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Abstract: We present a novel approach to providing greater insight into the characteristics of an
unlabelled dataset, increasing the efficiency with which labelled datasets can be created. We leverage
dimension-reduction techniques in combination with autoencoders to create an efficient feature rep-
resentation for image tiles derived from remote sensing satellite imagery. The proposed methodology
consists of two main stages. Firstly, an autoencoder network is utilised to reduce the high-dimensional
image tile data into a compact and expressive latentfeature representation. Subsequently, features
are further reduced to a two-dimensional embedding space using the manifold learning algorithm
Uniform Manifold Approximation and Projection (UMAP) and t-distributed Stochastic Neighbour
Embedding (t-SNE). This step enables the visualization of the image tile clusters in a 2D plot, pro-
viding an intuitive and interactive representation that can be used to aid rapid and geographically
distributed image labelling. To facilitate the labelling process, our approach allows users to interact
with the 2D visualization and label clusters based on their domain knowledge. In cases where certain
classes are not effectively separated, users can re-apply dimension reduction to interactively refine
subsets of clusters and achieve better class separation, enabling a comprehensively labelled dataset.
We evaluate the proposed approach on real-world remote sensing satellite image datasets and demon-
strate its effectiveness in achieving accurate and efficient image tile clustering and labelling. Users
actively participate in the labelling process through our interactive approach, leading to enhanced
relevance of the labelled data, by allowing domain experts to contribute their expertise and enrich
the dataset for improved downstream analysis and applications.

Keywords: manifold exploration; dimension reduction; labelling samples; remote sensing data

1. Introduction

Rapid growth in remote sensing (RS) technologies and deployed satellite missions
has led to substantially large remote sensing imagery datasets. A single remote sensing
mission can have multiple different apparatuses that simultaneously and continuously
collect data. For example, the Sentinel 2 satellite missions are comprised of two launched
satellites (Sentinel 2A and 2B) collecting multi-spectral images, with the latter producing
1.6 terabytes of data per day. The diversity and complexity of RS data give validity and
definition to the RS big data problem [1]. Many techniques used to explore and categorise
these images for downstream analysis require previously labelled samples to be able to train
and test algorithms on unseen imagery. Increasing the volume and diversity of labelled
samples gives more confidence that we can attribute to any given algorithm as it has
been tested on a more diverse sample range. However, acquiring a sufficiently large and
accurately labelled dataset of images for any given RS technology and technique requires
immense effort from an RS expert analyst [2].

Ultimately, this results in a significant problem of sorting data of interest from the
ever-growing volume and diversity of image datasets. Producing labelled images for
analysis requires a large effort from remote sensing specialists when considering temporal
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differences for one location, which is then compounded by involving multiple locations.
Providing context to images by binning them into categories or labels from a human per-
spective is to understand the physical matter and contextual arrangement of pixels within
an image. The physical matter of any individual pixel can be discerned by the reflected
wavelengths of light detected by the studied imaging platform, e.g., for a red green and blue
image, plant matter is green. Increasing the diversity of detected wavelengths from a simple
RGB composite image can improve our understanding of materials, which is why modern
satellite missions include infrared detection capabilities facilitating the use of hand-crafted
feature extraction methods such as Normalized Difference Water Index (NDWI) [3] and
Normalized Difference Vegetation Index (NDVI) [4]. However, such techniques ignore the
geographical arrangement and contextual information within an image, as certain features
are often located near each other, e.g., buildings and roads, mountains and tributaries,
etc. [5]. Images that have the same physical matter or arrangement similar to a known
sample will have a similar value from a hand-crafted feature. To discern whether the score
is similar or not, techniques like K-means clustering, SVM, LDA or GMM’s are utilised [6,7].
Expanding these techniques to accommodate unseen samples or non-trivial problems could
require clustering all old and new samples again, in addition to redefining the hand-crafted
features to include the new subtleties within the data [8].

