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Abstract: In recent years the number of people who exercise every day has increased dramatically.
More precisely, due to COVID period many people have become recreational runners. Recreational
running is a regular way to keep active and healthy at any age. Additionally, running is a popular
physical exercise that offers numerous health advantages. However, recreational runners report a high
incidence of musculoskeletal injuries due to running. The healthcare industry has been compelled
to use information technology due to the quick rate of growth and developments in electronic
systems, the internet, and telecommunications. Our proposed intelligent system uses data mining
algorithms for the rehabilitation guidance of recreational runners with musculoskeletal discomfort.
The system classifies recreational runners based on a questionnaire that has been built according
to the severity, irritability, nature, stage, and stability model and advise them on the appropriate
treatment plan/exercises to follow. Through rigorous testing across various case studies, our method
has yielded highly promising results, underscoring its potential to significantly contribute to the
well-being and rehabilitation of recreational runners facing musculoskeletal challenges.

Keywords: classification; recreational runners; musculoskeletal injury; data mining; injury prediction

1. Introduction

Running constitutes a widely adopted modality of physical activity that confers sig-
nificant contributions to a health-conscious way of life. Moreover, running has emerged
as a prominent global pursuit in the domain of exercise, characterized by substantial en-
gagement rates [1], encompassing a heterogeneous and diversified cohort [2]. Additionally,
it offers significant health-related advantages, encompassing musculoskeletal robustness,
cardiovascular amelioration, the optimization of bodily composition, and the promotion of
psychological equanimity [3].

Unfortunately, many recreational runners suffer injuries [4]. The number of injuries
is difficult to identify as there are numerous studies that have provided results on the
prevalence and incidence of running-related injuries using a variety of measures of associ-
ation. In recent years, recreational runners have increasingly used technology to record
their performance. However, a study [5] of a group of recreational runners in Ireland
reported a high incidence of musculoskeletal injuries due to running. Nevertheless, these
injuries were not found to be detectable with the available exercise monitoring technology
(e.g., smart watches, smart phones) used.

Clinical reasoning refers to the systematic approach employed by a therapist when
engaging with a patient. This approach involves gathering information, formulating and
testing hypotheses, and ultimately arriving at the most suitable diagnosis and treatment
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plan based on the gathered data. It has been characterized as “an inferential process utilized
by healthcare practitioners to gather, assess data, and make informed decisions regarding
the diagnosis and management of patients’ issues” [6,7]. This process of clinical reasoning
assists healthcare professionals in making well-informed judgments to establish an effective
strategy for addressing each patient’s injury [8] while also aiding the patient in identifying
meaningful goals [9]. Essentially, clinical reasoning is the recording of information given by
the patient about his/her injury, after being asked questions by the healthcare professional
(the physician, physiotherapist, or rehabilitation trainer) in order to obtain a history at the
present moment of the session, in the form of an interview or questionnaire.

The integration of informatics [10] into clinical decision-making systems, while still in
its early stages in the United States, is an ever-evolving process that has gained widespread
acceptance from both physicians and patients. This integration empowers patients by offer-
ing them resources to learn about their health status and actively engage in their healthcare,
and it provides easy access to health information. The clinical decision-making system
favors reducing the cost of care by seeking alternatives to the evolution of patients’ health
status. Health-related informatics can facilitate the transition from a disease prevention
model centered on the care system to a patient-centered health-promotion approach.

The article presents an intelligent system [11] that relies on clinical reasoning to collect
information from recreational runners and uses data mining algorithms [12] to classify
people. Finally, the system provides advice/guidelines according to the category each
person belongs to.

The rest of the article is structured as follows: Section 2 outlines prior research related
to clinical reasoning and clinical decision-making systems. Section 3 provides details on
the dataset and the pre-processing steps taken. In Section 4, we delve into the methodology
and showcase the results achieved through the implementation of data mining algorithms,
while Section 5 presents the intelligent system. Lastly, Section 6 offers concluding remarks
for the article.

