# Solving NP-Hard Challenges in Logistics and Transportation under General Uncertainty Scenarios Using Fuzzy Simheuristics

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Modeling Uncertainty in Logistics and Transportation

## 3. Modeling Optimization Problems with General Uncertainty

## 4. A Review of the Simheuristics Concept and Recent Applications

## 5. Extending Simheuristics with Fuzzy Logic

## 6. Recent Applications of Fuzzy Simheuristics

## 7. Trends and Open Research Lines

## 8. Conclusions

## Author Contributions

## Funding

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

LRP | location routing problem |

L&T | logistics and transportation |

OBD-D | our best deterministic solution in a deterministic scenario |

OBD-S | our best deterministic solution in a stochastic scenario |

OB-F | our best solution in fuzzy uncertainty |

OB-S | our best solution in a stochastic scenario |

OB-SF | our best solution in a stochastic and fuzzy scenario |

PFSP | permutation flow shop problem |

TCARP | time-capacitated arc routing problem |

TOP | team orienteering problem |

T1FS | type-1 fuzzy sets |

T2FS | type-2 fuzzy sets |

VRP | vehicle routing problem |

## References

- Cinar, D.; Gakis, K.; Pardalos, P.M. Sustainable Logistics and Transportation; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Bartolacci, M.R.; LeBlanc, L.J.; Kayikci, Y.; Grossman, T.A. Optimization modeling for logistics: Options and implementations. J. Bus. Logist.
**2012**, 33, 118–127. [Google Scholar] [CrossRef] - Žerovnik, J. Heuristics for NP-hard optimization problems-simpler is better!? Logist. Supply Chain. Sustain. Glob. Chall.
**2015**, 6, 1–10. [Google Scholar] [CrossRef] - Konstantakopoulos, G.D.; Gayialis, S.P.; Kechagias, E.P. Vehicle routing problem and related algorithms for logistics distribution: A literature review and classification. Oper. Res.
**2020**, 22, 2033–2062. [Google Scholar] [CrossRef] - Lopes, T.C.; Michels, A.S.; Lüders, R.; Magatão, L. A simheuristic approach for throughput maximization of asynchronous buffered stochastic mixed-model assembly lines. Comput. Oper. Res.
**2020**, 115, 104863. [Google Scholar] [CrossRef] - Wang, X.; Jiang, R.; Qi, M. A robust optimization problem for drone-based equitable pandemic vaccine distribution with uncertain supply. Omega
**2023**, 119, 102872. [Google Scholar] [CrossRef] [PubMed] - Tirkolaee, E.B.; Golpîra, H.; Javanmardan, A.; Maihami, R. A socio-economic optimization model for blood supply chain network design during the COVID-19 pandemic: An interactive possibilistic programming approach for a real case study. Socio-Econ. Plan. Sci.
**2023**, 85, 101439. [Google Scholar] [CrossRef] [PubMed] - Chica, M.; Juan, A.A.; Bayliss, C.; Cordón, O.; Kelton, W.D. Why simheuristics? Benefits, Limitations, and Best Practices when Combining Metaheuristics with Simulation. SORT
**2020**, 44, 311–334. [Google Scholar] [CrossRef] - Chandran, S.; Kandaswamy, G. A fuzzy approach to transport optimization problem. Optim. Eng.
**2016**, 17, 965–980. [Google Scholar] [CrossRef] - Tordecilla, R.D.; Copado-Méndez, P.J.; Panadero, J.; Quintero-Araujo, C.L.; Montoya-Torres, J.R.; Juan, A.A. Combining Heuristics with Simulation and Fuzzy Logic to Solve a Flexible-Size Location Routing Problem under Uncertainty. Algorithms
**2021**, 14, 45. [Google Scholar] [CrossRef] - Toth, P.; Vigo, D. Vehicle Routing: Problems, Methods, and Applications; SIAM: Philadelphia, PA, USA, 2014. [Google Scholar]
- Vansteenwegen, P.; Gunawan, A. Orienteering problems. In EURO Advanced Tutorials on Operational Research; Springer: New York, NY, USA, 2019. [Google Scholar]
- Zaied, A.N.H.; Ismail, M.M.; Mohamed, S.S. Permutation flow shop scheduling problem with makespan criterion: Literature review. J. Theor. Appl. Inf. Technol.
