 1.107× 10−59 3.002078

α = 1/2 17 7.045× 10−13 − 8.978× 10−12 6.633× 10−36 3.016032

α = 0.766 + 0.484i 13 3.968× 10−12 − 5.057× 10−11 1.023× 10−33 3.002426

(a) (b)

Figure 5. Trajectories of approximations for Example 2. (a) For α = 1 (Ehrlich’s method). (b) For
α = 0.7669 + 0.4847i.

Example 3 (Schrödinger wave equation for a hydrogen atom). In quantum mechanics, the po-
sition of the electron relative to the core has a probability distribution that is related to the solution
of the Schrödinger wave equation for a charged particle moving in a Coulomb potential. The famous
Schrödinger equation for a single particle of mass µ moving in a central potential can be written in
the following form:

− h̄2

2µ
∇2Ψ− k

e2

r
Ψ = EΨ , (50)

where E is the energy and r is the distance of the electron from the core. In spherical coordinates,
Equation (50) takes the form

− h̄2

2µ

[
1
r2

∂

∂r

(
r2 ∂Ψ

∂r

)
+

1
r2 sin θ

∂

∂θ

(
sin θ

∂Ψ
∂θ

)
+

1
r2 sin2 θ

∂2Ψ
∂φ2

]
+

e2

r
Ψ = EΨ. (51)
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By using some conventional methods, the last equation can be separated into two equations
called a radial equation and angular equation. It is well known that the angular equation can also
be separated into two equations, one of which leading to the associated Legendre equation (see,
e.g., [37]):

(1− x2) f ′′(x)− 2x f ′(x) +
(

l(l + 1)− m2

1− x2

)
f (x) = 0. (52)

In the azimuthally symmetric case m = 0, the solution of (52) can be presented in terms of Legendre
polynomials. For the purposes of our example, we applied the above mentioned members of the family
(10) for the simultaneous computing of all zeros of the polynomial

f (z) = 46189 z10 − 109395 z8 + 90090 z6 − 30030 z4 + 3465 z2 − 63 (53)

that coincide with the zeros of the tenth-order Legendre polynomial. In this example, we used a
different kind of initial approximation, namely the following:

x(0) = (−3.343 + 2.375i, 2.690− 0.008i,−3.155− 1.844i, 3.592− 1.444i,−2.417 + 0.840i,

0.843− 3.729i,−1.468− 3.630i, 2.031 + 2.411i,−2.295− 1.281i,−1.212− 2.508i)

whose coordinates are randomly chosen from the square

{z ∈ C : |Re(z)| ≤ 4 and |Im(z)| ≤ 4}.

Despite the ‘rough’ choice of the initial approximation, it can be seen from Table 3 that,
for α = 1 (Ehrlich’s method), the stopping criterion (45) is satisfied at the 13th iteration with
an error estimation smaller than 10−18, and, at the next step, the roots are found with an
accuracy of 10−55. It can also be seen that the obtained COC confirms the theoretical order
of convergence proven in Section 3. Approximation trajectories for this example calculated
for the methods obtained for α = 1 (Ehrlich’s method) and α = 0.766 + 0.484i are plotted in
Figure 6a,b.

(a) (b)

Figure 6. Trajectories of approximations for Example 3. (a) For α = 1 (Ehrlich’s method). (b) For
α = 0.7669 + 0.4847i.
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Table 3. Numerical results for Example 3.

Method k E f (x(k)) τ εk εk+1 rk

α = 0 19 8.233× 10−9 0.0625 8.961× 10−11 4.148× 10−26 2.996272

α = 1 13 1.257× 10−18 − 1.368× 10−19 2.897× 10−56 3.000015

α = 1/2 17 1.473× 10−16 − 3.625× 10−17 8.827× 10−49 2.999946

α = 0.766 + 0.484i 15 1.292× 10−19 − 2.152× 10−20 1.473× 10−58 3.003039

5. Conclusions

A detailed local convergence analysis of the one-parameter family of simultaneous
methods (10) has been provided. As a result, two types of local convergence theorems
(Theorems 3 and 4) with a priori and a posteriori error estimates and with an assessment
of the asymptotic error constant were proven. The obtained theorems unify the best
results of their kind regarding the well-known Dochev-Byrnev and Ehrlich’s methods. A
comparative analysis based on the stability and on Theorem 3 was conducted to show the
advantages and disadvantages of several particular members of the family (10). Some real-
world applications were given to show the applicability and to emphasize the convergence
behaviors of the methods (10).
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