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Abstract: Two-Derivative Runge–Kutta methods have been proposed by Chan and Tsai in 2010 and
order conditions up to the fifth order are given. In this work, for the first time, we derive order
conditions for order six. Simplifying assumptions that reduce the number of order conditions are
also given. The procedure for constructing sixth-order methods is presented. A specific method is
derived in order to illustrate the procedure; this method is of the sixth algebraic order with a reduced
phase-lag and amplification error. For numerical comparison, five well-known test problems have
been solved using a seventh-order Two-Derivative Runge–Kutta method developed by Chan and
Tsai and several Runge–Kutta methods of orders 6 and 8. Diagrams of the maximum absolute error
vs. computation time show the efficiency of the new method.

Keywords: numerical integration; two-derivative Runge–Kutta methods; phase-lag error; amplification
error; order conditions
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1. Introduction

We consider systems of first-order ODEs of the form

y′(x) = f (x, y(x)), x ∈ [x0, X], y(x0) = y0. (1)

These problems can be solved efficiently using Runge–Kutta (RK) or multi-step methods.
Numerical methods of a high algebraic order are efficient integrators. The computational
cost increases with the order, for example, for the RK methods, it is well known that
seven, nine, and eleven stages are needed for orders six, seven, and eight, respectively.
To reduce the computational cost, research has been devoted to methods with special
properties suitable for specific problems. Special methods for the integration of problems
with oscillatory behavior of the solution have been considered by several authors from
the early stages of research on ODE solvers. There are two general classes of numerical
methods for the integration of oscillatory problems. One class consists of methods with
frequency-dependent coefficients, while the other includes constant coefficients. In the
first class are exponentially, trigonometrically, or phase-fitted methods (see [1–3]); for these
methods, a good estimate of the frequency of the specific problem is needed. The advantage
of these methods in the second general class is that they can be applied to every oscillatory
problem since the coefficients are constant. Among these are methods with low dissipation
and low dispersion, (see [4–6]). The dispersion (or phase-lag) property was introduced in
the pioneer paper of Brusa and Nigro [7].

In this work, we consider Two-Derivative RK methods with special properties and
constant coefficients. These methods originate in the work of Kastlunger and Wanner [8,9],
of which they introduced methods where the values of the derivatives of f (x, y(x)), with
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respect to x, as well as the values of the function f (x, y) at some intermediate points, are
used. Chan and Tsai [10] considered the case where only the first derivative of f (x, y(x)),
with respect to x (g(x, y(x)) := y′′ = f ′ f ), as well as the function f (x, y) are evaluated at
each step of the method. They call these methods Two-Derivative Runge–Kutta (TDRK)
methods. The TDRK method are of the form

Yi = yn + h
s

∑
j=1

aij f (xn + cjh, Yj) + h2
s

∑
j=1

âijg(xn + cjh, Yj)

yn+1 = yn + h
s

∑
i=1

bi f (xn + cih, Yi) + h2
s

∑
i=1

b̂ig(xn + cih, Yi)

the associated Butcher tableau is
c A Â

bT b̂T

where A and Â are s× s matrices, and b and b̂, c are s× 1 vectors. Chan and Tsai derived
order conditions for the TDRK methods based on Butcher’s algebraic theory of trees [11] in
a different way than the conditions were derived in [8,9]. They considered explicit TDRK
methods and gave algebraic order conditions up to order five.

Specifically in [10], the special class of explicit TDRK (ETDRK) methods was intro-
duced, where only the first derivative of f (x, y(x)), with respect to x, is evaluated at
intermediate points at each step. In this case, the matrix A has non-zero elements only
in the first column i.e., the function f is evaluated only at xn; these methods are called
special ETDRK methods. We shall refer to methods where non-zero entries are allowed
into the matrix A at any column as general ETDRK methods. In [10], conditions are given
up to order seven for special ETDRK methods. Since then, research has focused on spe-
cial ETDRK methods only, where several authors have constructed minimum phase-lag,
trigonometrically fitted, phase-fitted methods (see [12–14]).

