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Abstract: Disaster logistics management is vital in planning and organizing humanitarian assistance
distribution. The planning problem faces challenges, such as coordinating the allocation and dis-
tribution of essential resources while considering the severity of the disaster, population density,
and accessibility. This study proposes an optimized disaster relief management model, including
distribution center placement, demand point prediction, prohibited route mapping, and efficient
relief goods distribution. A dynamic model predicts the location of post-disaster distribution centers
using the K-Means method based on impacted demand points’ positions. Artificial Neural Networks
(ANN) aid in predicting assistance requests around formed distribution centers. The forbidden route
model maps permitted and prohibited routes while considering constraints to enhance relief supply
distribution efficacy. The objective function aims to minimize both cost and time in post-disaster aid
distribution. The model deep location routing problem (DLRP) effectively handles mixed nonlinear
multi-objective programming, choosing the best forbidden routes. The combination of these models
provides a comprehensive framework for optimizing disaster relief management, resulting in more
effective and responsive disaster handling. Numerical examples show the model’s effectiveness in
solving complex humanitarian logistics problems with lower computation time, which is crucial for
quick decision making during disasters.

Keywords: artificial neural network; deep learning; K-means; location routing problem; mixed
integer nonlinear programming

1. Introduction

Disaster logistics management, which involves planning and organizing the distri-
bution of logistics to provide humanitarian assistance, is an important aspect of disaster
management. It is crucial to minimize human suffering, property loss, and ensure a timely
and appropriate response.

However, disaster logistics management frequently faces a number of challenges.
First, disaster relief logistics costs can reach up to 80% of total aid costs [1,2], making
logistics one of the most expensive components of disaster management [3]. Second,
logistics management occurs frequently because aid distribution is not on target or evenly
distributed [4]. This is due to the selection of unsuitable distribution center locations and
distribution routes that have not reached the expected level of effectiveness.

A dynamic facility location problem model for managing humanitarian aid logistics is
required to overcome problems in the management of humanitarian aid in post-disaster
areas. The problem of locating emergency facilities is the most fundamental humanitarian
logistical problem. The problem of locating emergency facilities following a disaster is
related to the location routing problem (LRP), which is used to optimize the location
allocation of facilities and routes for humanitarian aid delivery. LRP problems are difficult
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combinatorial problems that are frequently categorized as NP-hard [5,6]. LRP combines
two kinds of problems: facility location problems and vehicle routing problems. The
combination of these two issues makes LRP a difficult problem because it necessitates
complex decision making when selecting the location of facilities and efficiently planning
vehicle routes.

Several models and approaches have been proposed to address the location facility
problem in relief logistics and LRP management, including MOGWO, MOPSO, MOWCA,
NSGA-II [7], hybrid genetics (genetics and NSGA-II) [8], a combination of the multi-objective
simulated annealing algorithm (MOSA) and non-dominated sorting genetic algorithm II
(NSGA II) [9], a combination of discrete particle swarm optimization (DPSO) and Harris
Hawks optimization (HHO) [10], greedy algorithm [11,12], tabu search [10,13–15], mixed in-
teger linear programming (MILP) [16], mixed integer non-linear programming (MINLP) [17],
particle swarm optimization (PSO) [18], and e-constraints [19–22]. Based on the research
described, it is possible to conclude that the LRP can be solved using two approaches: the
exact approach and the heuristic approach. Because the exact method takes a solution-
finding approach by calculating every possible solution to produce the optimal answer, the
exact algorithm takes a long time to complete to produce an optimal answer for large-scale
problems. In the case of optimization problems, heuristics is a rule-of-thumb approach that
allows for solutions that are not convergent or optimal [23]. As a result, the goal of this
research is to create a model for dealing with LRP in the context of disaster relief logistics.
Several researchers propose an artificial intelligence approach to optimize the objective
function and address the solution problem in LRP [24].

Deep learning is a machine learning method that employs deep and complex ar-
tificial neural networks to extract patterns and features from data [25]. Several stud-
ies using the deep learning approach have made significant contributions to disaster
management problem solving [26]. Methods such as convolutional neural networks
(CNNs) [27–29], combined convolutional neural networks (CNNs) and support vector
machines (SVMs) [30], combined deep belief networks (DBNs) and restricted Boltzmann
machines (RBMs) [31], long short-term memory (LSTM) neural networks [32,33], artificial
neural networks (ANNs) [34], neural network algorithms based on rough set and radial
basis function (RBF) [35], and recurrent neural networks (RNNs) [36,37] are used to predict
disaster risk, identify affected areas, map landslide and flood vulnerabilities, and recognize
post-disaster building damage. Meanwhile, most current research on disaster logistics
employs exact or heuristic approaches in determining the location of emergency facilities
and routes for sending aid. In this context, there is an unmet need to solve location facility
problems for disaster logistics using a deep learning approach. Deep learning can provide
innovation and excellence in handling LRP in a more efficient and accurate manner. The de-
velopment and application of deep learning in the context of disaster logistics management
therefore presents significant research opportunities.

