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Abstract: The purpose of the current study is to propose a novel meta-heuristic image analysis
approach using multi-objective optimization, named ‘Pixel-wise k-Immediate Neighbors’ to identify
pores and fractures (both natural and induced, even in the micro-level) in the wells of a hydrocarbon
reservoir, which presents better identification accuracy in the presence of the grayscale sample rock
images. Pores and fractures imaging is currently being used extensively to predict the amount
of petroleum under adequate trap conditions in the oil and gas industry. These properties have
tremendous applications in contaminant transport, radioactive waste storage in the bedrock, and
CO2 storage. A few strategies to automatically identify the pores and fractures from the images can
be found in the contemporary literature. Several researchers employed classification technique using
support vector machines (SVMs), whereas a few of them adopted deep learning systems. However, in
these cases, the reported accuracy was not satisfactory in the presence of grayscale, low quality (poor
resolution and chrominance), and irregular geometric-shaped images. The classification accuracy of
the proposed multi-objective method outperformed the most influential contemporary approaches
using deep learning systems, although with a few restrictions, which have been articulated later in
the current work.

Keywords: deep CNN; clustering; image processing; micro-pores; micro-fractures; pixel
intensity; porosity

1. Introduction

Carbonate rock reservoirs are believed to contain nearly 50% of the world’s hydrocar-
bons. The carbonate rocks are dominated by a few carbonate minerals (mainly calcite and
dolomite) and contain additional traces of minerals such as silica, detrital grains, phosphate
and glauconite. On the other hand, carbonate rocks may contain organic residues and some
cementing material. Petrography helps identify grains, leading to the detailed classifica-
tion of rocks, the determination of the types of deposition and the indicators of historical
post-depositional alteration (diagenesis). It also helps determine the timing of porosity
development. Comparing these grains with photographs allows us to readily identify the
essential properties/features that can potentially predict the amount of petroleum under
adequate trap conditions in the oil and gas industry. In this study, the pore/fracture space
component using multi-objective classification is based on microscopic studies, particularly
of Malaysian carbonate rocks. Here we focus on the image analysis of rock image samples
to automatically reach a conclusion on pores or fractures contained in the image sample
instead of illustrating the quantitative petrophysical method. Hence, we will not work on
overall petrography analysis but only its segment related to image analysis.
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Porosity is widely considered a fundamental parameter for reservoir characterisa-
tion and is used in many hydrogeological and geophysical calculations. For crystalline
rock, it can be calculated as the sum of micro-fractures, irregular micro-pores and fluid
inclusions [1]. Porosity also determines the storage capacity of a specific reservoir. To
our knowledge, most hydrocarbon reservoirs belong to sedimentary rock formations in
which porosity values vary between 10% and 40% for sandstones and 5% and 25% for
carbonates [2]. The micro-pores are spherical or nearly spherical [3]. In contrast, fractures
are assumed to maintain near linearity (i.e. their length is longer than their width). Total
porosity can be divided into two types: connected (characterised using flow and diffusion)
and unconnected (because of the presence of isolated pores) [1]. Unconnected spherical or
near-spherical pores along with micro-porosity can effectively change the elastic properties
of the rock frame, making porosity an important parameter for reservoir characterisation in
terms of estimating elastic moduli [3].

The current study aims to propose a novel meta-heuristic image analysis approach
using the multi-objective algorithm approach to alleviate the previous difficulty in iden-
tifying pores and fractures (natural and induced, even at the micro-level) in the wells of
a hydrocarbon reservoir. Furthermore, we present better identification accuracy in the
grayscale sample rock images in this work.

The high-level idea of the proposed methodology is multi-objective, i.e. the primary
objective is to find the neighbouring dark pixels of every discovered dark pixel within a specific
region and create a bag of contiguous pixels. A secondary objective is to classify the shapes
obtained from the pixel bag into pores or fractures based on a certain chosen hyper-parameter.
This methodology was compared with the CNN (convolution neural network)-based [4,5]
approach, which is considered a state-of-the-art framework for image classification. CNNs
comprise pixel-to-pixel and end-to-end architectures, which use a large image dataset with
features and tuneable neural network parameters. Our proposed method can obtain more
accurate results than a deep learning CNN, which thus far has been considered the most
efficient method for identifying pores and fractures in hydrocarbon reservoirs.

1.1. History of Existing Research Work

Researchers have undertaken these challenges and have tried to deploy various in-
telligent techniques, such as deep learning approaches. In an early study, Lucia et al. [6]
developed a carbonate rock porosity detection method that uses the visual inspection
of a sample rock as an input. This method [6] relies on the expertise of a scientist for
porosity detection. In a ground-breaking work, Ehrlich et al. [7] also developed an image
analysis technique that considers colour images (RGB) to detect micro-pores and fractures,
although we are unconvinced of its efficacy in the presence of grayscale images. Similarly,
the work of Funk et al. [8] describes sample rock pore size distributions by analysing
the petrophysical properties derived from a rock’s colour images. Van den Berg et al. [9]
showcased an image-processing method for porosity detection that uses high-quality im-
age inputs. The pore and fracture sizes are quite large and visually identifiable [9]. In
another study of semi-automated rock texture identification image-processing techniques,
Perring et al. [10] considered high-resolution images as input samples. We believe that
this method might not be able to replicate its performance in the presence of low-quality
grayscale images. Additionally, several contemporary studies [11–14] on pore/fracture
detection used simple image analysis techniques. In another study, Chen, J., et al. [15]
developed an automated image processing-based method to identify rock fracture segmen-
tation and its trace quantification using a CNN-based model to extract the skeleton of the
cracks and a chain code-based method to quantify the fracture traces. They extended this
research [16] into rock trace identification using a hybrid of the synthetic minority over-
sampling technique, random search hyper-parameter optimization and gradient boosting
trees. Chen, J., et al. [16] proceeded to propose a novel CNN-based water inflow evaluation
method that emulates a typical field engineer’s inspection process. This method classifies
the undamaged and damaged regions and segments the detailed water inflow damage to



Algorithms 2023, 16, 42 3 of 30

the rock tunnel faces. Most of the abovementioned studies used higher-resolution images;
however, we suspect that the above proposed methods may not be able to replicate their
performances in the presence of lower-quality grayscale images.

In the contemporary literature, a few studies employing machine learning, such as
the support vector machine (SVM) classifier and deep learning, achieved the pore/fracture
detection of various reservoir rocks, and the noteworthy works are illustrated below.
Leal et al. [17] used the fractal dimensions of images, gamma rays and resistivity logs as
the input dataset to an SVM classifier to detect micro-fractures. However, the detection
accuracy was not the best in class, and we suspect that it might suffer from poor image
quality with grayscale. Abedini et al. [18] employed deep learning and autoencoder
techniques to identify the pores/fractures from rock images. Although they used visually
discriminating images [18], their detection does not require advanced techniques such
as deep learning. This strategy may fail in the presence of a tiny training image sample
set with high similarities among images (low divergence). From the above study, it is
evident that the existing contemporary detection and classification methods need further
advancements to improve their accuracy, particularly in the presence of a tiny training set.
A tiny training set is a real problem challenging the accuracy of deep learning strategies for
low-quality image samples. Hence, in the current work, we tried to devise a method that
works well with a small number of low-quality grayscale image samples.

The current work addresses the identification of pores and fractures that do not have
a fixed geometric shape; hence, before discussing the principal findings of the present
work, a brief discussion of the recent noteworthy findings of machine learning regarding
the identification of irregularly shaped objects would be useful. In an early work, Viola
and Jones [19] presented a face detection framework capable of detecting faces from an
image and hence, suitable for detecting objects with near-fixed geometric structures. This
framework mainly focuses on collecting Haar-like features along with the histograms of
oriented gradients (HOGs) of the objects with fixed geometric shapes for their possible
detection. However, these Haar and HOG features were found to be relatively inefficient
in detecting irregularly shaped objects, which is highly required in the current context as
the shapes of pores and fractures are highly irregular. Lienhart and Mayst [20] introduced
limited and arbitrary rotations for object identification, which are relatively inefficient in
identifying objects of irregular shapes. David Gerónimo et al. [21] proposed a pedestrian
classifier based on Haar wavelets () and edge orientation histograms (EOHs) with AdaBoost;
which is compared to SVMs using HOGs. The results show that the HW + EOH classifier
achieves comparable accuracy but at a much lower processing time than the HOG. In
another contemporary work, Smith et al. [22] introduced a ray feature set that considers
image characteristics at distant contour points to gather information about an object’s shape.
However, this strategy is often computationally expensive and may often be challenging
for identifying the necessary context-specific ray features [22].

Modern deep learning and other machine learning classifiers require many training
samples to correctly extract shape-related information necessary for identifying a specific
object. However, the scenario becomes more complex in the presence of a low-quality,
tiny training image set of extremely deformable objects (such as pores and fractures in
the current case) since identifying the shape-related features necessary for their unique
identification often becomes extremely difficult. Hence, a low-level pixel intensity-based
image analysis approach could be more computationally efficient and accurate if used to
identify irregular objects instead of the deep learning and machine learning counterparts.