2. Related Work
2.1. Clinical Reasoning

In the past, several studies have highlighted the role of clinical reasoning by focusing
on specific points. In [13], the clinical reasoning of experienced musculoskeletal physiother-
apists in relation to three different occurrences of pain has been studied and identified five
main categories of clinical reasoning: (a) biomechanical, (b) psychosocial, (c) the pain mech-
anism, (d) temporality, and (e) the irritability/severity of injury. Later, Baker et al. [14] high-
lighted systematic clinical reasoning in physical therapy (SCRIPT) to guide junior physio-
therapists in correctly taking the history of patients with spinal pain. This tool incorporates
the severity, irritability, nature, stage, and stability (SINSS) model for clinical reasoning.

The severity, irritability, nature, stage, and stability (SINSS) model is a clinical reason-
ing construct that offers doctors an organized framework for taking a subjective history
in order to choose the best objective examination and treatment strategy and to cut down
on errors. The SINSS model aids the physiotherapist in gathering comprehensive data
regarding the patient’s state, sorting and categorizing the data, ranking their list of issues in
order of importance, and choosing which tests to administer and when. This ensures that
no information is overlooked and that the patient is not checked or treated excessively [7].
Five points of recording and research are included in the SINSS model:

• The degree of the symptoms, particularly the perceived level of pain, was correlated
with the severity of the damage. The level to which the patient’s activities of daily
living are impacted is a major factor in determining how severe the pain is quantified.
Pain can be measured in a variety of methods, including using the Visual Analogue
Scale (VAS).

• The degree of activity needed for symptoms to worsen, how bad the symptoms are,
and how long it takes for the symptoms to go away can all be used to gauge how
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irritable the tissue is. The ratio of aggravating to mitigating factors is another way to
measure irritability.

• The patient’s diagnosis, the sort of symptoms and/or pain, individual traits/psychosocial
factors, and red and yellow flags all contribute to the injury’s nature.

• The stage of the injury, which refers to how long symptoms have been present. The
primary categorizations include the acute phase (spanning less than 3 weeks), the
subacute stage (occurring between 3 and 6 weeks), the chronic phase (extending
beyond 6 weeks), and the acute stage of a chronic condition (which pertains to a recent
exacerbation of symptoms in a condition that the patient has been managing for over
6 weeks).

• The stability of the injury, which refers to the way in which the symptoms develop,
where it refers to the improvement, deterioration, and unchanging and fluctuating
status of the injury.

Although the above models seem to give a more comprehensive picture of the patient’s
injury, several studies have applied specific points from the categories of clinical reasoning.

A study [15] used pain severity/irritability in the Maitland construct to study inter-
rater reliability among physiotherapists in assessing irritability when applied to patients
with low back pain. Additionally, in a study of shoulder irritability, Ref. [16] used the
STAR-Shoulder clinical reasoning, which suggests three levels of shoulder tissue irritability
with corresponding intervention strategies related to the management of physical stress
on shoulder tissues: (a) high irritability (high pain, continuous pain at night or at rest,
active less than passive movement, high dysfunction, and pain before full range of motion);
(b) moderate irritability (moderate pain, intermittent pain at night or at rest, the same
degree of active and passive movement, moderate dysfunction, and pain at full range of
motion); and (c) low irritability (low pain, the absence of pain at night or at rest, active more
than passive movement, low dysfunction, and minimal pain on application of pressure).

The proposed system uses three of the five categories of clinical reasoning: (a) pain
where Pain Intensity was assessed on a Visual Analogue Scale; (b) irritability with questions
such as “when does the pain occur”, “how long does it last and what intensity”; and
(c) injury severity assessed with questions such as “does it affect running or daily life”.

2.2. Clinical Decision Making

The use of clinical decision support systems in the management of serious injuries
in emergency departments is very important [17]. Management errors that occur due
to time pressure, inexperience, dependence on memory, multi-tasking, information flow
analysis, and failures due to lack of care team coordination, especially during first aid, can
be greatly reduced by making use of the decision support system. In the context of clinical
medicine, the study [18] mentioned machine learning clinical decision making, which deals
with estimating outcomes based on past experiences and data patterns using a computer
generated algorithm that combines technical intelligence through visual and auditory data
to treat severely injured patients.

