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Abstract: Finding the cluster structure is essential for analyzing self-organized networking structures,
such as social networks. In such problems, a wide variety of distance measures can be used. Common
clustering methods often require the number of clusters to be explicitly indicated before starting the
process of clustering. A preliminary step to clustering is deciding, firstly, whether the data contain
any clusters and, secondly, how many clusters the dataset contains. To highlight the internal structure
of data, several methods for visual assessment of clustering tendency (VAT family of methods) have
been developed. The vast majority of these methods use the Euclidean distance or cosine similarity
measure. In our study, we modified the VAT and iVAT algorithms for visual assessment of the
clustering tendency with a wide variety of distance measures. We compared the results of our
algorithms obtained from both samples from repositories and data from applied problems.

Keywords: pre-clustering problem; cluster tendency; distance measure; VAT; iVAT

1. Introduction

The identification of the cluster structure in data is useful for discovering the depen-
dencies between the sample objects. Dividing the sample into groups of similar objects
simplifies further data processing and decision making, and enables us to apply a separate
analysis method to each cluster. A decrease in the number of groups can help us to select the
most common patterns in the data. Finding the cluster structure is essential for analyzing
self-organized networking structures, such as social networks. In such problems, different
measures of distance may be applied.

For evaluating the similarity between objects, we can use the internal and external
similarity measures [1]. Measures of internal similarity are based on the proximity of
objects within a group and their distance from objects in other groups. Internal similarity
measures rely on information obtained only from a dataset. External similarity measures,
on the other hand, are based on comparing clustering results with reference results, usu-
ally created with the assistance of experts. In this paper, we focus on internal similarity
measures. The modern literature provides a wide range of evaluation criteria, such as the
Calinski–Harabasz index [2], Dunn index, Davies–Bouldin index [3], silhouette index [4,5],
and others.

In the work of Bezdek and Hathaway [6], the authors raised an important question:
“Do clusters exist?” Clustering algorithms divide data points into groups according to some
criterion so that objects from one group are more similar to each other than to objects from
other groups. Clustering algorithms are usually applied in an unsupervised way when
vectors of object parameter values or a matrix of differences between objects are used as
initial data.

In unsupervised learning, clustering methods form groups of objects, even if the
analyzed dataset is a completely random structure. This is one of the most important
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problems of clustering. Therefore, the first validation task that is recommended to be
performed before clustering is to assess the general propensity of the data to cluster
(clustering tendency). Before evaluating the performance of clustering, we must make
sure that the dataset we are working with tends to cluster and does not contain uniformly
distributed points (objects). If the data do not tend to cluster, then the groups identified by
any modern clustering algorithm may be meaningless.

The term “clustering tendency” is introduced in [7]. Using it, we can estimate the
propensity of the data points to clustering.

Some methods for assessing clustering propensity are discussed in [7,8]. They can be
roughly divided into following categories: statistical and visual. In [9], the authors noted
that “A clustering index should be an indicator of the degree of non-uniformity of the
distribution of the objects. It should be used both as an automatic warning or, better, as
a quantitative measure of the quality of the dataset, original or extracted”. The Hopkins
clustering index [10,11] has these properties [9]. It is based on the null hypothesis H0:
“The points in a dataset are uniformly distributed in multidimensional space”. In a known
dataset, X1, . . . , XN, in a M-dimensional space, B real points are randomly selected and
artificial points are added using a distribution with the standard deviation of known data
points. For each real and artificial point, the Euclidean distance to the nearest point is
determined. The distance between a real point to its nearest point db is compared with the
distance between an artificial point to nearest real point Da. If there is a clustering tendency,
then db < Da [12]. The found minimal distances are summarized for all points and used
for the Hopkins clustering index, which is calculated as follows:

Hind =
∑B

a=1 Da

∑B
b=1 db + ∑B

a=1 Da
,

where db =
√
(Xb − Xk)

2 is the Euclidean distance between each of these real points b

and their nearest real neighbor k; Da =
√
(Xa − Xk)

2 is the Euclidean distance between
these artificial points a and the nearest real point k, Hind ∈ [0, 1]. If Hind = 0.5, then the
data points are scattered randomly and it is impossible to extract the cluster structure. If
Hind = 0, then the data are homogeneous and there are no clusters, so we can say that all
the data make up one big cluster. Approximation of Hind to 1 means that a cluster structure
can be identified in the data with a high degree of probability; if Hind = 1, then this is the
maximum degree of clustering. To obtain a stable Hopkins clustering index value (mean
value), multiple calculations are carried out with new random samples.

