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Abstract: The rapid and accurate detection of orthopedic medical devices is pivotal in enhancing
health care delivery, particularly by improving workflow efficiency. Despite advancements in medical
imaging technology, current detection models often fail to meet the unique requirements of ortho-
pedic device detection. To address this gap, we introduce OrthoDETR, a Transformer-based object
detection model specifically designed and optimized for orthopedic medical devices. OrthoDETR
is an evolution of the DETR (Detection Transformer) model, with several key modifications to bet-
ter serve orthopedic applications. We replace the ResNet backbone with the MLP-Mixer, improve
the multi-head self-attention mechanism, and refine the loss function for more accurate detections.
In our comparative study, OrthoDETR outperformed other models, achieving an AP50 score of
0.897, an AP50:95 score of 0.864, an AR50:95 score of 0.895, and a frame per second (FPS) rate of
26. This represents a significant improvement over the DETR model, which achieved an AP50 score
of 0.852, an AP50:95 score of 0.842, an AR50:95 score of 0.862, and an FPS rate of 20. OrthoDETR
not only accelerates the detection process but also maintains an acceptable performance trade-off.
The real-world impact of this model is substantial. By facilitating the precise and quick detection
of orthopedic devices, OrthoDETR can potentially revolutionize the management of orthopedic
workflows, improving patient care, and enhancing the efficiency of healthcare systems. This paper
underlines the significance of specialized object detection models in orthopedics and sets the stage
for further research in this direction.

Keywords: orthopedic medical devices; MLP-Mixer; DETR; Transformer; multi-head self-attention
mechanism

1. Introduction

Orthopedic medical devices play a pivotal role in the treatment and management of
various musculoskeletal disorders [1–3]. Accurate and efficient detection of these devices is
paramount for meticulous management during the workflow process. This, in turn, can
significantly enhance the overall efficiency and safety of orthopedic treatments [4].

Existing object detection models, dominantly those based on convolutional neural
networks (CNNs), have shown promising results across different application domains [5–7].
However, they often fall short when applied to orthopedic medical device detection due to
their inability to address the specificity and complexity of medical imaging data and the
variability in device appearances. The conventional CNN-based models are not optimally
designed to handle these challenges, highlighting a pressing need for more robust and
adaptive approaches.

Acknowledging the current limitations in orthopedic medical device detection using
deep learning models, we introduce OrthoDETR, a specialized Transformer-based object
detection strategy meticulously designed for the orthopedic domain. The traditional DEtec-
tion TRansformer (DETR) model, despite its strengths, suffers from certain inefficiencies
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and inadequacies when applied to orthopedics, necessitating improvements specifically
tailored to this context [8]. For instance, the ResNet backbone [9], while generally compe-
tent, is outperformed by the MLP-Mixer [10] on tasks such as image classification, due to
the latter’s higher computational efficiency and lower parameter count. As such, replacing
ResNet with MLP-Mixer in our model would likely lead to enhanced performance and
efficiency. Similarly, the standard multi-head self-attention mechanism central to the Trans-
former model comes with high computational complexity, particularly problematic when
handling long sequences. By optimizing this mechanism, we aim to reduce computational
burdens without compromising the ability to capture rich contextual information. Lastly,
traditional loss functions like cross-entropy loss may not be suitable for dealing with more
complex orthopedic tasks, such as those involving class imbalances or requiring precise
probability predictions. With an improved loss function, OrthoDETR can better tackle these
challenges, further boosting model performance. Through these strategic modifications
to the DETR architecture, OrthoDETR promises significant advancements in the field of
orthopedic medical device detection and broader medical imaging analysis.

The primary contributions of this study can be delineated as follows:

(1) We introduce a unique object detection strategy, termed as OrthoDETR, that is specif-
ically designed for the efficient and accurate identification of orthopedic medical
devices. It counters the limitations of existing models and operates effectively against
the challenges emerged from intricate medical imaging data and varied device ap-
pearances.

(2) OrthoDETR extends the core architecture of DETR (Detection Transformer) and in-
corporates several significant innovations to better accommodate the orthopedic
domain. These key enhancements involve substituting the ResNet backbone with
an MLP-Mixer for superior feature extraction, refining the multi-head self-attention
mechanism for enhanced context comprehension, and adjusting the loss function for
optimized model training.

(3) Through rigorous experimentation, we demonstrate that OrthoDETR provides consid-
erable improvements in detection speed, while only resulting in a slight decrease in
performance. This makes it a valuable tool for detecting orthopedic medical devices,
particularly in the context of fine-grained management during workflow processes.