Therefore, this study aims to fill this research gap by developing a deep location
routing problem (DLRP) model, which is dynamic and capable of recommending the
opening of distribution centers (DC) based on demand point locations using the K-means
method. It also utilizes deep learning to predict the locations of demand points at formed
DCs in the context of disaster management, and the formation of disaster relief delivery
routes using artificial neural networks (ANN). Additionally, a forbidden route model is
established to select the existing routes and map them as either prohibited or permissible
routes, resulting in a bi-objective mixed-integer nonlinear programming model with two
objectives: minimizing cost and minimizing time. Thus, by incorporating a deep learning
approach into solving location facility problems for disaster logistics, this research can
significantly contribute to the field.

The remainder of this paper is organized as follows. Section 2 begins with a description
of the problem, model assumptions, the model objective function, formulating model
constraints, and modeling by developing a location routing problem (LRP) model with a
deep learning approach called the deep location routing problem (DLRP). This includes
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a dynamic emergency facility location model, prediction model, transportation route
formation, and optimal route, which includes forbidden routes to generate an optimal
route with the objective function of minimizing cost and time. Section 3 includes numerical
studies to demonstrate the properties of the proposed model and algorithm. Finally,
Section 4 concludes this paper.

2. Problem Description

The following is a description of the problem in the formation of distribution routes in
humanitarian logistics, including the distribution center, demand point, and
vehicle parameters.

Figure 1 depicts an illustration of the problem, which describes the planning of trans-
portation routes with uncertain parameters; namely, demand points and vehicles. We
obtained a description of the problem based on these parameters, which includes: first,
determining the distribution center development point after a disaster that has the shortest
distance to the point of demand; second, if given a set of vehicles, how are these vehicles
assigned to each open distribution center; and third, forming transportation routes from
clusters formed based on assigned vehicles.
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2.1. Model Assumptions

The model’s assumptions for establishing transportation routes in post-disaster areas
under uncertainty are as follows:

• determining the number of distribution centers that will be opened in the aftermath of
a disaster;

• grouping demand points based on the shortest distance between opened distribution
centers;

• forecast the location of newly opened distribution centers;
• determine which vehicles are assigned to newly opened distribution centers;
• determine clusters based on vehicle capacity and number of vehicles—the network

only includes demand points that can be visited via the traffic network, and ignores
areas that require other special modes of transportation;
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• Each vehicle has a limited capacity—each vehicle begins and ends at the distribution
center to which it belongs while completing the delivery task to the point of demand,
and each point of demand is only visited once, where the route of distribution of relief
goods is uncertain.

2.2. Objective Function

The transportation route formation model’s objective function in post-disaster areas
with uncertainty in humanitarian logistics is:

1. Location of emergency facilities

The emergency facility location model generates an objective function based on the short-
est distance between open distribution centers and demand points (min∑ij distance).

2. Predicting location and forming transportation routes

Based on open distribution centers, the location prediction model forecasts locations.
The model is then trained by displaying an increase in accuracy, indicating that the
model is still optimizing its internal parameter adjustments to improve performance,
which has the potential to provide reliable predictive results and can be used effec-
tively in relevant contexts such as predicting locations or data classification. The
formation of transportation routes yields a destination function, which is a combina-

tion of routes based on demand point clusters
(

i=n⋃
i=1

L
)

.

3. Distribution route in uncertainty

The forbidden route model, which is used to optimize route planning in routing
problems with forbidden route restrictions, is used for distribution routes that are
subject to uncertainty. Every vehicle used in this model will not take the forbidden
route. The model’s objective function is to minimize the total cost ( h) and arrival
time ( w) of the vehicle at the demand point

(
( Min

x,y,z,q)‡1(D) = {w, h}
)

of a route that is
not prohibited.

2.3. Formulate Model Constraints

Model constraints for the formation of transportation routes—first, the model con-
strains for opening the location of emergency facilities and the demand point clusters,
including determining the distribution center point based on the closest distance to the
demand point or the demand point cluster based on the nearest distribution center. Second,
the model constrains for route formation, including the number of routes for each cluster
based on the capacity and the number of vehicles assigned to the distribution center, the
combination of routes based on demand points in the cluster, and the route selection based
on conditions in which each demand point is only visited once.

2.4. Modelling

The schematic diagram of the model for forming transportation routes in humanitarian
logistics using a deep learning approach can be seen in Figure 2.

Based on Figure 2, there are uncertainty parameters, including demand points used
for opening emergency facility locations, namely distribution centers. In this case, machine
learning clustering algorithms, namely K-Means, will be grouped based on similar demand
points, such as the coordinate points (latitude, longitude) depicted in Figure 3.
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Figure 3. Design of an emergency facility location model.

After obtaining the grouping results in Figure 3, the location for opening a dynamic
distribution center—one that can move based on the number and location of demand
point locations—will be determined. In order to achieve the minimum distance objective
function, the distribution’s opening will be taken from the centroid location based on the
cluster that has been formed. Figure 4 depicts how to determine the location of emergency
facilities and group demand points based on assigned distribution centers. Following the
acquisition of distribution center locations and the grouping of demand points, a route
formation process will be carried out, which will employ a deep learning approach with
deep neural network architecture. The combination of routes will be determined based
on the distribution center, number of vehicles, number of demand points, and number of
demands. Figure 4 illustrates the formation of a route using deep learning models built on
an artificial neural network (ANN) architecture.
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Before establishing a route, the first step in Figure 4 is clustering using a machine
learning algorithm to determine the location point for opening a distribution center, and
grouping demand points based on distribution centers and assigned vehicles. The location
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of a distribution center is determined dynamically based on the location of the demand
point following the disaster. The results of opening emergency facility locations are used as
input (x) for route formation.