1.2. Contribution of the Current Work

Visual quality evaluation has traditionally focused on the perception of quality from a
human subjects’ viewpoint, which motivates us to characterise the effect of image quality
on current computer vision systems. However, these notions of image quality may not
be directly comparable, as a computer can often be fooled by images that are perceived
by humans to be identical [23], or in some cases, the computer can recognise images that
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are indistinguishable from noise by a human observer [24]. Hence, how image quality
often affects the accuracy of a computer vision technique must be separately considered. In
this study, we found that the accuracy of the existing methodologies [18,25] substantially
deteriorates with grayscale images. Hence, an approach that can work successfully given
a tiny set of low-quality image samples as input is urgently needed. Here, we propose
an approach that delivers robust results even if the quality of the input image is severely
deteriorated (low quality and distorted). We addressed this approach in the following
sections of the current article.

To address this issue, we analyzed the brightness of every pixel and classified it as
bright or dark based on some preconceived notions, which are flexible depending on the
respective problem definitions, image sample quality, and necessary geophysical properties
of the rock sample used. Next, the pores and fractures are identified from the input
grayscale images based on some shape-related preconceived logic (pores spherical or near-
spherical, while the fractures are more linear in shapes, in general, as per the contemporary
literature) and the pixel classification results.

The proposed approach has been tested with CT-scan images of carbonate rocks, and
results are found more accurate than those of the deep-CNN and other contemporary
approaches, as is shown later in the present work.

1.3. Paper Structure

The rest of the paper is arranged as follows: Section 2 describes the methodology for
micro-pore and fracture identification from the input grayscale CT-scan image samples;
Section 3 shows the implementation of the proposed method and presents detailed com-
parisons with the noteworthy contemporary approaches from the accuracy point of view.
The main points of the present study are articulated in Section 4.

2. Materials and Methods—Porosity Classification and Fracture Identification

This section elaborates on the developed image analysis methodology for porosity
classification and fracture identification of rock. To make our proposition more robust,
we assume the input images are of low quality, primarily grayscale, and less statistically
divergent. Here, less statistical divergence in the dataset (M) points to the high similarity
among its various image samples, which subsequently might make the mini-batch samples
very similar and might lead to the mode collapse for the deep learning models.

The basic idea of the proposed methodology is multi-objective—to find the k-immediate
neighboring dark pixels of every discovered dark pixel within a specific region in an input
grayscale image Gn ∈M and then to classify it as a pore or a fracture. This is because, from
the image processing point of view, we consider a pore or a fracture as a region within an
image that contains a large number of contiguous dark pixels, even if not all of them are
dark. Hence, we name the developed algorithm as “Pixel-wise k-Immediate Neighbors”
(Pixel-wise k-IN) approach, where the set of k-immediate neighboring pixels (k-IN) of any
specific pixel located at (x, y) in Gn, n = 0, 1 · · · are listed as k-IN(x, y) = {(x − 1, y − 1),
(x, y − 1), (x + 1, y − 1), (x −1, y), (x + 1, y), (x − 1, y + 1), (x, y + 1), (x + 1, y + 1)}, where x, y,
x − 1, x + 1, y − 1, y + 1∈Z+. In short, the k-IN of (x, y) can be defined as k-IN(x, y) = {(x ± i,
y ± j); ∀x, y∈Z+; i, j = 0, 1; i, j 6= 0 simultaneously}.

For more clarity, in Figure 1a, the set of k-INs computed for pixel 6 is {1, 2, 3, 5, 7, 9, 10,
11}, where that for the pixel 1 is {2, 5, 6}. The procedure to classify every individual pixel in
an input grayscale image as dark or bright is shown in Section 2.1. Later, we articulate the
procedure to identify the k-immediate neighboring dark pixels of any specific pixel and
classify a region containing a large number of contiguous dark pixels as pore or fracture, as
is shown in Section 2.4. and Algorithm 2.
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Figure 1. (a). Step-wise procedure to find k-INs of any pixels. area(Hi), major(Hi ), minor(Hi ),
perimeter(Hi ) and curl(Hi ) of a fracture and pore are shown in (b,c), respectively. Quite evidently,
the major(Hi)

minor(Hi)
value of a fracture is larger than that of a pore.

2.1. Classifying Bright and Dark Pixels

All the images are in grayscale with an average pixel intensity of 101/image. Each
pixel in a grayscale image represents only the amount of light or the intensity information.
Grayscale images are a black-and-white or gray monochrome that is composed exclusively
of shades of gray. We measured the intensity (Li,j), the measure of brightness /darkness) of
any pixel Pi,j ∈ Gn ∈ M. We classify a pixel as dark or bright if Li,j∈ [0, I] and Li,j∈(I, 255]
respectively, where I will be the threshold with range 0 < I < 255 (see Algorithm 1). Here,
Li,j = 0 means fully dark, whereas Li,j = 255 classifies as fully bright. I mostly depends
on the resolution of the available image dataset, and we humbly encourage the readers to
choose suitable I values based on their expert judgments. In easy words, we classify pixels
(as bright or dark) based on their computed Li,j values. The proposed image processing
technique will be applied only in the effective region of every individual image, which we
will term as the red boundary. The proposed image processing technique understands the
red boundary by analyzing the brightness of the bordering pixels based on their Li,j values.

Algorithm 1 Pixel Classification Procedure

Input: Grayscale image Gn of rock contain l × s pixels.
Variables & Parameters: Li,j, Pi,j ∀ i ≤ l, j ≤ s;
Outputs: Classification of every pixel as dark and bright.
1: procedure PIXEL_CLASSIFICATION(Gn)
2: for (i = 0; i < l; i++) do {
3: for (j = 0; j < s; j++) do {
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starting pixel at i,j-=0, 0 (top left)
4: if (Li,j∈ [0, I ]) then Pi,j ∈ Gn is dark
5: else if (Li,j∈(I, 255]) then Pi,j ∈ Gn is bright

}
}

6: End.

2.2. Calculating Similarity among the Images

More often than not, it is quintessential to measure the similarity/dissimilarity be-
tween different image samples within the dataset under consideration to scrutinize and
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understand the reasons behind every specific unusual or unsatisfactory outcome. The
resulting accuracy of various image analysis methods (including deep learning) is often
found relying on their adopted learning techniques and might suffer because of the sim-
ilarity/dissimilarity between the individual image samples in the training and testing
sets. For example, a machine vision system fails to recognize a set of cars if it is trained to
identify a set of a few specific animals. Apart from that, a reasonable similarity measure
between image samples is often considered as one of the essential parts of most of the
image classification systems [26], and since, in the current work, our prime objective is to
identify the pores and fractures within the grayscale rock images, we have presented our
similarity measure as below.

The present subsection describes the adopted similarity evaluation technique in detail.
We assumeM = {Gn}; 1≤ i ≤ N is the image dataset, and each image contains m× n pixels.
Each image ofM is represented by the pixel intensity vector Li = {Li

p,q}⊂ Rmxn; 1≤ p≤ m;
1 ≤ q ≤ n, where Li

p,q ∈ R is the intensity value (scalar) of the pixel (p, q) of an image Gi,
which is evaluated as in Section 2.1, Algorithm 1.

Next, our job is to find the k most similar images to a given image Gi based on
some defined similarity criterion. We further assume that all images have equal prior
probability, and the query image (Gi) is represented by the pixel intensity vector xi. From
the probabilistic point of view, each pixel intensity vector contains m × n realizations of
i.i.d (independent and identically distributed) random variables Li

1; . . . ; Li
mn, which follow

a parametric distribution with probability density function p(L|θ ); θ ∈ Rd. Given that
θ̂ is a consistent estimator of the parameter vector θ, it is quite evident that for an image Gj
to be the most similar to Gi, whose parameter vector θj leads to the maximization of the
following log-likelihood function, then:

j = argmax
r

1
mn ∑m

p=1 ∑n
q=1 p

(
Lr

pq

∣∣∣θr

)
(1)

By applying the weak law of large numbers to the Equation (1) with m, n→ ∞, we
obtain the following:

j = argmax
r

Ep(L|θi)
log p(L|θr) (2)

= argmax
r

∫
L

p(L|θi) log p(L|θl)dL (3)

where Ep(L|θi)
(·) is the expectation with respect to p(L|θl ) and L is the domain of p(L|·).

By observing p(L|θi) as an independent term for the maximization, Equation (3) can be
rewritten as follows:

j = argmin
r
{−

∫
L

p(L|θi) log p(L|θr)dL} (4)

= argmin
r

∫
L

p(L|θi)log
p(L|θi)

p(L|θr)
dL (5)

In Equation (5) DKL(.||.) is between p(L|θi) and p(L|θr) or DKL(p(L|θi)|| p(L|θr)).
Hence, in the asymptotic case, maximum likelihood selection is equivalent to the mini-
mization of the DKL(.||.) and subsequently, the image similarity can be calculated using
DKL(p(L|θi)||p(L|θr)).

2.3. Dataset Specification and Pre-Processing

In this study, we focus on image analysis of the rock images samples to automatically
arrive at a conclusion on the type of pores or fractures instead of the quantitative petrophys-
ical method. Thus, we will not work on overall petrography analysis but only its segment
related to image analysis.

The pore/fracture space component classification is based on a microscopic study from
peninsular Malaysia in Kinta Valley, Perak. The pore types include mouldic, intraparticle,
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interparticle, fractured and vuggy porosity. The initial observation indicated that the pore
system is isolated in nature. From the perspective of visual image analysis, in most cases,
the shape and size of the micro-pores and fractures were highly irregular in shape. In
contrast, our techniques showed fractures to be near linear (i.e., length is bigger than width).
They were also found to be well cemented. Fractures were found to be enlarged by solution
activity or can be healed by secondary calcite or sparite. Based on the previous experience,
in general, we found the lengths of the fractures are much greater than their widths. The
shape variations of a fracture from that of the circles and ellipses of same perimeter are
found much greater than that of the pores. On the contrary, as expected the shapes of the
pores were found to be spherical or near-spherical, and in general, their sizes are relatively
smaller than those of the fractures but still irregular in shape from the computer vision
context. Further, the image data generated in the current work shows limited divergence
among most of the samples, i.e., the visual quality of most of the samples is found to be
very similar. Low divergence samples have been identified as a major problem for the
existing deep learning methodologies in the presence of a small number of grayscale image
samples with low divergence, especially in the case of the current image samples.