For further clarity, the remainder of this paper is structured as follows: Section 2 offers
a concise overview of the existing work in object detection and orthopedic medical device
detection. Section 3 elaborates on the proposed OrthoDETR model, including its detailed
architecture and optimization strategies. The experimental setup, results, and comparison
with other advanced methods are presented in Section 4. Finally, Section 5 concludes the
paper and offers insights into future avenues of research.

2. Related Work

The field of object detection has undergone significant evolution, particularly with
the development of deep learning techniques [11–13]. Initially, the focus was primarily
on Convolutional Neural Networks (CNNs), which have been the backbone of many
groundbreaking advancements in image analysis. CNNs, with their ability to extract and
learn features from images, have been pivotal in tasks ranging from facial recognition to
autonomous driving.

However, recent trends have seen a shift towards Transformer-based models, which
were originally developed for natural language processing tasks [14–16]. These models, un-
like CNNs, are adept at handling sequential data and can capture long-range dependencies
in data, making them particularly suitable for complex tasks like object detection. Trans-
formers have shown remarkable capabilities in understanding the context and relationships
within an image, leading to more accurate and efficient object detection systems.

One of the key strengths of Transformer models is their scalability and ability to
handle large datasets, which is crucial in fields like medical imaging and autonomous
driving where large amounts of data are processed [17]. This transition from CNNs to
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Transformer-based models marks a significant shift in the landscape of object detection,
offering new possibilities and efficiencies in various applications.

In the realm of medical image analysis, deep learning has achieved remarkable results
for various problems. For instance, Mathesul and others proposed a deep learning method
based on CNNs to enhance the detection of COVID-19 and its variants from chest X-ray
images [18]. Furthermore, Sakaida and colleagues developed a method for detecting breast
calcifications using deep learning, capable of classifying the presence of calcifications in the
breast [19].

Significant research has also been conducted in the field of object detection. Carballo
and team [20] introduced a new method based on computer vision and object detection
technologies, utilizing the Convolutional Neural Network EfficientDet-D2 model, for cloud
detection in image sequences. Sami and others [21] proposed an improved deep neural
network model, based on YOLOv5, for real-time detection of road surface damage in
photographic representations of outdoor road surfaces.

Efforts have been made to improve object detection methods for medical image
applications. For example, U-Net architecture was proposed to improve the adaptability
to medical image features by introducing domain expert knowledge and specific data
enhancement strategies [22]. A multi-level deep learning framework for lung nodule
detection was proposed using multi-scale and multi-level features [23]. However, these
approaches do not adequately address the unique challenges presented by orthopedic
medical device detection.

Additionally, some studies have combined deep learning with other types of features
to enhance detection performance. For example, Grignaffini and team [24] presented a
novel approach using CNNs for melanoma detection, incorporating manual texture features
of dermatoscopic images as additional input during the training phase.

Specific improvements in networks have also emerged in particular application do-
mains. For instance, Wang and others proposed a MobileNet V2 network with a dual
attention mechanism, enabling spatial and channel dimension operations at the network
level for plant disease identification [25]. Apostolopoulos and team introduced an innova-
tive improvement of the VGG19 network (ParaNet+), used for classifying flicker images
into normal and abnormal categories, applying the Grad-CAM++ algorithm to locate
abnormal parathyroid glands [26].

However, despite these advancements, existing detection models often fail to meet the
unique requirements of orthopedic medical devices. To address this gap, we propose Orth-
oDETR, a Transformer-based object detection model specifically designed and optimized
for orthopedic medical equipment. The introduction of OrthoDETR not only accelerates the
detection process, but also maintains an acceptable performance trade-off. By facilitating
precise and rapid detection of orthopedic devices, OrthoDETR has the potential to revolu-
tionize the management of orthopedic workflows, improve patient care, and enhance the
efficiency of healthcare systems.

3. Materials and Methods

In the present study, we enhance and fine-tune the DETR model to cater to the unique
attributes and requirements of orthopedic medical devices. This involves substituting
the initial network structure from ResNet to MLP-Mixer, refining the multi-headed self-
attention mechanism to elevate the model’s performance, and recalibrating the loss function
to more accurately reflect the features of orthopedic medical devices. These enhancements
aim to deliver an advanced and efficient object detection model specifically tailored for the
orthopedic medical device sector.