Deep learning neural network algorithms, also known as artificial neural networks
(ANN), are used to create a network of routes for the distribution of relief goods from the
distribution center to the point of demand. The input layer consists of distribution center
location data and demand points in one cluster, the hidden layer represents the spread of
the location of the request points, and the output layer shows the result of a combination of
location distributions resulting in the formation of routes.

2.4.1. Emergency Facility Location Model

The k-means clustering machine learning algorithm is utilized as the basis for deter-
mining the location of distribution centers and grouping demand points. The algorithm
divides a set of N objects into K clusters based on the similarity between members within
each cluster and dissimilarity with members in other clusters [38]. The similarity to the
cluster is measured by the proximity of each object to the cluster’s mean value, known as
the cluster centroid.

The core concept of the K-means algorithm involves iteratively searching for cluster
centers. The cluster center is determined based on the distance between each data point
and the cluster center. The clustering process begins by identifying the data to be clustered,
denoted as xij (i = 1, . . . , n; j = 1, . . . , m), where n represents the total number of data points
to be clustered and m represents the number of variables. At the start of the iteration, each
cluster’s center, ckj (k = 1, . . . , K; j = 1, . . . , m), is assigned independently and arbitrarily.

Next, the distance between each data point and each cluster center is computed. The
Euclidean formula is commonly used to calculate the distance dik between the ith data point
(Xi) and the kth cluster center (Ck). If the distance between a data point and the center of
the J-cluster is smaller than the distance to the centers of other clusters, the data point is
assigned as a member of the J-cluster.

After assigning data points to their respective clusters, the next step is to group the data
that belong to each cluster. The new cluster center value can be calculated by determining
the average value of the data points that are members of the cluster.

Notation:

m: number of distribution centers (DC) with i = 1, . . . , n
n: total of demand points with j = 1, . . . , n
c: latitude and longitude coordinates
Kjc: c is the coordinates (lat, long) of the demand point j
Variables:
fic: coordinates k of DC i
Dij: distance between DC i and demand point j
Xij: 1 if demand point j is assigned to DC cluster i, and 0 otherwise
Formulation

When the location of the demand point (n) is known, the determination of the distri-
bution center’s location (m) is formulated with a single objective.

min∑ij Dijyij (1)

Subject to:
∑j yij = 1, ∀i (2)

Dij = euclidean distance
(

fi, dj
)
, ∀i,j (3)

yij ∈ (0, 1) (4)
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Equation (1) minimizes the distance between distribution center i and the collection
of demand points j, while Constraint (2) ensures that all demand points j are in the same
cluster as distribution center i. Constraint (3) defines the distances between distribution
center i and demand point j, while Constraint (4) represents binary decision variables.

2.4.2. Model Prediction and Transportation Route Formation

a. Predictions

In the prediction model described below, X represents the input data, while y repre-
sents the target label or class. The model, generated using the provided code, consists
of two hidden layers, each containing 64 neurons. The output layer consists of three
neurons, applying the ReLU (Rectified Linear Unit) activation function to the hidden
layers, and softmax activation function to the output layer. The optimizer used in training
the model is Adam, and the loss function employed is sparse categorical cross-entropy, as
demonstrated below.

# Step 1: Load data from a CSV file (‘data.csv’):
data = load_csv(‘data.csv’)
# Step 2: Separate attributes (attribute1, attribute2, . . .) and labels (label) from the data:
attributes = data[[‘attribute1’, ‘attribute2’, . . .]]
labels = data[‘label’]
# Step 3: Split the data into training data (X_train, y_train) and test data (X_test, y_test)
with a test size of 20%:
(X_train, X_test, y_train, y_test) = split_data(attributes, labels, test_size = 0.2)
# Step 4: Normalize training and test data using StandardScaler:
X_train = normalize(X_train)
X_test = normalize(X_test)
# Step 5: Initialize an artificial neural network (ANN) model:
model = initialize_model()
# Step 6: Compile the model:
compile_model(model)
# Step 7: Train the model with training data:
train_model(model, X_train, y_train, epochs = n_epochs, batch_size = batch_size)
# Step 8: Evaluate the model on test data:
(loss, accuracy) = evaluate_model(model, X_test, y_test)
print(‘Loss: {:.2f}, Accuracy: {:.2f}%’.format(loss, accuracy * 100))
# Step 9: Transform new data for prediction after normalization:
new_data = normalize_new_data([[new_attr1, new_attr2, . . .]])
# Step 10: Make predictions using the trained model:
predictions = make_predictions(model, new_data)
# Step 11: Initialize the same model for grid search:
grid_search_model = initialize_model()
# Step 12: Compile the grid search model:
compile_model(grid_search_model)
# Step 13: Perform grid search to find optimal model parameters with training data:
best_model = perform_grid_search(X_train, y_train, grid_search_model, param_grid,
cv = 3)
# Step 14: Use the best model to make predictions on new data:
new_predictions = make_predictions(best_model, new_data)

b. Route Formation

The formation of transportation routes in humanitarian logistics utilizes deep learning
neural network algorithms, specifically artificial neural networks (ANN). Figure 3 illustrates
the ANN structure employed in the creation of these routes.