Physiotherapists must manage a large amount of information in order to make thera-
peutic decisions, but they can enhance their practice by using information gleaned from
technology, methodical data processing, and expertise [19]. Frontline staff members can
choose the best interventions for patients with musculoskeletal injuries with the aid of
clinical decision support tools. These resources are based on online surveys, therapy algo-
rithms and models, clinical prediction criteria, and classification schemes. They are being
developed, employ quickly advancing computer technology, and might be of interest to
healthcare professionals. Utilizing a decision support system can assist in standardizing
data collecting and presenting the steps necessary to apply operational metrics that can be
applied across health care disciplines [20].

In [21], the authors evaluated the SIAVA-FIS system based on two modules: a web
module where data are entered, configured, and printed and a second module in the form
of a mobile device app where different types of graphics are used to present the assessment
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of patients with musculoskeletal disorders. Through this system, clinical parameters such
as vital signs (blood pressure, temperature, heart rate, and respiratory rate), body mass
index, goniometry, muscle strength, girth, muscle tone, and pain sensation were recorded.

However, there is also research effort that describes the danger of using one-sided de-
cision support systems for the management of musculoskeletal injuries. In [22], the authors
evaluated the validity of a clinical decision support tool—the Work Assessment Triage Tool
(WATT)—in relation to physicians’ recommendations regarding the choice of treatment
for workers with musculoskeletal conditions. Clinicians tended to recommend functional
rehabilitation, physiotherapy, or no rehabilitation, while the WATT recommended addi-
tional evidence-based interventions, such as workplace interventions. On the other hand,
a review study [23] attributed the diversity of existing decision-making systems for the
management of musculoskeletal injuries to the complexity of their inherent diagnostic
complexity. However, given the multidimensional nature of musculoskeletal injuries, the
fuzzy logic that underpins these systems may assist in the design of knowledge bases for
clinical decision support systems. A large proportion of these systems were designed for
the diagnosis of inflammatory/infectious disorders of bones and joints, and knowledge
was extracted by a combination of three methods (expert information acquisition, data
analysis, and literature review).

Many coaches and athletes are adopting an increasingly scientific approach to both
the design and monitoring of training programs. The appropriate monitoring of training
load (frequency, duration, and intensity) can help determine whether an athlete is adapting
to a training program and minimize the risk of developing non-functional overuse, illness,
and/or injury. In order to understand the function of training load and the effect of load
on the athlete, Ref. [24] lists a number of indicators that are available for use via tracking
devices (e.g., smart swatch). The main information obtained from these devices refers
to the training load (frequency, duration, intensity, etc.), perception of effort and fatigue,
recording of sleep and recruitment, and recording of body morphology (body mass index,
fat, bone, etc.) and through REST-Q and VAS questionnaires it is possible to record injuries
and pain sensation. It seems that in terms of sports activity and monitoring technology,
there is no single indicator to guide decision making for injury rehabilitation since the
challenge may be due to many interrelated factors.

In [25], the authors studied the modeling of sports-related injuries in twenty-three
female athletes at Iowa State University using an inductive approach. The injury suffered
by an athlete was set as the target variable for the proposed system. The target variable
was structured to represent a discrete binary variable, which indicates whether or not an
athlete sustained an injury. The dynamic Bayesian network (DBN) [26], a well-known
machine learning method related to athlete health, was used for the research needs. Sports
professionals were monitored regularly, throughout the season. Data analysis revealed
subjectively reported stress two days before injury, the subjective perception of acute
exertion one day before injury, and overwork as expressed by continuous sympathetic
muscle tone overload on the day of injury as the main monitoring points with the greatest
impact on injury occurrence. Therefore, it is recommended that professionals in the field
of sports use the inductive approach to injury provocation to understand the adaptations
made in their athletes and to improve their decision making as to the program to follow to
prevent the possibility of injury provocation.

Clinical decision-making systems have been developed in many areas of medicine (clin-
ical medicine, physiotherapy, and large workplace medicine) to prevent injury, minimize
the response time of injury treatment, and make the right decisions in injury management.
However, in the field of sports and more precisely for the recreational runners there are few
studies that refer to a decision-making system for the management of a musculoskeletal
discomfort and injury. Having fully comprehended the problem created by the lack of guid-
ance, which grows as the number of leisure athletes grows, the paper presents an innovative
system that is easy to use and scientifically valid that will be the “companion” of every
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recreational runner. The proposed system utilizes data mining algorithms [27] to assist
recreational runners and advise them on the appropriate treatment/exercise to follow.