To provide a more comprehensive theoretical foundation, we delve into the underlying
principles that guide our methodology. The MLP-Mixer, replacing the ResNet in our
architecture, is an innovative concept that leverages the idea of mixing token-wise and
channel-wise information in a permutationally invariant manner, providing a robust and
efficient way to handle the complexity and variability of orthopedic medical devices.



Algorithms 2023, 16, 550 4 of 17

The refinement of the multi-headed self-attention mechanism is based on the theoreti-
cal understanding that attention mechanisms can model interactions between various parts
of the image, which is crucial for identifying and localizing medical devices in complex
orthopedic images. By refining this mechanism, we aim to capture the interdependencies
between the different parts of the image more effectively.

The recalibration of the loss function is informed by the theoretical principle that
the loss function should be closely aligned with the task objective. In the context of
orthopedic medical device detection, the features of such devices are distinct and can
vary significantly. Therefore, we recalibrate the loss function to better reflect these unique
features and improve the model’s ability to detect orthopedic medical devices.

By elucidating these theoretical principles and concepts, we hope to increase the
academic value of our manuscript and provide a deeper understanding of our proposed
methodology. The following section will delve into the intricate implementation details of
our proposed model.

3.1. Improved DETR Model

Our proposed methodology is rooted in the DETR model, a pioneering approach
that utilizes the Transformer for object detection tasks. It treats target detection as a
straightforward ensemble prediction problem, using the encoder-decoder structure of the
Transformer to model the global relationships between images and objects, while using a
global loss function based on bilateral matching to enforce the uniqueness of the prediction
results. DETR does not require any prior knowledge and post-processing steps, simplifying
the target detection process and achieving results comparable to existing methods on the
COCO dataset. However, DETR does exhibit certain limitations, such as the necessity for
numerous training iterations required and suboptimal detection performance for compact
and densely clustered targets.

To overcome these drawbacks and adapt to the specific domain of orthopedic medi-
cal devices, we have made some improvements and optimizations to DETR, specifically
replacing the underlying network structure from ResNet to MLP-Mixer, optimizing the
multi-headed self-attention mechanism to improve model performance, and adapting
the loss function to better match the characteristics of orthopedic medical devices. The
OrthoDETR network structure proposed in this paper is illustrated in Figure 1. We will
present each of these improvements and optimizations below.
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3.1.1. ResNet Replacement for MLP-Mixer

The DETR model employs a convolutional neural network as its backbone network
to extract features from images, which are subsequently processed by the Transformer’s
encoder and decoder. However, DETR only utilizes the final layer of features from the
backbone network, resulting in potential information loss. This is particularly problematic
for compact and densely packed targets where features from lower layers could be more
beneficial for detection. To address this issue, we substitute the backbone network from
ResNet to MLP-Mixer, and merge the output of the Mixer layer with the transformer
encoder layer. This allows the model to integrate features from diverse layers, thereby
enhancing the feature representation and multi-scale information.



Algorithms 2023, 16, 550 5 of 17

The MLP-Mixer is an innovative neural network architecture that incorporates a
Transformer-inspired approach of reconfiguring the input data into token and embedding
formats. It facilitates feature integration across channels and sequences via a multi-layer
MLP. This stands in contrast to the conventional ResNet, where feature extraction and fusion
processes occur separately. By amalgamating these processes, the MLP-Mixer enhances
both the efficiency and accuracy of the network.

The MLP-Mixer serves as the backbone network for feature extraction within the
DETR model, its primary objective being to thoroughly amalgamate inter-channel and
inter-sequence features. This is achieved by initially transforming images into token and
embedding formats. Such a methodology not only boosts the network’s efficiency and
accuracy, but it also circumvents the information bottleneck issue inherent in ResNet. As a
result, the incorporation of the MLP-Mixer into the feature extraction component of DETR
can significantly enhance the network’s overall performance and efficiency.

In addition, adopting MLP-Mixer as the feature extraction part of DETR has the
added benefit of better handling the dimensionality requirements of the input data. In
a traditional ResNet, the input data needs to meet specific dimensional requirements,
which often limits the scope of network application. In contrast, the use of MLP-Mixer
allows for more flexible handling of the input data, making it suitable for a wider range
of application scenarios.

Specifically, the output of the mixer layer is summed with the output of the transformer
encoder layer and then fed into the next transformer encoder layer. This allows the layer
to dynamically assign different weights to different levels of features according to their
spatial location and scale.