Optical thin section and Scanning Electron Microscopy (SEM) images were used to
characterize and describe the different components and structures within the carbonate
rock. Before diving into details of the proposed algorithm, we would like to discuss the
specification of the rock image samples used in the current study to understand its utility
more clearly. We used the CT-scan images of a carbonate rock slab of length 256 mm,
breadth 1 mm, and width 1 mm taken at every 1 mm height in all xy, yz and zx planes
(see Figure 2). We call every image a micro-image. Hence, the image data set contains a
total of 256 × 3 number of micro-images of varying numbers of pixels, which are then
resized to fixed 1280 × 1064 square pixels, where each pixel area is approximately limited
to 4.4 µm2, and one micro-image creates a field view of 1 × 1 mm. The spectral noise of
the collected CT-scan image samples was reduced using a median filter, and the contrast
between features was enhanced with a linear contrast stretch. Most of the individual sample
micro-images look very similar (see Figure 2). This observed high visual similarity among
various sample micro-images is due to the small size of the sample carbonate rock slab
(256 mm) considered during CT-scan imaging. High visual variations among the sample
micro-images can be experienced if the chosen size of the rock sample is larger (at least
around a couple of meters). Further qualitative analysis of each 3 arbitrary planes (xy, yz
and zx ) shows that some of the individual pores are large and isolated.

All the images are in grayscale with an average pixel intensity of 101/image. Each pixel in
a grayscale image represents only the amount of light or the intensity information. Grayscale
images are a kind of black-and-white or gray monochrome that is composed exclusively
of shades of gray. The subsequent values are respectively calculated as 50, 120 and 255
(see Section 2.1). Based on the computed values, we classify every individual pixel using
Algorithm 1.

Each image has contiguous dark regions lying on its borders, which are neither pores
nor fractures (see Figure 2), and we must exclude them before beginning the computations.
Hence, to eliminate these dark regions during computation, we manually marked their
borders with red (R = 255, G = 0, B = 0) (see Figure 2) during data pre-processing, and
we call the regions enclosed within the red boundaries as the “effective regions.” The
proposed image processing technique understands the red boundary by analyzing the
brightness of the bordering pixels based on their L-values (see Section 2.1). We have kept
data distribution (size of training, validation, test splits) as 60:20:20 for deep-CNN. For our
proposed method we did not follow any data distribution since the method does not call
for any training. Hence, to compare both we have to translate all deep-CNN metrics into
Accuracy (Accuracy = (TP+TN)

(P+N)
) so as to match it to results captured from our proposed

methods which are displayed in the Table 1.
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Figure 2. (a) Collection of raw CT-scan image samples of carbonate rock. The samples are grayscale
images. (b) Sample raw CT-scan images. (c) Pre-processed CT-scan image samples with already
marked boundary with red color.

Table 1. Comparing the accuracy of the proposed k-IN with that of the supervised deep-CNN
approach. Here, we found the accuracy of the proposed approach outperforms the deep-CNN.

Accuracy Error Rate

Deep-CNN (Masked RCNN) 0.093 (mAP) -NA-

Deep-CNN (Masked RCNN Detectron2) 0.59 (mAP) -NA-

Deep-CNN (Yolo5 Conf 0.5–0.9) 0.395 (mAP) -NA-

Custom Object CNN 24.9% 85.1%

α = 1, β = 1.11, γ = 0, δ = 0

k-IN 84.9% 15.1%

α = 1.03, β = 0.95, γ = 0.43, δ = 0.43

k-IN 89.1% 10.9%

α = 1, β = 1.11, γ = 0.45, δ = 0.45

k-IN 81.2% 18.8%

α = 0.9, β = 1, γ = 0.45, δ = 0.45

k-IN 79.9% 21.1%

2.4. Pixel-Wise k-IN Approach to Determine Rock Fractures and Pores

As we discussed earlier, our primary objective is to find the regions (Hi; ∀i) (with
irregular shapes) within a given grayscale image (Gi ∈ M) that contains all contiguous
dark pixels. Our secondary objective it is to later classify the region as a pore or a fracture.
In the current work, we identify a region as Hi containing a contiguous collection of
100 or more dark pixels (at least of area 100 × 4.4 µm2, see Figure 1a,c). However, readers
are encouraged to modify this convention based on the quality of available rock image
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samples, problem definitions, and necessary geophysical properties of the respective rock
sample (such as porosity, etc.).

• Information about the shape geometry of Hi is extracted from the significant shape
descriptors such as the shape boundary (sensing the abrupt change in the intensity
level using intensity gradients), perimeter(Hi), major(Hi), minor(Hi), shape variations
ofHi with respect to circle (Vc(Hi)) and ellipse (VE (Hi)) of the same perimeters, etc.
The induced logic to classify any Hi as a pore or a fracture is discussed later in the
current subsection.

2.4.1. Fracture Shape Geometry in a CT-Scan Image Sample

A fracture is defined as any separation in a geological formation that divides the
rock into two or more pieces [27], which in the subsequent grayscale image can be seen
as a region with its length much larger than its width and containing a large number of
contiguous dark pixels. From a reservoir point of view, fractures are planar discontinuities
or deep fissures in rocks due to mechanical deformations or physical diagenesis [17,28].
Fractures are often found enlarged by the solution activity or can be healed by secondary
calcite or sparite. Based on the previous experience, in general, we found the lengths of the
fractures are much larger than their widths, and hence, in the current study, we assume
that, to be a fracture, Hi should follow major (Hi)

minor (Hi)
> β (=1.3 in the current study) and in

general, their shapes are much deviated from a circle or ellipse of the same perimeter as
Hi. In the current work, we measure the length ofHi as major(Hi), whereas the width of
Hi is measured as minor(Hi) (defined later). The shape variations of a fracture from that
of the circles and ellipses of same perimeter are found much larger than for pores. In the
current work, we encourage the readers to decide the β value based on the porosity and
other necessary geophysical properties of the sample rock used for their experiments.

2.4.2. Pore Shape Geometry in a CT-Scan Image Sample

On the contrary, the shapes of the pores are considered to be spherical or near-spherical,
and in general, their sizes are relatively smaller than those of the fractures (though not
necessarily, which can be argued in various scenarios). To be a pore, in the present work,
Hi needs to roughly satisfy α ≤ major (Hi)

minor (Hi)
≤ β. In the current context, we kept α value

around 0.8. The ranges are flexible, and the authors encourage the readers to modify them
based on their problem definition of porosity and other necessary geophysical properties
of the sample rock.

We presented the variation of the accuracy of the proposed algorithm based on the
varying α, β, γ and δ ∈ R+ in Table 1. The following subsections show the procedure to
calculate the shape variations of anyHi with respect to the circle (circle variation or Vc(Hi))
and ellipse (ellipse variation or VE (Hi)) of the same perimeter. The current work classifies
any region Hi in an input image as a pore or a fracture based on the shape variances
discussed in Sections 2.4.4–2.4.6. However, before the decision, it is inevitable to identify
Hi′s, and for this we have devised an exhaustive and recursive search technique to loop
over all the dark pixels and their immediate neighbors, as shown in Algorithm 2.

2.4.3. Finding the Contiguous Dark Pixels Using k-IN

Initially, we determine the L values of all the pixels in a given input image sample and
classify each of them based on their respective L values (see Algorithm 1). Next, we locate
all the dark pixels in the input image and store their relevant information (mainly location)
in a separate bag of pixels, i.e., L. Quite expectedly, the size of L should be any positive
integer greater than 0. Next, we recursively identify all k-immediate dark neighboring
pixels (0 ≤ k ≤ 8, see Figures 1a and 3) for every dark pixel in L, which covers most of the
dark regions in an image sample; this, in turn, points to the identification of the majority of
the rock pores and fractures.
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Algorithm 2 Pixel-Wise k- IN and Classification (Pores or Fracture)

Input: Grayscale images (CT-scan) of rocks contain l × s pixels within the red boundary.
Variables & Parameters: k∈Z+; L ∈ R+; 0 < I < 255; α ≤ 1; β ≥ 1.3; 0 < γ < 1; and 0 < δ ≤ 1
(for the current work).
Objective: Compute Lis and then classify them to pores and fractures.
Output: Pores and fractures are identified in the input grayscale images.

1: for (i = 0; i < l; i++) do {
2: for (j = 0; j < s; j+ +) do {
3: if (Li,j ≤ I) then L← location(Pi,j) }
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Lir is the bag of pixels for Li[r] and Li[r] is the rth element of the ith bag
of pixels, called Li.