In [9,12], the authors presented the modified Hopkins clustering index. This index is
calculated as follows:

H∗ind = lim
B→∞

(
∑B

a=1
Da
B

)
−
(

∑N
n=1 d dn

N

)
(

∑B
a=1

Da
B

)
+
(

∑N
n=1 d dn

N

) ,

where dn =
√
(Xn − Xk)

2 is the Euclidean distance between these points n and their real
nearest point k, i.e., dn is computed for all the N points, H∗ind ∈ [0, 1]. If H∗ind = 0, then it is
impossible to distinguish a cluster structure in the data points, if H∗ind = 1, then this is the
maximum degree of clustering [9].

In [9], the minimum spanning tree (MST) clustering index is proposed. The clustering
algorithms associated with MST determine whether a point belongs to a cluster based on
connectivity. The Prim’s algorithm [13] and the Kruskal algorithm [14] are used to calculate
the MST. The MST clustering index is defined as follows [9]:

IndexMST = ∑
d>dcrit

d
dcrit
− 1,
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where dcrit is the critical distance value and d is the tree distance. If IndexMST = 0, then
we accept the null hypothesis H0, otherwise, the dataset is not homogeneous. The MST
clustering index can be used to find groups, to measure the degree of heterogeneity of data
points, and to detect the outliers.

The authors [9] noted that the MST clustering index is sensitive to the empty space
outside the multivariate limits of data points. In the case when there are areas of points in
the dataset that do not have clear boundaries, the IndexMST and H∗ind indexes are unable to
determine the clustering tendency. However, all of these methods estimate only tendency
to clustering, but not the number of clusters.

For fuzzy clustering approach, there are several methods for estimating cluster validity.
For example, Xie-Beni’s separation index (XBI) [15], which expresses the inverse ratio
between the total variation and N times the minimum separation of the clusters:

XBI =
1(

∑K
k=1 ∑N

i=1 µik‖xi−vk‖2

N·d2
min

) ,

where dmin is the minimum distance of all distances between two clusters, K is the number
of clusters, and µik is calculated as follows:

µik =

{
1, i f ‖xi − uk‖ ≤ ‖xi − uj‖,

0, otherwise
1 ≤ k, j ≤ K, j 6= k, 1 ≤ i ≤ N.

In [6], the authors presented a tool, named VAT (visual assessment of tendency), for
visual assessment of the clustering tendency. At the first step, VAT algorithm reorders
the matrix of differences. At the second step, it generates a reordered dissimilarity image
(RDI)—a cluster heat map. In a cluster heat map, dark areas located on the main diagonal
enable us to determine the possible number of groups [16]. The VAT can be used for any
numerical datasets. The VAT algorithm is similar to Prim’s algorithm [13] for determining
an MST of a weighted graph. The authors of the VAT algorithm noted the two following
differences. Firstly, the VAT algorithm does not require their MST representation, only the
order in which vertices are added as the graph grows is important. Secondly, in the VAT
algorithm, the choice of the initial vertex depends on the maximum weight of the edge. In
cases of a complex data structure, the efficiency of the VAT algorithm decreases quickly.
However, VAT works well for datasets with dimension N ≤ 500. For datasets with higher
dimensions, the time complexity of the algorithm (O(N2)) increases.

In [17], the authors proposed an improved VAT (iVAT) algorithm. The iVAT images
more clearly showed the number of groups, as well as their sizes. As the authors assure
in [17]: “Based on the iVAT image, the cluster structure in the data can be reliably estimated
by visual inspection”. In addition, the authors proposed automated VAT (aVAT). The
article [18] describes a method that handles asymmetric dissimilarity data (asymmetric
iVAT (asiVAT)). In [19], the authors presented an approach for finding the number of groups
by traversing the MST backwards by cutting (k – 1) the largest edge in the MST.

VAT and iVAT have two restrictions:

1) RDI may not be representative if the cluster structure in the data points is complex.
2) The quality of the RDI in VAT is significantly degraded due to the presence of outliers.