3.1.2. Improved Transformer Encoder

The Transformer Encoder is a neural network component based on the Self-Attention
mechanism that processes input feature sequences in parallel, efficiently capturing the
implicit relationships between different features and integrating these features with high
quality [27]. However, its computational cost grows squarely with the length of the in-
put sequence.

To address this problem, Yang et al. proposed Hierarchical Attention [28] by dividing
the input sequence into multiple sub-sequences, and then performing the self-attentive
operation on each sub-sequence separately. This approach can reduce the computational
complexity while maintaining good performance. Zhang et al. proposed Windowed Atten-
tion [29], which restricts the scope of self-attention so that each input element focuses only
on other elements in its neighborhoods. This can significantly reduce the computational
effort, but may lose longer distance-dependent information. Tay et al. proposed Sparse
Attention [30], which reduces the computational complexity by computing only some of
the relationships between input elements through a sparse matrix technique. This approach
attempts to reduce the computational burden while maintaining the ability to handle
long-range dependencies. Fan et al. proposed Low-Rank Attention [31], which reduces
computational effort by decomposing the attention matrix into a low-rank matrix. This
approach loses some of the expressive power of the model, but still has good performance
for many tasks.

Influenced by the above research, this paper designs an improved attention, as shown
in Figure 2. In traditional Self-Attention mechanisms, the input feature vectors are directly
subjected to a linear transformation to obtain Query, Key, and Value (QKV) matrices. These
matrices then go through the Self-Attention process, which includes the computation
of attention scores, application of the Softmax function, and the aggregation of values
weighted by the attention scores.

The proposed improvement in this paper modifies this traditional process by incorpo-
rating two convolutional layers (Conv1d) before and after the self-attention mechanism.
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Initially, the input feature vector is passed through the first Conv1d layer. This layer,
with a kernel size of 1, is designed to reduce the dimensionality of the input representation.
By compressing the input, the model is able to concentrate on the most important features,
potentially improving the efficiency and effectiveness of the attention process.

Following this compression, the reduced-dimensionality vectors are then subjected
to the linear transformation to obtain QKV matrices, which then proceed through the
traditional Self-Attention mechanism.

After the Self-Attention process, the output representation is passed through the
second Conv1d layer. This layer, also with a kernel size of 1, is designed to restore the
output representation back to its original dimensionality. This step allows the model to
refine the output representation without losing any essential information.

By introducing these convolutional layers, this improved attention mechanism aims to
enhance the model by focusing on important features and refining the output representation,
potentially improving the overall performance of the model.

Next we provide the mathematical formulation for our enhanced Multi-Head Self-
Attention mechanism with convolutional layers. Let x be the input tensor of shape (batch, n,
dim_in), where batch denotes the batch size, n represents the sequence length, and dim_in
corresponds to the input dimension.

Given the input tensor x, the downsampling convolutional layer is applied as follows:

x_down = convdown(x) (1)

where convdown is a 1D convolutional layer with parameters to be learned during training.
Next, the original Multi-Head Self-Attention mechanism is applied to the down

sampled tensor dim_in. The attention mechanism can be represented as follows:

Q = linear_q(x_down) (2)

K = linear_k(x_down) (3)

V = linear_v(x_down) (4)

where Q, K, and V denote the query, key, and value matrices, respectively, and linear_q,
linear_k, and linear_v are linear transformation layers with learnable weights.

The scaled dot-product attention can then be computed as:

dist = so f tmax(Q ∗ KT/sqrt(dk)) (5)
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where dk is the key dimension divided by the number of attention heads, and * represents
the matrix multiplication operation.

The output of the attention mechanism, denoted by att, can be calculated as:

att = dist ∗ V (6)

Finally, the upsampling convolutional layer convup is applied to the attention output
att to obtain the final output tensor y:

y = convup(att) (7)

where convup is a 1D convolutional layer with parameters to be learned during training.
Our enhanced Multi-Head Self-Attention mechanism can be summarized as the com-

position of the down sampling convolutional layer, the original attention mechanism, and
the up sampling convolutional layer:

y = convup(MHSA(convdown(x))) (8)

By introducing the convdown and convup layers, our proposed method refines the input
and output representations, potentially leading to improved performance in various tasks.

3.1.3. Optimization of Loss Functions

The Detection Transformer (DETR) has demonstrated outstanding results in object
detection tasks. Yet, a notable shortcoming of the DETR model lies in its underperformance
in detecting small objects, a problem mainly attributed to the imbalance between losses
associated with large and small object. In response to this, we introduce an innovative loss
function in this section. This function is designed to equalize the contributions of both large
and small objects, thereby aiming to elevate the DETR model’s proficiency in detecting
smaller objects without undermining its overall performance.

