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Abstract: Intelligent transportation systems (ITSs) usually require monitoring of massive road net-
works and gathering traffic data at a high spatial and temporal resolution. This leads to the accumula-
tion of substantial data volumes, necessitating the development of more concise data representations.
Approaches like principal component analysis (PCA), which operate within subspaces, can construct
precise low-dimensional models. However, interpreting these models can be challenging, primarily
because the principal components often encompass a multitude of links within the traffic network.
To overcome this issue, this study presents a novel approach for representing and indexing network
traffic conditions through weighted CUR matrix decomposition integrated with clustering analysis.
The proposed approach selects a subset group of detectors from the original network to represent
and index traffic condition through a matrix decomposition method, allowing for more efficient
management and analysis. The proposed method is evaluated using traffic detector data from the
city of Nashville, TN. The results demonstrate that the approach is effective in representing and
indexing network traffic conditions, with high accuracy and efficiency. Overall, this study contributes
to the field of network traffic monitoring by proposing a novel approach for representing massive
traffic networks and exploring the effects of incorporating clustering into CUR decomposition. The
proposed approach can help traffic analysts and practitioners to more efficiently manage and analyze
traffic conditions, ultimately leading to more effective transportation systems.

Keywords: network traffic monitoring; intelligent transportation system; CUR matrix decomposition;
clustering analysis; big data

1. Introduction

With the rapid development of intelligent transportation systems (ITSs) in the big data
era, a huge amount of up-to-date data are being collected, archived, and analyzed from a
variety of sources such as smart phones, probe vehicles, video cameras, and infrastructure-
based detectors. Traditional detector loops and more advanced technologies, such as
radar and microwave detectors, have been widely deployed in large metropolitan areas
to monitor the traffic flow in a real-time manner. These systems deal with thousands
of detector stations with high temporal resolution at 20 to 30 s per update, which poses
great challenges for the efficiency and computational cost of analyzing ITS data. One of
the main challenges is to assess the road network condition quickly and accurately for a
given moment and efficiently infer and forecast meaningful spatial and temporal trends for
the future, which can be useful for many ITS applications such as monitoring networks,
planning traffic, and mitigating congestion [1,2].

Previous research has aimed to model the road network by considering every road
segment within it. However, this approach may not be practical for large traffic networks
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and real-time applications. Furthermore, missing data will significantly impair the effec-
tiveness of this method. To address this issue, our focus is on creating low-dimensional
network models that only require monitoring of a selected subset of road segments.

To develop accurate low-dimensional models for large and diverse road networks,
prior research has primarily focused on techniques such as principal component analysis
(PCA) [3–7]. However, PCA models are difficult to interpret in terms of individual links
in the network. Djukic et al. used PCA to analyze OD pair data in a small network [4,5],
while Asif et al. applied various subspace methods to compress traffic speed data [8]. These
studies demonstrated that subspace methods like PCA and DCT (discrete cosine transform)
can effectively reduce the size of traffic data. However, they do not provide detailed insights
into traffic patterns for specific roads and time periods. In addition, implementing PCA
online still requires information from all detectors in the network because the principal
component is basically a linear combination of all columns of the original data, which
greatly reduces the efficiency of data processing. This is the reason why PCA is mostly
used offline for dimension reduction purposes.