These hand-crafted features have in recent years been replaced by the use of deep
convolutional neural network (DCNN) techniques. A DCNN produces optimised filters for
the analysis of images based on the textures present creating complex non-linear representa-
tions. Building on Stacked Auto Encoders (SAE) [9] convolutional autoencoders add spatial
learning abilities by introducing learnt filters and activation maps, allowing the model to
learn local texture representations and inter-channel information. This architectural design
for feature representation has demonstrated considerable success in remote sensing, as
evidenced by various studies [10–13]. There are many variants of AEs that have also been
utilised, such as Variational AEs (VAEs), that replace the latent space with a distribution
instead that have been used in, for example, image captioning [14], desertification [15] or
biomass prediction [16].

Querying images for similarity can be seen in the field of Image Retrieval (IR) within
the RS field [17]. IR algorithms apply a form of top K retrieval, where K denotes the
number of samples to be retrieved. Solutions for encoding functions within IR also utilise
AE architectures for unsupervised feature extraction [18]. However, this approach limits
the user to a variable number of images returned and requires an initial query image. In
order to consider all images within a dataset there are further dimensionality reduction
techniques that find manifolds of similar images. This approach has been considered with
regard to time-series data [19,20] and time-series clustering [21].

Manifold projection involves mapping high-dimensional data into lower dimensions
and can be formulated as attempting to keep pairwise distances as defined in the higher
dimensional space as similar as possible to pairwise distances within the lower dimensional
space, such as classical multi-dimensional scaling (MDS) [22]. Dimensions in this context
refer to the number of variables representing the information. Different approaches to
reduction may look to find low-dimensional representations of nonlinear manifolds or
patterns in high-dimensional space [23]. For singular manifold representation, common
algorithms include MDS, isometric mapping (ISOMAP), and locally linear neighbourhood
(LLE) [25? ]. When considering multiple manifolds in high dimensional space, efficiency
dictates comparing pairwise points in local space rather than the global pairwise distance
between all points. A similarity matrix can be created that focuses on connecting similar
neighbours and an assumption that many short paths (small geodesic distances) between
points indicates these points are likely part of the same underlying structure in the data.
Existing algorithms that do so for multiple manifolds include variations of ISOMAP, LLE,
Hessian LLE or Laplacian Eigenmaps, each with varying suitability to certain tasks and
limitations [26].
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Stochastic Neighbourhood Embedding (SNE) computes the locality between points in
a neighbourhood converting samples into probabilistic samples based on the Euclidean
distance [27]. The low-dimensional embedding is created by enforcing the low-dimensional
probabilities to be similar to the higher-dimensional embeddings. SNE proved capable of
preserving local neighbourhoods in lower dimensional space; however, it suffered from
many points overlapping in the projection, referred to as the crowding problem [28]. t-SNE
was introduced to allow for effective visualization of multiple, related, high-dimensional
manifolds by revealing structures at many different scales [29]. To overcome the crowding
problem t-SNE was introduced where a long tail distribution was introduced to the lower
dimensions, in contrast, the use of a heavy tail distribution has been shown to tighten
clusters [29,30].

UMAP [31] is similar to t-SNE, in that both use gradient descent to optimize the
embedding space. UMAP construction is based on a fuzzy graph approach of the high
dimensional embedding in an attempt to accurately represent the topology. The low-
dimensional embedding is then optimised to conform to the high-dimensional graphs and
weights. UMAP aims to provide a more global context to the low-dimensional embedding
comparatively to t-SNE, which can be attributed to the initialization of the low dimensional
embedding space created by a fuzzy graph [32]. Many recent papers debate the similarities
and differences between these two algorithms. In summary, both t-SNE and UMAP
produce similar results when given similar initial conditions and both have been shown to
be sensitive to starting parameters and low embedding [33].

Our approach presents the user with a mass labelling interface enabling them to
explore a dataset of satellite images. Class labels can be applied to multiple images at a time
during user selection of those images in the interface. The classes are determined by the user
and correspond to the visual features they want to extract, separate or label. Our interactive
approach, utilising manifold projection, allows similar images to be selected simultaneously,
which aids labelling. The use of visualisation techniques highlights different geographical
features within images and how they relate to the trained filters of a CNN. Any complex
dataset results in a lossy representation for both AI models and manifold projection, when
regarding all features and variations, hindering a user from simply selecting and labelling
large volumes of data with ease. As models require considerable time for training, we
look to reduce the impact of information lost in manifold projection by utilising interactive
visualisations. By allowing the user to interact with how these projections work, they can
control and tease out better class separation from their fixed model, thus enabling a greater
labelling throughput. This is discussed in more detail with examples in the next sections.