Our proposed method focuses on modifying the loss function of the DETR model
to account for the imbalance between large and small object detection. Specifically, we
introduce a weighted loss that considers both the true and predicted width values of the
bounding boxes. The main idea is to simultaneously calculate the loss for w_true and
w_pred, as well as for 1 − w_true and 1 − w_pred, which helps balance the loss contributions
from large and small objects.

The proposed balanced loss function can be defined as follows:

L_balanced = L(w_true, w_pred) + L(1− w_true, 1− w_pred) (9)

where L() denotes the original loss function used in the DETR model, specifically the L1 loss,
the ground-truth width values of the bounding boxes, and corresponds to the predicted
width values of the bounding boxes.

4. Results

In this paper, experiments were conducted on a self-collected and organized orthope-
dic medical instrument dataset to evaluate the effectiveness of our proposed method in the
task of precise orthopedic instrument recognition. This section will introduce the experi-
mental setup and results, as well as compare and analyze them with existing methods.

4.1. Dataset

To evaluate the effectiveness of our proposed method in the task of precise orthopedic
instrument recognition, we utilized a self-collected and organized orthopedic medical
instrument dataset, which contains 5000 images of orthopedic instruments in various
scenarios, covering 10 common types of bone plates. Each image has been manually
annotated with the category and bounding box of each target object. The dataset presents
a certain level of challenge, as the bone plates in the images may exhibit diversity, scale
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variation, occlusion, and background interference, among other issues. Figure 3 provides
some example images from the dataset.
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4.1.1. Data Set Analysis and Annotation Instructions

Upon analyzing the orthopedic medical device dataset, we found significant differ-
ences in shape, size, and structure among different types of bone plates. As shown in
Figure 4, the tails of various bone plate models exhibit high similarity, making it difficult
even for humans to distinguish them during the annotation process. Therefore, the head
of the bone plate is chosen as the distinctive feature for differentiating between various
models.
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The annotation situation of the dataset is shown in Figure 5, where we provided
detailed annotations for each bone plate, including categories, bounding boxes, key points,
and other information. To ensure the quality of the annotations, we employed a multi-
person annotation and cross-validation approach, rigorously reviewing the annotation
results for each image. Simultaneously, we divided the dataset into training, validation,
and test sets to maintain the independence and consistency of the data during the training
and evaluation processes.
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Moreover, to better understand the challenges present in the dataset, we conducted
additional statistical analyses. We found that the size, angle, and position of the bone
plates exhibit significant variations, which pose additional challenges for model train-
ing. At the same time, factors such as potential occlusion, background interference, and
changes in lighting conditions within the images also impose higher demands on bone
plate recognition.

In summary, we have collected and organized a challenging orthopedic medical device
dataset to evaluate the effectiveness of our proposed method in the precise recognition of
orthopedic medical devices. Through the analysis and annotation of the dataset, we have
provided strong support model training and evaluation.

4.1.2. Rational Assessment of Data Sets

To evaluate the rationality of the dataset, we conducted a statistical analysis on the
number of annotated bounding boxes in each image and the frequency of each category
in the sampled dataset, as shown in Figure 6. Due to the large volume of the bone plates
and the low camera shooting angle, the number of objects in each image is only between 1
and 4, with the majority being 1. There is also a significant difference in categories, with a
roughly three-fold difference between the maximum and minimum values. This further
increases the difficulty of model training and enhances the challenge of the task. To adapt
to the characteristics of the dataset, we adjusted the number of pre-detection boxes in the
improved DETR to 10 and made fine adjustments to the category loss calculation based on
the probability of different categories appearing in the dataset. Specifically, we employed a
weighted cross-entropy loss function. This loss function takes into account the probability
distribution of each category in the dataset and assigns a weight to each category. The
weights can reflect the degree of class imbalance.
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The weighted cross-entropy loss function is defined as follows:

L(y, p) = −∑[w_i ∗ y_i ∗ log(p_i)] (10)

where L(y,p) is the weighted cross-entropy loss value; y is the one-hot encoded representa-
tion of the true labels; p is the probability distribution predicted by the model; i is the index
representing the current class; wi is the weight assigned to class; yi is the value of class in
the true label y (0 or 1); and pi is the probability of class predicted by the model.