In contrast, the CUR decomposition [9] considers selecting subsets from individual
links and time instances, enabling us to directly extract underlying spatial and temporal
patterns in large road networks. In 2013, Mitrovic et al. explored the use of the CUR matrix
decomposition method for compressing and sensing traffic speed data. They compared
this method to PCA and showed that the resulting low-dimensional models from CUR
are much more easily interpretable. They also demonstrated how CUR can be used for
compressed sensing of traffic data [2]. In 2015, Mitrovic et al. employed column-based
(CX) low-dimensional models based on their previous research to improve the scalability of
compressed sensing and prediction. The researchers broke down the compressed prediction
error into different parts and examined how they related to each other, and their numerical
findings demonstrate that this approach considerably lowers computational expenses with
little effect on prediction accuracy [10]. The benefits of the CUR method are achieved
with a trade-off of greater prediction errors as the compression ratio (the ratio of original
number of columns to number of columns in a low-dimensional representation) increases.
Nevertheless, there is significant room for improving the process of selecting columns
based on statistical leverage [9] calculated from singular value decomposition (SVD) [11].
Another issue is that the author only tested a limited range of compression ratios from 2
to 10 [2,10], which is not sufficient to depict the performance of the proposed method. In
addition to leverage-based column selection, Couras et al. proposed [12] an algorithm to
perform the approximation of the tensors based on the CX decomposition for matrices. Han
and Huang [13] proposed a road network compression method to improve the efficiency
of data processing based on correlation analysis and CX decomposition, which is then
integrated into a deep learning network to predict the short-term traffic flow.

Apart from matrix decomposition, transformation techniques such as discrete Fourier
transform (DFT) and discrete wavelet transform (DWT), which are commonly used for
compressing signals and images, can be adapted for spatiotemporal data. In the context of
road traffic data compression, methods involving DCT and SVD are utilized, leveraging
Kronecker product and tensor decomposition [14]. Additionally, by organizing the data
in a multidimensional format, algorithms based on DWT are integrated to achieve dimen-
sionality reduction [15]. To harness the benefits provided by signal processing methods
from other data types, the field of graph signal processing (GSP) [16] has been developed
to conceptualize spatiotemporal data as a two-dimensional graph signal and establishes
operations like linear filtering and linear prediction. Furthermore, Chindanur et al. [1]
adopted graph Fourier transform (GFT) and achieved less than one percent reconstruction
error (RE) on California’s Interstate 605 (I-605) freeway data. Although the GFT-based
method outperformed other methods, the problems are twofold: (1) it is difficult to in-
terpret in terms of individual detectors, and (2) the model is too complex, possessing a
mathematical form which is unlikely to be deployed and understood by practitioners in
real world situations.
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To summarize, previous studies have focused on the PCA approach, matrix decom-
position methods, and signal transformation techniques to compress large datasets and
represent the overall network condition using low-dimensional approximations. Three
major research gaps were identified, as follows. First, the CUR decomposition method is
widely used due to its strong interpretability, whereas the approach to selecting the optimal
subset of columns remains to be improved. To this end, the clustering method is explored
in this study to enhance the representing performance. Second, most previous studies
failed to compare their method of selecting columns with a random sampling approach
with equal probabilities. Finally, most studies only evaluated their algorithms in a limited
range of compression ratios, but more interesting insights could be discovered if more
cases, especially those under a high compression ratio, are tested.

To address these issues, this paper aims to utilize a column-based CUR matrix de-
composition technique integrated with a clustering method to represent the original traf-
fic network as a smaller subset of original columns with acceptable errors. The experi-
ment was conducted using radar detector outputs (speed) aggregated at 5 min resolution
from Nashville, TN. A group of representative detectors are selected using the proposed
weighted average method to establish a relationship with the original network by analyzing
the historical data and calculating the relationship matrix offline. In addition, this study
incorporates clustering analysis into CUR decomposition inspired by the methodology
of computing stock indexes such as the S&P 500 and Nasdaq. Analogous to selecting
stocks from different sectors to represent the whole market, a clustering analysis was first
conducted, followed by the normal CUR decomposition within each cluster, and results
from each cluster would be merged as the final outputs. In this regard, we also reviewed
several papers applying clustering algorithms to tackle problems in the traffic domain.
Nguyen et al. [17] applied clustering algorithms to obtain labels automatically from the
data and presented the results of clustering analysis using both point-based and area-based
features, highlighting the superiority of the area-based approach in producing meaningful
clusters. Cheng et al. [18] proposed an improved fuzzy c-means clustering method to clas-
sify urban traffic states with real world traffic flow data. Chen et al. [19] utilized dynamic
time warping (DTW) k-means clustering to classify lane-changing risk profiles into several
categories. In the traffic domain, clustering methods are mostly used to categorize time
series over different locations.