3. Dataset and Data Pre-Processing
3.1. Dataset

For our study, we relied on data gathered through an online questionnaire regard-
ing recreational runners who felt musculoskeletal discomfort. The online questionnaire
included 14 questions. Each question was included in the dataset with a corresponding
feature name.

1. The age of the recreational runner (Age).
2. The height of a recreational runner (Height).
3. The weight of the recreational runner (Weight).
4. The gender of the recreational runner (Gender).
5. The experience of the recreational runner (Experience).
6. Whether the recreational runner feels any musculoskeletal discomfort (e.g., pain,

tightness, heaviness) related to running activity (Musculoskeletal Discomfort)
7. If there is any discomfort, specify the area of the body in which it occurs (Symptom

Area). The possible choices are:

(a) Lower back
(b) Knee
(c) Calf muscle
(d) Hip
(e) Sole
(f) Thigh

8. The intensity of the pain felt by the discomfort (Pain Intensity). The possible values
are on a scale of one to ten:

(a) 0–3—No pain or slight pain.
(b) 4–6—Moderate pain.
(c) 7–8—Intense pain.
(d) 9–10—Insufferable pain.

9. The occasion on which the discomfort occurs (Irritability—WHEN). The possible
choices are:

(a) When the recreational runner starts running.
(b) When the recreational runner stops running.
(c) During running.

10. The duration of the discomfort (Irritability—DURATION). The possible choices are:

(a) The discomfort does not stop until the next training session.
(b) The discomfort lasts for one or two hours after the running session but stops

until the next session.
(c) The discomfort lasts while running but stops later on.

11. The intensity of the discomfort (Irritability—INTENSITY). The possible choices are:

(a) Increases by three degrees (according to the Pain Intensity Scale).
(b) Increases one or two degrees.
(c) Remains constant.

12. The effect the discomfort has on running (Severity—RUNNING). The possible choices are:

(a) No significant effect.
(b) Affects the running distance or the rhythm of running.
(c) Halts the running session.

13. The effect the discomfort has on everyday life (Severity—LIFE). It is a yes-or-no question.
14. The effect the discomfort has on everyday functional activities (Severity—MOBILITY).

It is a yes-or-no question.
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Based on the answers given by the recreational runners, a dataset was built through
which we sought to classify the category that a recreational runner belongs to. There are
six categories, each with its own set of advice/guidelines. These advice/guidelines are:

1. Reduce the training load by 30%; complete musculoskeletal functional release exer-
cises, stretching, strengthening exercises, and functional exercises.

2. Reduce the training load by 50%; complete musculoskeletal functional release exer-
cises, stretching, strengthening exercises, and functional exercises.

3. Cessation of training for one week followed by musculoskeletal functional release
exercises, stretching, and strengthening exercises.

4. Cessation of training for two weeks followed by musculoskeletal functional release
exercises and stretching exercises.

5. Cessation of training for three weeks followed by musculoskeletal functional release
exercises and stretching exercises.

6. Seek medical advice and cease training for at least three weeks, followed by muscu-
loskeletal functional release exercises and stretching exercises.

The last seven questions on the questionnaire can be amalgamated into three main
factors named:

1. PAIN—Involves question (8), and its values are based on the scale value of the
Pain Intensity.

2. IRRITABILITY—Involves questions (9), (10), and (11), and its values are low, moderate,
and high.

3. SEVERITY—Involves questions (12), (13), and (14), and its values are low, moderate,
and high.

3.2. Data Pre-Processing

Before we employ classification algorithms on the data, some data pre-processing
steps are required.

The initial step involved renaming the dataset’s features, which were originally long
and incomprehensible. This was done to ensure more comprehensive and descriptive refer-
ences. Subsequently, we conducted a thorough assessment and determined that the feature
indicating musculoskeletal discomfort among recreational runners was redundant as each
recreational runner invariably reported such discomfort. In the event that this condition
was not met, specifically, if there existed at least one instance of a recreational runner
who did not experience musculoskeletal discomfort, it would render the responses they
provided to the subsequent questions invalid. This is because, according to the premise,
all runners are expected to report some degree of musculoskeletal discomfort. Thus, it
was excluded from the dataset. Furthermore, we identified three samples with missing
values, which were subsequently removed. Among all the features in the dataset, only the
“Experience” feature contained missing values. While our classification process primarily
relied on a subset of features, it is worth noting that our analysis encompassed several
tests involving various features within the dataset. Consequently, it became imperative to
exclude those samples that contained incomplete values to ensure the integrity of our find-
ings. Last but not least, many of the features represented categorical string values, making
them unsuitable for classification, as the classification algorithms are only compatible with
categorical numerical feature values. To address this issue, we mapped every categorical
string value of a feature to a numerical value. Finally, by counting the number of samples
in each category, their inherent imbalance was revealed.