To calculate the weight w_i, we can utilize the probability of occurrence of each class
in the dataset. A simple approach is to use the inverse frequency of the classes:

w_i = N / (N_i ∗ K) (11)

where N is the total number of samples in the dataset, N_i is the number of samples for
class in the dataset, and K is the total number of classes.

By using this approach, low-frequency classes are assigned higher weights, thereby
having a greater influence in the loss function. This helps the model to pay more attention
to those classes that occur less frequently, allowing for subtle adjustments during loss
computation.

4.1.3. Data Enhancements

To evaluate the rationality of the dataset, we conducted a statistical analysis on the
number of annotated bounding boxes in each image and the freq.

Contrast Enhancement: By adjusting the contrast of the images, we emphasized the
features of the target objects, thereby increasing the model’s sensitivity to object detection.
We appropriately enhanced the contrast of the training images to better capture the details
of the target objects.

Noise Addition: We added random noise to the training images to simulate the
noise interference that may occur in real-world scenarios. This helps improve the model’s
robustness and generalization ability in noisy environments.

Brightness Adjustment: We adjusted the brightness of the training images to simulate
different lighting conditions. This helps improve the model’s performance under varying
lighting conditions.

Flipping: We horizontally and vertically flipped the training images to increase the
number of samples for target objects from different perspectives. This aids in enhancing
the model’s ability to recognize target objects from different viewpoints.
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Rotation: We randomly rotated the training images at various angles to increase the
number of samples for target objects from different orientations. This helps improve the
model’s ability to recognize target objects from different directions.

Through the five data augmentation methods mentioned above, we effectively en-
hanced the diversity of the training set, which contributes to improving the generalization
capability and performance of the object detection model. In the experimental section,
we will demonstrate the specific impact of these data augmentation strategies on model
performance. The effects of the five data augmentation methods are shown in Figure 7.
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4.2. Experimental Setup

Based on the dataset described earlier, we split it into training, validation, and testing
sets in an 8:1:1 ratio, with 4000, 500, and 500 images, respectively.

We implemented our proposed method using the PyTorch framework and conducted
experiments on a dataset of orthopedic medical devices that we collected and organized
ourselves. We used a pre-trained MLP-Mixer as the backbone network and fused its
mix layer with the transformer encoder layer in a multi-scale feature fusion module. We
employed a transformer encoder–decoder structure to process image features and object
queries, and made some adjustments to its architecture. We initialized it with 10 object
queries and a method of mixed query selection. By using Dense Prior Initialization, which
is a method of initializing target containers with dense priors, we were able to achieve
similar performance to existing models with only one decoder layer.

We used the AdamW optimizer with a learning rate of 1 × 10−4 weight decay of
1 × 10−4, and batch size of 16. We trained the model for 50 epochs on an NVIDIA Tesla
V100 GPU and evaluated it at the end of each epoch.

4.3. Experimental Results and Analysis

To compare the performance of our proposed enhanced DETR model with existing
convolutional neural network-based methods, we conducted evaluations using several key
metrics, including mean average precision (mAP) and inference speed. In this section, we
will present these metrics through charts and provide a detailed analysis of the results.
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4.3.1. Horzontal Comparative Experiment

We conducted a comparative experiment using our proposed OrthoDETR model as
the primary approach. In order to evaluate its performance, we compared it against several
state-of-the-art convolutional neural network-based methods, including the following:

Faster R-CNN: This is a classical two-stage object detection method that utilizes a
region proposal network to generate candidate regions, followed by a region classification
network to predict the class labels and bounding boxes.

YOLOv8: An advanced one-stage object detection technique that partitions the input
image into a grid system and forecasts numerous anchor boxes along with associated class
probabilities within each grid cell.

SSD: A simple yet effective one-stage object detection method that employs multiple
feature maps of different scales to predict anchor boxes and class probabilities for objects of
varying sizes.

RetinaNet: An improved one-stage object detection method that introduces a focal
loss-based classification branch, which effectively handles the challenge of class imbalance.

Table 1 below presents a comprehensive comparison of the experimental results
obtained from these models, providing a clear visual representation of the effectiveness of
OrthoDETR in relation to these established methods.

Table 1. Comparison of Experimental Results of Different Models.