14: compute the major axis length ofHi or major(Hi)
15: compute the major_angle(Hi)
16: compute the minor axis length ofHi or minor(Hi)
17: compute area(Hi) = Total number of pixels inHi
18: compute the perimeter ofHi or perimeter(Hi)
19: compute Vc(Hi) and VE (Hi)

20. compactness(Hi) = (perimeter(Hi))
2

4 π×area (Hi)
≥ 1

21. curl(Hi) = 4× major(Hi)

perimeter(Hi)−
√
(perimeter(Hi))

2– 16×area (Hi)

22: width(Hi) = 4× area(Hi)

perimeter(Hi)−
√
(perimeter(Hi))

2– 16×area (Hi)

23: if ((lp ≤ area(Hi) ≤ µp) && (α ≤ major(Hi)
minor(Hi)

≤ β||0 ≤ Vc(Hi) ≤ γ||0 ≤
VE (Hi) ≤ δ)) thenHi is a pore

24: else if ((lf ≤ area(Hi) ≤ µ f ) && ( major(Hi)
minor(Hi)

> β||Vc(Hi) > γ||VE (Hi) > δ)) thenHi is
identified as a fracture

}
25: End

For better and clearer understanding, we present an over-simplified toy example
of one 4 × 4 image (see Figure 1). Of 16 pixels, eight among them are classified dark
(classifications are done using Algorithm 1), whose locations are 1, 4, 7, 8, 10, 12, 15 and
16. We have to classify these pixels as a pore (if any), given that the collection of two
or more contiguous dark pixels is considered as a pore. Initially, we kept all eight dark
pixels in the bag of pixels L = {1,4,7,8,10,12,15,16} and the subsequent bags of pixels for
each element of L are L1 = {ϕ} (no adjacent dark pixel); L4 = {7,8}; L7 = {4,8,10,12};
L8 = {4,7,12}; L8 = {7,15}; L12 = {7,8,15,16}; L15= {10,12,16} and L16 = {12,15}. This has been
done using the recursive function PIXEL-WISE_k-IN(L) (see Algorithm 2).

Next, from the other bags of pixels, L1 is a null set, and hence pixel L1 cannot
either be a pore or a fracture. Then for the next bag of pixel L4 we found 7 and 8
are the dark neighbors of pixel 4 and again from L7 and L8, it can be confirmed that
H4 = {4,7,8,10,12}. After analyzing L10 and L12 (since occurring in L7 and L8), H0 can
be extended to H0 = {4,7,8,10,12,15,16}. Later analyzing L15 and L16 since occurrence in
L10 and L12) we finalized H0 as H0= {4,7,8,10,12,15,16}. Since H0 contains more than
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two pixels, hence it is considered a pore (see Figure 1a). After all the analyses, it can be
confirmed that this toy example has only one identifiable pore. As mentioned earlier, it
is an over-simplified case presented for a better understanding of the proposition, for
which the detailed implementation of the proposed technique in the presence of a complex
data set has been given in the later part to show its wide applicability range. A pictorial
representation of the step-wise execution of the proposed algorithm is shown in Figure 3.
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Figure 3. Conceptual diagrams of step-by-step from a to f each for identification of rock pores (I) and
fractures (II) using the proposed k-IN approach. Ia. (for simplicity) identifies one dark pixel; Ib. identifies
its immediate neighbors (marked red); Ic. finds the immediate dark pixels in the red marked cells (in Ib.)
and points to one pixel whose nearest dark neighbors are to be found; finally, If. identifies a pore by the
recursive implementation of the step b. Quite similarly, we can detect a rock fracture in the current work.
A rock fracture can also be seen as a series of connected pores in part (II).

2.4.4. Shape Variance ofHi with Respect to the Circle

In the current work, we have compared the shape ofHi with that of a circle, where the
circle has the same perimeter. Perimeter (Hi) is the number of pixels lying on its boundary.
We assume there are n pixels {xi,1, xi,2, · · · , xi,n} lying on the boundary of Hi and the
perimeter is computed as ∑n−1

j=1

∣∣xi,j − xi,j+1
∣∣. We define the shape similarity of Hi with

that of a circle as Vc(Hi) = σr(Hi)
µr((Hi)

, where σr(Hi) is the mean of radial distances from the
centroid (GxHi , GyHi ) ofHi to its boundary points and µr(Hi) is the standard deviation of
radial distances from the centroid ofHi to the boundary points [29,30]. Now, µr(Hi) and

σr(Hi) can be calculated as µr(Hi) = 1
n ∑n−1

j=1 Di,j, and σr(Hi) =
√

1
n ∑n−1

1j=1

(
Dij − µr(Hi)

)2,

respectively, where Dij =
√(

xi,j −GxHi

)2
+
(
yi,j −GyHi

)2 . Now, Vc(Hi) = 0 shows the
shape of (Hi) is a perfect circle, however, with bigger Vc(Hi) values its shape diverges
from that of a circle. Hence, for a pore, we restrict Vc(Hi) between [0, γ], i.e., 0 ≤ Vc(Hi) ≤
γ ∈ R+, whereasHi is classified as a fracture if Vc(Hi) > γ in the present work.

In the current work, we primarily varied γ-value between (0, 1), and subsequent
accuracy variations of the current algorithm are listed in Table 1. The present data samples
are the CT-scan micro images of carbonate rock that contain a large number of micro-pores
and fractures of shapes similar to the circle (our presumption for the present case). We
encourage the readers to make realistic presumptions considering the geological properties
of the physical rock sample and image quality. Hence, for the best accuracy of the proposed
algorithm, we decided γ-value range between (0, 0.45].
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2.4.5. Shape Variance ofHi with Respect to the Ellipse

Next, we calculate the shape variance ofHi with respect to the ellipse, where the ellipse
has the same perimeter (perimeter(Hi)). We calculate the shape variance VE (Hi) = σr(Hi)

µr(Hi)
,

where µr(Hi) is defined as the mean of radial distances from the centroid (GxHi , GyHi ) ofHi to
its boundary points and
σr(Hi) is the mean standard deviation of the radial distances from the centroid of Hi to

its boundary points. Here, µr(Hi) = 1
n ∑n−1

j=1 di,j and σr(Hi) =
√

1
n ∑n−1

j=1

(
dij − µr(Hi)

)2 where

dij =
√
(WT

i,j(Hi)× C−1
ε ×Wi,j(Hi) information about the variance ofHi and the ellipse based

on the radial distance, WT
i,j(Hi) = xi,j −GxHi , yi,j − GyHi and CE is the covariance matrix

between the shape Hi and the ellipse. VE (Hi) = 0, classifies the shape of Hi as a perfect
ellipse. Now, forHi to be classified as a pore, we decided the range of VE (Hi) as [0, δ], where
0 < δ ≤ 1. Quite similar to the case described in Section 2.4.4, the authors encourage the
readers to modify the range of VE (Hi) depending on their problem definitions, sample rock
porosity, and other necessary geophysical properties. For the best identification accuracy in
the current sample images, we keep VE (Hi) values low, and hence, we decided δ-value as
0 < δ ≤ 0.45.

2.4.6. Shape Variance Using Length and Width ofHi

Apart from the above two measures, we also computed the ratio between the length
and width of Hi. Here, the length is assumed to be the major axis of Hi. The major
axis of Hi is the longest straight line drawn through Hi joining the endpoints (xi,1, yi,1)

and (xi,2, yi,2) and its length can be computed as major(Hi) =
√
(xi,1 − xi,2)

2 + (yi1 − yi2)
2 .

The angle between the major axis of Hi and the x-axis (also known as the orientation
of Hi has been computed as major_angle(Hi) = tan−1(

yi,2−yi,1
xi,2−xi,1

). Similarly, the width of
Hi has been assumed to be its minor axis, which is the longest line drawn through Hi
joining its two endpoints (xi,3, yi,3) and (xi,4, yi,4) and perpendicular to the major axis. Its

length is computed as minor(Hi) =
√
(xi,3 − xi,4)

2 + (yi,3 − yi,4)
2 . The major and minor

axes endpoints are found by computing the pixel distance between every combination
of border pixels in the object boundary and finding the pair with the maximum length,
where the two straight lines are perpendicular to each other. Since the shapes of the pores
are assumed to be spherical or near-spherical, we restrict the range of major (Hi)

minor (Hi)
between

[1, 1.3] (α = 1, β = 1.3), whereas for fractures, the ratio has been kept within (1.3,
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) in
the current context. To reiterate, the authors encourage the readers to modify the regions
based on their problem statements, the porosity of the rock sample, and its other necessary
geophysical properties.

2.4.7. Classification Logic

The present algorithm classifies oneHi as a micro-pore or a fracture based on its size
and shape. In general, the size of a fracture is often found to be larger than that of a pore
(although this proposition remains arguable in several situations). Hence, the adopted
logic [31–34] to classify a pore initially checks the number of dark pixels inHi (or area(Hi))
and if the area(Hi) lies within a specific range lp ≤ area(Hi) > µp (decided by the model

developers) and at least one among the three α ≤ major(Hi)
minor(Hi)

≤ β, 0 ≤ Vc(Hi) ≤ γ and
0≤ VE (Hi) ≤ δ is satisfied then we can classifyHi as a pore (see line no. 23 in Algorithm 2).
Here, lp, µp ∈ Z+ are the lower and upper-bounds of area (Hi) respectively, values of
which should be decided based on the historical information about the sizes of the pores
and fractures and porosity of the original rock sample.

Again, a region containing a large number of dark pixels orHi should be classified as
a fracture if lf ≤ area(Hi) ≤ µ f and at least one among the three conditions major(Hi)

minor(Hi)
> β,

Vc(Hi) > γ and VE (Hi) > δ is satisfied (see line no. 24 in Algorithm 2). Quite similarly,
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lf, µ f ∈ Z+ are, respectively, the lower and upper-bounds of the area(Hi) for fracture. We
may again repeated that the model parameters are flexible and depend on the problem
definitions, sample rock porosity, and other geophysical properties.

