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Abstract: Blood cancer occurs due to changes in white blood cells (WBCs). These changes are known
as leukemia. Leukemia occurs mostly in children and affects their tissues or plasma. However, it
could occur in adults. This disease becomes fatal and causes death if it is discovered and diagnosed
late. In addition, leukemia can occur from genetic mutations. Therefore, there is a need to detect it
early to save a patient’s life. Recently, researchers have developed various methods to detect leukemia
using different technologies. Deep learning approaches (DLAs) have been widely utilized because
of their high accuracy. However, some of these methods are time-consuming and costly. Thus, a
need for a practical solution with low cost and higher accuracy is required. This article proposes a
novel segmentation and classification framework model to discover and categorize leukemia using
a deep learning structure. The proposed system encompasses two main parts, which are a deep
learning technology to perform segmentation and characteristic extraction and classification on
the segmented section. A new UNET architecture is developed to provide the segmentation and
feature extraction processes. Various experiments were performed on four datasets to evaluate the
model using numerous performance factors, including precision, recall, F-score, and Dice Similarity
Coefficient (DSC). It achieved an average 97.82% accuracy for segmentation and categorization. In
addition, 98.64% was achieved for F-score. The obtained results indicate that the presented method is
a powerful technique for discovering leukemia and categorizing it into suitable groups. Furthermore,
the model outperforms some of the implemented methods. The proposed system can assist healthcare
providers in their services.

Keywords: blood cancer; leukemia; segmentation; deep learning; categorization; UNET; neural
network; DSC; WBC

1. Introduction

Blood cancer affects children and adults [1]. Blood cancer is also known as leukemia
and it occurs due to changes in white blood cells [1,2]. Leukemia refers to the uncontrolled
growth of blood cells [3]. Acute leukemia and chronic leukemia are considered the most
common types of blood cancer that occur often and are widely diagnosed around the
world [3–5]. Uncontrolled changes in white blood cells stimulate the birth of too many cells
or generate unneeded behaviors [6]. Recently, physicians named four types of leukemia:
acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lymphocytic
leukemia (CLL), and chronic myeloid leukemia (CML) [6–11]. These types were categorized
according to the intensity levels of tumor cells [12–14].

Acute lymphoblastic leukemia (ALL) affects children and older adults (65 years old and
over) [1,14,15]. Pathologists and physicians consider acute myeloid leukemia (AML) the most
fatal type since just under 30% of patients have survived in the past five years [1,16]. The
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National Cancer Institute in the United States of America reported that nearly 24,500 patients
died in 2017 due to leukemia [1,17–20]. In addition, leukemia was the main cause of 4.1.%
reported cancers in the United States of America [1].

Various known risk factors can cause leukemia. These factors include smoking, expo-
sure to high levels of radiation and chemotherapy, a blood disorder, family history, and
some genetic mutations [21,22]. In young patients, leukemia occurs often due to genetic
mutations that take place in blood cells only [23]. In addition, some genetic mutations can
be inherited from parents and cause leukemia [24,25].

Acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), chronic lym-
phocytic leukemia (CLL), and chronic myeloid leukemia (CML) are recognized by their
intensity level and form of infected cells [1]. Acute myeloid leukemia (AML) occurs in
adults more often than children, and more specifically, in men more often than women. In
addition, acute myeloid leukemia (AML) is the deadliest type of leukemia since its five-year
survival rate is 26.9% [1]. Chronic lymphocytic leukemia (CLL) affects men more than
women, since two-thirds of the positive reported cases are men [1]. Moreover, this type of
leukemia occurs in people aged 55 years and over, and its survival rate between 2007 and
2013 was 83.2% according to [1].

The evaluation of leukemia is determined by expert pathologists who have suffi-
cient skills [1]. Leukemia types are determined by Molecular Cytogenetics, Long-Distance
Inverse Polymerase Chain Reaction (LDI-PCR), and Array-based Comparative Genomic
Hybridization (ACGH) [1]. These procedures require substantial effort and skills [1]. Pathol-
ogists and physicians use smear blood and bone marrow tests to identify leukemia [1–3].
However, these tests are expensive and time-consuming. In addition, interventional radiol-
ogy is another procedure used to identify leukemia [1]. Yet, the radiological procedures
are limited by hereditary issues that are affected by the sensitivity and resolution of the
imaging modality [1].

At the moment, deep learning (DL) methods can be deployed in the medical field to
support and provide aid for identifying infected leukemia cells or healthy ones. These ap-
proaches require datasets for training purposes. In this study, four datasets from Kaggle are
used. Neural networks are widely used in image processing, detection, and categorization
due to their rapid reputation for accuracy and effectiveness. Overfitting issues could occur
for some reasons. To eliminate or minimize these issues, taking equal numbers of images
from different samples is necessary. Various deep learning solutions for leukemia diagnosis
and categorization were implemented with reasonable results. Therefore, obtaining greater
accuracy is required.

1.1. Research Problem and Motivations

Numerous methods were developed to diagnose leukemia using neural networks,
such as in [1–5]. All methods, except those in [1], implemented work to detect tumor cells
without the capability of classifying these cells into their suitable types. Only the developed
method in [1] could classify leukemia into ALL, AML, CLL, and CML. However, this
algorithm suffers from a drawback as some of its evaluated metrics did not exceed 98.5%.
Therefore, another practical algorithm to detect leukemia and categorize it is required.