2. Materials and Methods
2.1. Materials

We use the public Sentinel 2 water edges dataset (SWED) [34], which contains multiple
coastal geographic locations, comprised of 16 labelled 10, 980 × 10, 980 tiles (the large
Sentinel 2 images are known as tiles). The images were selected to have minimal coverage
of clouds with no preprocessing apart from bottom-of-atmosphere correction [35]. This
dataset is rich in contrast and variety of physical coastal features in each geographical
location with the addition of multiple fine-grained physical features such as jetties and
bridges. The hypothesis is that we can see the transition of features and the evolution of the
manifold with respect to both small features and larger geographical changes. Including
water and land also introduces the complexity of the feature transition between both. Most
papers within the domain of satellite imagery utilise datasets that are geographical location-
or feature-specific as also expressed by the authors of the SWED dataset [34] who also find
that water and coastline mapping is restricted to singular regions in the literature as one of
their motivations to publish a dataset rich in variety. As the dataset contains a wide range of
features, we can also explore the relationship of geographical features and their similarity
in regards to how a CNN differentiates them. The atmospheric conditions around the
world drastically change the reflection intensity recorded by a satellite for similar features.
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2.2. Methods

We use the pipeline as depicted in Figure 1 where after pre-processing, we train an
autoencoder to provide the latent features on which we apply dimension reduction to
produce an embedding space that supports an interactive user interface.

Figure 1. Proposed pipeline.

2.2.1. Preprocessing

Each tile extracted from a Sentinel 2 product is 10, 980 × 10, 980 at 10 m resolution,
meaning each pixel represents 10 m2 of the Earth’s surface area. We divide each image into
256 by 256 patches to balance computational efficiency and local feature representation.
As we do not utilise a sliding window approach, there is a remainder of 228 discarded
pixels along the right and bottom border. Opting for smaller patch sizes could increase the
performance of the AE as fewer geographic features are present. While relatively large, the
selection of patch size encapsulates enough local context to be discernible without the need
to reference neighbouring patches and achieves a good visual representation within the
final visualisation tool. The final dataset comprises 1764 images for each tile and a total
of 28,224 images across all 16 locations. Sentinel 2 products are recorded in 13 different
wavelengths all at varying spatial resolution. In our analysis, we focused exclusively on the
red, green, blue, and near-infrared bands as they all record in the highest spatial resolution
of 10 m.

2.2.2. Autoencoder Architecture

Each encoder within this architecture consists of a convolutional layer followed by
batch normalisation, and max-pooling. Stacking these encoder blocks together forms a
Stacked Autoencoder (SAE). The convolutional layers use a 3 × 3 kernel and ReLU for
activation. At the end of the encoder is a dense layer for the conversion of feature maps
to vectors enabling extraction of the latent space variables. The decoder combines up-
sampling within the convolutional layer. The decoder is mirrored in the number of, N,
units stacked to create the full decoder allowing the network to generate high-resolution
feature maps, see Figure 2. The encoder and decoder are independent models and therefore
share no information apart from the loss incurred during reconstruction whilst training.

The encoder consists of 5 blocks. The initial layer starts with 256 filters, halving for
each subsequent layer. Each max-pooling layer scales the image by a factor of 2. The
latent space, represented by the dense layer, has 1024 units. Training data are categorized
into 10 groups based on the water content in each image, where to handle the significant
difference in reflectance between water and land features, we weight the training batches
based on the water content. We calculate the water content using the McFeeters Normalized
Difference Water Index (NDWI) [? ], which measures the difference between the green and
near-infrared bands. As we aim to introduce an unsupervised pipeline we chose to not
utilise the labels for water in the SWED dataset. The difference between ground truth and
NDWI labels when binned was similar apart from noise introduced by clouds. The model
is trained on mostly land content and validated on a set equally balanced between water
and land. Data augmentation adds further variation using rotated images and adding salt
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and pepper noise, adjusting random pixels either to 0 or 1, to improve model generalisation.
The optimal point in training is reached when the test loss matches the validation loss for
10 epochs, with the validation loss typically being lower due to more uniform textural
information being present in water. The latent space vector provided by the autoencoder of
size 1024 is passed on to subsequent stages of our pipeline.