2. Materials and Methods
2.1. Data and Study Area

The radar detector system (RDS) in Nashville consists of 349 detectors covering
564 directional links. The geographic locations of the detectors used in this study and the
shape of input data matrix are displayed in Figure 1. Figure 1a displays where Nashville,
TN, is in the US, and Figure 1b shows the location of all detectors in Nashville, TN.

The objective of this study is to represent the traffic condition of a massive network,
and traffic speed is one of the most widely used and most intuitive characteristics to reflect
the traffic condition at a specific location. Thus, traffic speed data were sampled from
9 July 2023, to 29 July 2023. The first two weeks of data were used as training data to select
the most representative detectors and learn the relationship matrix, while the remaining
one week was used to evaluate the performance of the proposed framework on new data.
Figure 2 shows the input data matrix.

The raw data, updated each 30 s, were first aggregated to 5 min to reduce randomness
and variability, which will greatly reduce the computational cost as well. We will also
implement an online application scenario by applying the relationship matrix learned from
5 min data to 30 s raw data in a near “real-time” manner.



Algorithms 2023, 16, 485 4 of 15Algorithms 2023, 16, x FOR PEER REVIEW 4 of 16 
 

  
(a) (b) 

Figure 1. (a) Location of Nashville, TN, on US map; (b) RDS detector locations in Nashville, TN. 

The objective of this study is to represent the traffic condition of a massive network, 
and traffic speed is one of the most widely used and most intuitive characteristics to reflect 
the traffic condition at a specific location. Thus, traffic speed data were sampled from 9 
July 2023, to 29 July 2023. The first two weeks of data were used as training data to select 
the most representative detectors and learn the relationship matrix, while the remaining 
one week was used to evaluate the performance of the proposed framework on new data. 
Figure 2 shows the input data matrix. 

 
Figure 2. Input data matrix with training period in red rectangle and testing period in the green 
rectangle; columns in blue rectangles represent the selected group of detectors and blue shaded 
areas are data entries for testing period at selected detector locations. 

The raw data, updated each 30 s, were first aggregated to 5 min to reduce randomness 
and variability, which will greatly reduce the computational cost as well. We will also 
implement an online application scenario by applying the relationship matrix learned 
from 5 min data to 30 s raw data in a near “real-time” manner. 

2.2. CUR Decomposition 

Figure 1. (a) Location of Nashville, TN, on US map; (b) RDS detector locations in Nashville, TN.

Algorithms 2023, 16, x FOR PEER REVIEW 4 of 16 
 

  
(a) (b) 

Figure 1. (a) Location of Nashville, TN, on US map; (b) RDS detector locations in Nashville, TN. 

The objective of this study is to represent the traffic condition of a massive network, 
and traffic speed is one of the most widely used and most intuitive characteristics to reflect 
the traffic condition at a specific location. Thus, traffic speed data were sampled from 9 
July 2023, to 29 July 2023. The first two weeks of data were used as training data to select 
the most representative detectors and learn the relationship matrix, while the remaining 
one week was used to evaluate the performance of the proposed framework on new data. 
Figure 2 shows the input data matrix. 

 
Figure 2. Input data matrix with training period in red rectangle and testing period in the green 
rectangle; columns in blue rectangles represent the selected group of detectors and blue shaded 
areas are data entries for testing period at selected detector locations. 

The raw data, updated each 30 s, were first aggregated to 5 min to reduce randomness 
and variability, which will greatly reduce the computational cost as well. We will also 
implement an online application scenario by applying the relationship matrix learned 
from 5 min data to 30 s raw data in a near “real-time” manner. 