Table 1 demonstrates that not only is the data imbalanced but the ratio of the total
number of samples to the number of categories is relatively low, implying that there are
very few samples per category, thereby making the classification process a challenge.
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Table 1. Samples in each category.

Category Count Percent (%)

1 6 6.5
2 18 19.4
3 12 12.9
4 6 6.5
5 45 48.4
6 6 6.5

4. Methodology

For classifying the condition of each recreational runner, we employed the
following algorithms:

• Decision Trees—A decision tree [27] is a common data mining algorithm that breaks
down difficult decisions into a succession of simpler options in order to show a
decision-making process visually. The “root” represents the initial choice or query,
and the “branches” indicate other potential outcomes or directions. The decision
tree resembles an inverted tree structure. A decision or characteristic is assessed at
each branch, which leads to other branches until a conclusion or result is obtained in
the end.

• Random Forests—Multiple decision trees are combined using the strong ensemble
learning method known as Random Forests [27] in data mining to provide a more
reliable and precise predictive model. It works very well for classification [28].

• Naive Bayes Classifier—A popular probabilistic data mining algorithm for classifica-
tion tasks [29,30] is the Naive Bayes algorithm [27]. It is based on the Bayes theorem,
which determines the likelihood that an event will occur given the likelihood that
related events will also occur.

For each algorithm, we conducted numerous experiments with varying sets of features
in each run. However, through the utilization of the decision tree classifier, we arrived
at the conclusion that the pivotal features for discerning the condition of a recreational
runner were those encompassed within the compilation of the main factor list. Thus, the
categorical features considered for classification are the:

1. Pain Intensity
2. Irritability—WHEN
3. Irritability—DURATION
4. Irritability—INTENSITY
5. Severity—RUNNING
6. Severity—LIFE
7. Severity—MOBILITY

Before applying any of the aforementioned classifiers on the above features of the
dataset, we used the Synthetic Minority Over-sampling TEchnique (SMOTE) [31] to over-
come the challenge posed by the category imbalance. As an outcome of implementing this
technique, it follows that categories 1, 4, and 6 will incorporate new synthetic samples.

The limited support is inherent to our problem due to imbalanced class distributions.
We have chosen evaluation metrics like precision, recall, and F1-score to address this.
Additionally, we applied data augmentation techniques, such as SMOTE, solely to the
training data. Furthermore, we conducted multiple experiments to strengthen our method’s
validity, a common practice for small datasets. For reference, please see [32] on fetal heart
rate recordings, where similar practices were employed with just 44 cases.
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4.1. SMOTE

As the authors of [31] clearly explain, SMOTE is an over-sampling technique in which
the minority class (a class that has fewer instances or samples compared to the majority
class) is over-sampled by generating synthetic samples from the already existing ones.

Through the process of oversampling the minority class, synthetic samples are gener-
ated by examining each minority class sample within the dataset. These synthetic samples
are inserted along the line segments that connect either some or all of the k nearest neigh-
bors belonging to the minority class. The selection of random neighbors from the k nearest
neighbors is based on the specific level of oversampling required (the current implemen-
tation of SMOTE uses k = 5 nearest neighbors as a default value of k). The process of
generating synthetic data samples (Figure 1) begins by selecting a random sample from
the minority class and its nearest neighbor. Subsequently, the distance between these two
samples is computed and scaled by a random number (gap), which falls within the range
of 0 to 1. This calculation is used to create a new sample positioned along the line segment
at the determined distance. The synthetic data generated by SMOTE can cause a classifier
like the decision tree, or the Naive Bayes, to generalize better.

Figure 1. A SMOTE example in a 2D feature space. A1 is the randomly selected sample from the
minority class, and A2 is its nearest neighbor. S1 is the generated synthetic sample along the line
segment of their calculated distance.