1.2. Research Contributions

A novel segmentation method based on new deep learning technology is proposed in
this article. This segmentation is performed to detect leukemia cells and categorize these
cells into their suitable types, ALL and AML, due to the availability of these two types in
the utilized datasets. A newly implemented UNET model is used to extract the required
features for classification purposes. The major contributions are:

I. Developing a novel segmentation process to detect leukemia based on a deep learning
architecture according to a U-shaped architecture.

II. Implementing the UNET model to extract various characteristics for the categorization
of the main two categories.
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III. Using four datasets to evaluate the proposed approach.
IV. Calculating several performance quantities to evaluate the correctness and robustness

of the presented algorithm.

The rest of the article is organized as follows: a literature review is presented in
Sections 1.3 and 2 provides a description of the proposed method. Section 3 contains the
evaluated performance metrics, their results, and the details of the conducted comparative
analysis with some developed methods, and Section 4 provides a discussion. The conclusion
is given in Section 5.

1.3. Related Work

Recently, Computer Vision (CV) was deployed in various leukemia models to identify
and classify tumors.

N. Veeraiah et al., in [1], developed a model to detect and categorize leukemia based
on deep learning technology. A Generative Adversarial Network (GAN) was used for
feature extraction purposes. In addition, a Generative Adversarial System (GAS) and the
Principal Component Analysis (PCA) method were deployed on the extracted character-
istics to distinguish suitable types of leukemia. Furthermore, the authors deployed some
image preprocessing methods to segment the detected blood cells. The developed method
achieved 99.8%, 98.5%, 99.7%, 97.4%, and 98.5% for accuracy, precision, recall, F-score, and
DSC, respectively. These achieved results came from applying the model to one dataset. In
contrast, the proposed model utilized the newly implemented segmented technique and the
newly developed UNET model to detect and categorize leukemia according to the extracted
features. The presented method used three datasets to test the algorithm and achieve an
acceptable range of outcomes between 97% and 99%. The obtained findings imply that
the model can be used by any hospital or healthcare provider to support pathologists and
physicians in their diagnosis of leukemia properly and accurately. The proposed model
produces better results than the developed method in [1] in some cases, as its accuracy
reached 99% when the number of iterations and epochs increased.

The authors in [2] implemented a method to discover long noncoding RNA using a
competitive network. This network was developed on endogenous RNA and utilized on a
dataset that had long noncoding RNAs and mRNAs. In addition, the authors validated
their outcomes using a reverse transcription quantitative real-time approach. Unfortunately,
the authors provided no information about the achieved accuracy or any other metric, while
the proposed method achieved 97.82% accuracy using the new segmentation technique.

In [3], N. Veeraiah et al. proposed a method to detect leukemia based on a histogram
threshold segmentation classifier. This method worked on the color and brightness varia-
tion of blood cells. The authors cropped the detected nucleus using arithmetic operations
and an automated approximation technique. In addition, the active contour method was
utilized to determine the contrast in the segmented white blood cells. The authors achieved
98% accuracy and reached more than 99% when combined with other classifiers on a single
dataset. In contrast, the proposed algorithm utilized three datasets and achieved nearly
an average of 98% accuracy. This accuracy increased to nearly 98.9% when enhancing the
number of iterations and epochs as well.

The authors in [4] implemented a model to discover malignant leukemia cells using a
deep learning model. The authors used a Convolutional Neural Network (CNN) to spot
ALL and AML. In addition, two blocks of the CNN model were hybridized together. The
algorithm was evaluated on a public dataset that contained 4150 blood smear images. In
addition, transforming the color images into grey ones was deployed to assist the model
in segmentation purposes. Five different classifiers were utilized to evaluate the model
to achieve 89.63% accuracy, which is considered to be a low outcome. In contrast, the
presented approach in this article used new segmentation and classification methods to
spot and categorize four subcategories of leukemia. Four datasets were utilized to attain
97.82% accuracy, which is better than the obtained outcomes in [4].
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G. Sriram et al., in [6], implemented a model to categorize leukemia using the VGG-16
CNN model when applied to a single dataset of nearly 700 images. This model classified
only two types, which were ALL and AML, and attained nearly 98% accuracy, which is less
than what the proposed algorithm obtained on four datasets.

Table 1 offers a summary of what has been implemented to detect and categorize leukemia.

Table 1. Summary of some developed methods.

Reference Publication Year Deployed Technology Advantages Limitations

[1] 2023 GNA, GSA, and PCA Categorization of all four
subtypes of leukemia

Using one small dataset and
time-consuming due to the

utilized number of operations

[3] 2023 Histogram threshold
segmentation classifier

Using color and brightness
variations to detect leukemia

Requires multiple classifiers to
reach high accuracy and classify

two subtypes only

[4] 2022 CNN and hibernation
of two CNN blocks

The number of images in the
utilized dataset was sufficient

The achieved accuracy was less
than 90% and discovered two

subtypes only

[6] 2022 VGG-16 CNN Reached nearly 98% accuracy
Classified two subtypes and the

number of utilized images
was insufficient

[8] 2022 Region-based CNN
Achieved 97.3% accuracy and
utilized a sufficient number

of images

The evaluated performance
quantities reached results

between 93% and 97%

[9] 2022 CNN Achieved 100% accuracy Utilizing a single dataset and
categorizing a single type: ALL

2. Materials and Methods
2.1. Problem Statement

Several Computer-Aided Detection systems (CADs) rely on segmentation to spot
and discover cancerous cells. This segmentation is performed according to some built-
in functions and tools. In addition, this segmentation is accompanied by some image
preprocessing processes. Thus, it is crucial to have a practical automated segmentation
method to identify and categorize leukemia early. This research aims to design and
develop a reliable robust system for leukemia identification and categorization using a novel
UNET architecture.