2.2. CUR Decomposition 

Figure 2. Input data matrix with training period in red rectangle and testing period in the green
rectangle; columns in blue rectangles represent the selected group of detectors and blue shaded areas
are data entries for testing period at selected detector locations.

2.2. CUR Decomposition

This section will briefly describe the details of different CUR decomposition methods
and present the proposed column-based CUR decomposition algorithm integrated with
clustering method.

As shown in Figure 3, let A ∈ Rt×n denote the original data matrix with t time
instances in row and n detector links in column. Firstly, we define a compression rate as the
ratio of number of selected columns to the total number of columns in matrix A (CR = c/n).
The objective of column-based CUR is to find a submatrix C ∈ Rt×c consisting of c columns
of A to create a low-rank approximation Â as shown in Equation (1):

A ≈ Â = CX = CC+A, (1)

where

• C+ is Moore–Penrose pseudo-inverse of matrix C [20].
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• X = C+A
(
X ∈ Rc×n) is the relationship matrix which projects the selected columns

back onto all the columns in original data space [21]. For the given matrices A and C,
the relationship matrix is computed as the matrix product of C+ and A.
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The crucial problem with CUR method is how to select the most representative
columns so that the relative error between approximation matrix and original matrix
is as small as possible. The goal is to capture the essential information in the data while
reducing dimensionality. To evaluate the approximation result, we calculated the percent-
root-mean-square distortion (PRD), which is commonly used to assess reconstruction
performance [22], provided by the following formula:

PRD (%) =
‖A−CX‖F
‖A‖F

, (2)

where

‖A‖F =

(
∑

i
∑

j
a2

i,j

) 1
2

(3)

And it represents the Frobenius norm of matrix A. A lesser PRD represents a better
compression result.

More specifically, we can break down the column-based CUR method into the follow-
ing steps:

1. Determine the importance score of each column in the network matrix. Each column in
the matrix A is assigned a probability score indicating its likelihood of being selected;

2. Create matrix C by selecting top c columns from matrix A in the descending order of
probability scores calculated in the first step;

3. Calculate the relationship matrix X = C+A
(
X ∈ Rc×n);

4. Assume traffic is stationary, infer the future traffic speed for the entire network using
only speed measurements at the selected link, and calculate PRD for the testing data
as the performance measurement.

Step 1 is clearly the most essential step in the CUR process. To identify the optimal
set of columns for a specified number of columns, one would normally need to evaluate

all possible
(

n
c

)
combinations. Nevertheless, employing a brute-force approach entails

a computational complexity of O(nc) [23]. Given this computational burden, it is usually
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impractical to assess every potential selection of c columns. To tackle this challenge, two
major randomized algorithms have been introduced [21,24] to compute the importance
score of each column and then sample columns based on the score:

• L2 norm-based: this method calculates the square of L2 norm for each column and
divides it by the sum of squares of all entries of the matrix, expressed as the follow-
ing equation:

pL2
j =

∑t
i=1 A(i, j)2

∑t
i=1 ∑n

j=1 A(i, j)2 , (4)

where j = 1, 2, 3, . . ., n. The concept behind this method is to select detector links with
high speed. L2 norm-based sampling offers benefits like rapid computation and a better
understanding of the column magnitudes. The drawback lies in the neglect of detectors
that record a significant portion of low-speed intervals, leading to substantial estimation
errors during congestion periods.

• Leverage-based: this method utilizes statistical leverage [9], which measures the
contribution of each column to the overall variance of the data, as the importance
score for each column. The importance score can be conceptually understood as
quantifying the “statistical leverage” or “impact” of a specific column on achieving
the most accurate low-rank approximation of the data matrix. By prioritizing the
selection of columns that has a disproportionately significant influence over the low-
rank approximation, as opposed to L2 norm method that samples columns with higher
Euclidean distances, we can ensure that CUR performs nearly as effectively as the
best rank-k approximation Ak in capturing the predominant portion of the spectrum
of A [9]. Columns with high leverage scores are often considered important. The
underlying concept is to consider detector links with large variations in speed, thus
covering various traffic conditions and providing a better capture of the detectors with
different traffic states. However, the limitations associated with this approach include
the substantial computational cost. The detailed steps are described as follows.