The input layer of the ANN is derived from the grouping of demand points J based on
the assigned DC i and vehicle k. The hidden layer in the ANN represents the transformation
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of information from the location of the demand point j. The output layer then combines
this location distribution by incorporating the location of the demand point j from the
hidden layer Lij. As a result of this combination, the Yi route is formed.

Upon combining the routes, a route selection process is conducted to ensure that each
demand point is visited only once. This selection process helps optimize the transportation
routes. The vehicles follow the selected routes, starting from DC i and returning to the same
DC i, which is assigned to a specific cluster k. By limiting the visits to each demand point
and establishing a circular route from and back to the distribution center, the transportation
process becomes more efficient and organized within the designated cluster.

Variables:
yi: Route i
Li,j: Demand point location
Formulation

Once the grouping is generated, the formation of N transportation routes is formulated
using a deep learning model known as an artificial neural network (ANN).

yi =
i=n⋃
i=1

Li,j (5)

where,

yi =

{
1, Lij 6= Lij
0, Lij = Lij

(6)

Equation (5) is utilized to form the transportation route based on the distribution
of demand point locations (Ln). This equation captures the process of determining the
optimal route considering the specific distribution center and cluster assignment.

Furthermore, Equation (6) incorporates the route selection mechanism, which ensures
that each demand point is visited only once. By imposing this constraint, the transportation
route is designed to efficiently cover all the required demand points without revisiting any
of them.

The vehicles follow the established transportation route, commencing from the as-
signed DC i distribution center IK and returning to the same DC i within the designated
cluster k. This approach helps streamline the logistics process and ensure effective distribu-
tion of goods.

2.4.3. Optimal Route

In the given context, a set X is provided which contains prohibited routes. A route
(v1, . . . , vl ,) is considered avoided from set A if none of its subroutes

(
vi, . . . , vj,

)
are in-

cluded in set A, for any pair i and j where 1 ≤ i < j ≤ l.
When discussing the shortest route that avoids set A, a route P from s to t is considered

the shortest if the distance traveled along route P is the shortest among all routes that avoid
set A when traveling from s to t.

In the specific case where set A is equal to set X, which represents all the forbidden
routes in the graph, the term “exception avoiding” is used instead of “X-avoiding” in this
context. It is also crucial to ensure that the request point does not fall on any prohibited
route. Each vehicle used in this model will strictly avoid traveling through any of the
forbidden routes, adhering to the imposed restrictions and constraints.

Notation:
R: Set of resources used
C: Set of customers
X: Set of forbidden route
Variables:
‡1(D): Cost and time of arc (i, j)
xij: Binary variable indicating whether arc (i, j) is used in the route or not



Algorithms 2023, 16, 468 9 of 21

d+(i): The set of arcs comes out of vertex i
d−(i): The set of arcs enters node i
Tr

ij: The time required to travel from node j to node i uses resource r
ar

i and br
i : The initial time limit and the final time limit to start the journey from node i

using resources r.
Formulation

min ∑
(i,j)∈A;(i,j)/∈

P1xij (7)

Subject to:
∑

(s,j)∈d+(i)
xij = 1∀i ∈ C, i /∈ X (8)

∑
(s,j)∈d−(i)

xij = ∑
(s,j)∈d+(i)

xiji /∈ X, ∀i /∈ V (9)

∑
(s,j)∈d−(i)

(
Tr

ji + tr
jixij

)
≤ ∑

(s,j)∈d+(i)
Tr

jii /∈ X, ∀r ∈ R, ∀i ∈ C (10)

ar
i xij ≤ Tr

ji ≤ br
i xij(i, j) /∈ X, ∀r ∈ R, ∀(i, j) ∈ A (11)

Tr
ij ≥ 0(i, j) /∈ X, ∀r ∈ R, ∀(i, j) ∈ A (12)

xij ∈ {0, 1}(i, j) /∈ X, ∀(i, j) ∈ A (13)

Constraint (8) ensures that each demand point is visited exactly once in the transporta-
tion route. Constraint (9) maintains flow balance by ensuring that the number of outgoing
arcs at each node is equal to the number of incoming arcs. Constraint (10) imposes a time
limit, stating that the travel time from node j to node i using resource r cannot exceed the
travel time from node i to node j.

Constraints (11) specify the start and end times that must be adhered to for transporta-
tion activities. Constraint (12) sets a minimum value of 0 for the set time, indicating that
transportation activities cannot occur before time 0. Constraint (13) is a binary decision
variable, taking on values of 0 or 1, and is used to include or exclude certain variables or
conditions in the model.

Where ‡1(D) is bi-objective, defined as:

‡1(D) = {w, h} (14)

w = ∑
j∈C2

K

∑
k=1

tjk (15)

h = ∑
i∈C1

SCixi + UC ∑
a∈C

∑
b∈C

K
∑

k=1
Lenab‡abk + ∑

i∈C1

K
∑

k=1
FCkyik

+Pdemand ∑
j∈C2

max
{

Dj − qj, 0
}
+ Psupply ∑

j∈C2

max
{

qj − Dj, 0
} (16)

Equation (14) introduces two objective functions: the minimization of the total system
cost (h) and the minimization of the time (w) taken for vehicles to reach the demand points.
The total system cost includes various components such as the cost of establishing a DC,
fixed vehicle operating costs, vehicle travel costs, and penalties for shortages and excess
supply. Minimizing this cost aims to optimize the efficiency and economic viability of the
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system. Additionally, minimizing the time vehicles spend reaching the demand points
helps improve the timeliness and responsiveness of the logistics operations.