We have also computed some other measures for a specificHi such as compactness(Hi),
curl(Hi) and width(Hi). Here, compactness(Hi) is an intrinsic property ofHi and defined
as the ratio of the area ofHi to the area of a circle with the same perimeter (perimeter(Hi)).

Mathematically, compactness(Hi) = (perimeter(Hi))
2

4 π×area (Hi)
, where perimeter(Hi) is the total number

of pixels residing on the perimeter ofHi and area(Hi) is the total number of pixels inHi;
curl(Hi) of Hi is the degree to which an object is curled up. Lastly, the width(Hi) is the
average width of anyHi. These shape-specific measures can be used as features in deep-
CNN, which will be considered in our upcoming research work. Visual representations of
these measures are shown in Figure 1b,c.

2.4.8. Overall High-Level Architecture and Computational Complexity of the Proposed
Pixel-Wise k-IN Algorithm

We felt that the overall architecture/logical flow of our proposed approach would help
us explain it comprehensively. Below, we present an overall flowchart (Figure 4) combining
the above steps to provide a snapshot view of our proposed algorithm:
(a) images extracted from the carbonate rocks using CT Scan, (b) binarizing the pixel
to dark or bright classes (c) procedure to find k-INs of any pixels as per Algorithm 1 (d)
calculation of shape geometry KPI’s such as area(Hi), major(Hi), minor(Hi), perimeter(Hi)
and curl(Hi) of pore and fracture also with shape variances, (e) Classification as per the
logic into pore or fracture.
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Figure 4. Overall architectural flow: (a) Images extracted from the carbonate rocks using CT Scan,
(b) binarizing the pixel to dark or bright classes (c) find contiguous pixels using k-IN (d) procedure
to find k-INs of any pixels as per Algorithm 1 (d) finding shape geometry kpi’s such as area(Hi),
major(Hi ), minor(Hi ), perimeter(Hi ) and curl(Hi ) of a pore and fracture and (e) classification into
pore or fracture.

Further to the overview above, we would like to deliberate on the computational
complexity of Algorithm 2. Assuming that for each operation the computer takes the same
time, and n is the size of the input. Where image length = n

2 and breadth = n
2 assuming a
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square image for the convenience of calculating computational complexity, and n1 is the
size of L (bag of pixels) ∀ n1< n; n1 ⊂ n. As we can see, we have mainly a few blocks of
code as follows:

(a) Computing computational complexity of our proposed approach:

1. Ingest pixels for process # runs n times

2. 2 nested loop #runs n2

4 ( n
2 ×

n
2 )—(line 5)

a. Outer for loop to iterate on the length of the image (starting LoC 1), runs n
2 times

b. Inner for loop to iterate on the height of the image (starting LoC 2), runs n
2 times

3. Similarly, additional loop starting, runs n2

4 times—(line 6)
4. Similarly, next 3 nested loops, runs n3 times—(line 10)
5. Next steps are the calculation and if statements, runs n1 times each

a. compute the major axis length ofHi or major(Hi)—(line 14)
b. compute the major_angle(Hi)—(line 15)
c. compute the minor(Hi)—(line 16)
d. compute area(Hi)—(line 17)
e. compute the perimeter(Hi)—(line 18)
f. compute Vc(Hi) and VE (Hi); 2n time—(line 19)
g. compactness(Hi)—(line 20)
h. curl(Hi)—(line 21)
i. width(Hi)—(line 22)
j. check for Pore or Fracture—(line 23)

Thus, the combined execution time is n + n2

4 + n + n3+ 11n1. Now we can ignore the
lower order terms since the lower order terms are relatively insignificant for large inputs
compared to the highest order term. Therefore only the highest order term is taken (without
constant). So, the calculation complexity Big(0) will be O(n3).

(b). Computing the computational complexity of YOLO and RCNN approaches:

1. In general, an MLP with n inputs and m hidden layers, where the i-th hidden layer
contains mi hidden neurons and k output neurons, will perform the following multi-
plications (excluding activation functions):

nm1+m1m2+m2m3 + m3m4. . . . + mM−1mM+mMk (6)

which in a big-O notation can be written as

Ω(nm1 + nMk+∑M−1
i=1 mimi+1) (7)

where Ω is the lower bound and big-O is the upper bound.
2. Add the convolution layer: Inputs: Image ( n

2 ×
n
2 ) and convolution mask (s × s).

The convolution computation complexity is O( n2

4 × s2). For simplicity, we assume

n = n
10 . The equation translates to O( n4

400 ). Dropping the constant and considering only
highest-order terms again will result in O(n4).

3. By putting them together, we have

Ω(nm1 + nMk+∑M−1
i=1 mimi+1) + O

(
n4
)

. (8)

By generalising the above steps for the RCNN and YOLO, the computation complexity
for both will be Ω(n4).

The comparison of both shows that the RCNN and YOLO approaches tend to be more
complex than the proposed approach.
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3. Results and Discussion

This section briefly articulates the results of the proposed method in the presence of
the pre-processed dataset shown in Section 2.3. A few output samples are shown in the
image below (see Figure 5). We encircled each Hi considering the distance between the
two farthest dark pixels of Hi (say, Pi,1 = (xi,1, yi,1) and Pi,n = (xi,n, yi,n), and D(Pi,1, Pi,n)
is the distance between them) or major(Hi) as the diameter of the circle (see Figure 4b).
We chose a yellow circle if Hi is classified as a pore and a white circle for a fracture

(see Figure 5). Here, D(Pi,1, Pi,n) =
√
(xi,1 − xi,2)

2 + (yi,1 − yi,2)
2 ∈ R+ is the Euclidean

distance between Pi,1 and Pi,n (see Figure 5b).
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Figure 5. (a). Regions encircled in yellow are identified as pores, whereas the regions encircled with
white circles are recognized as fractures. (b). Enlargement of one pore and its detection policy. These
samples have undergone Gaussian smoothing. and hence the difference is to the naked eye.

To test the effectiveness and applicability of the proposed identification strategy
(see Section 2.4), we used the pre-processed data elaborated on in Section 2.3 and confined
its execution within the effective region of each image. The subsequently detected pores
(encircled yellow) and fractures (encircled white) are shown in Figure 5. Here, the pores
and fractures are classified based on the shape and size ofHi (see Algorithm 2).

3.1. Performance Comparison

We compared the performance of the proposed approach with that of supervised deep
CNNs [18,31,35–37]. This is because we found use of the latter in recent geology litera-
ture focusing on rock porosity classification. In addition, we also compared them with
industry-standard object detection models such as YOLO5 [34,38] and Faster RCNN [37]. All
experimental verifications were performed using an HP-Blade server with 64-bit Ubuntu 16:04,
kernel 4.4, Intel Xeon(R) CPU E5-2690 2.6 GHz (64 cores), RAM 128GB, 5.4TB SSD [32,33,37,39].
Detailed comparative criticisms are presented in the following subsections.

3.1.1. Comparison with Abedini et al.

We compared our proposed study with [18], which employs deep learning involving
back-propagation (network containing three layers and 30 neurons) and stacked autoen-
coder networks. The network structure was not clearly articulated in their study [18],
i.e. without any pixel, resolution and dimension-specific information about the used image
samples. Moreover, the visual evidence of detecting pores and fractures using this strat-
egy [18] was not presented to corroborate their claim of accuracy, which certainly reduces
its acceptability to the larger image-processing community. The induced strategy of [18]
was to extract the shapes of pores and fractures from the image samples using ‘Image Pro
Plus’ software and then use these extracted shapes as a training set to identify the same in
the testing of high-resolution (with good chrominance) image samples containing a single
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large pore or a single large fracture. The used images have good chrominance values, as the
pores and fractures are marked in blue in their study. Additionally, the pores and fractures
in training and testing data used in [18] are visually large and clearly recognisable to the
human eye, which makes the detection mechanism relatively simple. Hence, we suspect
that the identification mechanism of [18] will fail in the presence of the few low-quality
grayscale images containing micro-pores and fractures in our dataset. Several reasons for
this failure are possible: (i) an inadequate number of training samples for learning the
necessary features to understand the shapes of pores and fractures using deep learning
and (ii) extracting shape-related information from micro-pores and fractures is a tough
challenge for the strategy [18].

In contrast, our proposed pixel-wise k-IN does not require a large image set for accurate
identification. The strategy presented in [18] is mostly not applicable in the current dataset
(see Section 2.3) because of its adopted learning style that requires a single pore or a fracture
for training and a single pore or a fracture for testing.

3.1.2. Comparison with Supervised Deep CNN

Next, we compare the performance of the proposed approach (see Figure 5) with three
methods of supervised deep CNN (shown in Figures 6–9), namely:

1. Custom Object Detection model
2. YOLOv5 and the Object Detection model
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Comparison with Custom Object CNN model (Figure 5):
We prepared the data in a slightly different manner. Here, we manually segmented

each micro-image sample based on the many contiguous dark pixels within them. The
segment size was kept fixed to 100 × 150 pixels, and each segment is enclosed in a green
rectangle (see Figure 6a). Next, we used these segments as the training set for the Custom
Object CNN. Here, we relied on the human eye to prepare the training set, whereas
for testing, we use the pre-processed full micro-images shown in Section 2.3. A sample
visualisation of the construction of the segments is shown in Figure 6a. Our goal is to locate
the region from each micro-image from the testing set containing the most dark pixels and
subsequently classify it as a pore or a fracture. Our code reads every consecutive region
containing 100 × 150 pixels from each testing image sample and subsequently classifies
it as a pore or a fracture. The resulting images from this strategy locate the regions by
enclosing them with green rectangles of 100 × 150 pixels (see Figure 7).