Firstly, singular value decomposition (SVD) is performed on the original data matrix
A [11] to represent A as:

A = UΣVT, (5)

where U ∈ Rt×t and V ∈ Rn×n are unitary matrices, and the columns of U and V are left
and right singular vectors of A, respectively. Matrix Σ ∈ Rt×n is a rectangular diagonal
matrix with non-negative diagonal entries, known as the singular values of matrix A. Then,
the best rank-k approximation can be obtained by keeping top k columns of U, Σ, and V so
that the explained variance is at least 80%:

At×n= Ut×kΣk×kVT
k×n. (6)

Then, the leverage score of column j can be calculated as:

pSVD
j =

1
k ∑k

ξ=1

(
vξ

j

)2
, (7)

where vξ
j is the jth coordinate of ξth right singular vector. It is obvious that the sum of pj is

equal to one because matrix V is unitary.
Based on the two previous options, we propose a weighted method considering both

L2 norm and statistical leverage, expressed as Equation (8):

pW
j = w·pL2

j + (1−w)·pSVD
j , (8)

where w is a weight parameter, and w is set to be 0.5 in this study to assign equal weights
to column magnitude and column variation.
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In addition to the three options, a random sampling method to select c columns
with equal probability for each column is also implemented. This process was repeated
five times, and average performance was recorded. Prior research failed to consider the
comparison with the simplest random sampling method, thus making the performance
less persuasive.

2.3. CUR Integrated with Clustering

The primary objective of this study is to explore the effects of incorporating clustering
method into CUR sampling process. The reason for considering clustering method is to
investigate whether homogenous subnetworks can enhance the overall performance of
the network representation. The idea of integrating clustering analysis into CUR method
is inspired by the methodology of devising a composite index for stock market such as
Nasdaq-100.

Stocks from different sectors will go through a rigorous screening process and then
be selected to represent the whole market using a weighted average index. Similarly, to
select most representative traffic detectors in a massive road network, the first step is to
filter out columns with missing rate greater than 5% and to impute the remaining columns
using data from adjacent time intervals (linear interpolation). Then, we can classify the
detectors into different clusters based on their speed during the training period, followed
by the normal CUR decomposition process within each individual cluster given a fixed
compression rate (CR). Finally, the selected columns and corresponding relationship matrix
will be merged as the final CUR outputs. The entire column selection process is displayed
in Figure 4.
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Mitrovic et al. has taken into account the clustering method to compress large-scale
traffic data [10]; however, they simply clustered the network according to road category
instead of using a real clustering method based on the speed condition on the road. It is
obvious that roads in the same category do not necessarily have similar traffic conditions.

In this study, k-means clustering was adopted due to its simplicity, computational
efficiency, and interpretability. A detailed description of k-means clustering is provided
as follows.
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In k-means, clusters are defined so that the total intra-cluster variation (known as total
within-cluster variation) is minimized. Within-cluster variation is defined as: ∑||x− µi||2,
where we only consider x of a given cluster Si, and µi is the mean (centroid) of points in
cluster Si. Then, total within-cluster variation is to perform the previous calculation for
each cluster and take the sum of all clusters.

There are five overall steps in naïve k-means method:

• Step 1: specify k (number of clusters).
• Step 2: randomly select k instances from the data as the initial cluster centroids.
• Step 3: assign each instance to its closest centroid based on Euclidean distance.
• Step 4: for each of the k clusters, recompute the centroid by calculating the new mean

of all the instances in the cluster.
• Step 5: repeat step 3 and 4 until centroids converge or the max number of iterations

is reached.