Equation (15) calculates the total waiting time, which is defined as the cumulative
time taken for vehicles to arrive at the demand points [39]. Equation (16) calculates the
total system cost, taking into account the cost of setting up a DC, fixed vehicle operating
costs, vehicle travel costs, and penalties for shortages and excess supply. This objective
aims to minimize the overall cost incurred within the system [40].

By formulating these objectives and optimizing them simultaneously, the model seeks
to find a solution that achieves a balance between minimizing costs and reducing vehicle
arrival times at the demand points. The sum weighted method is employed to transform
the bi-objective model into a single objective model by introducing weighting parameters
γ. These parameters assign weights to each objective, allowing for a trade-off between
the objectives. By utilizing the sum weighted method, the resulting model, denoted as
P1, is formulated as a single-objective mixed integer linear programming problem. This
formulation enables the utilization of a commercially available problem solver to find an
optimal solution for P1.

Model P1:
‡1(D) = γw + (1− γ)h (17)

Equation (17) represents two objective functions: minimizing the total system cost
(h), which includes various cost components, and minimizing the vehicle arrival time
(w). The sum weighted method is used to transform the bi-objective model into a single
objective model by introducing weighting parameters γ. This method allows for a balanced
consideration of both cost and time objectives in the optimization process.

3. Results and Discussion

The problem of the location of emergency facilities after a disaster can be linked to the
location routing problem (LRP) to optimize the allocation of facility locations and humani-
tarian aid delivery routes. The location routing problem (LRP) is a difficult combinatorial
problem and is often classified as NP-hard or NP-hard in polynomial time complexity, so a
deep learning approach is used. Therefore, the proposed model for solving the problem of
dynamic location facilities in post-disaster areas under uncertainty using a deep learning
approach is the deep location routing problem (DLRP)—a new and novel model in handling
the location routing problem (LRP) in disaster logistics. This model includes (1) a dynamic
location model, which can recommend the opening of a distribution center (DC) based on
the location of demand points using the K-Means method; (2) a deep learning approach
used to predict the location of demand points at the distribution center (DC), which has
been formed in the context of disaster management and the establishment of delivery
routes for disaster relief goods using an artificial neural network (ANN); (3) a forbidden
route model, used to select routes that have been formed, and to map prohibited and
non-prohibited routes; and (4) a route model for distributing disaster aid in post-disaster
areas, such as solving the problem of distributing disaster relief goods from distribution
centers that have been opened, to the demand point in the non-prohibited route group;
the refugee (disaster victim) post is formulated as bi-objective mixed integer nonlinear
programming with two objective functions, namely minimum cost and minimum time.

3.1. Numerical Studies

To evaluate the effectiveness of the route formation model in humanitarian logistics,
post-disaster demand data will be utilized. Table 1 provides details regarding the disaster
requests, which include 38 shelter posts accommodating a total of 25,516 victims. These
requests originate from four sub-districts and 26 villages. The information in Table 1 serves
as a basis for assessing the performance and efficiency of the route formation model in
addressing the post-disaster demands.
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Table 1. Information about demand points.

Demand Point Latitude Longitude Demand

N1 3.071 98.250 2805
N2 3.137 98.301 715
N3 3.142 98.301 366
N4 3.119 98.270 805
N5 3.114 98.504 210
N6 3.132 98.504 122
N7 3.153 98.145 479
N8 3.135 98.454 190
N9 3.103 98.487 386
N10 3.104 98.488 1107
N11 3.095 98.487 415
N12 3.096 98.489 207
N13 3.117 98.505 81
N14 3.096 98.483 1095
N15 3.122 98.074 736
N16 3.099 98.493 503
N17 3.101 98.491 221
N18 3.099 98.485 650
N19 3.101 98.500 258
N20 3.132 98.504 232
N21 3.105 98.498 805
N22 3.108 98.501 1970
N23 3.112 98.502 1136
N24 3.227 98.540 385
N25 3.191 98.509 243
N26 3.187 98.507 637
N27 3.187 98.507 748
N28 3.196 98.509 173
N29 3.197 98.506 535
N30 3.152 98.461 1549
N31 3.186 98.509 1103
N32 3.293 98.408 516
N33 3.157 98.290 1192
N34 3.200 98.512 767
N35 3.194 98.510 1046
N36 3.133 98.506 311
N37 3.135 98.522 534
N38 3.101 98.485 283

The objective of this study was to develop an allocation model using the k-means
clustering machine learning algorithm, and to establish transportation routes in human-
itarian logistics using the deep learning approach of Artificial Neural Networks (ANN).
The proposed allocation model aims to determine the optimal locations for opening distri-
bution centers in disaster areas, considering uncertain demand points that arise after the
disaster. In addition to identifying the locations of newly opened distribution centers, the
allocation model also classifies demand points based on their assigned distribution centers.
The results of the allocation model are then utilized to create a model for establishing
transportation routes in humanitarian logistics.

Table 1 provides an overview of the distribution of 38 demand points following
the disaster, including their respective latitude (x) and longitude (y) coordinates. The
geographic distribution of these demand points can be observed in Figure 4, which visually
presents their spatial distribution across the affected area.