To our knowledge, deep CNN models [31] have never been tested with grayscale CT
scan images to identify rock pores and fractures, particularly at the micro-level. We found
that the identification accuracy of the Custom Object CNN model is poorer than that of
the proposed method. For Custom Object CNN models, we considered two 5 × 5 convolu-
tion (non-strided), max-pooling layers and fully connected layers with ReLU activation
(see Figure 6). Max pool was used as a noise suppressant. It discards the noisy activation
altogether and performs denoising along with dimensionality reduction and thus can be
considered better than average pooling.

Comparison with the YOLO and RCNN models:
We further trained and tested industry-standard CNN networks, such as YOLO5 [34]

and Faster RCNN [37,39] (see Figures 8 and 9), for object detection. These object detection
models combine bounding box prediction and object classification into a single end-to-end
differentiable network.

Faster RCNN, on the other hand, is the fastest member of the RCNN family. RCNN
extracts a bunch of regions from a given image using a selective search and then checks if
any of these boxes contains an object. We first extract these regions, and for each region,
CNN is used to extract specific features. Finally, these features are then used to detect
objects. Unfortunately, RCNN becomes rather slow because of these multiple steps in
the process. RCNN uses selective search to generate regions. Faster RCNN replaces the
selective search method with a region proposal network, from which the algorithm gets its
speed much faster.

YOLO was written and is maintained in a framework called Darknet. YOLOv5 is the
first YOLO model to be written in the PyTorch framework, and it is much more lightweight
and easier to use. YOLO stands for ‘You Only Look Once’. YOLO5 is a novel CNN that
detects objects in real time (fastest) with great accuracy. This approach uses a single neural
network to process the entire picture, then separates it into parts and predicts bounding
boxes and probabilities for each component. These bounding boxes are weighted by the
expected probability. Comparing Faster RCNN with YOLO5, we found that YOLO5 is
better in accuracy for real time prediction whereas RCNN delivers better accuracy for static
predictions such as video post processing as seen in Figures 8 and 9 and Table 1.

The accuracy of the abovementioned deep CNN models was quite unsatisfactory
compared to that of the proposed method. This deficiency was often due to the black-
box nature of deep CNN architectures, which sometimes makes them difficult to trace,
verify and debug. Additionally, while handling the image samples, we often noticed
very thin (mostly vague) boundaries of the pores and fractures (Hi). This characteristic is
mainly due to negligible intensity differences between the bordering pixels and the pixels
residing just outsideHi. Moreover, in many cases, we often observed negligible intensity
differences among most pixels residing in a specific Hi and the other pixels residing in
several other parts of the same image sample, which makes it very difficult for deep CNN
to extract pore- and fracture-specific shape information, possibly increasing the chance of
misclassification [34,37]. In contrast, models such as YOLO5 [34] and Faster RCNN [37,39]
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seem to underperform because of the low quality of images and the irregular shape of
pores and fractures, as detailed in the forthcoming sections.

However, we also suspect the implementation strategy of CUSTOM Object CNN
which was included in the current work for comparison with the performance of the
proposed approach might be the other reason behind its poor performance. This can be
rectified in future work, which will be a novel contribution in the field of identifying pores
and fractures of the rock from the CT-scan images.

3.1.3. Accuracy/Result: Process and Comparison

To compare the accuracy of the proposed method with Custom Object CNN, we
manually classified eachHi in every image sample as a pore or a fracture after analysing
its visual properties (area and shape). This classification was further supported by its
geophysical properties from its mother carbonate sample rock. This dataset will be our
reference for further comparison. Next, we automatically classify every individualHi using
the proposed pixel-wise k-IN and the deep CNN models and compare their results with
the above reference dataset. The results, listed in Table 1, demonstrate that the accuracy
of the proposed method pixel-wise k-IN (Figure 5) evidences better performance than the
three deep CNN models (Figures 7–9). From Table 1, the accuracy of the proposed method
is 85.9%. The error rate shown is due to the few observed variations in the geometric
shapes of pores and fractures from the identification logic used in Algorithm 2 (see line
nos. 23–24). For example, we manually identified a few micro-pores (His) after carefully
analysing their visual and geophysical properties, classified incorrectly by Algorithm 2.
Similarly, we manually identified a few fractures that do not satisfy the criteria shown
in line no. 24 of Algorithm 2. Additionally, we showed the variation in the accuracy of
the proposed algorithm by varying the model parameters α, β, γ and δ in Table 1. This
action also shows that the correct combination of parameters for the current dataset is
α = 1.03, β = 0.95, γ = 0.43 and δ = 0.43.

In contrast, the error rate of the industry-leading deep CNN models (YOLO and
RCNN) was due to the poor learning of different shape-related features and the fewness
of training samples. The YOLO model provides accuracy that is based on the intersection
of actual bounding boxes and predicted by the feedforward network. Since the predicted
bounding box will not match the ground truth (see Figures 7 and 9a), we obtain a ratio by
dividing the area of intersection between the two boxes by the area of their union, which is
called the intersection of unit. The higher this ratio is, the better the prediction. By equating
this prediction with the ground truth, we obtain the accuracy of the model.

The possible reasons for the better performance of the proposed approach in the
presence of the current image samples are elaborated on in the subsequent subsections.

3.2. Reasons behind the Failures of the Contemporary Approaches

This section briefly discusses the possible reasons behind the failures of the mod-
ern contemporary approaches (deep CNN models) and the several advantages of the
proposed algorithm in detecting rock pores and fractures by analysing their CT scan im-
ages. One of the most important advantages of the proposed technique is its simplicity
of implementation and easy understanding. The remaining advantages are based on
structural/conceptual comparisons with the existing techniques in a similar domain.

3.2.1. Unavailability of High-Quality Data

Image quality is often considered an important, frequently faced challenge in machine
vision systems. Image quality refers to the high resolution and chrominance of the image.
Commonly, machine vision systems are trained and tested on a high-quality image dataset,
yet the high quality of the dataset cannot always be assumed [40]. For this reason, several
contemporary machine vision algorithms underperform in the real world. Quite expectedly,
we also found that the detection quality of a deep CNN model’s performance strongly
depends on the quality of the samples.
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However, as discussed earlier, the proposed pixel-wise k-IN is robust in this situation
because of its exhaustive search mechanisms to locate the dark pixels and their k-immediate
dark neighbours deterministically. This approach helps pixel-wise k-IN identify the
rock pores and fractures in each image sample. Other model parameters, such as α, β, γ and
δ, are responsible for classifying Hi as a pore or a fracture. The values of the model pa-
rameters depend on the problem statement, sample rock porosity and its other necessary
geophysical properties.

3.2.2. Samples with Less Divergence

Low divergence samples accompanied by a small number of grayscale image samples
constitute another issue we encounter in achieving accuracy using conventional methods.
The dataset used in the current work has considerably less divergence, i.e., the visual
quality (the location and shape of Hi) of most images in the sample is very similar. The
reason behind the visual similarity is given in Section 2.3, and a method for measuring
the similarity between the image samples is provided in Section 2.2. Even in the presence
of a formidably large number of grayscale image samples, we found deep-CNN models
(including ours) were failing to identify the regions containing the pores and fractures
with an accuracy as high as in Figure 10 [18,25]. This failure could be due to the poorly
crafted training samples (having fewer unique images) leading to a mode-collapse problem,
i.e., being stuck in local minima because of poor learning.
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Figure 10. Evidence of location learning using Custom Object CNN: (a) Sample CT scan images with
manually identified regions containing the possible pores and fractures of the rock used as training
samples; (b) In return, the Custom Object CNN identifies the same regions (as in (a)), eventhough
very few pores are located. This case is a classic example of mode collapse. One possible solution to
the mode-collapse problem is minibatch learning; however, this approach might fail in the absence of
a large and diverse sample image dataset. To combat this problem, we increased the diversity while
preparing the training samples for Custom Object CNNs, but this policy fails because of the lack of
variety within the current dataset. In figures, (a,b) the image boundaries are marked in red.

To combat this problem, we conducted experiments using the Custom Object CNN model
in two ways: (i) Learning manually identified regions containing the maximum numbers
of micro-pores and fractures as training samples. We maintained higher visual dissimilarity
while preparing the training samples. A comparative study considering the training sample
divergence is shown in Figure 11. (ii) Learning the geometric shapes of individual micro-pores
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and fractures to identify them correctly in the test samples. The manually identified regions
of several images containing the most pores and fractures are chosen as training samples in
case (i), whereas the normal shapes of the pores and fractures are taken as training samples
for the latter case (ii). Each experiment strategy is described below.