The authors were the first to consider the general case; in [15], they presented methods
of an algebraic order up to five, and in [14], they derived order conditions for trigonomet-
rically fitted methods. As mentioned above, algebraic order conditions for the general
ETDRK methods up to order five were given. In this work, we consider general ETDRK
methods and algebraic order conditions and, following the ideas of [10], derive the algebraic
order conditions for order six. Conditions generalizing the simplifying assumptions given
by Fehlberg in [16] are also derived, which leads to a significant reduction in the number of
order conditions. The theory is illustrated with the construction of a sixth-order general
ETDRK method. The paper is organized as follows. Section 2 is of an introductory nature,
where we review the TDRK methods. In Section 3, we consider methods of order six, derive
algebraic conditions and simplifying assumptions, and the framework for constructing
sixth-order methods is given. In order to illustrate the procedure, we construct a method of
the sixth algebraic order with a reduced phase-lag and amplification error. In Section 4, we
present numerical results using five well-known test problems. A discussion of the results
is given in Section 5.

2. TDRK Methods
2.1. Algebraic Order Conditions

We shall give a brief summary of the derivation of the order conditions in [10]. A
method is of order p if α(t) = 1/γ(t) for all trees of an order that is less or equal to p, where
α(t) is the elementary weight. The elementary weights α(t) are defined in terms of the
vector of the elementary weight functions for the internal stages

α(t) = bTη(t\•) + b̂Tη
(

t\
)
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for r(t) > 1 and α(•) = bTe. The elementary weight vector is determined by the recursive
formula

η(t) = Aη(t\ • ) + Âη
(

t\
)

for r(t) > 1 and η(•) = c, η(∅) = e. The elementary weight vectors for trees up to
order 4 and the elementary weights up to order 5 are also given in [10]. As in the case of
Runge–Kutta methods, simplifying assumptions can be used

A ck−1 + (k− 1)Â ck−2 =
ck

k
, k = 1, 2, . . . , q.

We note here that the assumption corresponding to (k = 2) for the RK methods A c = c2/2
cannot be satisfied for explicit methods.

The authors in [15] presented a fifth-order method with four stages. They used the
first two simplifying assumptions (k = 1 and k = 2):

A e = c, A c + Â e =
c2

2
(2)

It is obvious that the quadrature conditions

bT ck−1 + (k− 1)b̂T ck−2 e =
1
k

, k = 1, . . . , 5 (3)

are not affected. Under the second assumption, the conditions corresponding to trees

[[τ], t2, t3, . . . , tm] and [τ, τ, t2, t3, . . . , tm]

are equivalent; consequently, we can disregard some order conditions. For order 3, there
are three conditions; the extra conditions for order 4 are two; and four more conditions are
needed for order 5. In [15], apart from quadrature conditions (3), the additional condition
for order 4 is

bT A c2 + 2bT Â c + b̂T c2 =
1
12

(4)

and the additional conditions for order 5 are

bT c A c2 + 2bT c Â c + b̂T c3 + b̂T A c2 + 2b̂T Â c =
1

15
(5)

bT A c3 + 3bT Â c2 + b̂T c3 =
1

20
(6)

bT A2 c2 + 2bT A Â c + bT Â c2 + b̂T A c2 + 2b̂T Â c =
1

60
. (7)

2.2. Stability, Dispersion, and Dissipation

The stability function of a TDRK method is

R(z) = 1 + zbT
(

I − zA− z2 Â
)−1

e + z2b̂T
(

I − zA− z2 Â
)−1

e.

Van der Houwen and Sommeijer [17] give the definition of dispersion (or phase-lag)
error φ(v)

φ(v) = v− arg R(iv)

and the dissipation (or amplification) error α(v)

α(v) = 1− | R(iv) |
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where v = wh. A TDRK method is said to have a dispersion order p and dissipative order
q if

φ(v) = cφvp+1 + O(vp+3) and α(v) = cαvq+1 + O(vq+3)

For explicit TDRK methods, we can write

R(iv) = As(v2) + ivBs(v2),

where As and Bs are polynomials in v2 of degree s. It follows that

φ(v) = v− arctan
(

v
Bs(v2)

As(v2)

)
and α(v) = 1−

√
A2

s (v2) + v2B2
s (v2).

