
Citation: Morais, R.; Crocker, P.;

Leithardt, V Nero: A Deterministic

Leaderless Consensus Algorithm for

DAG-Based Cryptocurrencies.

Algorithms 2023, 16, 38. https://

doi.org/10.3390/a16010038

Academic Editor: Manki Min

Received: 16 October 2022

Revised: 19 December 2022

Accepted: 4 January 2023

Published: 7 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Nero: A Deterministic Leaderless Consensus Algorithm for
DAG-Based Cryptocurrencies
Rui Morais 1,* , Paul Crocker 1,2,* and Valderi Leithardt 3,4

1 Department of Informatics, University of Beira Interior, 6201-001 Covilhã, Portugal
2 Instituto de Telecomunicações and Department of Informatics, University of Beira Interior,

6201-001 Covilhã, Portugal
3 VALORIZA—Research Centre for Endogenous Resource Valorization, Polytechnic Institute of Portalegre,

7300-110 Portalegre, Portugal
4 COPELABS, Lusófona University of Humanities and Technologies, Campo Grande 376,

1749-024 Lisboa, Portugal
* Correspondence: ru.morais@ubi.pt (R.M.); crockercaria@gmail.com (P.C.)

Abstract: This paper presents the research undertaken with the goal of designing a consensus
algorithm for cryptocurrencies with less latency than the current state-of-the-art while maintaining
a level of throughput and scalability sufficient for real-world payments. The result is Nero, a new
deterministic leaderless byzantine consensus algorithm in the partially synchronous model that
is especially suited for Directed Acyclic Graph (DAG)-based cryptocurrencies. In fact, Nero has
a communication complexity of O(n3) and terminates in two message delays in the good case
(when there is synchrony). The algorithm is shown to be correct, and we also show that it can
provide eventual order. Finally, some performance results are given based on a proof of concept
implementation in the Rust language.

Keywords: consensus; byzantine; directed acyclic graph

1. Introduction

The consensus problem was first introduced in [1]. It can be described as a set of entities
that wish to agree on something, which could be a value, an action or a statement. At first
glance, it appears a simple problem to solve, especially if all parties are honest. However, it
becomes complex when some subset of those entities can behave unexpectedly, such as by
not participating and leaving the consensus process without revealing their choice to the
other parties or by acting maliciously by actively trying to sabotage the consensus scheme
so that no consensus is reached or such that honest parties decide differently instead of
arriving at a consensus.

This problem is typically studied in the context of computer science, where the entities
are processes on computers and where the computers communicate with each other through
an unreliable network such as the internet. However, this problem and the underlying
principles can be applied to other areas, such as politics and game theory. In fact, one
of the seminal works in this area is a metaphor for a group of generals on the battlefield
who need to decide if they attack or not [2], and this is where the term “byzantine” comes
from, meaning any type of faulty behavior, also called “arbitrary” faults. Ever since, it has
become one of the most studied problems in computer science due to its both theoretical
and practical importance. From a theoretical standpoint, it has been shown to be equivalent
to other problems, such as atomic broadcast and state machine replication, meaning that
if you can solve one, you can also solve the others. From a practical standpoint, it is very
useful in the deployment of real-world distributed systems.

It started with leaderless synchronous consensus algorithms [2,3], but these had lim-
ited application in practice since distributed systems in the real world are not synchronous.

Algorithms 2023, 16, 38. https://doi.org/10.3390/a16010038 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16010038
https://doi.org/10.3390/a16010038
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-5040-4164
https://orcid.org/0000-0001-6824-6136
https://orcid.org/0000-0003-0446-9271
https://doi.org/10.3390/a16010038
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16010038?type=check_update&version=2


Algorithms 2023, 16, 38 2 of 11

This has led to the study of asynchronous distributed systems and to one of the most im-
portant theorems in the field: the FLP impossibility theorem [4]. According to this theorem,
it is not possible to have agreement and termination in the asynchronous model if one of
the processes crash. Throughout the years, there have been many ways to circumvent this,
such as randomization [5], modifying the model [6] or the properties [7] of the problem
and byzantine fault detectors [8,9].

Despite being an important field of research in computer science, distributed sys-
tems and particularly consensus algorithms gained new momentum with the emergence
of Bitcoin [10], the first decentralized-permissionless network that uses a blockchain as
a ledger to store the transactions. Its consensus mechanism, the Nakamoto consensus [11],
led to the development of a whole new family of consensus algorithms based on Proof of
Work (PoW).

However, soon the limitations of a design based on PoW became evident, such as the
low throughput and high latency, and new alternatives started to appear, such as Proof of
Stake (PoS) [12–14] and PoS with a ledger structure based on directed graphs instead of
a linear, chronological order.