2.2. Datasets

In this study, four leukemia datasets were used to train, validate, test, and evaluate the
proposed model. These four datasets were downloaded from the Kaggle websites [26–29].
Each dataset has its number of images, types of leukemia, and the size of all images. The
first dataset was downloaded from [26] and contains 3256 images from 89 patients. All
images are of ALL. The size of this set is 116 MB. The second dataset was downloaded
from [27] with 6512 images and a size of approximately 210 MB. This set contains ALL
only. The third dataset was downloaded from [28] with a size of 909 MB and it includes
15,135 images of ALL. These images were collected from 118 patients. The last dataset
was obtained from [29] and it contains 3242 images from 89 patients. The size of this set is
2 GB. These four datasets were divided into three groups: training, validation, and testing.
The training group represents 70%, while the validation and testing groups represent 30%.
Table 2 offers a description of the utilized datasets. Table 3 shows the number of assigned
images from each dataset to training, validation, and testing groups.
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Table 2. The utilized datasets description.

First Dataset [26] Second Dataset [27] Third Dataset [28] Fourth Dataset [29]

Number of images 3256 6512 15,135 3242

Size 116 MB 210 MB 909 MB 2 GB

Ground Truth Yes Yes Yes Yes

Table 3. Details of the utilized datasets.

Dataset Number
Number of Images

Training Validation Testing

1 2800 200 256

2 4790 722 1000

3 10,529 2500 2106

4 1582 800 860

2.3. The Proposed System

This section offers a complete description of the presented algorithm. The proposed
model takes inputs of images, converts every image into grayscale, and performs some
preprocessing to remove noise, enhance the pixels, rescale all images to a common size, and
normalize each input. Normalization is applied to change pixel intensity and divide each
pixel value by the allowed maximum value that a pixel can take. The system rescales each
input to 600 × 600 pixels. The performed preprocessing processes are applied using some
built-in functions. These functions include filters, such as Bilateral, Gaussian, and Gabor.
In addition, morphological operations are deployed to support the presented framework in
its segmentation stage. Then, the segmentation stage takes place to segment each input to
outline potential Regions of Interest (RoIs). These regions are utilized to extract the needed
characteristics for the categorization stage. The utilized segmentation stage is applied using
the newly implemented model for this purpose based on U architecture. This architecture
is a simple, popular architecture used in image segmentation; training a model is easy on
this network, and preferable for applications that require less computational resources. In
addition, UNET is composed of two components, which are a contracting path and an
expansive path [30–32]. The contracting path is represented by the left-hand side and the
expansive path is denoted by the right-hand side. In the contraction stage, the proposed
approach reduces the spatial information and increases feature information [30–32]. The
expansive pathway is responsible for combining the extracted features and the spatial
information. Moreover, UNET architecture localizes and distinguishes RoIs by performing
operations based on the pixel level to equalize the size of input and output. After that, the
classification is performed using the UNET model to categorize the identified potential
RoIs as either healthy or cancerous cells. The cancerous cells are further classified into
two suitable types, which are ALL and AML as depicted in Figure 1. Unfortunately, the
deployed datasets contain only these two types. Figure 1 illustrates a flowchart and block
diagram of the proposed approach to discover and categorize leukemia using blood images.
Some blood smear images can be blurry and contain undesirable noise, which could affect
the segmentation process and lead to unneeded outcomes. Thus, these images should be
clear; this is achieved using three built-in filters, which are Bilateral, Gaussian, and Gabor.



Algorithms 2023, 16, 556 6 of 17

Algorithms 2023, 16, x FOR PEER REVIEW 6 of 17 
 

illustrates a flowchart and block diagram of the proposed approach to discover and cate-

gorize leukemia using blood images. Some blood smear images can be blurry and contain 

undesirable noise, which could affect the segmentation process and lead to unneeded out-

comes. Thus, these images should be clear; this is achieved using three built-in filters, 

which are Bilateral, Gaussian, and Gabor. 

 

Figure 1. The flowchart of the proposed algorithm. 

Then, some morphological operations are deployed to distinguish between red and 

white cells. In addition, all white blood cells are outlined to start determining the possible 

potential RoIs. Later, all processed inputs are normalized. All these procedures take place 

in the preprocessing phase, which is considered the first stage of the presented model. 

After that, the second and the third stages occur consecutively. These stages are segmen-

tation and classification. Inside the segmentation stage, white blood cells are analyzed to 

spot potential cells and outline them as well. These outline cells are analyzed further to 

extract the needed features and perform the categorization process based on these char-

acteristics. The proposed model extracts 23 features, including area, diameter, shape, lo-

cation, mean, and variance. Figure 2 depicts the detail of the internal structure of the de-

veloped segmentation model and Figure 3 offers a complete internal description of the 

implemented categorization method. 

Figure 1. The flowchart of the proposed algorithm.

Then, some morphological operations are deployed to distinguish between red and
white cells. In addition, all white blood cells are outlined to start determining the possible
potential RoIs. Later, all processed inputs are normalized. All these procedures take
place in the preprocessing phase, which is considered the first stage of the presented
model. After that, the second and the third stages occur consecutively. These stages
are segmentation and classification. Inside the segmentation stage, white blood cells are
analyzed to spot potential cells and outline them as well. These outline cells are analyzed
further to extract the needed features and perform the categorization process based on
these characteristics. The proposed model extracts 23 features, including area, diameter,
shape, location, mean, and variance. Figure 2 depicts the detail of the internal structure of
the developed segmentation model and Figure 3 offers a complete internal description of
the implemented categorization method.