3. Sixth-Order Methods

Here we present the conditions of order six. There are 20 trees of order 6. By applying
the first and second simplifying assumptions (2), the number of order conditions reduces
to eight, of which these conditions are given in Table 1. The elementary weight vectors for
trees of order 5 are given in Table 2.

To further reduce the number of order conditions, we shall use the third simplifying
assumption

A c2 + Â c =
c3

3
(8)

together with

b2 = b̂2 = 0

This assumption cannot be fulfilled for explicit methods, since we can ask for this assump-
tion except for the second component. Condition (8) and b2 = b̂2 = 0 have the effect that
the conditions corresponding to the trees

[[τ, τ], t2, t3, . . . , tm] and [τ, τ, τ, t2, t3, . . . , tm]

are equivalent. This allows us to disregard condition (4) of order 4, condition (5) of order 5,
and the condition corresponding to tree t62. The number of order conditions reduces to 3, 4,
and 7 for orders 3, 4, and 5 respectively.

Following the idea of Fehlberg [16], we impose the following conditions

s

∑
i=3

biai2 = 0,
s

∑
i=3

biai2ci = 0,
s

∑
i=4

s−1

∑
j=3

biaijaj2 = 0, (9)

as well as

s

∑
i=3

b̂iai2 = 0,
s

∑
i=3

bi âi2 = 0. (10)

Then

• from the first of (9), the conditions corresponding to t53 and t54 are equivalent,
• from the second of (9) and the first of (10), the conditions corresponding to t63 and t64

are equivalent,
• from the first of (9) and the second of (10), the conditions corresponding to t65 and t66

are equivalent,
• from the third of (9), the conditions corresponding to t67 and t68 are equivalent.
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Finally, the number of order conditions reduces to 6 and 10 for orders 5 and 6, respec-
tively, i.e., the quadrature conditions and

bT A c3 + 3bT Â c2 + b̂ c3 =
1

20
(11)

bT c
(

A c3 + 3Â c2
)
+ b̂T

(
A c3 + 3Â c2 + c4

)
=

1
24

(12)

bT
(

A c4 + 4 Â c3
)
+ b̂T c4 =

1
30

(13)

bT
(

A (A c3 + 3Â c2) + Â c3
)
+ b̂(A c3 + 3Â c2) =

1
120

(14)

A sixth-order method can be constructed following the next steps (Algorithm 1).

Table 1. Trees of order 6 and conditions.

Tree Order Condition

t61 bT c5 + 5b̂T c4 = 1
6

t62 bT c2 η(t31) + 2b̂T c η(t31) + b̂T c4 = 1
18

t63 bT c η(t41) + b̂T η(t41) + b̂T c4 = 1
24

t64 bT c η(t43) + b̂Tη(t43) + b̂T c η(t31) =
1
72

t65 bT η(t51) + b̂T c4 = 1
30

t66 bT η(t53) + b̂ c η(t31) =
1

90

t67 bT η(t56) + b̂η(t41) =
1

120

t68 bT η(t58) + b̂T η(t43) =
1

360
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Table 2. Elementary weight vectors of order 5.

Tree (t) Elementary Weight Vector η(t)

t51 A c4 + 4 Â c3

t52 A c2 A c + A c2 ĉ + 2 Â c A c + 2 Â c ĉ + Â c3

t53 A c A c2 + 2 A c Â c + Â A c2 + 2 Â2 c + Â c3

t54 A c A2 c + A c A ĉ + A c Â c + Â A2 c + Â A ĉ+
Â2 c + Â c A c + Â c ĉ

t55 A ((A c + ĉ) ∗ (A c + ĉ)) + 2 Â c A c + 2 Â c ĉ

t56 A2 c3 + 3 A Â c2 + Â c3

t57 A2 c A c + A2 c ĉ + A Â A c + A Â ĉ + A Â c2 + Â c A c + Â c ĉ

t58 A3 c2 + 2 A2 Â c + A Â c2 + Â A c2 + 2Â2 c

t59 A4 c + A3 ĉ + A2 Â c + A Â A c + A Â ĉ + Â A2 c + Â A ĉ + Â2 c
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Algorithm 1 Construction of sixth order explicit TDRK method.