Despite improving on the limitations of Bitcoin, new alternatives based on proof
of stake also solved state machine replication [15] by sequentially executing consensus
instances for agreeing on each block of transactions to append to the blockchain.

In order to improve scalability, another ledger structure called directed acyclic graph
has gained popularity. This allows for consensus instances to be executed concurrently
instead of sequentially and thereby improves the latency and throughput of the system [16].
Examples are [17–20].

A DAG is a graph that is made up of a set of vertices (or nodes) connected by directed
edges (or arcs) such that a closed chain is not possible. A blockchain is a type of acyclic
graph where each vertex is a block of transactions and is connected to only another vertex
sequentially. In a general DAG, each vertex can be connected to many vertices, and these
connections are not made sequentially but concurrently instead. A blockchain can be seen
as a DAG where only one edge can be connected to a vertex.

In the context of cryptocurrencies, this allows for a greater throughput and less latency
when validating and adding transactions to the ledger compared to a blockchain. However,
the downside is that it is much more difficult to order those transactions and, consequently,
for the nodes of the network to have a common sense of time. A common sense of time
is useful, for example, for synchronous network upgrades, for pruning the ledger and
bootstrapping. Another problem is scalability and decentralization, which are connected to
each other.

Many consensus algorithms are also used to assign a node the status of the leader.
However, a leader-based approach has limitations, especially when nodes are geographi-
cally dispersed over a wide area network. Firstly, the latency for clients far from the leader
is obviously increased. Furthermore, the leader can become a bottleneck or its network
performance may degrade, leading to an overall decrease in system-wide performance
decreases. Finally, if the leader fails, the whole system cannot serve new requests until
an election of a new leader takes place, thereby affecting availability.

Therefore, a ledger based on a DAG design is most suited for leaderless consensus
algorithms, which can be probabilistic [21,22] or deterministic [23]. In fact, Leaderless
State Machine Replication (SMR) offers appealing properties with respect to leader-driven
approaches. Protocols are faster in the best case, suffer from no downtime when the leader
fails, and distribute the load among participants.

In this paper, we present a new leaderless deterministic consensus algorithm and
a mechanism that provides eventual order, making it suitable for DAG-based cryptocurren-
cies. Some theoretical properties of the algorithms are given, such as a complexity analysis
and correctness proprieties. The final contribution is an open-source implementation in the
Rust language.



Algorithms 2023, 16, 38 3 of 11

In Section 2, some preliminaries are described, in particular, multi-valued leaderless
consensus properties are defined, and the overall system model is defined. In Section 3,
details of the new Nero consensus algorithm are given. In Section 4, the correctness of the
algorithm is discussed, and performance results from a proof of concept implementation in
Rust are given. Finally, in the last section, a discussion and final conclusions are made.

2. Preliminares
2.1. Multi-Valued Consensus

We use a variant of the multi-valued byzantine consensus problem called Validity
Predicate-based Byzantine consensus [24], with the following properties.

• Agreement: No two correct processes decide on different values.
• Termination: All correct processes eventually decide on a value.
• Validity: A decided value is valid, i.e., it satisfies the predefined predicate denoted

valid().

Correctness. An algorithm satisfies the Multi-valued Consensus if it satisfies validity,
agreement and termination.

2.2. System Model

The system consists of a set P of n asynchronous processes, namely P = p1, . . . , pn,
where asynchronous means that each process proceeds at its own speed, which can vary
with time and remains unknown to the other processes. Up to f processes among n = 3 f + 1
can fail: at most, one is suspended [25], and f − 1 can behave arbitrarily or be Byzantine.

We use a variant of the partially synchronous system model [6] where the system can
be in one of two states in a given time: GST (Global Stabilization Time) and non-GST. In the
first, there is a known bound ∆ to all sent messages, meaning that a message broadcasted
by a correct process at time t will be delivered by all correct processes before t + ∆. In
a non-GST state, this is not guaranteed to happen; however, it is assumed that the system
reaches GST at least once.

3. The Nero Algorithm

In this section, we first give an overview and intuition behind the design of the Nero
algorithm and describe the data structures necessary for the execution of the algorithm.
Then we present the algorithm, prove its correctness and finally describe the mechanism to
satisfy the eventual order.