In Figure 2, the segmentation is performed based on the deep learning architecture,
which is U-shaped. To obtain a final segmentation result, any input is required to travel
through various levels. These levels represent different resolutions. The input is represented
in a size of H ×W × D, where H refers to the height, W denotes the width, and D refers to
the depth. In this study, depth denotes the number of applied neurons. The dimensional
size of the inputs is projected inside the projection layer into a constant dimensional space.
Then, a patch size of 32 is applied. The Multi-Layer Perceptron (MLP) encompasses three
Gaussian error Linear Units (GeLU). Each GeLU contains a convolutional block with a size
of 2× 2 and one downsampling operator. In addition, to enhance the segmentation accuracy,
two tools are deployed, which are Gated Position-Sensitive Axial Attention (GPSAA) and
the Local–Global training method (LoGo). The GPSAA tool determines the interaction
relationship between the features and the efficiency of the occurred computations, while the
LoGo tool assists in extracting local and global features. Furthermore, a learnable positional
embedded Epos is applied in this study to maintain the retrieved spatial information
between inputs.
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In Figure 3, the feature extraction and categorization operations are performed using
the UNET structure. This structure includes three levels. Each level contains layers of
convolutional, max-pooling, and fully connected. In addition, the ReLU activation function
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takes place at each level. The proposed approach categorizes results as healthy or cancerous
cells. Cancerous cells are classified into two groups, which are ALL or AML. No public
datasets that included all four types were found. In every convolutional block, a dedicated
number of kernels is assigned to ensure that diverse features are achieved. The utilized
number of kernels is 5 × 5 × 4. Three fully connected layers with 200 neurons in each are
deployed. The last fully connected block includes three nodes to represent the total number
of obtained findings by the proposed framework, which are healthy cells, ALL cells, and
AML cells. Table 4 shows the applied configuration hyperparameters inside the feature
extraction and classification stage.

Table 4. The applied settings of hyperparameters.

Name of the Hyperparameter Value

Learning rate: L 0.001

Batch size 16

Dropout 0.25

Optimizer Adam

Regression weight 0.001

Momentum 0.8

Activation functions ReLU and Sigmoid

Number of iterations 3000, 5000, 8000

Number of epochs 65

2.4. The Evaluated Metrics

Various performance quantities are computed in this study to evaluate the proposed
system. These performance parameters are True Positive (TP), True Negative (TN), False
Positive (FP), False Negative (FN), accuracy, precision, recall (sensitivity), specificity, F-score,
Jaccard index, and DSC.

Accuracy (Acu) is calculated as illustrated in Equation (1):

Acu =
(TP + TN)

(TP + TN + FN + FP)
(1)

Precision (Pcs) is computed using Equation (2):

Pcs =
TP

(TP + FP)
(2)

Recall (Rca) is computed using Equation (3):

Rca =
TP

(TP + FN)
(3)

Specificity (Sfc) is determined as in Equation (4):

Sfc =
TP

(TP + FP)
(4)

F-score (Fs) is calculated using Equation (5):

Fs = 2 ×
[
(PCS × RCA)

(PCS + RCA)

]
(5)
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Jaccard Index (JI) is computed using Equation (6):

JI =
(TL ∩ PL)
(TL ∪ PL)

(6)

TL denotes the true labels and PL represents the output labels by the proposed model.
DSC is calculated as shown in Equation (7):

DSC =
2TP

(2TP + FP + FN)
(7)

A higher value of DSC means a better prediction is obtained.

3. Results

This section contains the conducted experiments to evaluate the presented algorithm
for leukemia identification and categorization. This study aims to design and implement
a new trustworthy Computer-Aided Design (CAD) system for the diagnosis and catego-
rization of leukemia using two models. These models are developed for segmentation,
characteristics extraction, and classification purposes. This system was trained, validated,
tested, and evaluated using four datasets as shown in Table 2. The performed analysis
shows the superiority of the presented system. The utilized images from the used datasets
were allocated equally between the assigned three groups, which are training, validation,
and testing. As shown in Table 2, the first set contains 19,701 images, while the other sets
contain 4222 in each.

In this research, the proposed algorithm consists of three main components as depicted
in Figure 1. Each preprocessed input is segmented in the second phase to outline the potential
RoIs and produce semantic outcomes. These segmented results are fed into the third stage to
perform the extraction of the required characteristics and categorization procedures.

3.1. Experimental Setup

The conducted experiments were performed on a MATLAB that was installed on a
machine with an Intel Core I7 8th Gen., 16 GB RAM, 64-bit Operating System, and 2 GHz.
The machine operates using Windows 11 Pro.

3.2. Results

Numerous scenarios were performed to train and test the proposed approach using
four datasets. A total of 19,701 images were used for training, whereas 4222 images were
utilized for testing purposes. The success or failure of the segmentation stage depends
mainly on the segmentation accuracy. As shown in Table 4, different configurations were
deployed to provide diverse evaluations. Table 5 lists the achieved average accuracy from
the second and third stages. In addition, it shows how accuracy was influenced and
impacted by the optimizer. Table 6 shows the obtained average outputs of the considered
performance parameters with the use of the optimization tool and without it when the
number of iterations ranged from 3000 to 8000.

Table 5. The achieved accuracy from the segmentation and classification stages.