The revised visual assessment of cluster tendency (reVAT) algorithm [20], using a
quasi-ordering of the N points, reduces the time complexity to O(n). The reVAT does not
require reordering the matrix of differences. The reVAT plots a set of c profile graphs of
specific rows of an ordered difference matrix. An ensemble of a set of c profile graphs
is used to visually determine the number of groups [20]. However, when the number of
clusters is large and there are areas of points that do not have clear boundaries, a visual
assessment of the number of clusters is difficult with the use of reVAT.

Research [21] has presented a visual assessment of the clustering trend for large and
relational datasets (bigVAT). This method uses the quasi-ordering from reVAT and builds
an image similar to that built by VAT. The bigVAT solves the problems of the VAT and
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reVAT methods [20]. However, the image it builds may not be as visual as the image
ordered by VAT.

In [22], the authors presented the scalable VAT (sVAT) algorithm. To create an image,
the sVAT algorithm generates a representative sample containing a structure of clusters
similar to that of the original dataset. For this sample, sVAT generates a VAT-ordered image
considering the following parameters: an overpriced grade of the actual number of clusters
(k) and the size of representative sample (n) from the full set of N points. The sample is
formed as follows: a set of k distinguished points is selected, then additional data are added
next to each of the k objects. In addition, [23] described the method for visual assessment of
the clustering tendency for rectangular matrices of differences (coVAT).

The cluster count extraction (CCE) algorithm [24] creates a visual image using the
VAT algorithm. This algorithm further processes the image to improve it for automatic
verification, and extracts the number of clusters from the improved image. The article [25]
demonstrates the dark block extraction (DBE) method. This method generates an RDI (VAT
image) and then segments the desired areas into RDI and converts the filtered image to a
distance transform image. The transformed image is superimposed on the RDI diagonal and
the potential number of groups is determined. The CCE and DBE algorithms automatically
determine the number of groups in unlabeled data points.

Paper [26] presents the CLODD (cluster in ordered difference data) method. In this
algorithm, to identify potential clusters, an objective function is determined that com-
bines contrast and edginess measures and is optimized using particle swarm optimization
(PSO) [27]. With the help of the objective function, the block structure is recognized in the
reordered dissimilarity matrix. The CLODD algorithm is used both to search for clusters in
unlabeled data and to represent the validity index of these clusters.

The effectiveness of the considered methods based on the SDS largely depends on
the quality of the SDS images. SDS is effective only for defining compact clearly marked
groups. However, there are datasets that have a very complex structure of clusters.

In [28], the authors presented a novel silhouette-based clustering propensity score
(SACT) algorithm for determining the potential number of clusters and their centroids
in applications for hyperspectral image analysis. The SACT algorithm was inspired by
the VAT algorithm. The SACT algorithm builds a weighted matrix and a weighted graph
using the Euclidean distance measure, then, a minimum spanning tree is constructed
using Prim’s algorithm. The original minimum spanning tree is then hashed into branches
corresponding to data clusters. Finally, the number of potential clusters is determined
using the silhouette index.

Clustering datasets with different cluster density is a difficult problem. The VAT and
iVAT algorithms use the difference between intra-cluster and inter-cluster distances to
discover the data structure. These algorithms do not work well for data points consisting of
groups with different levels of density. In [29], the authors introduced the locally scaled VAT
(LS-VAT) algorithm and locally scaled iVAT (LS-iVAT) algorithm. In the LS-VAT algorithm,
before generating the MST, the distance matrix is converted into an adjacency matrix using
local scaling [30]. The algorithm builds a similarity graph for a dataset; for this, instead of
connecting the data point that has the smallest distance from the current tree, it connects
the data point that has the highest adjacency to the existing tree. In case a set of points with
different inter-cluster densities is used, the LS-iVAT algorithm must be used to provide
higher quality iVAT images. LS-VAT and LS-iVAT outperform algorithms [6,16,31,32] in
terms of clustering quality.

In [33], the authors presented a semi-supervised constraint-based approach for the
iVAT (coniVAT) algorithm. To improve VAT/iVAT for complex data points, coniVAT
uses partial background knowledge in the form of constraints. ConiVAT uses the input
constraints to learn a basic similarity measure, builds a minimum transitive matrix of
differences, and then applies VAT to it.
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For big datasets, algorithms ClusiVAT [34] and S-MVCS-VAT [35] were developed.
In [36], the spectral technique was applied to ClusiVAT and S-MVCS-VAT algorithms. An
algorithm based on VAT for streaming data processing was presented in [37].