**2021**, 99, 830–848. [Google Scholar] - González-Neira, E.M.; Urrego-Torres, A.M.; Cruz-Riveros, A.M.; Henao-García, C.; Montoya-Torres, J.R.; Molina-Sánchez, L.P.; Jimenez, J.F. Robust solutions in multi-objective stochastic permutation flow shop problem. Comput. Ind. Eng.
**2019**, 137, 106026. [Google Scholar] [CrossRef] - Prodhon, C.; Prins, C. A survey of recent research on location-routing problems. Eur. J. Oper. Res.
**2014**, 238, 1–17. [Google Scholar] [CrossRef] - Tagmouti, M.; Gendreau, M.; Potvin, J.Y. A dynamic capacitated arc routing problem with time-dependent service costs. Transp. Res. Part Emerg. Technol.
**2011**, 19, 20–28. [Google Scholar] [CrossRef] - Suryawanshi, P.; Dutta, P. Optimization models for supply chains under risk, uncertainty, and resilience: A state-of-the-art review and future research directions. Transp. Res. Part Logist. Transp. Rev.
**2022**, 157, 102553. [Google Scholar] [CrossRef] - Delbart, T.; Molenbruch, Y.; Braekers, K.; Caris, A. Uncertainty in intermodal and synchromodal transport: Review and future research directions. Sustainability
**2021**, 13, 3980. [Google Scholar] [CrossRef] - D’Agostino, R. Goodness-of-Fit-Techniques; Routledge: New York, NY, USA, 2017. [Google Scholar]
- Zadeh, L.A. Fuzzy logic. In Granular, Fuzzy, and Soft Computing; Lin, T.Y., Liau, C.J., Kacprzyk, J., Eds.; Springer: New York, NY, USA, 2023; pp. 19–49. [Google Scholar]
- Li, Z.; Liu, A.; Shang, W.L.; Li, J.; Lu, H.; Zhang, H. Sustainability assessment of regional transportation: An innovative fuzzy group decision-making model. IEEE Trans. Intell. Transp. Syst.
**2023**, 24, 15959–15973. [Google Scholar] [CrossRef] - Kovač, M.; Tadić, S.; Krstić, M.; Bouraima, M.B. Novel spherical fuzzy MARCOS method for assessment of drone-based city logistics concepts. Complexity
**2021**, 2021, 2374955. [Google Scholar] [CrossRef] - Rabe, M.; Deininger, M.; Juan, A.A. Speeding Up Computational Times in Simheuristics Combining Genetic Algorithms with Discrete-Event Simulation. Simul. Model. Pract. Theory
**2020**, 103, 102089. [Google Scholar] [CrossRef] - Fu, C.; Fu, C.; Michael, M. Handbook of Simulation Optimization; Springer: New York, NY, USA, 2015. [Google Scholar]
- Rabe, M.; Goldsman, D. Decision Making Using Simulation Methods in Sustainable Transportation. In Sustainable Transportation and Smart Logistics; Faulin, J., Grasman, S.E., Juan, A.A., Hirsch, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 305–333. [Google Scholar]
- Yazdani, M.; Mojtahedi, M.; Loosemore, M. Enhancing Evacuation Response to Extreme Weather Disasters Using Public Transportation Systems: A Novel Simheuristic Approach. J. Comput. Des. Eng.
**2020**, 7, 195–210. [Google Scholar] [CrossRef] - Yazdani, M.; Kabirifar, K.; Frimpong, B.E.; Shariati, M.; Mirmozaffari, M.; Boskabadi, A. Improving Construction and Demolition Waste Collection Service in an Urban Area Using a Simheuristic Approach: A Case Study in Sydney, Australia. J. Clean. Prod.
**2021**, 280, 124138. [Google Scholar] [CrossRef] - Peng, Y.; Luo, Y.J.; Jiang, P.; Yong, P.C. The Route Problem of Multimodal Transportation with Timetable: Stochastic Multi-Objective Optimization Model and Data-Driven Simheuristic Approach. Eng. Comput.
**2022**, 39, 587–608. [Google Scholar] [CrossRef] - Gök, Y.S.; Padrón, S.; Tomasella, M.; Guimarans, D.; Ozturk, C. Constraint-Based Robust Planning and Scheduling of Airport Apron Operations through Simheuristics. Ann. Oper. Res.
**2023**, 320, 795–830. [Google Scholar] [CrossRef] - Bayliss, C.; Panadero, J. Simheuristic and Learnheuristic Algorithms for the Temporary-Facility Location and Queuing Problem during Population Treatment or Testing Events. J. Simul.
**2023**. accepted for publication. [Google Scholar] [CrossRef] - Meeß, H.; Herzog, M.; Alp, E.; Kuhlenkötter, B. Evolutionary algorithms for a simheuristic optimization of the product-service system design. J. Intell. Manuf.
**2023**, 1–23. [Google Scholar] [CrossRef] - Rodríguez-Espinosa, C.A.; González-Neira, E.M.; Zambrano-Rey, G.M. A simheuristic approach using the NSGA-II to solve a bi-objective stochastic flexible job shop problem. J. Simul.
**2023**, 2023, 1–25. [Google Scholar] [CrossRef] - Ghorpade, T.; Corlu, C.G. A simheuristic algorithm for the stochastic one-commodity pickup and delivery travelling salesman problem. J. Simul.