Although SMOTE is restricted to only continuous features, the Synthetic Minority
Over-sampling TEchnique-Nominal Continuous (SMOTE-NC) [31] and the Synthetic Mi-
nority Over-sampling TEchnique-Nominal (SMOTE-N) [31] are extensions of the original,
allowing for the use of a combination of categorical and continuous features.

SMOTE-NC starts by calculating the median standard deviation of all continuous
features within the minority class. This calculation serves to account for any disparities in
the categorical features between two samples. Then, the Euclidean distance is calculated
between a minority class sample and its k nearest neighbors. Finally, new synthetic minority
class samples are created using the same methodology as described earlier for SMOTE.
The new synthetic samples are populated by new values for the continuous features of the
minority class, and as for the categorical features, a value is given based on the values of
the majority’s k nearest neighbors.

SMOTE-N discovers the nearest neighbors using the modified value difference metric
(MVDM) [33] to measure the dissimilarity or similarity between categorical feature values
of the minority class samples, taking into account the class distribution. MVDM addresses
some limitations of the original metric (VDM) by incorporating additional features to
handle missing values and small sample sizes more effectively. VDM (the traditional
version of MVDM) calculates a distance value that represents how different two categorical
values are based on their distribution within different classes. Thus, for each class in
the dataset, VDM calculates the probability distribution of each categorical value within
that class. This involves counting the occurrences of each categorical value within the
class and dividing by the total number of instances in that class. Subsequently, for each
unique categorical value, VDM calculates the probabilities of occurrence across all classes
by calculating the average probability of that value occurring in each class, weighted by the
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proportion of instances in each class. Finally, for a pair of categorical values from different
samples, VDM is calculated as the sum of the absolute differences between their value
probabilities across all classes. This accounts for the dissimilarity of the values’ distributions
with respect to the classes.

4.2. Decision Tree Classifier

We tested the classifier using:

• Data from the original dataset.
• Data subjected to resampling through the utilization of SMOTE and its extensions,

with the aim of equalizing the distribution among categories.

Due to the close similarity between the original data and the synthetic data, coupled
with the augmented representation of minority categories, it is anticipated that the per-
formance of the data mining algorithms will exhibit an unusually high level of accuracy
should the resampled dataset be utilized as the training set, while the original dataset is
designated for the testing set. Consequently, this amalgamation of training and testing data
would render it unfeasible to assess the efficiency of the algorithms because the test data
should ideally differ significantly from the training data but now shares notable similarities.
In order to effectively mitigate this issue, it is imperative that we adhere to the practice of
segregating the original dataset into distinct training and testing sets. Subsequently, we
should apply SMOTE and its associated extensions exclusively to the training set.

We partitioned the dataset into two distinct subsets: a training set, encompassing
70% of the total data, and a testing set, comprising the remaining 30%. Following this
partition, the training set consisted of 68 samples, while the testing set contained 28 samples.
Subsequently, we applied SMOTE to the training set. This resampling procedure resulted
in a noteworthy alteration of the training data’s dimensions, increasing it to a total of
192 samples.

The execution results of the decision tree classifier for a split of 70% (training set) and
30% (testing set) are shown in Table 2. This is a commonly used split ratio in the machine
learning community [12] ensuring that a larger training set (70%) allows the model to learn
from a substantial portion of the data, reducing bias. While the smaller testing set (30%)
helps estimate the model’s generalization performance with a diverse but independent
subset, the ”Support” value indicates the number of samples that exist in each category.
We also present the decision tree as it was build in Figure 2.

Table 2. Decision tree classifier results.

Category Precision Recall F1 Score Support

1 1.00 1.00 1.00 2
2 0.71 1.00 0.83 5
3 0.80 1.00 0.89 4
4 1.00 0.50 0.67 2
5 0.91 0.77 0.83 13
6 1.00 1.00 1.00 2

Metric

Accuracy 0.86 28
Macro Avg. 0.90 0.88 0.87 28
Weighted Avg. 0.88 0.86 0.85 28
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Figure 2. Decision tree classifier for a 30% test set splitting. The gini value [34] at each node evaluates
how well a decision tree node separates the data into different categories. Its values range from 0
to 1. A value of 0 indicates a perfect separation, meaning all the samples at one node belong to one
category. A value of 1 indicates an even distribution of samples among the different categories.