3. Results

This section provides a detailed description of the results of all experiments. The
first part of the study is representing the massive network using the CUR decomposition
method based on the training data and inferring future conditions on the testing data. In
addition, the second part is a new application scenario of indexing the network condition
using the outputs from the CUR decomposition.

3.1. Performance of the Proposed Weighted Average Method

Figure 5 shows the performance of the proposed weighted method compared with
the L2 norm, SVD-based leverage, and random sampling methods. The red line in the
graph indicates that the weighted method outperforms all other three options when the
compression rate (CR) is lesser than 32 (25 = 32). The proposed weighted method resulted
in lower PRD than other methods when the CR does not exceed 32, whereas the drawback
of the weighted sampling method is relatively longer computational time. When the CR
surpasses 32, the proposed weighted method is only better than the SVD-based leverage
method, partly because the presetting default value of the weight (w) is 0.5, which provides
too much weight for SVD-based leverage. Random sampling is even better than the
L2 norm option when the CR is less than 64, which might be due to randomness and
fluctuation. It is worth noting that SVD-based leverage and proposed weighted sampling
perform best with a CR less than 8, whereas the error for the SVD-based leverage option
increases dramatically as the CR becomes greater than 32.
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Table 1 presents the summary statistics of the performance of the proposed method
(weighted) compared to other three models (L2 norm, SVD-based leverage, and random
sampling). It should be noted that random sampling is carried out to show the minimal time
needed to generate the decomposition results, since we assume that the time consumed by
column selection could be ignored under a random sampling scenario. However, random
sampling is impractical because the performance fluctuates, and the selected columns are
not fixed each time the sample is obtained. That is also why we repeated the process five
times and used the average performance. Among the three methods, the L2 norm-based
method is the most computation-friendly, and the proposed weighted method uses more
computational resources than the other two methods. Overall, this is a trade-off between
accuracy and computing cost.

Table 1. Comparison of the performance of different methods without clustering.

Compression Rate (CR)
PRD (%) Computing Time (Milliseconds)

L2 SVD Weighted Random L2 SVD Weighted Random

2 7.8% 3.8% 3.6% 5.8% 793.1 982.5 1075.5 645.9
4 9.7% 6.3% 6.1% 7.7% 692.0 870.9 964.9 562.6
8 10.1% 8.4% 8.3% 8.9% 705.0 899.3 939.8 534.3

16 10.8% 10.0% 9.5% 9.6% 648.2 860.0 973.0 512.7
32 11.4% 12.0% 10.8% 10.5% 691.7 915.1 939.8 512.0
64 11.7% 16.4% 12.5% 11.4% 631.2 835.1 940.4 567.0

128 11.7% 20.6% 13.5% 12.4% 624.3 882.4 905.8 522.4

Taking CR = 16 with the proposed weighted average method as an example, Figure 6
depicts the absolute error of the original matrix and inferred matrix for the testing period
(23 July 2023, to 29 July 2023). The horizontal axis represents the dates and the vertical axis
is the detectors. There are 31 links selected, and the PRD = 9.5%. The absolute error is less
than 10 mph for 94% of time and detectors. Some recurring patterns can be found, probably
due to the recurring peak-hour congestion at some detector links.
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3.2. Effects of Clustering Method