Performance Quantity With Optimizer Without Optimizer

Accuracy 97.82% 95.39%

Accuracy was impacted by the optimizer tool as it increased by 2.48%.
As shown in Tables 5 and 6, the deployment of the optimizer tool had a significant role

in the achieved results. The obtained results of the considered performance quantities were
increased using the optimizer tool. Figure 4 illustrates the achieved outputs of accuracy and
DSC when different numbers of iterations were applied, as shown in Table 4. In addition,
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these results were achieved with the use of the ADAM optimization tool. Both metrics
improved significantly as the number of iterations increased. The enhancement of accuracy
was 2.66%, while DSC improved by 1.43%. Furthermore, accuracy was improved when
the scale of inputs was changed from 600 × 600 to 720 × 720 by approximately 8.21%.
However, this improvement occurred with a penalty on the execution time.

Table 6. The evaluated considered quantities.

Performance Metrics Without Optimizer With Optimizer

Accuracy 95.39% 97.82%

Precision 94.24% 97.23%

Recall 93.98% 96.79%

Specificity 95.78% 97.03%

F-score 95.62% 98.72%

Jaccard Index 93.81% 97.91%

DSC 95.45% 98.33%
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Figure 4 and Table 6 show that the achieved results of the proposed model are encour-
aging, and the system can be deployed to save lives and enhance the diagnosis procedures.

The execution time per input, also known as the processing time, the total number
of utilized parameters, and the total number of Floating-Point Operations per Second
(FLOPS) were evaluated. This evaluation was conducted according to the assigned size of
images, which was 600 × 600, and a sliding window method. Table 7 displays the attained
results of these parameters. These outcomes indicate that the presented algorithm is highly
computational. Nevertheless, acceptable and reasonable findings were obtained. FLOPS
and the total number of parameters were found in millions.
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Table 7. The complexity of the proposed model.

FLOPS Number of Parameters Execution Time

57.71 63.82 8.45 s

For the testing set, the proposed method was successfully identified and catego-
rized 4092 images out of 4222, which represents approximately 97%. This set contained
1142 healthy cells and 3080 cancerous cells. These cells were 1731 ALL cells and 1349 AML
cells. The presented system identified and categorized 991 healthy cells out of 1142 properly.
Figure 5 shows the achieved results when the model was applied to the testing set.
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3.3. Comparative Assessment

An assessment evaluation between the proposed algorithm and some implemented meth-
ods in the literature was conducted to analyze the obtained outputs and efficiency and measure
robustness. This comparative study included the number of used datasets, applied technology,
obtained accuracy, and DSC. Table 8 shows the performed comparative evaluation.

Table 8. The comparative evaluation results.

Works The Number of
Utilized Datasets Applied Technology Accuracy DSC

[1], 2023 1 GAN, GAS, and PCA 99.8% 98.5%

[3], 2023 1 Histogram threshold segmentation classifier 98% N/A

[6], 2022 1 VGG-16 CNN 98% N/A

[8], 2022 1 Region-based CNN 97.3% N/A

[9], 2022 1 Hybrid deep learning tools: CNNs and
inception v2 and support vector machine 100% N/A

[10], 2022 2 Squeeze and Excitation Learning 98.3% N/A

[12], 2021 1 Weighted ensemble of different CNNs 86.2% N/A

The Proposed algorithm 4 Image preprocessing and UNET 98.76% 98.89%
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The presented approach performed better accuracy than the implemented methods
in [3,6,8,12], while the approaches in [1,9] gave better results. However, both methods used
a single dataset in each, while the proposed algorithm utilized four datasets. In addition,
the number of used images in the proposed system was bigger than both models [1,9].
Nevertheless, the presented algorithm attained over 99% accuracy when the number of
iterations exceeded 15000 and the value of learning changed from 0.001 to 0.01. Furthermore,
the accuracy was enhanced by nearly 1.8% when the patch size decreased by half.

Figure 6 contains four subgraphs: (a) illustrates a confusion matrix for a sample of 700
images, (b) depicts an error histogram, (c) depicts a chart of Mean Squared Error (MSE),
and (d) depicts a curve of Receiver Operating Characteristic (ROC). In Figure 6a, class 1
denotes the ALL type and class 2 refers to the AML type. Figures 7 and 8 display samples
of segmentation outcomes for two inputs. Both Figures 7 and 8 contain three subgraphs in
each. These subgraphs are original inputs, identified and outlined potentially infected cells,
and binary segmented masks.
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rately. The best value of MSE occurred at epoch 4 with a minimum value of 0.519.
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3.4. The Cross-Validation Results

As stated earlier, the utilized datasets were divided into three dependent sets: training,
validation, and testing. The testing set was evaluated using an average value on the five-fold
cross-validation methodology to prove its accuracy and robustness. The attained average
results of the considered performance parameters and their averages by the suggested
framework are illustrated in Figure 9 using the applied optimizer. These results are
exquisite and imply that the framework is reliable and trustworthy since accuracy, which is
the main focused metric, increased after each fold as depicted in Figure 9. Figure 9 shows
the visualization charts of the performance parameters using five-fold cross-validation.
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3.5. The Influence of Modifying the Deployed Hyperparameters

As shown in Table 7, the elapsed time for every input is nearly 8.5 s, which is consid-
ered higher than what was anticipated. Thus, the hosting machine started suffering from
allocated hardware resources. Therefore, modifying or adjusting the applied configurations
was required to reduce the execution time and minimize the required resources, such as
memory. Thus, reducing the patch size to 6 was the optimal value to achieve the desired
outputs. In addition, the decay factor was set to 0.25 to lower the learning rate by the
decay factor if no enhancement in accuracy was noticed for seven consecutive epochs.
Moreover, the proposed framework used an early stopping strategy to prevent overfitting
from occurring. This forced the framework to halt or terminate if it detected an overfitting
issue. These modifications improved the execution time by 34.87%, decreased to 5.536 s per
image, and the number of total parameters went down by 24.1% and the number of FLOPS
decreased by approximately 28%. Accuracy was positively affected since it was enhanced
to nearly 98.76%.