1. c1 = 0 and c5 = 1
2. ci for i = 2, 3, 4 can be chosen as free parameters
3. b2 = b̂2 = 0
4. bi and b̂i from the linear system of Equation (3)
5. a21, a31, a43, a54 from the first of (2)
6. â21, â32, â43, â54 from the second of (2)
7. â31, a41, a51 from (8)
8. â42 from the second of (10)
9. â41, â51, â52, â53 from (11)–(14)
10.a32, a42, a52 from (9)

As an application, we shall demonstrate the construction of a specific method. Since
the cis are free parameters, we chose the equidistant grid c2 = 1

4 , c3 = 1
2 , c4 = 3

4 . From the
quadrature conditions (3), we derive

b1 = 1
405

(
101− 345 b5 − 4440 b̂5

)
, b3 =

16
15
− 12 b5 − 136 b̂5,

b4 = 64
405

(
−2 + 75 b5 + 930 b̂5

)
, b̂1 =

1
54

(
1− 6 b5 + 78 b̂5

)
,

b̂3 = 1
15 − 2 b5 − 24 b̂5, b̂4 = − 16

135

(
−1 + 15 b5 + 150 b̂5

)
.

Assumptions (9) and the first of (10) are satisfied by setting a32 = a42 = a52 = 0. From the
choice of ci, we have â41 = â43. Let â41 = 0. From the second of (10)

â42 =
−9(4− 45b5 + 45â52b5 − 510b̂5)

64(−2 + 75b5 + 930b̂5)
.

From (11)–(14)

â51 =
1

180b5

(
−8 + 5(26 + a53)b5 + 1560b̂5

)
â52 = − −2

15b5

(
−1 + 20b5 + 240b̂5

)
â53 =

1
6− b5

(
−8 + 15(8 + a53)b5 + 1560b̂5

)
.

At this point, all order conditions are satisfied. Still, coefficients a53, b5 and b̂5 are not
determined. We choose these coefficients so that the next two terms of the phase-lag error
and one term of the amplification error are eliminated

a53 =
1

315b2
5

(
−2520b2

5 + b5(110− 35,280b̂5) + 224(1− 195b̂5)b̂5

)
and

b̂5 =
28,721 + 31

√
723,121

642,600
, b5 =

−1,396,559− 1669
√

723,121
3,901,500

For this method, the stability function is

R(z) = 1 + z +
z2

2!
+

z3

3!
+

z4

4!
+

z5

5!
+

z6

6!
+

z7

7!
+

z8

8!
+

z9

9!
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and the phase-lag and amplification errors are

φ(v) = − 1
3,991,680

v11 + O(v13) and α(v) = − 1
3,628,800

v10 + O(v12)

In Figure 1, we have plotted the stability region both for this method (new) and for the
seventh-order special TDRK method (CT) in [10].

 New

CT

-5 -4 -3 -2 -1 1

-4

-2

2

4

Figure 1. Stability regions for methods new and CT.

4. Numerical Results

In order to illustrate the efficiency of the new method, we have chosen several well-
known RK methods of the sixth and eighth order with 7, 8, and 13 stages. Also, we compare
the new method with a special TDRK method of the sixth order with five stages. The
methods are:

• The method constructed in this work (New)
• Chan–Tsai’s seventh-order method with five stages (CT) [10]
• Butcher’s sixth-order method with seven stages (Butcher) [11]
• Dormand–Prince’s eighth-order method with 13 stages (DP) [18]
• Fehlberg’s eighth-order method with 13 stages (Fehlberg) [19]
• Verner’s sixth-order method with eight stages (Verner) [20]