Figure 2. Architecture for the autoencoder. Yellow rectangles represent convolutional layers. Green
rectangles represent batch normalisation layers. Purple represents max pooling layers and grey
represents dense layers. The encoder and decoder segments of the architecture have multiple N
layers in each segment.

2.2.3. Dimensionality Reduction

Further dimensionality reduction to two-dimensional embedding space is conducted
with respect to the latent space produced by the autoencoder using t-SNE and UMAP. We
chose two dimensions for simplicity and ease of downstream visualisation and interac-
tion [37]. We use the Barnes–Hut approximation of t-SNE for its much faster computational
advantages [38]. In addition, we implemented the algorithm with variable tail distribution
in low dimensions to both overcome the overcrowding problem and the ability to make
it heavy-tailed for tighter clusters. Our implementation enables user interaction with the
number of iterations and to replay iterations by recording each iteration’s variables. The
user can navigate between optimisation steps for any patterns that are presented earlier [39].
Data can be labelled at any optimisation step, with those labels then available to previous
and future iterations. The first process of t-SNE is to optimise the embeddings with a lower
learning rate and once it achieves an embedding that does not change for a few iterations,
variable on data content and size, the learning rate is increased to expand and optimise
the embedding. Visualising earlier iterations of t-SNE would allow a user to explore any
emerging clusters without needing to wait for the finished process. As time complexity
increases with dataset size earlier iterations may provide expedient clusters to the user.
Finally, we added the ability to change the perplexity parameter of t-SNE for the user to
assign depending on if they require more global or local attention. We defined a custom
version of t-SNE based on existing libraries for implementation. The resulting Python
scripts are embedded into our application.

We do not make any changes to UMAP and therefore refer to the original paper for the
implementation [31]. We do however allow the user to input parameters such as minimum
distance and the N nearest neighbours that UMAP should compute. Both parameters
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govern how the initial fuzzy graph is computed by UMAP and therefore can change the
visualisation and its ability to show coherent clusters or manifolds.

2.2.4. Visualisation

Figure 3 presents the graphical UI for exploring the data and applying class labels
to the satellite tiles. The main feature (D) is the two-dimensional embedding of the data
in the form of a scatter plot. A content browser (F) displays the 256 by 256 image patch
associated with each point. A map view (E) plots the location of each tile. Other windows
(A-C) display, respectively, the data set explorer, t-SNE parameter interaction (in this case)
and the class labels.

Figure 3. Our proposed visualization tool for navigating satellite imagery datasets. Left of the view
is the content explorer, (A) with the ability to load multiple datasets and navigate multiple views.
The controls to view the t-SNE parameters and iterations are labelled (B). Class colour and label
control, (C) is housed in its own contained GUI. The main portion of the screen, (D) is dedicated to
exploring the scatter plot. Map, (E) in the bottom left, views the geographical location of selected
samples. The content explorer, (F) shows the original images for each selected point in the view (E).
(G,H) demonstrate class labels (colours) applied to data points.

After a data set has been chosen the initial view is displayed. For each dataset
embedding, there are two forms of visualizations presented to the user, UMAP or t-SNE,
each can be navigated from Manifold Explorer. Each embedding in the two-dimensional
scatter plot shows with respect to the reduction technique the manifolds and patterns
within the high-dimensional space for the dataset provided. Points between clusters
or within a line show the transition between similar images as the features evolve for
the particular manifold. For t-SNE embeddings, we included the ability for the user to
customize the parameter and iterations displayed within its own contained user interface.
Each embedding is accessed by interacting with a slider to swap between each iteration.