3.2. Clustering Demand Points and Distribution Center Locations

According to Table 1, there were a total of 38 demand points following the disaster.
The coordinates of these points were collected and used as input for the K-means technique.
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Four initial centroids were randomly selected to represent the distribution of demand
points. These centroids were derived from four shelter posts.

The K-means algorithm was applied to calculate the distance between each query
point and the initial centroid. Based on this distance calculation, each point was assigned
to the cluster that was closest to it. This process was repeated for each new cluster formed.
To refine the clusters further, each existing cluster was divided into two by utilizing the
two most distant demand points within it. This led to the creation of new clusters.

Figure 5 illustrates the results of the grouping process, showcasing the clusters formed
based on the assigned distribution center i. Through 1000 iterations of optimization, the
algorithm determined the optimal location of the distribution center and the grouping of
demand points based on this center. The resulting coordinates of the new cluster centroid
can be found in Table 2.
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Table 2. Optimal distribution center and demand point grouping.

Distribution Center Latitude Longitude Demand Point

DC1 98.232 3.129 N5, N6, N8, N9, N10, N11, N12, N13, N14, N16, N17, N18,
N19, N20, N21, N22, N23, N30, N36, N37, and N38

DC2 98.493 3.103 N1, N2, N3, N4, N7, N15, and N33
DC3 98.492 3.137 N24, N25, N26, N27, N28, N29, N31, N32, N34, and N35

An analysis of the number of clusters (k) was conducted using the elbow method to
determine the optimal number of clusters based on the location data of 38 demand points.
This analysis aims to identify the most suitable number of clusters, which will serve as
potential candidates for opening distribution centers.

The elbow method was employed to determine the optimal number of clusters based
on the location data of 38 demand points. This method helps identify the most suitable
number of clusters for opening distribution centers. Figure 6 depicts the graphical repre-
sentation of the sum of squared distances for different numbers of clusters, highlighting
the points of significant bends or decreases. This point indicates the optimal number of
clusters to be considered for distribution center openings.

In K-means clustering, determining the optimal number of groups K is an important
consideration. The elbow method is a popular approach for assisting in this determination.
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It utilizes the total within sum of squares (WSS) as a criterion for identifying the optimal
K. Figure 7 demonstrates this method, showing a sharp change in the line resembling an
elbow near the minimum value when K = 3. Hence, according to the elbow method, the
optimal K is achieved at K = 3.
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3.3. Location Prediction and Formation of Distribution Routes

The location prediction model in this study utilizes a deep learning approach with
an artificial neural network (ANN) algorithm. The model is trained using data generated
from an emergency facility location model that includes three open distribution centers
and 38 demand points. Its purpose is to predict the location of the assigned distribution
center based on the geographic coordinates of newly opened demand points. By inputting
the coordinates of these new demand points into the model, it can accurately predict the
corresponding location of the assigned distribution center. This predictive capability aids
in efficient and effective decision making for logistics planning in humanitarian operations.

The model training results, as shown in Figure 8, indicate that the model achieves
an impressive accuracy rate of 96.15% after 50 epochs. This high accuracy demonstrates
that the model has effectively learned from the training data and can make accurate
predictions. The accuracy rate gradually increases with each epoch, indicating that the
model continuously improves its internal parameters to enhance its performance. With such
a high accuracy rate of 96.15%, the model holds significant potential for reliable predictions,
and can be effectively applied in various contexts, including location prediction and data
classification tasks.
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3.4. Formation of Distribution Routes

Three distribution centers (DC) i will be determined from the 38 demand points, with
21 demand points in the DC1 cluster, 7 demand points in the DC2 cluster, and 10 demand
points in the DC3 cluster. These outcomes serve as the input layer (X1, . . . , Xn) in the
construction of transportation routes. Using Equations (5) to (6), the hidden layer uses the
distribution of the location of the request point

(
L11, . . . , Lij

)
to produce an output layer;

namely, the route (Y1, . . . , Yn). Table 3 shows the results of using the deep learning model
approach to form distribution routes.

For small networks, off-the-shelf software such as CPLEX can solve the problem.
The problem cannot be solved as the network size grows, and it is demonstrated that
when the number of request points exceeds 11, CPLEX cannot solve the problem on
personal computers due to insufficient memory, demonstrating the need for a metaheuristic
algorithm. To test the deep route planning (DRP) model’s performance in constructing the
proposed route, we extracted a small network from the network shown in Figure 7 and
ran experiments to compare route formation results using permutations and deep learning
models. The network consists of four candidate DCs, 38 demand points (numbered 1
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through 38), and ten vehicles. All tests were performed using Python code on a computer
with an Intel Core i5-8250U 1.60 GHz CPU and 8 GB RAM. Table 4 summarizes the findings.

Table 3. Results of establishing distribution routes with deep learning.

Distribution Center
Number of

Distribution
Centers

Number of
Demand Points Vehicles Route

Combinations Route Selection

DC1 1 21 4 387,467,405 363,626
DC2 1 7 2 3.129 122
DC3 1 10 4 514 50

Total route combinations 387,471,048 363,798

Table 4. Comparison of the number of routes generated.