3.1. Overview and Intuition

Our goal is to develop a consensus algorithm that achieves consensus for a cryp-
tocurrency with a DAG ledger instead of a blockchain. Typically, in the latter, there is
an algorithm for choosing the leader of the round, who proposes a block of transactions
to be validated, and the other processes are also validated or not (binary consensus). In
a blockchain, a non-malicious double spend attempt can happen in the selection of the
leader when the algorithm selects more than one leader for the same round who proposes
different blocks of transactions (this can happen in Bitcoin if more than two miners find
the solution of the proof of work more or less at the same time, although it is very unlikely
due to the high latency of more or less 10 min). However, if only one leader is chosen in
a given round, a double spend attempt can only happen intentionally if the leader includes
conflicting transactions in the same block.

With a DAG structure, it is different because there is no leader in each round, so every
process can propose transactions and those transactions can be conflicted, i.e., have the same
origin block, which is called a double-spend attempt. Since the latency is very low, different
correct processes can receive different conflicting transactions in a different order and make
a conflicting vote. Because the probability of double spending attempts happening in an
unintentional way is higher than in a blockchain, the amount of computational resources
needed to resolve them is also higher. Because of that, and assuming that conflicting



Algorithms 2023, 16, 38 4 of 11

transactions (not votes) can only happen in a malicious way or due to a programming error,
our consensus algorithm discards all of them and votes nil instead of choosing a winner
transaction to be validated from the set of conflicting transactions.

Similarly, if a correct process receives at least two conflicting transactions, it votes nil
on that election. If it has only received one transaction but at least f + 1 processes vote nil, it
means that at least one correct process received a double spend attempt, and so it also votes
nil. This way, the amount of computational resources to solve a double spend attempt, or
fork, will be lower, and the latency of the consensus algorithm will also be lower.

Now we need to take into account the processes that vote in a malicious way, so we
need a way to validate messages. One way to do that is to append a proof to each message
with the messages of the previous round in which it is based; however, this has a very high
communication complexity. Another way is to send only the hashes of the messages as
proof. If the receiving process does not have the corresponding messages to the hashes yet,
it considers the message pending and waits for the previous messages to validate it. This
reduces the communication complexity; however, we can still reduce it more and not send
any proof at all. A validation algorithm checks if the received message is valid, pending or
invalid according to the received messages of the previous round.

3.2. Data Structures

We abstract the data structures and refer to only the contents relevant to the operation
of the consensus algorithm.

Block. Data containing the value transferred from the sender account to the receiver
account.

Transaction. To simplify the presentation, we abstract the contents of a transaction that
are not relevant to the consensus algorithm, and we assume that a transaction is composed
of the origin block hash and the new block hash.

Round. A simple integer that starts at 0 and ends in the round where the value of an
election is decided.

Elections. Each correct process maintains a hashmap of the active elections, where
the key is a block hash (corresponding to the origin block of a transaction) and the value
is the state of the election. An election can have multiple competing transactions (called
forks) if they have the same origin block and the purpose of the consensus is that all correct
processes validate one of the transactions or none.

Election State. The state of an election is represented by a hashmap, where the key is
the election hash and the value a set of round states.

Round State. The state of a round is represented by a hashmap, where the key is the
round number and the value the tally of the messages of that round. It also contains the
validated and pending messages.

Tally. Each correct process computes a tally of the messages received in each round,
with the total number of votes or commits in each value (block hash or nil).

Messages. A message is composed of a:

• Type: VOTE or COMMIT,
• Value: a block hash or a nil value,
• Round.

A message m can be valid, pending or invalid. A message m of round r is considered
valid by a correct process p if there is a set of at least 2 f + 1 messages received by p in the
previous round r− 1 that are compatible with the value and type of message m. A message
is considered pending if there is no set compatible, but it is still possible to have that set by
receiving the remaining messages of round r− 1. It is considered invalid if it is not possible
to have a compatible set with the message.

Timer. At the start of each round, a correct process starts a timer tr, where r is
the round.

New round. A correct process starts a new round r + 1 when it has received at least
2 f + 1 messages in round r and the timer tr has expired. During GST, all messages from



Algorithms 2023, 16, 38 5 of 11

correct processes will be received before the timer expires; however, a correct process has
no way of knowing that it is in GST, i.e., if it receives 2 f + 1 messages and the timer expires,
it is not guaranteed that those messages are all from correct processes.

3.3. The Algorithm

Validation rules. After receiving a message m of round r, a correct process validates
it and decides one of the following statuses:

• Valid if there is a set of at least 2 f + 1 messages of round r− 1 that are compatible
with the value and type of m.

• Pending if there is not a set of at least 2 f + 1 messages of round r− 1 that are com-
patible with the value and type of m but it is still possible to receive new messages of
round r− 1 to produce that set.

• Invalid if there is not a set of at least 2 f + 1 messages of round r− 1 that are compatible
with the value and type of m, and it is not possible to receive new messages of round
r− 1 to produce that set.