It is worth underscoring that the partitioning of the dataset into distinct training
and testing sets has been accomplished through the application of stratified sampling.
This method is predicated on the principle that the distribution of categories within the
testing and training sets mirrors the original data’s category distribution. This meticu-
lous approach ensures an equitable representation of all categories, thus preventing any
insufficiencies in either set. For elucidation, in our specific case, the composition of cate-
gory samples, as shown in Table 2, reveals a hierarchy with respect to sample prevalence:
category 5, followed by category 2, and subsequently category 3, among others. Conse-
quently, this distribution of sample quantities in the stratified sets maintains parity with
that observed in the original dataset, as elucidated in Table 1.

Furthermore, it is imperative to note that the classifier’s performance is profoundly
contingent upon the splitting applied to the original dataset. This is because an expansion
of the test set results in a diminished quantity of distinct samples within the training
set, thereby impinging upon the classifier’s performance, which is predicated on the
diversity of the sample pool. This deduction derives from the inherent characteristics of
the original dataset, which predominantly consists of unique samples. Consequently, when
partitioned, a portion of these unique samples from the training set migrates to the test
set. In such circumstances, the application of SMOTE assumes significance, augmenting
both the sample count within the dataset and diversifying the dataset itself by introducing
synthetic data.

In Table 2, we observe the following performance metrics: precision, recall, F1 score,
accuracy, and both weighted and unweighted (macro) mean, which compute the average of
precision, recall, and F1 score. Notably, in the case of the weighted sum, this computation
incorporates the support, representing the sample count, for each category. The classifier
accurately predicts only the samples belonging to categories 1 and 6. Category 1 exhibits
uniform categorical values across its samples, facilitating the classifier’s ability to discern
the underlying pattern within this category. On the other hand, category 6 samples share a
common value for the attribute “Pain Intensity”.
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Figure 2 refers to the root node of the decision tree in Figure 2; samples are categorized
as category 6 when the “Pain Intensity” attribute value exceeds 2.5. Conversely, category 4
exhibits the lowest F1 score among the categories due to limited diversity among its samples,
resulting in an inadequate number of distinct training samples for the classifier. In contrast,
the remaining classes benefit from an adequate sample size, resulting in commendable
classifier performance, with the potential for further enhancement.

4.3. Random Forests

Prior to deploying the classifier, a random search was conducted within a prede-
fined parameter range to identify optimal hyperparameters. The randomized search will
randomly search parameters within a range per hyperparameter. We define the hyper-
parameters to be used and their ranges in a dictionary of key-value pairs. In our case,
we used a hyperparameter to describe the number of estimators (decision trees) and the
maximum depth of each estimator. This endeavor was undertaken to enhance the efficiency
of the decision tree construction and elevate the classifier’s predictive performance across
categories. The execution results of the Random Forests classifier for a splitting of 70%
(training set) and 30% (testing set) are shown in Table 3.

Table 3. Random Forest classifier results.

Category Precision Recall F1 Score Support

1 1.00 1.00 1.00 2
2 0.83 1.00 0.91 5
3 0.80 1.00 0.89 4
4 1.00 0.50 0.67 2
5 0.92 0.85 0.88 13
6 1.00 1.00 1.00 2

Metric

Accuracy 0.89 28
Macro Avg. 0.93 0.89 0.89 28
Weighted Avg. 0.90 0.89 0.89 28

The classifier’s performance remains consistent for categories 1 and 6, as previously
discussed in the context of the decision tree classifier. Conversely, we observe a noticeable
improvement in the performance of classes 2 and 5. This enhancement is anticipated, given
that Random Forests generate multiple decision trees, each utilizing different sets of features.
When combined with optimal hyperparameters, this diversity in the ensemble leads to
improved performance. However, the challenge persists with category 4 samples because
they continue to lack sufficient data for the classifier to discern their inherent pattern.

4.4. Naive Bayes Classifier

The execution results of the Naive Bayes classifier for a splitting of 70% (training set)
and 30% (testing set) are shown in Table 4.