Kumar and Bezdek [15] presented a detailed and systematic review of a variety of
VAT and iVAT algorithms and models. This article describes 25 algorithms.

Thus, VAT/iVAT algorithms are methods for visually extracting some information
about the structure of clusters from the initial dataset before applying any clustering
algorithm. They do not change the initial dataset, but rearrange the objects in such a way
as to emphasize the possible structure of the cluster.

Most of the considered algorithms use the Euclidean distance measure. However,
it is known that, depending on the shape of the clusters, different distance measures are
better suited for different datasets. Despite the fact that there are many distance measures
(similarity measures) in the literature [16,18,38], it is quite difficult to choose the right one
for a specific dataset. The choice of the distance measure that is most appropriate in each
specific case allows obtaining clearer RDIs and, accordingly, obtaining a more valid result
of pre-clustering. In our work, we propose a modification of VAT and iVAT algorithms
convenient for using other distance measures than Euclidean. We discover the behavior of
modified algorithms on the applied dataset and datasets from the repositories.

Organization of the paper is as follows. In Section 2, we give a description of the
distance measures used and algorithms VAT and iVAT. In Section 3, we present the results
of computational experiments both on the repository and applied data. In Section 4, we
conclude the essence of the work.

2. Materials and Methods

Consider a set of points where each point is represented as a characteristic vector of
dimension p, xi ∈ Rp, X = {x1,..., xn} ∈ Rp. The second way to represent the points is the
dissimilarity matrix D = [dij] (1), of n × n dimension, where dij is difference between the
points I and j, calculated using a distance measure.

The dissimilarity matrix has several properties:

1. Symmetry about the diagonal. The dissimilarity matrix is a square symmetrical n × n
matrix with dij element equal to the value of a chosen measure of distinction between
the ith and jth objects dij = dji.

2. The distance values in the matrix are always non-negative dij ≥ 0.
3. Identity of indiscernibles. In the matrix, the distinction between an object and itself is

set to zero (dii is diagonal element, where dii = 0).
4. The triangle inequality takes the form dij + djk ≥ dik ∀ i,j,k.

D =



0
...

di1
...

dn1

· · ·
· · ·
· · ·
· · ·
· · ·

d1j
...

0
...

dnj

· · ·
· · ·
· · ·
· · ·
· · ·

d1n
...

din
...
0

, (1)

where dij is the difference between the ith and jth points.
The quality of the cluster solution also depends on the chosen distance measure. In this

work, we used some distance measures (the Euclidean distance, the squared Euclidean dis-
tance, the Manhattan distance, the Chebyshev distance) based on the Minkowski function
(lp-norm) [39–41]:

d(x, y) =

(
M

∑
i=1
|xi − yi|p

) 1
p

, (2)
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where x and y are input vectors of dimension M. For parameter p, the following statement
is true (proof): for p ≥ 1 and p = ∞, the distance is a metric; for p < 1, the distance is not a
metric.

For p = 2, the function takes the form of Euclidean distance (l2 norm):

d(x, y) =

√√√√ M

∑
i=1

(xi − yi)
2. (3)

The Euclidean distance is the most understandable and interpretable measure of
the difference between points represented by feature vectors in multidimensional space.
Therefore, the Euclidean distance and squared Euclidean distance are widely used for data
analysis. The squared Euclidean distance is defined as:

d(x, y) =
M

∑
i=1

(xi − yi)
2. (4)

We also used the standardized Euclidean distance, calculated as follows:

d(x, y) =

√√√√ M

∑
i=1

(
xi − yi

si

)2
(5)

where si is standard deviation of the ith characteristic of the input data vectors.
For p = 1, we obtained the Manhattan distance (l1 -norm), which is the second most

popular distance:

d(x, y) =
M

∑
i=1
|xi − yi|. (6)

For p = ∞, the function calculates the Chebyshev distance [42], also called the chess-
board distance:

d(x, y) = max|xi − yi|. (7)

Most modern papers are devoted to problems that use the Euclidean or Manhattan
distances.

There are other ways to calculate distances that do not depend on the parameter p and
are not determined by the Minkowski function. For example, we used the Mahalanobis
distance [43], the correlation-based distance (the correlation distance) [44], the cosine
similarity [45], the Bray–Curtis dissimilarity [46], the Canberra distance [42].