The ability to zoom and filter regions of interest is implemented with a box selection
method. The box can be drawn to any size and translated on the x, and y-axis by dragging.
As points are selected, the content browser and map are updated. As all images are
georeferenced, the map will have a small red marker in the geographical location of all
selected samples for added context to labelling decisions. The content browser also updates
to show an RGB composite of the selected images, which is how the user understands
the contents of the manifold. Given the small pixel resolution of satellite images, we also
included two sliders to change the image size and padding between samples.
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Labelling is also conducted through the selection box. Selecting scatter points and
pressing a number will label all points to the respective label. Selecting an image in
the content browser will display a sub-menu where the user can select the label for the
specific image.

We also implement an analogy of version control where a dataset can be branched
into multiple subsets, each in a sand-boxed environment consisting of the same interface.
The user can explore and label the subset and then merge the branch back into the original
dataset with an interface to choose the labels to merge.

3. Results

Accurate classification of remote sensing satellite images plays a crucial role in various
applications, such as mapping, urban planning, and environmental monitoring. Key to
the creation of robust and accurate image classification algorithms is the creation of large,
geographically distributed labelled datasets that represent the complexity and diversity
of the Earth’s surface. The creation of such labelled datasets is time-consuming, resource
intensive and uncertain, as it is difficult for remote sensing analysts to easily quantify
and understand the complexity and diversity present within a geographically distributed
unlabelled dataset.

Labelling satellite images is necessary for both producing up-to-date maps and creating
new labelled datasets for training new models. Finding selective images that contain
desired features for a new training dataset can be a daunting task considering the volume
of tiles over time and geographical location. Training models on satellite images incur a
large cost in both training and finding suitable data to train on.

The inputs to our labelling application are the satellite images that need to be given
class labels, a trained model (e.g., the autoencoder we use for testing), and any prior
labels (e.g., saved from a previous labelling exercise). The output will be class labels for
the images.

A key point is that the pre-trained model may provide good cluster coherency, but
often there will be out-of-class samples that will negatively impact the labelling experience
and hence the time to undertake labelling. Our interface helps this by allowing the user
to explore the manifold by creating user directed two-dimensional embeddings from the
high-dimensional embedding. The user can control the development of the embeddings,
use the branch and merge feature (discussed later), switch between embedding types
(UMAP or t-SNE) and extrapolate class labels forwards and backwards through embedding
iterations.

The case study is provided in cooperation with the UK Hydrographic Office. Our
approach can be used with various applications in mind. For example, to quickly label
similar samples we aim to bring large numbers of tiles with similar features together in
the interface to apply a single class label in bulk. Another example would be to build a
data set with a good distribution of rich and diverse features, where in that case we may
focus on cluster boundaries to provide images with combinations of different features and
differences from the cluster.

Manifold exploration: We explain how the user interacts with a two dimensional
embedding to gain an understanding of the higher-dimensional manifold and to label
multiple images simultaneously with a class label. The user draws a selection box of
a desired size over the plot (yellow box in Figure 4). Each point within the selection
corresponds to one image, which is displayed in the image browser and located on the
map. All images within a selection can be given the same class label. If any images are not
part of the class, they can be individually reset or set to a different class using the image
browser. The user can navigate the scatter plot by scaling and translating.
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Figure 4. Example of images evolving from forest to dense urban whilst traversing through a
manifold. Starting from the top of the two-dimensional embedding, subsequent samples were taken
while moving the selection down. The respective contents of the samples are shown on the right. The
accompanying video provides a better understanding of manifold evolution.

The user drags the selection box so that points exit and neighbouring points enter the
box. This simultaneously updates the image browser and map view, thus allowing the
user to explore and become familiar with the structure of the manifold. Fine movement
can help produce views where all images are consistent with one label, allowing a single
label to be rapidly given to all points in the selection. In Figure 4, the user follows a path as
indicated by the red arrows and yellow boxes, and sample images along the manifold from
within the yellow boxes are presented in rows respective to the sampling region. These
demonstrate how this model and two-dimensional embedding have placed images from
the manifold. The block of images on the right shows three representative images from
each of the indicated selection areas demonstrating the smooth evolution of the manifold
from forest to urban land cover. Figure 5 shows 16 images in the browser window over
the top of the scatterplot view. The images are from a small cluster on the left and show
largely consistent clustering, but also demonstrate how the limits of a pre-trained model
can affect labelling software. In this case, the reflectance and texture of cloud images have
not been separated from the reflectance and texture of similar coastlines. The interface
allows these labels to be quickly corrected individually. Users can label the data efficiently
with a keyboard input as they explore the manifold.
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Figure 5. A cluster of points are seen to be mostly coastline, but the model has placed two cloud
images, which have a similar reflectance and texture, in the same cluster.