Firstly, K-means clustering was implemented on the original data to classify detector
links into different groups based on their speed measurements during the training period.
Figure 7a shows the results of the elbow method which implied that two is more likely
to be the optimal number of clusters, and Figure 7b displays the cluster results for all
observations projected onto the dimension of two principal components. As can be seen,
there are overlaps between the two clusters. Figure 7c displays the centroids of two clusters,
respectively. The red line is the center of the first cluster, with speed around 70 mph, and
the speed of the second cluster’s centroids, shown in blue, fluctuates around 50 mph.
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After clustering, the normal CUR process, with three different options, was conducted
to explore the effects of incorporating clustering into CUR decomposition. Figure 8 displays
the comparison of the performance of the three options with and without clustering method.
It was found that clustering almost failed to improve the performance for the SVD-based
leverage and weighted average option, while the L2 norm-based option saw a minor
enhancement when the CR was less than 16. This finding is somewhat intuitive and
contradictory to Mitrovic’s work [10], partly because Mitrovic only tested his method on
CRs from 2 to 10. The reason why clustering failed to contribute will be discussed in the
discussion section.
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4. Discussion

As shown in Figure 5 and Table 1, the proposed weighted approach demonstrated
lower PRD compared to alternative methods when the CR remained below 32. How-
ever, the downside of employing the weighted sampling method is the comparatively
longer computational time. When the CR threshold surpasses 32, the proposed weighted
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method only outperforms the SVD-based leverage method, partially because the default
weight value (w) is set at 0.5, assigning too much weight to the SVD-based leverage ap-
proach. A possible future direction could be tuning the hyperparameter w to achieve
better performance over the L2 norm-based and SVD-based leverage methods on training
data, followed by an evaluation of the method on the testing period. The PRD of the L2
norm-based method remains relatively stable (between 8% and 12%) as the CR increases
from 2 to 128, while the SVD-based leverage method yields good performance with a CR
lesser than 16, but its error rises very quickly as the CR becomes greater than 16.

It is worth noting that the performance of the random sampling method is even better
than that of the other three methods when the CR changes between 16 and 64. Previous
researchers either failed to consider testing their method within this range or forgot to
compare with the performance of the random sampling method.

Figure 6 displays the heatmap of the absolute error between the original and inferred
test data. A compression rate of 16 yields a PRD of 9.5%, and the absolute error is within
10 mph for 94% of the time and detectors. Additionally, the largest error always occurred
recurrently during the peak hour at some specific detectors, which implies that the CUR
decomposition method does not perform well during congestion periods. There also exist
some non-recurring large errors, which might be due to the occurrence of some atypical
incidents such as severe weather, special events, and scheduled road work.

Another interesting finding is that clustering almost has no room for improvement
for SVD-based leverage and the proposed weighted average method. As for the L2 norm-
based method, clustering helps reduce the error to as low as 1% to 2%. Integrated with the
clustering method, all three methods even demonstrated an increase in error when the CR
was greater than 16, except for the SVD method with CR = 128.

There might be various reasons accounting for this phenomenon. First, if the data
do not exhibit clear clusters or if the clusters are not well defined, clustering algorithms
may not yield meaningful or useful groupings. CUR decomposition relies on selecting
representative columns and rows, and if the data do not naturally cluster, selecting clusters
may not provide an advantage. Second, determining the optimal number of clusters
(k) is challenging. Choosing an incorrect value for k can lead to poor cluster quality
and, consequently, suboptimal CUR selection. Another reason could be the choice of the
clustering algorithm. If the clustering algorithm is not well-suited to the data or the specific
goals of CUR decomposition, it may not lead to improvements. Since we are clustering time
series in the context of traffic speed, a dynamic time warping distance could be considered
as the similarity metric to perform the clustering analysis. In addition, k-means clustering is
simple and basic, so it might be beneficial to try other advanced clustering algorithms, such
as hierarchical clustering or DBSCAN, to yield better clustering results and compare the
CUR performance with different clustering methods. This study opens the door to various
intriguing possibilities for further investigation of how to improve clustering results.

The detectors used in this study are all from interstates without disruption by signal
timing. Future work could be carried out to include different types of road networks to
analyze their traffic speed patterns and investigate how clustering will impact the CUR
decomposition performance on different types of road networks. As has been discussed
in Mitrovic’s work [10], clustering by different road categories improved the inferring
performance for the entire network when the CR was between 2 and 10. Our future work
could focus on analyzing the speed patterns on different road types and clustering based
on speed profile and road type together.