Mahalanobis distance is defined as

d(x, y) =
√

∑M
i=1(xi − yi)

TC−1(xi − yi), (8)

where C is the covariance matrix calculated as

C = cov(x, y) = µ[(x− µ(x))(y− µ(y))], (9)

where µ is the mean value.
The correlation distance is defined by:

d(x, y) = 1− (x− x)·(y− y)
‖(x− x)‖2(‖y− y)‖2

, (10)

where x and y are the means of the elements of x and y, respectively, and ‖(x− x)‖2, ‖(y− y)‖2
means norm, which is, by default, a second-order (Euclidean) norm.

The measure of similarity can be estimated through the cosine of the angle between
two vectors:

d(x, y) = 1− x·y
‖x‖2‖y‖2

, (11)

where ‖x‖2, ‖y‖2 means norm, which is, by default, a second order (Euclidean) norm.
Bray–Curtis dissimilarity [46] is defined by:
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d(x, y) =
∑M

i=1|xi − yi|
∑M

i=1|xi + yi|
. (12)

Canberra distance [42] is given as follows:

d(x, y) = ∑M
i=1
|xi − yi|
|xi| − |yi|

. (13)

VAT [6,16] and iVAT algorithms [47] are tools for visual assessment of the tendency
to clustering of a set of points by reordering the dissimilarity matrix such that possible
clusters appear as dark boxes diagonally in the cluster heat map. This cluster heat map
can be used to visually estimate the number of clusters in a dataset [33]. VAT reordering is
related with clusters created using single linker hierarchical clustering (SL), which makes it
possible to extract SL-aligned groups from images of VAT (iVAT) [48].

The VAT algorithm is presented below (Algorithm 1) [6,15].

Algorithm 1. Visual assessment of the clustering tendency (VAT).

1. Required: A square n × n dissimilarity matrix D = [dij] satisfying: dij ≥ 0, dij = dji ∀ i,j, dii =
0 ∀ i.

2. Set K = {1, . . . , n}, I = J = ∅
3. Select (i, j) ∈ arg max

k∈K, q∈K
dkq

4. Set Pi = i, I = {i}, J = K − {i}
5. for r = 2 to n do
6. Select (i, j) ∈ arg min

k∈I, q∈J
dkq

7. Set Pt = j, Replace I = I
⋃

{j}, J = J − {j}, dt−1 = dij

8. endfor
9. for p = 1 to n do
10. for q = 1 to n do
11. d*p,q = dPp,Pq

12. endfor
13. endfor
14. Generate VAT image of D*: I (D*)

Output: A square n × n reordered dissimilarity matrix D∗ =
[
d∗ij
]
, I (A*), P is reordered indices of

matrix A.

In [16], the authors proposed an improved VAT (iVAT). This algorithm transforms the
dissimilarity matrix with the idea, which is the following: when two distant objects are
connected by a chain of other objects closely located, to reflect this connection, the distance
dij between them has to be reduced. According to this correction, two objects, if connected
by a set of successive objects forming dense regions, should be considered coming from
one cluster [15]. The iVAT algorithm is presented in Algorithm 2 [15,16].

Algorithm 2. Improved visual assessment of the clustering tendency (iVAT).

1. Required: A square n × n reordered dissimilarity matrix D∗ =
[
d∗ij
]

2. for r = 2 to n do
3. j = arg min

1≤k≤r−1
d∗rk

4. A′∗rj = A∗rj

5. c = {1, . . . , r− 1} − {j}
6. d′∗rc = max

{
d∗rj, d′∗jc

}
7. endfor
8. d′∗rc = d′∗cr
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In this research, we modified the VAT and iVAT algorithms in such a way to be able
to calculate many possible distance measures besides the Euclidean (DVAT or DiVAT, see
Algorithm 3).

Algorithm 3. DVAT (DiVAT) algorithm.

1. Required: Set of initial data vectors X1, . . . , Xn, where n is the number of points.
2. Select distance measure.
3. Calculate dissimilarity matrix D = [dij].
4. Run VAT (iVAT) algorithms.

Output: A square n × n reordered dissimilarity matrix D∗ =
[
d∗ij
]
, I (A*), P is reordered indices

of matrix A.