4.1. Problem 1

An inhomogeneous equation studied by van der Houwen and Sommeijer [17]

y′′ = −ω2y + (ω2 − 1) sin (x), y(0) = 1, y′(0) = ω + 1

where x ≥ 0. The exact solution is y(x) = cos (ω x)+ sin (ω x)+ sin (x). We choose ω = 10
and an integration interval [0, 100]. In Figure 2, we see the efficiency of the methods vs. CPU
time for the inhomogeneous equation. Specifically for this problem, the maximum error of
the solution is presented. As we can see, the method New requires 0.1 s in the order to give
an accuracy of 10−4, while at the same time, the other methods either have an accuracy
of 10−2 or fail. Furthermore, in 0.4 s, the method New has a maximum absolute error less
than 10−10; meanwhile, at the same time, methods CT and DP give a maximum absolute
error that is almost 10−7. The rest of the methods need much more time to accomplish an
accuracy of 10−6.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

CPU time

−
lo

g
|e

rr
o
r|

Inhomogeneous Equation

 

 

new

CT

Butcher

DP

Fehlberg

Verner

Figure 2. Problem 1: Efficiency curves.

4.2. Problem 2

We consider the oscillatory linear system studied by Franco in [21]

y′′1 + 13y1 − 12y2 = 9 cos (2x)− 12 sin (2x), y1(0) = 1, y′1(0) = −4

y′′2 − 12y1 + 13y2 = −12 cos (2x) + 9 sin (2x), y2(0) = 0, y′2(0) = 8.

The exact solution is

y1(x) = sin (x)− sin (5x) + cos (2x),

y2(x) = sin (x) + sin (5x) + sin (2x).

In Figure 3, the maximum error of the solution is presented in the interval [0, 100].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

2

4

6

8

10

12

CPU time

−
lo

g
(m

a
x
|e

rr
o
r|

)

System of linear equations

 

 

new

CT

Butcher

DP

Fehlberg

Verner

Figure 3. Problem 2: Efficiency curves.

We see the efficiency of the methods vs. CPU time for this system of linear equations.
We see that the most efficient methods are New and DP, where the first requires 0.3 s in
order to give a maximum absolute error less that 10−10, while the second needs 0.5 s to
reach the same accuracy.
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4.3. Problem 3

We consider the following almost periodic orbit problem studied by Stiefel and Bet-
tis [22]:

y′′1 = −y1 + 0.001 cos(x), y1(0) = 1, y′1(0) = 0

y′′2 = −y2 + 0.001 sin(x), y2(0) = 0, y′2(0) = 0.9995

The exact solution is

y1(x) = cos(x) + 0.0005x sin(x), y2(x) = sin(x)− 0.0005x cos(x).

In Figure 4, the maximum error of the solution is presented [0, 1000].

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

1

2

3

4

5

6

7

8

9

10

CPU time

−
lo

g
(m

a
x
|e

rr
o
r|

)

Stiefel − Bettis

 

 

new

CT

Butcher

DP

Fehlberg

Verner

Figure 4. Problem 3: Efficiency curves.

We see the efficiency of the methods vs. CPU time for this problem and notice a similar
performance with problem 2. Again, the TDRK methods and DP are the most efficient: for
0.54 s, methods New and CT give errors of 5 × 10−10 and 5 × 10−9, while DP gives an error
of 2 × 10−9.

4.4. Problem 4

The Prothero–Robinson problem has been studied in [10].

y′(x) = k(y− φ(x)) + φ′(x), y(0) = φ(0),

where k is a negative parameter and φ(x) is a smooth function. The exact solution is
y(x) = φ(x). In this work, we choose φ(x) = sin x. In Figure 5, the maximum error of the
solution is presented in [0, 100] for k = −200 when the problem is mildly stiff.

We see the efficiency of the methods vs. CPU time for this problem. The TDRK
methods have a superior performance, where at time 0.5 s, methods New and CT give errors
of 3 × 10−9 and 2 × 10−8. The classical RK methods fail to give as accurate results even in
triple time, where more than 1.5 s are needed to give errors in the range 10−7 and 10−8.



Algorithms 2023, 16, 558 11 of 13
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|e

rr
o
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Prothero − Robinson k=−200

 

 

new

CT

Butcher

DP

Fehlberg

Verner

Figure 5. Problem 4: Efficiency curves.