3.6. The Statistical Analysis

A statistical analysis between the suggested framework and two traditional convolu-
tional neural networks was performed based on the test based on a statistical parameter,
which was the mean. These two convolutional neural networks were LeNet and Residual
Neural Network (ResNet). Three performance indicators were measured, which were
accuracy, F-score, and Jaccard Index. Table 9 lists the obtained outcomes; these findings
confirmed that the variations between the offered framework and other convolutional neu-
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ral networks are statistically noticeable. The best results are bold. Moreover, the presented
framework surpasses these networks.

Table 9. Results of the statistical analysis test.

Indicator LeNet ResNet Presented FRAMEWORK

Accuracy 96.21% 96.01% 97.53%

F-score 96.98% 95.35% 98.11%

Jaccard Index 95.76% 95.44% 97.74%

4. Discussion

Various metrics of the presented algorithm were evaluated and analyzed. The com-
parison study in Table 8 reveals that the model produces encouraging findings, and these
results indicate that it is possible to apply the model in healthcare facilities to support
physicians and pathologists. Saving patients’ lives can be achieved with support from
the proposed method. This method can identify, outline, and segment the potential RoIs
appropriately as shown in Figures 7 and 8. Moreover, counting of the number of blood
cells takes place in this algorithm. The presented framework’s performance was assessed
as shown in Table 6; the obtained results show that exquisite findings were reached and
considered promising. In addition, this framework was compared against some developed
works from the literature. This comparison is reported in Table 8, and it shows that the
implemented framework outperforms all models except those from [1,9]. This assessment
demonstrates that the proposed framework shows higher performance than most of the
current techniques.

Numerous experiments were performed in this research to exhibit and validate the
attained performance results by the presented framework by modifying and adjusting
the applied configurations of the hyperparameters and preprocessing methods. The ex-
ecution time reduced from 8.5 s per image to 5.536 s, which means the improvement
was nearly 34.87%. In addition, the number of the total parameters went down from
63.82 million to approximately 48.44 million; the percentage of this reduction is 24.1%.
Moreover, the number of FLOPS decreased by approximately 28%. The performed changes
affected the performance quantities positively, since accuracy was raised to nearly 98.76%,
precision increased to 97.84%, recall went up to 98.02%, specificity enhanced to 97.47%,
F-score was raised to nearly 99.21%, and Jaccard Index and DSC increased to 98.61% and
98.76%, respectively.

Investigating the effectiveness of data augmentation on the proposed framework
was explored. This investigation showed that applying the framework without data
augmentation affected its performance negatively since accuracy dropped to 94.11% due
to limitations in capturing the complexities between data. Moreover, other metrics went
down significantly. The lowest result was around 90.34% for specificity.

The major limitation/obstacle that this research faced was the availability of all
leukemia types as the applied datasets contain only two types, ALL and AML, as stated
earlier. In this regard, these datasets are believed to be difficult in many attributes. Firstly,
only two types exist with different sizes, which require rescaling for each input. Secondly,
rescaling all images takes time, and this results in the elapsed time by the framework.
Lastly, these datasets entail multi-class classification on the pixel level of the binary image
mode, which forces us to deploy various methodologies to reach the final findings.

5. Conclusions

This article proposes a new algorithm to identify and classify two types of leukemia,
which are ALL and AML. This algorithm contains three main components, which are
image preprocessing, segmentation, and classification. The segmentation part is developed
using U-shaped architecture and the classification procedures are performed using a newly
developed UNET. Four datasets were used to validate and test the model. These validation
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and testing operations were conducted using numerous experiments on the MATLAB
platform. The proposed model reached an accuracy between 97% and 99%. However,
reaching high accuracy requires increasing the number of iterations and decreasing the
patch size. These two factors affect the execution significantly. This approach suffers from
computational complexity since a huge number of parameters were involved. In addition,
only two types of leukemia were identified and categorized because no public datasets for
other types were found. These limitations can be resolved by having additional datasets
for the remaining types and optimizing the proposed model to reduce the utilized number
of parameters.

Improving classification accuracy, reducing computational complexity, and adding
additional datasets will be considered in future work.

Author Contributions: Conceptualization, A.K.A. and A.A.A.; data curation, T.S. and A.A.; formal
analysis, A.A.A. and Y.S.; funding acquisition, A.K.A.; investigation, A.A.A. and A.A.; methodology,
T.S. and Y.S.; supervision, A.K.A.; validation, A.K.A., A.A.A., T.S. and Y.S.; writing—original draft,
A.A.A. and A.A.; writing—review and editing, A.K.A., T.S. and Y.S. All authors have read and agreed
to the published version of the manuscript.

Funding: The authors extend their appreciation to the Deanship of Scientific Research at Northern
Border University, Arar, K.S.A. for funding this research work through the project number “AMSA-
2023-12-2012”.

Data Availability Statement: In this study, datasets were downloaded from the Kaggle website.
Their references are available in the reference section.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Veeraiah, N.; Alotaibi, Y.; Subahi, A.F. MayGAN: Mayfly optimization with generative adversarial network-based deep learning

method to classify leukemia form blood smear images. Comput. Syst. Sci. Eng. 2023, 42, 2039–2058. [CrossRef]
2. Nekoeian, S.; Rostami, T.; Norouzy, A.; Hussein, S.; Tavoosidana, G.; Chahardouli, B.; Rostami, S.; Asgari, Y.; Azizi, Z.