1. Manually identify the regions containing the most possible pores and fractures: For
this task, initially, we manually encircled (in green boxes) the regions containing
the most possible pores and fractures to create a training set containing 300 images
(see Figure 10a). We then used this training set to train the Custom Object CNN model
in Section 3.1.2 and used the remaining images as a test dataset. High visual similarity
can be observed among different grayscale images of the current sample, triggering
a mode-collapse problem that forces the Custom Object CNN model to stick to a
suboptimal solution due to the high degree of similarity among the extracted features.
Figure 10b shows the evidence of mode collapse.

a. The training image samples in Figure 10a have visible pores at specific locations,
mainly at the corners (enclosed in green boxes in Figure 10a). Initially, these
samples were used to train the Custom Object CNN model, and a part of the
resulting predictions is shown in Figure 10b, where we found that the model
can identify only the learnt locations in the resulting images. For example, using
testing samples with pores located in the middle, we found that the deep CNN
failed to identify these pores (see Figure 10b). We suspect that this failure occurs
because the deep CNN was only trained to learn the locations of the pores and
fractures situated at the corners of the image samples (mainly, the locations
of the green boxes) and can only detect the pore and fracture locations at the
corners of the testing images; hence, it is a case of mode collapse. This failure
could also be due to the unusual dissimilarity between the training dataset
locations, shapes, sizes and orientations of the pores and fractures (Figure 10a)
and the testing dataset (Figure 10b). Moreover, the divergence between the
training and the testing sets was significant, whereas the divergence within
the training and testing sets was quite low. These findings might point to the
existence of visually similar images in the training (E ) set as well as in the testing
(J ) set, i.e., the images of E and J are highly statistically and visually dissimilar.
For example, the average similarity/dissimilarity between the images of the
training set (E ) shown in Figure 10a is quite low, with DKL(Ei||Er ) ≈ 0.799,
where Ei, Er ∈ E ⊆M; i 6= r (see Section 2.2). Hence, the Custom Object CNN
model learnt the locations of the pores and fractures of the training set and
finally failed to identify the pores and fractures in the testing samples (see
Figure 10b). Additionally, the average similarity/dissimilarity between the
images in E and J is calculated to be quite high DKL(Ei||Jr ) ≈ 9.89, where
Ei ∈ E and Jr ∈ J ⊆ M. This result could be another reason behind the poor
performance in the current case and might be extremely specific to the current
problem in the present dataset.

b. To combat these problems, we prepared a training set incorporating more sta-
tistically dissimilar images (partially shown in Figure 11a) and found better
detection accuracy than the previous one, although still unsatisfactory (see
Figure 11b). This performance improvement is mainly due to the diversity
of the training samples, which helps the Custom Object CNN model to learn
about more diverse locations of the pores and fractures (the locations of the
green boxes), situated in the corners, middle and several other portions in the
micro-images. In this case, the average dissimilarity within J was increased
to DKL(Ji||Jr ) ≈ 4.799 (higher than the previous case) while the average dis-
similarity between the images of E and J was reduced to DKL(Ei||Jr ) ≈ 6.193;
Ei ∈ E ; Jr ∈ J ; i, r∈ Z+. Quite expectedly, the resulting identification accuracy
was better than the previous attempt (see Figure 10). In the current study, how-
ever, it is impracticable to increase the dissimilarity within the training samples
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due to the limited size of the image sample and experimental constraint of
sequential images. This result aligns with the well-accepted notion that deep
learning needs a large dataset to achieve its famed accuracy.

c. Another reason for the poor identification accuracy of the Custom Object CNN
model could be the irregular shape-related features of any Hi from the training
dataset. The irregular shapes of allHi

′s make it difficult for model developers to
identify the suitable supervised deep CNN features for their accurate classifications.

X However, this problem might be handled well using capable unsuper-
vised deep CNN counterparts, which can automatically and intelligently
identify the features required to recognise the irregular objects with
higher accuracy. Custom Object CNN’s poor identification accuracy may
also be due to its present implementation architecture. However, this
architecture is closely related to similar studies conducted on geophysi-
cal image-processing detection [18,25]. Additionally, we have compared
the best-in-class object detection models in Table 1 and found results
inferior to our proposed method. Hence, we firmly believe that the
identification accuracy cannot be improved any further in the absence
of large samples and high-quality training image samples.

d. We also tested with the current input samples after converting the grayscale
images to two predefined colours, reducing the information within the image
from 256 grey shades to only 2. This procedure is known as binarization, and
it often provides sharper and clearer contours of different objects in an input
image [36]. However, the resulting accuracy was still found to be unsatisfactory
because of the tiny sample size and unidentifiable shape-related features, mak-
ing it difficult to train the Custom Object CNN model to accurately identify the
irregular-shaped micro-pores and fractures. In contrast, the proposed pixel-wise
k-IN shows satisfactory accuracy in the presence of binarised input.

2. Learning the shapes of an individual pore and a fracture [18]: For this task, we
extracted the images of theHi from 400 micro-image samples as described in the work
of [18] and created a training set of five shapes (such as intra-particle, vuggy, moldic,
biomoldic and fracture [18]) with 50 examples of each category for the deep learning
models for feature extraction and found considerably low detection accuracy because
of the high geometric and visual similarity (insignificant dissimilarity) in the shapes of
different types of pores and fractures in the used micro-image samples. The extracted
micro-pores and fractures have inferior quality and remarkably similar shapes because
of their tiny sizes. Moreover, the quality of the used grayscale image samples prevents
the ‘Image Pro Plus’ software from extracting the high-resolution images of pores
and fractures that could further be used as training samples for the Custom Object
CNN. Consequently, the Custom Object CNN model fails to extract the above features
that help perform the porosity classifications and fracture identifications uniquely.
We found that the training grayscale image samples of micro-pores and fracture
images (extracted using the ‘Image Pro Plus’) are highly distorted (irregularly shaped
geometry) in most cases and subsequently, extracting their shape geometry-related
features became extremely difficult in reality for CNN-based object detection systems,
which are square bounding-based detection, whereas pores are generally irregularly
shaped. These pores can sometimes be much smaller than the size of the convolution
filters chosen, which leads to false positives. Hence, the identification accuracy of this
strategy, only approximately 10%, is very inferior to that of case (i). In contrast, the
proposed approach shows better accuracy than the above deep learning approaches
because of the benefit of its pixel-level in-depth analysis and the adoption of an
exhaustive search approach to identify new neighbouring dark pixels of a detected
dark pixel.
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(b) The sample resulting images show the regions identified as pores and fractures by the deep CNN
model. The identification accuracy was higher than that presented in Figure 7.

3.2.3. Sample with an Extremely Small Training Set

The unavailability of large and diverse set of training samples is widely considered
a major practical problem behind the unsuccessful implementation of the Custom Object
CNN [33,41,42]. In addition, we could not find any public dataset similar to our study
to enhance the sample set size. Large datasets are often needed to ensure that the deep
CNN delivers the desired results. The success of deep learning methods [18,25] is often
found to entirely depend on the availability of a large and diverse set of training samples.
Particularly in the present scenario, the size of the dataset is unsatisfactory; hence, the
accuracy of the current Custom Object CNN, including the YOLO and RCNN models,
was inferior to the proposed approach. We firmly believe that the accuracy can barely
be improved in the absence of a large set of training samples. Similarly, the other deep
learning implementation [18] will not be successful without a large set of training samples.

This problem has been successfully countered using the proposed approach of analysing
individual images based on pixel intensity. The proposed approach does not require a learning
phase and hence can successfully and accurately be applied in the presence of a tiny number
of grayscale image samples.

3.2.4. Detecting Objects of Irregular Shape

This problem could be a major difficulty for the deep CNN approaches and [18] the
tiny size of inferior quality (grayscale, resolution) images containing micro-pores and
micro-fractures (visually small, in the current case). As discussed above, thin boundaries
of pores and fractures are frequently observed along with a negligible level of intensity
differences among the pixels lying inside or out of any tiny (small)Hi, ∀i ∈Z+ in any image
sample in the present dataset (see Section 2.3).

As a result, the pores and fractures are objects of extremely unusual shapes, and
accurately retrieving their shape-related relevant information (for their future identification)
using the present deep CNN implementation becomes quite imperfect, thus increasing
misclassification. This result could be due to the layers of deep CNN extract better and
specific features related to identifying pores and fractures. Hence, to identify unusual-
shaped objects such as pores and fractures (in the current situation), even at the micro-level,
their features must be firmly defined before classification. This task is quite difficult in the
current case because of the unusual shapes of the pores and fractures, thus the number
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of misclassification events increases. When using deep CNN and [15], the number of
misclassifications increases even more if the training samples are few. In contrast, the
proposed approach can detect unusually shaped pores and fractures with higher accuracy.
This ability is a benefit of the pixel-wise exhaustive search (by analysing the intensity)
approach in every image sample and the flexible choosing of the I -value (depending on
the image quality and problem requirements) adopted by the proposed procedure, which
is documented in Table 1. In contrast, as mentioned before, the proposed method does not
require training and hence can work well with a few datasets.

3.3. Advantages of the Proposed Algorithm

From the above sections, the advantages of the proposed algorithm are quite evident
and listed as follows:

• The proposed technique is relatively easy to understand and implement. In addition,
its identification accuracy meets our expectations for the present dataset.

• It can be successfully applied to a few grayscale image samples, whereas deep learning
approaches such as Custom Object CNN, YOLO and RCNN suffer from poor accuracy
in the presence of a small image dataset. These famous image classification models
are trained on massive datasets. Among these datasets, the top three used for training
are as follows:

# ImageNet—1.5 million images with 1000 object categories/classes,
# Microsoft Common Objects in Context (COCO)—2.5 million images, 91

object categories,
# PASCAL VOC Dataset—500K images, 20 object categories.

• The proposed algorithm can be successfully applied to a small image dataset, such as
300 images, because it does not require training for object identification.