4.5. Problem 5

We consider a Van der Pol oscillator

y′′ = −y + δ(1− y2)y′, y(0) = y0, y′(0) = 0

where δ > 0

y0 = 2 +
1

96
δ2 +

1033
552960

δ4 +
1019689

55738368000
1
2

δ6.

For this problem, the integration interval considered is [0, 100] for δ = 5, when the problem
is mildly stiff. In Figure 6, the maximum error of the solution is presented in [0, 100].

0.1 0.2 0.3 0.4 0.5 0.6
2

3

4

5

6

7

8

9

10

11

CPU time

−
lo

g
(m

a
x
|e

rr
o
r|

)

Van der Pol

 

 

new

CT

Butcher

DP

Fehlberg

Verner

Figure 6. Problem 5: Efficiency curves.

We see the efficiency of the methods vs. CPU time for the Van der Pol oscillator. The
TDRK methods and DP are the most efficient. The method derived in this study reaches
an accuracy of 3 × 10−11 in 0.3 s, where methods CT and DP give errors of 10−7 at the
same time.
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4.6. Numerical Rate of Convergence

We shall examine the rate of convergence given by

pN = log2

(
EN
E2N

)
where EN is the maximum absolute error

EN = max
1≤i≤N

‖yi − y(xi)‖.

We give pN for several values of N for the Prothero–Robinson problem for k = −10,−50,−100.

k = −10 N = 1000 N = 2000 N = 3000 N = 4000
pN 6.19 6.11 6.03 5.97

k = −50 N = 3000 N = 4000 N = 5000 N = 6000
pN 6.21 6.21 6.19 6.16

k = −100 N = 4000 N = 5000 N = 6000 N = 7000
pN 6.02 6.18 6.21 6.22

5. Discussion and Conclusions

In this work, for the first time, sixth-order conditions for an explicit TDRK method of
the general case has been derived. Also, a new method with five stages of algebraic order 6,
phase-lag order 10, and amplification order 9 has been constructed. In order to demonstrate
the efficiency of the new method, we have chosen four well-known RK methods of order
6 and 8 with 7, 8, and 13 stages (Butcher, Verner, Dormand–Prince, and Fehlberg) and a
special two-derivative Runge–Kutta method of order 6 with five stages. Generally, the new
method performs better than all RK methods tested, including the special TDRK method.
The plot of the maximum absolute error with the CPU time are given for all problems
studied. For Problem 1 of CPU time less than 0.4 s, the new method gives an error less than
10−10, whereas CT and DP give errors less than 10−8 in 0.5 s and the other methods reach
an error of 10−6 in 0.6 s. Similar results are produced for Problems 2 and 3. Then, we have
used two stiff problems to test the efficiency of the method derived in this work concerning
the famous Prothero–Robinson problem (k = −200) and the Van der Pol oscillator (δ = 5).
For the first stiff problem (Problem 4), the TDRK methods have a superior performance
compared to the RK methods. The TDRK methods give an error less than 10−9 in 0.6 s,
while the RK methods need 1.6 s to give an error of 10−8. For the second stiff problem
(Problem 5), the new method clearly has a superior performance of 10−11 in 0.3 s, while
methods CT and DP give errors of 10−7 at the same time.

The advantage of the TDRK methods is that the number of stages needed for a specific
order is much fewer than those for the RK methods. Method CT in [10] has order 7 and five
stages, and the method constructed in this study has order 6 and five stages. Concerning
sixth-order methods Butcher and Verner use seven and eight stages, respectively, while the
eighth-order methods DP and Fehlberg use 13 stages.

In this work, we have given the framework of constructing methods of the general
type of order 6. In order to illustrate the construction of such methods, we give an example
with a reduced phase-lag and amplification error. Certainly, methods can be derived with
other characteristics. In future work, we will focus on TDRK methods of the general type
and construct embedded methods to be used for variable step size. Also, we shall consider
symmetric methods and methods with frequency-dependent coefficients.
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