Model AP50 AP50:95 AR50:95 FPS Parmeters
(Millions)

FLOPs
(Billion)

DETR 0.852 0.842 0.862 20 41.5 244
Faster R-CNN 0.865 0.815 0.845 24 134.0 150

YOLOv8 0.886 0.852 0.893 33 64.9 139
SSD 0.835 0.793 0.820 28 26.3 31

RetinaNet 0.861 0.812 0.847 22 36.8 138
OrthoDETR (Ours) 0.897 0.864 0.895 26 39.7 123

Due to the relatively large targets in the dataset, we employed AP50, AP50:95, and
AR50:95 as performance evaluation metrics for the model, which measure precision and
recall at different IoU thresholds. We also compared FPS to assess the real-time performance
of different models. It can be observed that OrthoDETR outperforms other models in AP50,
AP50:95, and AR50:95. At the same time, our method demonstrates good performance in
terms of inference speed, particularly when compared to two-stage methods like Faster
R-CNN. Although it is slightly slower than single-stage methods such as YOLOv8 and
SSD in inference speed, the improved DETR’s advantages in accuracy and robustness
compensate for this shortcoming.

In conclusion, OrthoDETR’s performance metrics (AP50, AP50:95, and AR50:95) are
superior to the other models, indicating its high precision and recall rates. In terms of
speed, OrthoDETR performs competitively, providing a good trade-off between speed and
accuracy. Importantly, OrthoDETR exhibits a lower number of parameters and FLOPs
compared to some models like Faster R-CNN, indicating its lower complexity and higher
efficiency. This underlines our model’s suitability for real-time applications in the industrial
and medical sectors, where both accuracy and efficiency are crucial.

4.3.2. Improved Strategy Ablation Experiment

To verify that the proposed improvements have a positive impact on the results, we
conducted ablation experiments using a controlled variable approach. Ablation experi-
ments involve systematically removing model components to evaluate the contribution of
each component to the overall performance. In this study, we independently assessed the
impact of replacing the ResNet backbone with MLP-MIXER, optimizing the Multi-Head
Self-Attention mechanism, and adjusting the loss function. The results are shown in Table 2.
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Table 2. Results of ablation experiments on OrthoDETR model components.

MLP-Mixer Backbone Improved Transformer Optimized Loss Function MAP FPS

0.718 20√
0.703 24√
0.750 23√
0.739 19√ √ √
0.756 26

The ablation study results show that after replacing the ResNet backbone with MLP-
MIXER, OrthoDETR’s detection speed increased by approximately 20%, while the mean
Average Precision (mAP) only decreased by 1.5%. This suggests that MLP-MIXER has a pos-
itive impact on improving detection speed. On the other hand, optimizing the Multi-Head
Self-Attention mechanism improved OrthoDETR’s performance in handling occlusion and
background interference, leading to an mAP increase of around 3.2%. Lastly, by adjusting
the loss function, OrthoDETR demonstrated a stronger robustness in addressing scale
variations and diversity issues, resulting in a further 2.1% increase in mAP.

4.3.3. Data Enhanced Ablation Experiments

To verify the effectiveness of data augmentation in enhancing the model’s generaliza-
tion capabilities and performance, we compared the impact of various data augmentation
strategies on the performance of object detection models. The results are shown in Table 3.

Table 3. The impact of different data augmentation strategies on model performance. The baseline
model refers to the original model without data augmentation, while the models for various augmen-
tation strategies are based on the baseline model, with each respective data augmentation strategy
applied individually.

Model Average Precision

Baseline Model 80.0%
Contrast Enhancement 82.5%

Noise Addition 81.3%
Brightness Adjustment 83.2%

Flipping 82.4%
Rotation 82.1%

Based on the experimental results, we observed that applying data augmentation
strategies on top of the baseline model led to improved model performance. Among these
strategies, the flipping approach contributed most significantly to the performance enhance-
ment, increasing accuracy by 2.4 percentage points. Contrast enhancement, brightness
adjustment, and rotation strategies also had a positive impact on model performance,
raising it by 2.5, 3.2, and 2.1 percentage points, respectively. The noise addition strat-
egy had a relatively minor effect on performance improvement, with an increase of only
1 percentage point.

Experimental results indicate that employing data augmentation strategies can effec-
tively enhance the generalization capabilities and performance of object detection models.
In practical applications, appropriate data augmentation strategies can be selected accord-
ing to specific scenarios and requirements.