3. Results of Computational Experiment

Computational experiment results of the visual assessment of the clustering tendency
based on the VAT and iVAT algorithms with variations of distance measures are pre-
sented. The considered distance measures included: Euclidean distance, squared Euclidean
distance, standardized Euclidean distance, Manhattan distance, Mahalanobis distance,
Bray–Curtis dissimilarity, Canberra distance, Chebyshev distance, distance correlation,
cosine similarity.

For the experiments, we used synthetic (artificial) datasets (with cluster labels) [49],
as well as from samples of industrial products [50,51] and from a set of some taxation
characteristics of forest stands [52]:

a) Long2 is an artificial dataset that contains the collection of two clusters (1000 data
points, 2 dimensions) (Figure 1a).

b) Sizes1 is an artificial dataset contains the collection of four clusters (1000 data points,
2 dimensions) (Figure 1b).

c) Longsquare is an artificial dataset contains the collection of six clusters (1000 data
points, 2 dimensions) (Figure 1c).

d) Microchips are two sets of results of test effects on electrical and radio products for
monitoring the current–voltage characteristics of input and output circuits of micro-
circuits: Microchips 140UD25AS1VK (46 data points, 9 dimensions, 2 clusters) and
1526IE10_002 (3987 data points, 67 dimensions, 4 clusters) [50,51]. For microchip
1526IE10_002, we used the following batch combinations: mixed lots from four
(62 parameters), three (41 parameters), and two batches (41 parameters).

e) Siberian Forest Compartments Dataset [52] is a set of some taxation characteristics
of forest stands, on which outbreaks of mass reproduction of the Siberian silk-
worms were recorded at a certain time (15,523 data points, 150 dimensions). The
Siberian Forest Compartments Dataset contains three forestry strands: Irbey forestry
(2330 data points), Chunsky forestry (3271 data points), and Lower Yenisei forestry
(3619 data points).

In our experiments, the following test system was used: Intel (R) Core (TM) i5-8250U
CPU, 16 GB RAM, while Python was also used to implement the algorithms.

3.1. Synthetic Datasets

The computational experiment showed that the resulting iVAT images more clearly
showed the number of clusters than the resulting VAT images (Appendix A, Figure A1) for
Long2. In addition, it can be noted that the Mahalanobis distance and squared Euclidean
distance had an advantage over the other distances (Appendix A, Figure A1). The VAT and
iVAT algorithms with Canberra distance did not cope with the task. The VAT and iVAT
images showed four clusters. The VAT image with Bray–Curtis dissimilarity and cosine
similarity showed no clusters (Appendix A, Figure A1).



Algorithms 2023, 16, 5 9 of 22

For the Sizes1 dataset, the computational experiment showed that the resulting iVAT
images more clearly showed the number of clusters than the resulting VAT images (Ap-
pendix A, Figure A2). In addition, the Canberra distance and cosine similarity had an
advantage over the other distances (Appendix A, Figure A2). The VAT and iVAT algorithms
with distance correlation did not cope with the task. The VAT and iVAT images showed two
clusters. The VAT image with Bray–Curtis dissimilarity showed no clusters (Appendix A,
Figure A2).
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dered indices of matrix A. 

3. Results of Computational Experiment 
Computational experiment results of the visual assessment of the clustering ten-

dency based on the VAT and iVAT algorithms with variations of distance measures are 
presented. The considered distance measures included: Euclidean distance, squared Eu-
clidean distance, standardized Euclidean distance, Manhattan distance, Mahalanobis 
distance, Bray–Curtis dissimilarity, Canberra distance, Chebyshev distance, distance 
correlation, cosine similarity. 

For the experiments, we used synthetic (artificial) datasets (with cluster labels) [49], 
as well as from samples of industrial products [50,51] and from a set of some taxation 
characteristics of forest stands [52]: 
a) Long2 is an artificial dataset that contains the collection of two clusters (1000 data 

points, 2 dimensions) (Figure 1a). 
b) Sizes1 is an artificial dataset contains the collection of four clusters (1000 data points, 

2 dimensions) (Figure 1b). 
c) Longsquare is an artificial dataset contains the collection of six clusters (1000 data 

points, 2 dimensions) (Figure 1c). 
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Figure 1. (a) Synthetic dataset Long2; (b) synthetic dataset Sizes1; (c) synthetic dataset Longsquare.