Manifolds shown in the two-dimensional plot are formed by both the AE’s expressive-
ness on the source images and the number of samples that the DR technique is provided
with. When projecting all images from the SWED dataset, there is a clear separation be-
tween land and water clusters, but images containing both features (coastline) are on the
edges of those clusters or form paths between the clusters. See the video in additional
material for an example of coastline labelling.

User-directed reprojection of the embedding: The two-dimensional scatter plot view
may not be optimal due to two reasons. Firstly, the model’s latent space may not be
expressive enough. Secondly, which is the focus of this section, the dimension reduction
techniques have insufficiently exploited the latent space to successfully create the two-
dimensional embedding. We work under the assumption that the AI model is fixed due to
the fact that training remote sensing models requires a tremendous amount of resources,
and therefore we cannot alter the latent space interactively. Rather, we look to optimise the
embedding instead.

To find a better embedding we allow the user to direct re-embeddings by testing
different parameters such as perplexity for t-SNE or N neighbours for UMAP. Increasing the
value of both parameters allows for the DR algorithms to consider a larger neighbourhood,
which provides more context to each embedded point. Conversely, if two manifolds exist in
high dimensional space that overlaps frequently, a smaller neighbourhood of points would
be preferable.

Therefore, it is crucial that the user can interact with parameter selection (B in Figure 3).
However, recalculation of the embeddings on the entire dataset requires a high compu-
tational cost and exploration cost as new embeddings require validation of information
patterns by the user. Constant evaluation of newly projected manifolds can be mitigated
with our tool because labels can be extrapolated when switching embeddings (between
UMAP and t-SNE) and when altering any of the parameters. This consistency in class labels
can provide the user with context, e.g., how previously neighbouring points may now
cluster or spread across the updated embeddings. In Figure 6, t-SNE (top) has clustered
mountainous images (with glacier), allowing the user to apply a label with a single key
press. Below, Figure 6, UMAP (bottom) has not differentiated such images from other
terrain. By labelling using t-SNE, and then changing embeddings, we can see how the
labelled points redistribute and mix within other samples. It is not generally the case that
t-SNE performs better, rather being able to switch embeddings or re-embed using new
parameters allows the user to find appropriate clusters.
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Figure 6. In this particular case, t-SNE (top) effectively clusters mountainous regions compared to
UMAP (bottom) using the same embedding.

Branch and merge: As an alternative to global embeddings, we introduced the ability
to branch the dataset. Branching focuses the dimensionality reduction on the currently
selected data. The two-dimensional embedding is optimised with respect to those samples
as only those samples are considered. The computational cost is less due to the reduced
number of samples when searching for optimal embedding parameters. The data for a
particular branch is determined by the user indicating which class label or classes are to
be used for that branch. All images labelled as that class form the branch. The user may
select data directly on the two-dimensional plot using the selection box, apply a class label,
and send that set of points to a branch. To self-contain branches, all embeddings utilise the
UMAP or t-SNE algorithms for optimisation in their own sand-boxed environment without
affecting any other dataset or branch.

Working with this reduced set of samples has two benefits. First, embeddings are faster
to compute when varying parameters during exploration. Secondly, as the samples will
have been determined by the user to have similarities, re-embedding them will effectively
amplify the remaining feature differences yielding new clusters based on the alternate
features. The new embedded clusters may separate better than the original given the same
pre-trained model output.
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Figure 7 shows a branch of data from Figure 5, which largely represents images with
only sea and varying coverage of coastline. In the global embedding, they clump together in
a smaller cluster in which it would be difficult to make selections that separate these classes
for labelling. Branching out these points allows a re-embedded of the points, resulting in
the embedding seen in Figure 7. In this case, the points scattered along the top of the new
plot are predominantly the images that contain just the sea, allowing the user to make large
selections of tens to hundreds of images and directly apply one class label.