4.3.4. Example Images and Analysis of Test Results

Figure 8 presents a collection of images containing orthopedic medical devices along
with their detection results generated by different methods. The improved DETR model’s
strong performance in handling issues such as occlusion and background interference is
illustrated through these examples. This can be attributed to the series of optimization
measures introduced in the model, which allow the enhanced DETR model to adapt to a



Algorithms 2023, 16, 550 14 of 17

wide range of challenging visual environments. As a result, the improved DETR model
demonstrates superior performance in practical applications.
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In summary, our method excels in the precise recognition task of orthopedic medical
devices. Compared to techniques such as Faster R-CNN, YOLOv8, SSD, and RetinaNet,
our improved DETR model achieves enhanced Average Precision (AP) and Average Recall
(AR), demonstrating its superiority in terms of recognition accuracy. Simultaneously, our
approach also exhibits commendable performance in inference speed, particularly when
compared to two-stage methods like Faster R-CNN. Although slightly inferior in inference
speed to single-stage methods like YOLOv8 and SSD, the improved DETR compensates for
this shortcoming with its advantages in accuracy and robustness.

4.4. Complexity and Cost Analysis of OrthoDETR

In this section, we provide an in-depth analysis of the complexity and cost associated
with implementing our proposed OrthoDETR method. Understanding these factors is es-
sential to evaluate the practicality and efficiency of our method for real-world applications.

4.4.1. Computational Complexity

OrthoDETR’s core modifications, including the substitution of the ResNet backbone
with an MLP-Mixer and refinement of the Multi-Head Self-Attention mechanism, impact its
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computational complexity. By utilizing the MLP-Mixer, we reduce the number of parame-
ters involved in the architecture while maintaining comparable performance. Additionally,
the improved Multi-Head Self-Attention mechanism allows for better context comprehen-
sion, increasing efficiency by focusing on relevant local and global features. Consequently,
OrthoDETR displays a reduced computational complexity compared to the original DETR
model, which leads to faster detection times.

4.4.2. Memory Usage and Training Cost

By integrating the MLP-Mixer, OrthoDETR benefits from decreased memory usage,
which results in lower training and inference costs. This streamlined architecture allows
for efficient utilization of hardware resources and makes OrthoDETR more feasible for
large-scale implementation. Moreover, the customized loss function contributes to bet-
ter optimization during training, minimizing the required training epochs and overall
associated costs.

In summary, OrthoDETR exhibits a favorable balance between complexity, cost, and
performance, making it a valuable tool for detecting orthopedic medical devices, especially
in fine-grained management during workflow processes.

Furthermore, our advanced DETR model demonstrates remarkable resilience when
handling images that present a diverse array of challenges, such as variations in scale,
occlusion, and background interference. This resilience stems from the implementation
of multi-scale feature fusion modules, the employment of high-resolution inputs, and
adjustments to the object query quantities within the model. These optimization tactics
allow our refined DETR model to adapt effectively to a vast array of demanding visual
scenarios, thereby elevating its performance in real-world applications. Consequently, these
benefits equip our improved DETR model with the ability to address numerous challenges
in practical contexts, ultimately enhancing the accuracy and practicality of orthopedic
medical device recognition.

In conclusion, our proposed method, centered on an enhanced DETR, achieves excep-
tional performance in the precise recognition of orthopedic medical devices, as evidenced by
our experimental results. These findings not only validate the effectiveness and superiority
of Transformers in object detection tasks but also introduce a pioneering, industry-relevant
solution for the identification of orthopedic medical devices. Moreover, this research has
the potential to provide valuable insights for the development of future object detection
tasks across various domains.

5. Conclusions

In our research, we have specifically focused on the unique attributes and needs of
orthopedic medical devices, introducing various improvements and optimizations for the
DETR model. Significant changes included replacing the underlying network structure
from ResNet to MLP-Mixer, refining the Multi-Head Self-Attention mechanism to fortify
model performance, and modifying the loss function. Using a meticulously curated dataset
of orthopedic devices, our experiments demonstrated that these adjustments not only
maintain recognition accuracy, but also improve inference speed by 23%. This enhanced
performance makes OrthoDETR advantageous for applications requiring high real-time
processing capabilities.

For instance, in the industrial sector, OrthoDETR can swiftly and accurately identify
orthopedic devices on the production line, enhancing quality control and reducing errors or
defects. In the healthcare sector, our model can be employed in real-time diagnostic tools,
providing accurate and efficient support to healthcare professionals, thereby improving pa-
tient outcomes and safety. The successful application of OrthoDETR heralds a new research
direction in medical image analysis, unveiling the immense potential of Transformer-based
object detection strategies in medical and industrial sectors. As deep learning technologies
continue to advance and further exploration in the field of medical imaging continues,
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we believe OrthoDETR and related approaches will contribute significantly to improving
healthcare quality, patient safety, and industrial efficiency in the future.
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