Distribution
Center

Number of
Distribution

Centers

Number of
Demand

Points

Demand Vehicles
Exact DLRP

Route
Combinations

Route
Combinations

Route
Selection

DC1 1 21 5.225 4 5.10909 × 1019 387,467,405 363,626
DC2 1 7 7.417 2 5040 3129 122
DC3 1 10 5.038 4 3,628,800 514 50

Route formation 5.10909 × 1019 387,471,048 363,798

Table 4 shows that DLRP was able to obtain fewer routes than permutation theory
for all networks in DC. The results of route formation in the transportation network with
3 DC candidates, 38 demand points, and 10 vehicles assigned in the network, are that
the permutation theory produces 5.10909E+19 and the DLRP model produces 387,471,048
combined routes, where route selection will be performed with 363,798 routes. By reducing
the number of route formation results, computation time is reduced, allowing the model to
be used in real-world situations such as when a disaster occurs, requiring quick decisions
and strategies based on large-scale data in humanitarian logistics.

3.5. Optimal Route

A route model for the distribution of relief goods will be included from the route
generated in order to determine the time and cost of distributing the relief goods.

Distribution Centre 1 (DC1) with combination route DC1→ N6→ N20→ N36→
N37→ DC1 with total demand 2.431.

j = 6.9DC1N6 + 3N 6N 20 + 0.28N 20N 36 + 12.6N 36N 37 + 16.1N 37DC1
= 38.88 km

w = 6.9DC1N6 + 3N 6N 20 + 0.28N 20N 36 + 12.6N 36N 37 + 16.1N 37DC1
= 84 min

h = 2000DC1 + (3.5 ∗ (6.9DC1N6 + 3N6N20 + 0.28N20N36 + 12.6N36N37 + 16.1N37DC1) + 500K1DC1)
+ 0route1DC1 + 0route1DC1

= 2000 + 136.08 + 500 + 0 + 0
= 2636.08

Time (w) and cost (h) are generated based on route 1 (DC1→ 6.0→ 20.0→ 36.0→ 37.0
→ DC1) based on the bi-objective model, so the sum weighted method is used to change it
to a single objective model by proposing γ weighting parameters. The model generated
by P1 using Equation (17) is a single-objective mixed integer linear programming problem
that can be solved using existing commercial problem solvers.
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The objective function will be produced by the time parameter (set weighting γ = 1)
and the cost parameter (parameter weighting γ = 0):

Minimum ‡1(route1) = 1 × 54 route1DC1 + (1 − 0) 2645.00 route1DC1
= 54 + 264500
= 2.69900

Table 5 shows a single objective function (P1) based on the route recommendations
generated, with a total of 38 demand points and 3 distribution centers based on the
above calculations.

Table 5. The objective function of the optimal route.

No. of
Routes

Normal Route Forbidden Route

Time (w) Cost (h) ¯
P1

Time (w) Cost (h) ¯
P1

1 54 2645.00 2699.00 54 2645.00 2699.00
2 87 2627.26 2714.26 87 2627.26 2714.26
3 58 2583.30 2641.30 58 2583.30 2641.30
4 49 2643.52 2692.52 49 2643.52 2692.52
5 118 1824.80 1942.80 139 1829.60 1968.60
6 289 1943.80 2232.80 289 1943.80 2232.80
7 43 1629.68 1672.68 43 1629.68 1672.68
8 181 1460.40 1641.40 181 1460.40 1641.40
9 58 1270.20 1328.20 58 1270.20 1328.20

10 32 1627.41 1659.41 32 1627.41 1659.41

Total 969 20,255.37 21,224.37 990 20,260.17 21,250.17

3.6. Optimal Route with Forbidden Route

A forbidden route is one that cannot be passed or taken due to limitations or con-
straints. These constraints or impediments can take the form of policies or regulations
imposed by related parties, geographical or topographical conditions, or other factors that
prevent certain routes from being traversed. Prohibited routes can have an impact on the
efficiency and effectiveness of shipping because they limit the routes that can be chosen
and necessitate special strategies to avoid them in logistics or transportation problems. As
a result, modeling and managing prohibited routes is critical in logistics and transportation
planning and management. Following the completion of route modeling, it is necessary to
check and inspect prohibited routes that must be avoided when delivering disaster relief
goods. Given a set of prohibited routes on route location id 3 to location id 33 (3 ; 33) or
vice versa—location id 33 to location id 33 (33 ; 3)—every node on each route formed will
be checked regarding whether it is passing through a forbidden route or a non-forbidden
route. The results of using the distribution route model with forbidden routes from DC2
with a total of 7 request locations are 122 route combinations; with a set of routes that
cannot be traversed, namely (3 ; 33) and (33 ; 3), the result is 48 prohibited routes and
74 non-prohibited routes.

To find the optimal route, it has to be based on routes that have been declared not to
be a group of non-prohibited routes, namely routes that do not contain the sets {3} and
{33}, namely {3, 33} or {33, 3}, totaling 74 routes. A route model for the distribution of
aid goods will be included from the non-prohibited routes generated to find the time and
cost of distributing aid goods.