Due to the data availability issues, this study only focused on a case study in Nashville,
TN, and all detectors are located on urban interstates. To comprehensively evaluate the
practical applicability, additional research could be carried out to investigate the generaliz-
ability of the proposed framework to other cities or regions and for other time periods. It is
essential to extend this research to different locations and time frames to assess its spatial
and temporal transferability.
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In this study, external factors, such as adverse weather, special events and scheduled
road work, were not included in the framework, which might impact the representing
and inferring performance when there happened to be many non-recurring incidents
during the training and testing period. One area for future work involves exploring the
impact of external factors in greater depth to gain a more comprehensive understanding of
its applications.

Another interesting avenue for future research is to explore the possibility of incorpo-
rating other traffic data, such as vehicle count and vehicular types, into the methodology
for a more comprehensive representation of the traffic condition at specific detectors, thus
resulting in a better representation of the entire network. This involves methods like
column-based decomposition for multidimensional tensors, proposed by Couras et al. [12]
in 2019.

5. Conclusions

In conclusion, this research addresses important research gaps in the field of massive
road network compression and representation. The utilization of a column-based CUR
matrix decomposition technique with a column selection method based on weighted
average of L2 norm importance and SVD-based leverage provides a novel approach to
efficiently represent the original traffic network with a reduced subset of columns while
maintaining acceptable error levels. This approach offers enhanced interpretability and
a more refined column selection process compared to previous methods. Moreover, by
conducting a comprehensive comparison with random sampling, this study contributes to
a better understanding of the advantages of the proposed approach.

Furthermore, the extension of the evaluation to a wider range of compression ratios
adds valuable insights into the scalability and performance of the method. The appli-
cation of these techniques to radar detector data from Nashville, TN demonstrates their
practical utility in real-world scenarios. By drawing inspiration from stock market index
computation methodology, the integration of clustering analysis into CUR decomposition
is investigated with the anticipation of performance enhancements. Clustering was found
to enhance performance, but, notably, this improvement was confined to a limited range of
compression ratios. Interestingly, once the compression ratio exceeded a certain threshold,
the application of clustering not only ceased to improve performance but also adversely
affected it.

Overall, this research not only contributes to the advancement of data compression
and network representation but also highlights the potential of combining CUR decom-
position with clustering for various applications in the field of big data analytics and
network science.
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Abbreviations

Abbreviation Definition
CR Compression rate
CX Column-based
DBSCAN Density-based spatial clustering of applications with noise
DCT Discrete cosine transform
DFT Discrete Fourier transform
DTW Dynamic time warping
DWT Discrete wavelet transform
GFT Graph Fourier transform
GSP Graph signal processing
ITS Intelligent transportation system
OD Origin–destination
PCA Principal component analysis
PRD Percent-root-mean-square distortion
RDS Radar detector system
RE Reconstruction error
SVD Singular value decomposition
TN Tennessee

Nomenclature

Symbol Definition Unit
ai,j The ith row and jth column of matrix A -
A The original data matrix -
Â The low-rank approximation of original matrix -
Ak The best rank-k approximation of matrix A -
C The selected submatrix -
C+ The Moore–Penrose pseudo-inverse of matrix C -
pL2

j The L2 norm-based importance score for column j -
pSVD

j The SVD leverage-based importance score for column j -
pW

j The proposed weighted importance score for column j -
Si The ith cluster -
U The unitary matrix with columns being left singular vectors of A -
V The unitary matrix with columns being right singular vectors of A -
vξ

j The jth coordinate of ξth right singular vector -
X The relationship matrix -
x The data point -

Σ
The rectangular diagonal matrix with non-negative diagonal entries
being the singular values of matrix A

-

µi The mean (centroid) of points in cluster Si -
‖.‖F The Frobenius norm of a matrix -
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