Figure 7. Left points in the left of Figure 5 are branched out into their own embeddings.

Moving along the top of the plot and to the right (Figure 8) introduces a new wind
farm feature where we can see a regular grid of white turbines against the dark blue sea
suggesting the user would be able to quickly label sea infrastructure as a separate class if
desired.

Figure 8. To the right of the plot from Figure 7 there are some images of wind farms.

Further around the plot (Figure 9) there is a mix of coast, high cloud and sea that
has not been effectively separated and therefore would be time-consuming to label. This
can also be branched out into its own where the sea is more effectively separated in this
new embedding (Figure 10 (left)). Labels are then merged back into the main embedding
(Figure 10 (right)) showing the separation (or lack of) between these classes. This allows fast
labelling of the data, which also allows the user to visualise the class boundary, allowing
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an assessment of model performance by suggesting where the model may be failing to
provide good class separation.

Figure 9. A cluster of high cloud, sea and coastline.

Figure 10. Left, a branched embedding allows the user to quickly label sea images. Right, the labels
(of both coastline and sea) are merged back into the original embedding. The newly labelled images
from the branch are orange and grey within the original embedding. Guided by the labels, the user
can make a large selection of sea images which can be labelled with one click.

We also find that branching is effective in another way. If a user wants to label
patches with multiple features, for example, coastal areas with farmland present, they can
branch and embed all coastal patches together with a selection of patches that contain only
farmland. The embedding will create unique clusters for each feature; however, samples
that have both features will lie on the edge of the cluster closest to the cluster that contains
the other feature. In this case, samples with both coastline and farmland will be on the
edge of the coastline cluster closest to the cluster containing purely farmland. In this way,
branching can act as a way to query image features in clusters by leveraging the model’s
general ability to distinguish between them.

User Study

In this section, we introduce a second application (Figure 11) to act as a comparison
in a user study. We compare the efficiency of finding coastal patches utilising an image
retrieval application as a benchmark, as our pipeline can be interpreted as a visual extension
of image retrieval systems. The benchmark application produces K similar images based
on a query image. The K nearest neighbours are determined by distance in the autoencoder
latent space. The target query image is shown with the most similar K images. The user
can label all images returned by the query or individually label each sample.
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Figure 11. Benchmark image retrieval application. The selection of query image and K images to
retrieve is located on the left. The main panel displays the resulting images returned from the query.

To access the capability of each application we conducted a small user study with
five participants. The user study consisted of each applicant labelling patches with any
coastline utilising both applications. We presented the participants with forty initial “seed”
images, as otherwise, the benchmark application required sorting through a list of 5963
patches to find an initial coastal patch to begin labelling from. The same “seed” patches are
pre-labelled within our application as one class.

The task was to label 160 patches with coastline using each application. We allowed
participants to label more patches than required accounting for any scenarios where labels
were assigned with the intention to refine after. The method to end the study was based
on a small GUI element that let the researcher know that the labelling requirement had
been met, allowing them to make an informed decision on when to let the participant
stop labelling. We switched the order in which both applications were presented to each
user in order to keep any familiarity gained with RS images consistent. As both t-SNE
and Umap are stochastic algorithms we retained the initial randomisation seed between
participants. In addition, we removed multi-threading and approximations utilised by the
dimensionality reduction algorithms in order to keep consistency between participants.
Times were recorded for each patch labelled. In order to produce the results, any patches
labelled multiple times were removed with only the final label assignment considered.

The results of the user study are shown in Figure 12. On average, the time taken to
label using the benchmark application was 269 s compared to our application’s 71 s, which
is a factor of more than 3 times faster. Users utilising the benchmark application often
found that only a small number of patches could be retrieved without the appearance of
out-of-class images, which reduced the ability to label all samples quickly and efficiently
therefore resulting in single sample labelling. In contrast, in our approach, the ability to
optimise the box size and explore its surroundings produced similar images within the
embedding, allowing the user to discern a suitable selection, which retained minimal out-
of-sample patches and allowed the user to refine the selection with more confidence. The
fastest user strategy recorded utilising our application searched the space before selecting
clusters with more coherent samples and only a few outliers. In contrast, the other common
labelling strategy used was panning a small selection area with continuous movement
and refinement. The difference can be seen in Figure 12. The sharp increase in labels
corresponds to labels applied to a larger selection area at once in contrast to the smoother
gradient when labelling with a small selection strategy, respectively. It is also noticeable
that users of the benchmark application experienced fatigue as they approached the target
and had difficulties finding more coastline to label, whereas users of our application did
not experience that problem. This is visible in the shallower gradients in the data for the
benchmark application as time goes on compared to the steeper gradient for our application.
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Figure 12. Line chart showing the difference in participants’ time taken to label coastline patches.
The dashed lines represent times taken in the benchmark application. The solid lines represent our
application. Each colour represents a different participant.