DC2 cluster 2 with combination route DC2→ N4→ N33→ N2→ N3→ N1→ DC2
with total demand 2431:



Algorithms 2023, 16, 468 17 of 21

j = 7.1DC2N4 + 6.9N4N33 + 4.5N33N2 + 2N2N3 + 17.4N3N1 + 17N1DC2
= 57.4 km

w = 615DC2N4 + 18N4N33 + 10N33N2 + 25N2N3 + 36N3N1 + 32N1DC2
= 139 min

h = 1000DC2 + (4 ∗ (7.1DC2N4 + 6.9N4N33 + 4.5N33N2 + 2N2N3 + 17.4N3N1 + 17N1DC2))
+600K1DC1 + 0route1DC1 + 0route1DC1

= 1000 + 229.6 + 600 + 0 + 0
= 1829.6

Based on the aforementioned calculations, the objective function aims to minimize
both time and cost, taking into account the prohibited routes, specifically {3} and {33}
(denoted as {3,33} or {33,3}). The results of the objective function, considering both the
normal route and the forbidden route, are presented in Table 5. This table provides insights
into the achieved values for time and cost when comparing the optimal routes generated by
these two models. By analyzing the values in this table, we can assess the effectiveness of
the forbidden route model in minimizing both time and cost while avoiding the specified
forbidden routes.

Table 3 provides a comparison between the normal route model and the forbidden
route model. The difference between the two models is observed in route 5, where the
forbidden route model excludes the path {3,33} or {33,3}, as it is a forbidden path.

Consequently, in the forbidden route model, this particular route is avoided, and an
alternative route is selected that avoids the forbidden path. As a result, there is an increase
in both time (w) and cost (h) for route 5, with a time increase of 0.02167 and a cost increase
of 0.00024. This demonstrates that if a route contains a forbidden or impassable path, there
will be an associated increase in both time and cost.

The optimal route can be visually represented using the graphical depiction shown in
Figures 9–11, illustrating the optimized route for the given problem.
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the forbidden route model in minimizing both time and cost while avoiding the specified 
forbidden routes. 

Table 3 provides a comparison between the normal route model and the forbidden 
route model. The difference between the two models is observed in route 5, where the 
forbidden route model excludes the path {3,33} or {33,3}, as it is a forbidden path. 

Consequently, in the forbidden route model, this particular route is avoided, and an 
alternative route is selected that avoids the forbidden path. As a result, there is an increase 
in both time (𝑤) and cost (ℎ) for route 5, with a time increase of 0.02167 and a cost in-
crease of 0.00024. This demonstrates that if a route contains a forbidden or impassable 
path, there will be an associated increase in both time and cost. 

The optimal route can be visually represented using the graphical depiction shown 
in Figures 9–11, illustrating the optimized route for the given problem. 
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The route for the distribution of disaster relief goods, as depicted in Figures 9–11,
consists of three distribution centers (DCs) and 38 demand points. This arrangement leads
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to the identification of ten optimal routes, which serve as a reference for vehicles tasked
with distributing relief goods to the 38 demand point locations. The top ten optimal routes
are as follows:

Route 1: DC1→ 19→ 13→ 5→ 23→ 22→ 21→ DC1
Route 2: DC1→ 6→ 36→ 20→ 37→ DC1
Route 3: DC1→ 30→ 8→ DC1
Route 4: DC1→ 9→ 10→ 12→ 11→ 18→ 38→ 16→ 14→ 17→ DC1
Route 5: DC2→ 3→ 33→ 2→ 4→ 10→ DC2
Route 6: DC2→ 7→ 15→ DC2
Route 7: DC3→ 34→ 35→ 28→ 29→ DC3
Route 8: DC3→ 32→ DC3
Route 9: DC3→ 24→ DC3
Route 10: DC3→ 31→ 25→ 27→ 26→ DC3

4. Conclusions

In conclusion, this paper introduces the deep location routing problem (DLRP) model
as an innovation in route planning within the context of disaster logistics. The DLRP model
is specifically designed to address the challenges associated with the location routing
problem (LRP), which is a key issue in distributing humanitarian aid after disasters. DLRP
utilizes the K-means algorithm to determine optimal facility locations, which is a critical
step in ensuring efficient distribution centers closely linked to post-disaster rescue and
recovery efforts. Furthermore, DLRP harnesses artificial intelligence in the form of artificial
neural networks (ANN) within the deep learning model for route prediction and planning.
This allows for responsive and adaptive route planning, even in uncertain or changing
conditions. One of the major advantages of the DLRP model is its ability to efficiently tackle
NP-hard problems, yielding optimal solutions with polynomial time complexity. This
means that disaster relief distribution can be carried out more effectively and responsively,
with more efficient resource utilization. In the context of disaster logistics, where every
second is precious, the DLRP model holds significant potential to enhance preparedness
and disaster response capabilities. With the existence of this model, disaster logistics
management can become more efficient, timely, and adaptive, thereby helping to reduce
the impact on human suffering and property loss in emergency situations. As a result, this
research opens the door to further improvements in disaster management and humanitarian
aid distribution worldwide.

Further research in this topic could explore several areas. One area of focus could
be the development of more complex and realistic models that consider a wider range of
variables and constraints that may arise in disaster logistics management. Additionally,
further research could investigate the practical implementation of the deep location rout-
ing problem (DLRP) model in real-world scenarios and assess its impact on operational
efficiency and responsiveness in actual disaster situations. Furthermore, research into the
integration of emerging technologies such as the Internet of Things (IoT) and big data
processing in the context of disaster logistics management could also be an intriguing area
to explore. By continuing to emphasize research and development in this field, we can
enhance our preparedness and response to disasters and reduce their impact on affected
communities.
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