The performance of the Naive Bayes classifier remains consistent for classes 1, 6, and 4,
showing no significant change compared to the other two classifiers. In contrast, there is
a notable and substantial performance improvement for categories 2 and 3, reaching the
maximum achievable performance. Additionally, category 5 has also exhibited significant
improvement in its classification accuracy.

Because it naturally computes probabilities based on category frequencies, which is
essential for the dataset containing categorical features, the Naive Bayes classifier handles
categorical data with proficiency, which contributes to its improved performance. Addi-
tionally, by using SMOTE to handle the class imbalance in the training set, the possibility of
predictions being biased towards the majority class was reduced, a problem that decision
trees and Random Forests might still experience. Due to its resistance to overfitting, Naive
Bayes may also perform well in rather small datasets, which can be a significant benefit in
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situations where resources are limited. When relationships among features are not clearly
established, its simplicity and reliance on the independence assumption between features
can be useful.

Table 4. Naive Bayes classifier results.

Category Precision Recall F1 Score Support

1 1.00 1.00 1.00 2
2 1.00 1.00 1.00 5
3 1.00 1.00 1.00 4
4 1.00 0.50 0.67 2
5 0.93 1.00 0.96 13
6 1.00 1.00 1.00 2

Metric

Accuracy 0.96 28
Macro Avg. 0.99 0.92 0.94 28
Weighted Avg. 0.97 0.96 0.96 28

5. The Intelligent System

The system follows the 3-tier architecture [35]. The typical structure for 3-tier archi-
tecture deployment has the presentation tier deployed to a desktop, laptop, or tablet via
a web browser utilizing a web server. The presentation tier has been implemented with
the use of web technologies like HTML, CSS, and JavaScript. The underlying application
tier (middleware) is hosted on an application server and implements the business logic of
the whole application. The application layer has been developed as two components: one
responsible for the storage/retrieval of data into/from the database and another for per-
forming the process of categorizing the user based on the answers provided and providing
a set of videos that include exercises to repair the damage that has occurred up to that point.
Finally, the data layer includes a database. The system architecture is depicted in Figure 3.

Figure 3. The intelligent system architecture.

First, the user will have to fill in/answer the questions (Figure 4) asked by the system.
Then, by pressing the submit button, the server-side application receives the data and
provides it to the classification algorithm component, which is executed, and the user is
assigned to one of the six categories. Based on the category, the user is taken to a new web
page where a set of videos is presented. A group of experienced academics/researchers
in the prevention (exercise specialist) and rehabilitation (physical therapist and medical
doctor) of sports injuries coming from different scientific fields (exercise science, physical
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therapy, and medical science) suggest the exercises presented in the videos. Thus, the
system can identify the user’s category and suggest exercises and guidelines based on it,
see Figure 5.

Figure 4. The questionnaire web page.

Figure 5. The results web page.
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6. Conclusions

In conclusion, our study presents an intelligent rehabilitation guidance system for
recreational runners who experience musculoskeletal discomfort. The system can offer
specific recovery and rehabilitation exercises tailored to the type of the musculoskeletal
discomfort. It can also help recreational runners adjust their training and rest appropriately,
preventing more serious injuries. By helping runners recover more effectively, the system
can potentially reduce healthcare costs associated with sports-related injuries. This could
be beneficial for both individuals and healthcare systems. Moreover, the data collected by
the system can also be used to better understand the factors contributing to running-related
injuries and how they can be mitigated.

The system employs a diverse set of data mining algorithms, including decision
trees, Random Forests, and the Naive Bayes classifier, complemented by SMOTE and its
associated extensions to address the inherent challenges in the data. We acknowledge the
category imbalance inherited in the data, the small dataset size, and the limited diversity in
the samples, which are common issues in real-world injury prediction scenarios.

Despite these challenges, it is noteworthy that the decision tree, Random Forests,
and Naive Bayes classifiers have demonstrated their considerable potential in effectively
classifying the musculoskeletal condition of a recreational runner. This underscores the
adaptability and versatility of these classifiers in addressing real-world classification tasks
within the realm of recreational running, where data quality and quantity may be con-
strained. While there is room for further research to improve the model’s performance,
our work highlights the feasibility of leveraging data mining techniques to enhance injury
rehabilitation strategies for recreational runners and emphasizes the importance of selecting
appropriate algorithms that can address the unique characteristics of the data.
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