4. Discussion

Designing a training and testing dataset for the development of computer vision
algorithms for use in satellite imagery is time-consuming, resource-intensive and uncertain.
It is difficult to be confident that a labelled dataset encompasses sufficient complexity and
diversity to allow for the geographic generalisation of a trained algorithm to unseen areas.
It is practically difficult to visualise large and geographically distributed datasets and
“debug” the performance of a trained algorithm once its performance is assessed against a
test dataset.

Our tool offers new capabilities for us to reduce the time and resources required to
label large datasets, visualise and understand the complexity and diversity of already
labelled images, and assess model performance against clusters of similar image types,
which might be geographically distributed over large and diverse environments. Overall,
our tool will give us greater insight into the structure of unstructured satellite imagery data,
supporting us to iterate model development with greater efficiency and confidence.

With regard to processing and labelling datasets for future training of classification
models, we have shown how structurally similar samples are clustered together and evolve
along a manifold, allowing for the intuitive selection of samples from all geographical
regions. Samples evolve as you move from a cluster, where samples with more unique
features appear on the cluster boundaries. Users are able to select and label similar features
and build up feature-rich data sets.

Most works in remote sensing target specific regional locations to alleviate the vast
complexity between tile locations and time. Utilising our tool, we show how analysis of
multiple tile locations beforehand could contribute to providing balanced datasets for future
classification tasks. User-led mass labelling could provide more contextual information
based on the classification goal, e.g., lakes, farmland use, arboreal or coastline to name
a few.

Common image dataset tools in current works regard finding the top K images that
correspond to a query set of images. Most, such as Tong et al. [40], produce feature sets
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using common image retrieval algorithms and fine-tuning with smaller patch sizes, but
based on higher resolution labelled datasets. We have in comparison shown the feasibility
of utilising manifold learning techniques to enable entire datasets and relationships between
images to be displayed. This has been effective in mass labelling larger feature sets. When
considering smaller local features, we utilise our branching methodology. Future work
could also encode smaller patches with extra information regarding surrounding patches,
increasing the focus on smaller features, but retaining a more global context. This of course
would have to be balanced between computational efficiency for embeddings as larger
latent spaces or sample rates increase the time complexity to calculate embeddings.

In comparison, for better potential label separation, we could iteratively alter our
higher dimensional space by pushing dissimilar images from an oracle or user’s perspective
away and pulling similar images closer. This process in machine learning is known as
triplet loss [41]. Successfully applying triplet loss improves the downstream visualisation
capabilities as manifolds separate clearly. However, this process would require retraining
on the new high-dimensional embedding space, and constant oracle/human input where
labels can heavily influence models’ class separation. With such feature-rich patches, this
could cause overlap between labelling categorisation, for example, where a particular patch
includes multiple regions of interest, i.e., farmland and rivers. An avenue for future work
could look to implement a form of triplet loss with a multi-hierarchical labelling scheme
utilising the visual branching feature we presented.

In addition, the utility of understanding the performance of a model between the RS
images utilised in training and the resulting complex learnt filters by the convolutional
AE is paramount in any use case. The user can gain estimations of model performance by
altering the manifold learning representations and examining the visualisation provided
by the projected manifold. Our methodology could be adapted to any model where a
temporary layer can be trained to extract an embedding space. Limitations are the size
of the representation of each image, larger high-dimensional spaces require more time to
project. The resulting embeddings within the tool provide contextual information about
how samples are built by the model and where problematic features may arise in images.
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