Identification of lncRNAs associated with the progression of acute lymphoblastic leukemia using a competing endogenous RNAs
network. Oncol. Res. 2023, 30, 259–268. [CrossRef] [PubMed]

3. Veeraiah, N.; Alotaibi, Y.; Subahi, A.F. Histogram-based decision support system for extraction and classification of leukemia in
blood smear images. Comput. Syst. Sci. Eng. 2023, 46, 1879–1900. [CrossRef]

4. Baig, R.; Rehman, A.; Almuhaimeed, A.; Alzahrani, A.; Rauf, H.T. Detecting malignant leukemia cells using microscopic blood
smear images: A deep learning approach. Appl. Sci. 2022, 12, 6317. [CrossRef]

5. Sadashiv, W.K.; Sanjay, K.S.; Pradeep, S.V.; Anil, C.A.; Janardhan, K.A. Detection and classification of leukemia using deep
learning. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 3235–3237. [CrossRef]

6. Sriram, G.; Babu, T.R.G.; Praveena, R.; Anand, J.V. Classification of Leukemia and Leukemoid Using VGG-16 Convolutional
Neural Network Architecture. Mol. Cell. Biomech. 2022, 19, 29–41. [CrossRef]

7. Rupapara, V.; Rustam, F.; Aljedaani, W.; Shahzad, H.F.; Lee, E. Blood cancer prediction using leukemia microarray gene data and
hybrid logistic vector trees model. Sci. Rep. 2022, 12, 1000. [CrossRef]

8. Venkatesh, K.; Pasupathy, S.; Raja, S.P. A construction of object detection model for acute myeloid leukemia. Intell. Autom. Soft
Comput. 2022, 36, 543–556. [CrossRef]

9. Atteia, G.E. Latent space representational learning of deep features for acute lymphoblastic leukemia diagnosis. Comput. Syst. Sci.
Eng. 2022, 45, 361–377. [CrossRef]

10. Bukhari, M.; Yasmin, S.; Sammad, S.; El-Latif, A.A.A. A deep learning framework for leukemia cancer detection in microscopic
blood samples using squeeze and excitation learning. Math. Probl. Eng. 2022, 2022, 2801228. [CrossRef]

11. Ghaderzadeh, M.; Asadi, F.; Hosseini, A.; Bashash, D.; Abolghasemi, H.; Roshanpour, A. Machine Learning in Detection and
Classification of Leukemia Using Smear Blood Images: A Systematic Review. Sci. Program. 2021, 2021, 9933481. [CrossRef]

12. Mondal, C.; Hasan, K.; Jawad, T.; Dutta, A.; Islam, R.; Awal, A.; Ahmad, M. Acute lymphoblastic leukemia detection from
microscopic images using weighted ensemble of convolutional neural networks. arXiv 2021, arXiv:2105.03995v1.

13. Sashank, G.V.S.; Jain, C.; Venkateswaran, N. Detection of acute lymphoblastic leukemia by utilizing deep learning methods. In
Machine Vision and Augmented Intelligence—Theory and Applications. Lecture Notes in Electrical Engineering; Bajpai, M.K., Kumar
Singh, K., Giakos, G., Eds.; Springer: Singapore, 2021; Volume 796, pp. 453–467.

14. Alagu, S.; Priyanka, A.N.; Kavitha, G.; Bagan, K.B. Automatic detection of acute lymphoblastic leukemia using UNET based
segmentation and statistical analysis of fused deep features. Appl. Artif. Intell. 2021, 35, 1952–1969. [CrossRef]

https://doi.org/10.32604/csse.2023.036985
https://doi.org/10.32604/or.2022.027904
https://www.ncbi.nlm.nih.gov/pubmed/37303492
https://doi.org/10.32604/csse.2023.034658
https://doi.org/10.3390/app12136317
https://doi.org/10.22214/ijraset.2022.41848
https://doi.org/10.32604/mcb.2022.016966
https://doi.org/10.1038/s41598-022-04835-6
https://doi.org/10.32604/iasc.2023.030701
https://doi.org/10.32604/csse.2023.029597
https://doi.org/10.1155/2022/2801227
https://doi.org/10.1155/2021/9933481
https://doi.org/10.1080/08839514.2021.1995974


Algorithms 2023, 16, 556 17 of 17

15. Saleem, S.; Amin, J.; Sharif, M.; Anjum, M.A.; Iqbal, M.; Wang, S.-H. A deep network designed for segmentation and classification
of leukemia using fusion of the transfer learning models. Complex Intell. Syst. 2021, 8, 3105–3120. [CrossRef]

16. Kavya, N.D.; Meghana, A.V.; Chaithanya, S.; Aishwarya, S.K. Leukemia detection in short time duration using machine learning.
Int. J. Adv. Res. Comput. Commun. Eng. 2021, 10, 485–489.

17. Eckardt, J.-N.; Middeke, J.M.; Riechert, S.; Schmittmann, T.; Sulaiman, A.S.; Kramer, M.; Sockel, K.; Kroschinsky, F.; Schuler, U.;
Schetelig, J.; et al. Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears.
Leukemia 2021, 36, 111–118. [CrossRef] [PubMed]

18. Nemade, T.; Parihar, A.S. Leukemia detection employing machine learning: A review and taxonomy. Int. J. Adv. Eng. Manag.
2021, 3, 1197–1204.