• Further referring to our limitations of the size of the dataset and quality of the images,
this technique can use samples with a low divergence and lower rank hardware
resource for computing on the edge. As we know, deep CNN models depend on
hyper-parameter choices such as the filter size, regularisation chosen and quantisation
levels [38,42,43]. Some of the hyper-parameters we finetune in deep learning methods
that can impact the accuracy gain and robustness of the models are epochs (min 1),
batch size (min 1), loss function (cross entropy, L1 loss, mean square loss, negative
likelihood), optimiser algorithm. learning rate, weight decay, rho, lambda, alpha,
epsilon, momentum and learning rate decay. These parameter (more than 15) settings
may have an infinite combination and may lead to another combinatorial optimization
problem in this case [43], 320 random hyper-parameter settings (in this case) and hence
it can swing an average random accuracy by as much as 41.8 ± 24.3 [43]. This result
shows the amount of variation parametric choices can have over the results. Such
high-dimension problems are then reduced in trials with extensive domain expertise,
which again becomes very close to an empirical approach such as ours. In comparison,
the proposed model has less than five parameters (α, β, γ, δ, and I) to optimise in our
proposed approach. Hence, it is a much simpler and straightforward comparison.

• We have tried deep learning in our separate experiments on the Advance Drive
Assistance System (ADAS) and for various COVID-19 related apps that run deep
learning on-the edge computing. We found that the accuracy levels have drastically
reduced the inference of the full Resnet and YOLO-based object detection model after
model quantisation. There is a limit on the capacity of deep learning models, whereas
our proposed model can easily make inferences on edge (IoT) hardware such as Jetson
Nano and even Raspberry Pi.

• Our proposed model can be used to identify objects without fixed geometric shapes
and sizes (such as pores and fractures). In contrast, deep CNN models are inefficient in
this scenario because of an insufficient understanding of the necessary shape-related
features required to classify any correctly.
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• Furthermore, though being scientifically regressive, back-propagation (BP) with the
gradient descent (GD) has the inherent issue that it frequently gets stuck in local
optima [44]. This result was further supported by Gori et al. [45], who found that
BP with GD can be guaranteed to find global minima only if the problem is linearly
classified. As a learning algorithm, BP, unless supported by empirical techniques such
as adaptive learning rate, momentum, noise randomisation and weight spawning,
cannot find guaranteed global minima using current deep learning techniques, as
discussed above. Furthermore, it is necessary to investigate the hyper-parameters of
shallow layer perceptron to show the existence of several local minima and saddle
points [46]. Again, this problem can be resolved with the help of choosing the right
kind of hyper-parameter settings or some heuristics. To summarise, the issue with
BP and GD is that they are slowly converging and may get stuck in local minima and
saddle points indefinitely. Furthermore, it is computationally very expensive (calculate
derivatives) being its inherent disadvantages, which tie back to its above-discussed
limitation to deploying on-the-edge equipment. Therefore, we have proposed a
lightweight method with a minimum adjustments of parameters, and we can obtain
better results given the above-specified limitations.

• In addition, the computing resource requirement for the proposed approach is rela-
tively less stringent as for manual involvement during the feature extraction process;
only CPUs are sufficient to do the inferencing. In contrast, higher computing resources
are needed in terms of training and inferring from deep learning experiments [47–49].
Training a deep neural network is very time-consuming. We need dedicated hardware
(high-powered GPUs, high RAM, SSD, etc.) [50] to train the latest state-of-the-art im-
age classification models in a day and on top of it in case undesirable results imagine
retaining the model Imagine this issue with our attempt to create a robotic instrument
using computing on the edge which can make real-time inference for pores and frac-
tures with some empirical methods specific accuracy to the domain. We found that the
accuracy levels drastically reduced the inference of the full RCNN and YOLO-based
object detection model after we quantised [49] the model. Therefore, there is a limit on
productionising deep learning models, whereas we found that our proposed model
can easily make inferences on edge (IoT) hardware such as Jetson Nano and even
Raspberry Pi.

3.4. Restrictions of the Proposed Algorithm

Despite having several advantages, the proposed algorithm has a few noteworthy
restrictions that are listed below:

• The proposed method should be chosen only in the absence of a large and high-quality
training set with considerable similarities and dissimilarities among the sample images.
This restriction is given not because of its accuracy but because of its high computational
time and adopted pixel-wise exhaustive image analysis mechanism. The proposed
approach processes each image, and hence, its computation time might substantially
increase in the presence of a large and high-resolution image dataset, although the
identification error should remain the lowest [35–37]. However, in the presence of a large
training set, deep CNNs might also suffer from high computational costs.

• Sometimes, in the presence of CT scan images containing micro-pores and fractures,
it can be difficult to choose suitable I, α, β, γ and δ values, where we must rely on
expert judgement. However, the same problem remains in deep CNN, where we often
need to decide on several model hyper-parameter values.

• Multi-objective algorithms pose higher complexity and computation in comparison to
their single-objective counterparts.

4. Conclusions

The imaging, accurate identification and modelling of pores and fractures have be-
come flagship programmes in the leading oil and gas industries because of their immense
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applications in contaminant transport and CO2 storage, and often, porosity is considered
a basic parameter for reservoir characterisation. However, quite frequently, the identifi-
cation procedure of pores and fractures from the image samples is manual or inaccurate
if automated. Above all, micro-pores and fractures in a grayscale rock image (CT scan
samples) are mostly unidentifiable or indistinguishable using the contemporary techniques
of automatic identification.

Prompted by this fact, in the current work, we developed a novel pixel-wise multi-
objective image analysis strategy to automatically identify the pores and fractures from
the input CT scan images of rocks. We have tested the applicability and efficiency of
the proposed technique using CT scan images of carbonate rocks, and we firmly believe
that the proposed methodology will retain its success in the presence of the CT scan
images of various other types of rock samples. This belief is held because of its adopted
pixel-wise intensity analysis mechanism, which enables the algorithm to understand the
largest intensity variations among different pixels along with its neighbouring pixels and
accordingly, classify them as bright or dark, thus helping to identify pores and fractures in
the CT scan images. However, an accurate understanding of the intensity variation among
the pixels in an input image sample depends on a perfect selection of α, β, γ, δ and I ∈ R+,
which requires expert judgement ability of the model developer. Next, to juxtapose the
accuracy of the proposed methodology, we compared its performance with that of deep
CNN and the method developed by [15] using the same image samples. The results clearly
show a better identification accuracy of pores and fractures by the proposed approach
using the input CT scan images.

• We identified a possible reason for the poor identification accuracy of supervised
deep CNNs as the unidentified necessary shape-related features of anyHi, which are
highly required during the training of supervised deep CNNs to accurately classify
any specificHi as a pore or fracture. Particularly, the irregular shapes of allH make it
difficult for model developers to identify the suitable supervised deep CNN features
for their accurate classifications.

• However, this problem might be handled well using capable unsupervised deep
CNN counterparts, which can automatically and intelligently identify the features
required to recognise irregular objects with higher accuracy. This possibility will be
investigated in our subsequent research works. The poor identification accuracy of
deep CNN might be due to its present implementation, although we firmly believe
that the accuracy can barely be improved in the absence of large and high-quality
training samples.

• Possible Implementation of the Proposed System: The proposed system can be pre-
pared as a module, attached to the imaging device and linked with its guiding software
to simultaneously identify the pores and fractures (even at the micro-level) during the
imaging of rock samples. Gathering many meaningful real data samples has always
been a major problem in any real-world rock imaging scenario, which often has a
major negative impact on the identification accuracy of deep learning contemporaries.
Therefore, a deep CNN module, if attached to a subsequent imaging device and its
guiding software as an add-on, should be pre-trained because of the lack of relevant
training samples. However, the biggest challenge for the pre-trained models for un-
derstanding objects without fixed geometric shapes (such as pores and fractures) is
perfectly defining and learning the necessary shape-related features that distinguish
the pores from the fractures. This approach might increase the number of misclas-
sifications for a deep CNN model. In contrast, the proposed method only requires
an accurate range of its parameters such as α, β, γ and I to uniquely identify pores
and fractures. The accuracy of the proposed method was corroborated by various
experiments presented in the current work.
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Nomenclature

Gn nth grayscale image sample from the datasetM
Pi,j Any pixel of location (i, j) in Gn
location(Pi,j) Location of Pi,j ∈ Gn
Li,j ∈ Z+ Intensity of Pij ∈ Gn
I Threshold value (∈Z+) needed to classify Pi,j as bright or dark. It depends on the

image sample quality and the developer’s expert judgment
Hi Set of contiguous dark pixels in Gn ∈ M, which will be classified as a pore or a

fracture if it contains a predefined number of dark pixels and satisfies preconceived
classification logics. Here, the size depends on the image quality and geophysical
properties of the rock sample.

major(Hi) Major axis of the regionHi ∈ Gn
minor(Hi) Minor axis of the regionHi ∈ Gn
area(Hi) Total number of pixels inHi ∈ Gn
perimeter(Hi) Perimeter of the regionHi ∈ Gn
Vc(Hi) Shape similarity ofHi ∈ Gn with a circle of perimeter(Hi)
VE (Hi) Shape similarity ofHi ∈ Gn with an ellipse of perimeter(Hi)
DKL(.||.) KL-divergence between two distributions
E ,J ⊆ M Training and testing sets for deep-CNN, respectively
Li Set of subsequent dark pixels of any pixel in the image
lp, µp ∈ Z+ The lower and upper-bounds of area (Hi), respectively
i.i.d A collection of random variables which is independent and identically distributed.
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