For Longsquare, the computational experiment showed that the resulting iVAT images
more clearly showed the number of clusters than the resulting VAT images (Appendix A,
Figure A3). In addition, the Mahalanobis distance and squared Euclidean distance had an
advantage over the other distances (Appendix A, Figure A3). The VAT and iVAT algorithms
with Bray–Curtis dissimilarity, distance correlation, Canberra distance, and cosine similarity
did not cope with the task. The VAT and iVAT images with distance correlation and iVAT
images with cosine similarity showed two clusters, while the VAT image with Bray–Curtis
dissimilarity showed no clusters (Appendix A, Figure A3).

3.2. Microchips Datasets

For Microchips 140UD25AS1VK, the computational experiment showed that the
resulting iVAT images more clearly showed the number of clusters than the resulting VAT
images. The VAT and iVAT algorithms with Mahalanobis distance did not cope with the
task. The VAT and iVAT images with Mahalanobis distance did not show actual clusters.
The iVAT image with distance correlation and cosine similarity showed better performance
(Appendix A, Figure A4).

For Microchips 1526IE10_002, four-batch mixed lot, the computational experiment
showed that the VAT and iVAT algorithms with Mahalanobis distance, Chebyshev distance,
and iVAT with squared Euclidean distance did not cope with the task. The VAT and iVAT
images with Mahalanobis distance and the iVAT with squared Euclidean distance showed
no clusters (Appendix A, Figure A5).

For Microchips 1526IE10_002, three-batch mixed lot, the computational experiment
showed that the resulting iVAT images more clearly showed the number of clusters than
the resulting VAT images (Appendix A, Figure A6). The cosine similarity and squared
Euclidean distance had an advantage over the other distances (Appendix A, Figure A6).
The VAT and iVAT algorithms with Mahalanobis distance and Chebyshev distance did
not cope with the task. The VAT and iVAT images with Mahalanobis showed no clusters
(Appendix A, Figure A6).

For Microchips 1526IE10_002, two-batch mixed lot, the computational experiment
showed that the resulting iVAT images more clearly showed the number of clusters than
the resulting VAT images (Appendix A, Figure A7). The VAT and iVAT algorithms with
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Mahalanobis distance and Chebyshev distance did not cope with the task. The VAT and
iVAT images with Mahalanobis showed no clusters (Appendix A, Figure A7).

3.3. Siberian Forest Compartments Datasets

For Chunsky forestry, the computational experiment showed that the resulting iVAT
images more clearly showed the number of clusters than the resulting VAT images. How-
ever, the Euclidean distance and squared Euclidean distance had an advantage over the
other distances (Appendix A, Figure A8).

For Irbey forestry, the computational experiment showed that the resulting iVAT
images more clearly showed the number of clusters than the resulting VAT images. The
Canberra distance, distance correlation, and cosine similarity had an advantage over the
other distances (Appendix A, Figure A9).

For Lower Yenisei forestry, computational experiment showed that the resulting
iVAT images more clearly showed the number of clusters than the resulting VAT images
(Appendix A, Figure A10).

4. Discussion

Before applying any clustering method, it is important to evaluate cluster validity,
i.e., to assess whether the datasets contain meaningful clusters. If clusters exist, then the
assessment of the cluster tendency is a good tool to get prior knowledge of the number of
clusters in problems such as k-means, where calculating the k value is a challenge.

Despite the fact that there are many similarity measures that have been considered in
the literature, it is quite difficult to choose the right one for a specific dataset. Due to the
multidimensionality of the data, the cluster structure is not visible explicitly, so the choice
of the most suitable distance measure makes it possible to clearly identify this structure.
In this research, we modified the VAT and iVAT algorithms in such a way to be able to
calculate many possible distance measures besides the Euclidean. The computational
experiments showed that using different similarity measures in VAT and iVAT algorithms
allows the expert to more confidently estimate the clustering tendency of the dataset.

The computational experiments showed that cluster heat maps produced by the iVAT
algorithm in all cases had higher contrast than produced by the VAT algorithm and, hence,
were more clear for interpretation.

Our studies have shown that distance measure significantly affects the visual tendency
of clustering. In most cases, the best results were obtained with squared Euclidean distance
unlike Euclidean distance, which is usually used by default in the VAT family of algorithms.
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