19. Maria, I.J.; Devi, T.; Ravi, D. Machine learning algorithms for diagnosis of leukemia. Int. J. Sci. Technol. Res. 2020, 9, 267–270.
20. Loey, M.; Naman, M.; Zayed, H. Deep transfer learning in diagnosing leukemia in blood cells. Computers 2020, 9, 29. [CrossRef]
21. Shafique, S.; Tehsin, S. Acute lymphoblastic leukemia detection and classification of its subtypes using pretrained deep convolu-

tional neural networks. Technol. Cancer Res. Treat. 2018, 17, 1–7. [CrossRef]
22. Hariprasath, S.; Dharani, T.; Bilal, S.M. Automated detection of acute lymphocytic leukemia using blast cell morphological

features. In Proceedings of the 2nd International Conference on Advances in Science and Technology (ICAST-2019), Bahir Dar,
Ethiopia, 8–9 April 2019; K. J. Somaiya Institute of Engineering & Information Technology, University of Mumbai: Maharashtra,
India, 2019; pp. 1–6.

23. Parra, M.; Baptista, M.J.; Genesca, E.; Arias, P.L.; Esteller, M. Genetics and epigenetics of leukemia and lymphoma: From
knowledge to applications, meeting report of the Josep Carreras Leukaemia Research Institute. Hematol. Oncol. 2020, 38, 432–438.
[CrossRef] [PubMed]

24. Harris, M.H.; Czuchlewski, D.R.; Arber, D.A.; Czader, M. Genetic Testing in the Diagnosis and Biology of Acute Leukemia. Am. J.
Clin. Pathol. 2019, 152, 322–346. [CrossRef]

25. Rastogi, N. Genetics of Acute Myeloid Leukemia—A Paradigm Shift. Indian Pediatr. 2018, 55, 465–466. [CrossRef]
26. Aria, M.; Ghaderzadah, M.; Bashash, D. Acute Lymphoblastic Leukemia (ALL) Image Dataset, Kaggle. 2021. Available online:

https://www.kaggle.com/datasets/mehradaria/leukemia (accessed on 3 May 2023).
27. Sharma, N. Leukemia Dataset, Kaggle. 2020. Available online: https://www.kaggle.com/code/nikhilsharma00/leukemia-

classification/input (accessed on 3 May 2023).
28. Larxel, Leukemia Classification, Kaggle. 2020. Available online: https://www.kaggle.com/datasets/andrewmvd/leukemia-

classification (accessed on 3 May 2023).
29. Eshraghi, M.A.; Ghaderzadeh, M. Blood Cells Cancer (ALL) Dataset. 2021. Available online: https://www.kaggle.com/datasets/

mohammadamireshraghi/blood-cell-cancer-all-4class?resource=download (accessed on 3 May 2023).
30. Cranaf, R.; Kavitha, G.; Alague, S. Selective kernel U-Net Segmentation Method for Detection of Nucleus in Acute Lymphoblastic

Leukemia blood cells. Proceedings of 13th National Conference on Signal Processing, Communication & VLSI Design (NCSCV’21),
Online, 23–24 December 2021; pp. 16–21.

31. Lu, Y.; Qin, X.; Fan, H.; Lai, T.; Li, Z. WBC-Net: A white blood cell segmentation network based on UNet++ and ResNet. Appl.
Soft Comput. 2021, 101, 107006. [CrossRef]

32. Taormina, V.; Raso, G.; Gentile, V.; Abbene, L.; Buttacavoli, A.; Bonsignore, G.; Valenti, C.; Messina, P.; Scardina, G.A.; Cascio, D.
Automated Stabilization, Enhancement and Capillaries Segmentation in Videocapillaroscopy. Sensors 2023, 23, 7674. [CrossRef]
[PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s40747-021-00473-z
https://doi.org/10.1038/s41375-021-01408-w
https://www.ncbi.nlm.nih.gov/pubmed/34497326
https://doi.org/10.3390/computers9020029
https://doi.org/10.1177/1533033818802789
https://doi.org/10.1002/hon.2725
https://www.ncbi.nlm.nih.gov/pubmed/32073154
https://doi.org/10.1093/ajcp/aqz093
https://doi.org/10.1007/s13312-018-1334-0
https://www.kaggle.com/datasets/mehradaria/leukemia
https://www.kaggle.com/code/nikhilsharma00/leukemia-classification/input
https://www.kaggle.com/code/nikhilsharma00/leukemia-classification/input
https://www.kaggle.com/datasets/andrewmvd/leukemia-classification
https://www.kaggle.com/datasets/andrewmvd/leukemia-classification
https://www.kaggle.com/datasets/mohammadamireshraghi/blood-cell-cancer-all-4class?resource=download
https://www.kaggle.com/datasets/mohammadamireshraghi/blood-cell-cancer-all-4class?resource=download
https://doi.org/10.1016/j.asoc.2020.107006
https://doi.org/10.3390/s23187674
https://www.ncbi.nlm.nih.gov/pubmed/37765731

	Introduction 
	Research Problem and Motivations 
	Research Contributions 
	Related Work 

	Materials and Methods 
	Problem Statement 
	Datasets 
	The Proposed System 
	The Evaluated Metrics 

	Results 
	Experimental Setup 
	Results 
	Comparative Assessment 
	The Cross-Validation Results 
	The Influence of Modifying the Deployed Hyperparameters 
	The Statistical Analysis 

	Discussion 
	Conclusions 
	References