**2023**, 17, 688–708. [Google Scholar] [CrossRef] - Caldeira, R.H.; Gnanavelbabu, A. A simheuristic approach for the flexible job shop scheduling problem with stochastic processing times. Simulation
**2021**, 97, 215–236. [Google Scholar] [CrossRef] - Santos, M.S.; Pinto, T.V.; Júnior, Ê.L.; Cota, L.P.; Souza, M.J.; Euzébio, T.A. Simheuristic-based decision support system for efficiency improvement of an iron ore crusher circuit. Eng. Appl. Artif. Intell.
**2020**, 94, 103789. [Google Scholar] [CrossRef] - Halim, N.N.A.; Shariff, S.S.R.; Zahari, S.M. Single-machine integrated production preventive maintenance scheduling: A simheuristic approach. MATEMATIKA Malays. J. Ind. Appl. Math.
**2020**, 36, 113–126. [Google Scholar] - Lam, C.P.; Masek, M.; Kelly, L.; Papasimeon, M.; Benke, L. A simheuristic approach for evolving agent behaviour in the exploration for novel combat tactics. Oper. Res. Perspect.
**2019**, 6, 100123. [Google Scholar] [CrossRef] - Abu-Marrul, V.; Martinelli, R.; Hamacher, S.; Gribkovskaia, I. Simheuristic algorithm for a stochastic parallel machine scheduling problem with periodic re-planning assessment. Ann. Oper. Res.
**2023**, 320, 547–572. [Google Scholar] [CrossRef] - Zambrano-Rey, G.M.; González-Neira, E.M.; Forero-Ortiz, G.F.; Ocampo-Monsalve, M.J.; Rivera-Torres, A. Minimizing the expected maximum lateness for a job shop subject to stochastic machine breakdowns. Ann. Oper. Res.
**2023**, 1–33. [Google Scholar] [CrossRef] - Antoniadis, N.; Cordy, M.; Sifaleras, A.; Le Traon, Y. A variable neighborhood search simheuristic algorithm for reliability optimization of smart grids under uncertainty. Int. Trans. Oper. Res.
**2022**, 29, 2172–2200. [Google Scholar] [CrossRef] - González-Neira, E.; Montoya-Torres, J. A simheuristic for bi-objective stochastic permutation flow shop scheduling problem. J. Proj. Manag.
**2019**, 4, 57–80. [Google Scholar] [CrossRef] - Oliva, D.; Copado, P.; Hinojosa, S.; Panadero, J.; Riera, D.; Juan, A.A. Fuzzy Simheuristics: Solving Optimization Problems under Stochastic and Uncertainty Scenarios. Mathematics
**2020**, 8, 2240. [Google Scholar] [CrossRef] - Castillo, O.; Aguilar, L.T.; Castillo, O.; Aguilar, L.T. Background on Type-1 and Type-2 Fuzzy Logic. In Type-2 Fuzzy Logic in Control of Nonsmooth Systems: Theoretical Concepts and Applications; Springer: Cham, Switzerland, 2019; pp. 5–19. [Google Scholar]
- Tordecilla, R.D.; Martins, L.d.C.; Panadero, J.; Copado, P.J.; Perez-Bernabeu, E.; Juan, A.A. Fuzzy simheuristics for optimizing transportation systems: Dealing with stochastic and fuzzy uncertainty. Appl. Sci.
**2021**, 11, 7950. [Google Scholar] [CrossRef] - Castaneda, J.; Martin, X.A.; Ammouriova, M.; Panadero, J.; Juan, A.A. A Fuzzy Simheuristic for the Permutation Flow Shop Problem under Stochastic and Fuzzy Uncertainty. Mathematics
**2022**, 10, 1760. [Google Scholar] [CrossRef] - Martin Solano, X.A.; Panadero Martínez, J.; Peidro Payá, D.; Perez Bernabeu, E.; Juan Pérez, Á.A. Solving the time capacitated arc routing problem under fuzzy and stochastic travel and service times. Networks
**2023**, 82, 318–335. [Google Scholar] [CrossRef]

**Figure 1.**Google Scholar articles using the term ‘simheuristics’ for the period 2013 to 2023, where values with the ‘*’ symbol represent estimates.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Juan, A.A.; Rabe, M.; Ammouriova, M.; Panadero, J.; Peidro, D.; Riera, D.
Solving NP-Hard Challenges in Logistics and Transportation under General Uncertainty Scenarios Using Fuzzy Simheuristics. *Algorithms* **2023**, *16*, 570.
https://doi.org/10.3390/a16120570

**AMA Style**

Juan AA, Rabe M, Ammouriova M, Panadero J, Peidro D, Riera D.
Solving NP-Hard Challenges in Logistics and Transportation under General Uncertainty Scenarios Using Fuzzy Simheuristics. *Algorithms*. 2023; 16(12):570.
https://doi.org/10.3390/a16120570

**Chicago/Turabian Style**

Juan, Angel A., Markus Rabe, Majsa Ammouriova, Javier Panadero, David Peidro, and Daniel Riera.
2023. "Solving NP-Hard Challenges in Logistics and Transportation under General Uncertainty Scenarios Using Fuzzy Simheuristics" *Algorithms* 16, no. 12: 570.
https://doi.org/10.3390/a16120570