Decision rules. With the start of a new round r + 1, a new decision has to be made
to decide the message that the process is going to send in the new round. This message is
based on the messages received in the previous round r (at least 2 f + 1 valid messages in
total), in the following way (only one rule can be applied):

• If process p has received at least 2 f + 1 valid messages of type COMMIT with the
same value, decide that value. There is no need to send a new message because all
the other correct processes will eventually receive the same messages and decide the
same value as well.

• Else if process p has received at least one valid message of type COMMIT with some
value v, send a message of type COMMIT with value v. (There cannot be two commits
of different values in the same round).

• Else if process p has received at least 2 f + 1 valid messages of type VOTE with the
same value, send a message of type COMMIT with that value.

• Else if process p has received at least one valid message of type COMMIT with some
value v, send a message of type COMMIT with that value.

• Else if process p has received at least one valid message of type COMMIT with some
value v in round r and has already committed to another value v′ in round r′, send
a message of type COMMIT with value v only if round r > r′. If r < r′, send a message
of type COMMIT with the previous committed value v′.

• Else if process p has received at least f + 1 valid messages of type VOTE with value
nil, send a message of type VOTE with value nil.

• If no block hash value has at least f + 1 votes, send a message of type VOTE with
value nil.

• Else if process p has not received at least f + 1 valid messages of type VOTE with
value nil, send a message of type VOTE with the value with most votes.

Execution. In each round r, a correct process waits for at least 2 f + 1 valid messages
and for the timer tr to expire. Every time it receives a valid message, it does the following:

• Inserts it in the respective election state.
• Updates the tally of the election.
• Tries to validate previous pending messages based on the validation rules.
• Broadcasts m to the network.
• Computes a new message m′ of round r + 1 based on the received messages and the

decision rules.
• Broadcasts the message m′ to the other processes.

3.4. Correctness

In this section, we discuss the correctness of the Nero consensus algorithm.



Algorithms 2023, 16, 38 6 of 11

Lemma 1. There cannot be two or more valid commits with different values in a given round.

Proof. Since, per the consensus algorithm, a correct process never votes or commits more
than one block hash in the same round in the same election, it is not possible to have two
sets of 2 f + 1 of different values without at least one correct process voting for two different
values, so we prove by contradiction.

Lemma 2. If a correct process commits a value v in round r and it receives a valid commit of
another value v′ in round r′, r′ > r, no correct process could have decided v in round r.

Proof. If a correct process decides value v in round r, it means that it has received at least
2 f + 1 commits with value v in round r− 1. Since at least f + 1 of those commits are from
correct processes, they will not change its value and so the 2 f + 1 valid messages of value
v′ of type VOTE needed to commit value v′ will not be produced. Inversely, if there was
a commit of value v′, it means that value v was not decided in a previous round.

Lemma 3. The Nero algorithm satisfies Termination.

Proof. We need to prove that all correct processes decide. For that, we have to prove that all
correct processes eventually commit a value and then that all correct processes eventually
decide a value. The proof follows from Lemmas 4 and 5.

Lemma 4. All correct processes eventually commit a value.

Proof. First, we prove that at least one correct process eventually commits. Since a byzan-
tine process can send different valid votes (with different values) to different correct
processes in a given round, it is possible that no correct process commits during the
non-GST phase.

However, during the GST, all correct processes will eventually vote the same value in
a given round r because they will all receive the same votes in round r− 1.

Lemma 5. All correct processes eventually decide a value.

Proof. First, we prove that at least one correct process eventually decides, which happens
because all correct processes will eventually commit the same value.

During the GST, all correct processes will eventually decide as well since they will
receive the valid commits in which the correct process based its decided value.

Lemma 6. The Nero algorithm satisfies Agreement.

Proof. We need to prove that all correct processes decide the same value. Since we already
proved in Lemma 5 that all correct processes eventually decide, we need to prove that they
all decide the same value.

Suppose that a correct process p decides value v in round r. This means that it has
received at least 2 f + 1 commits with value v in round r− 1. At most there are f byzantine
processes, so at least f + 1 of those commits are from correct processes, which means that
they will only change their commit if they receive a valid commit with value v′ in a round
r′, r′ > r− 1.

If r′ = r, this cannot happen due to Lemma 1. If r′ > r, for a valid commit with value
v′ to happen, there needs to be at least 2 f + 1 valid votes in a previous round r′ − 1, which
is not possible since at least f + 1 correct processes will not change their commit with value
v in round r and vote with value v′ since r′ − 1 >= r. Therefore, we prove by contradiction.

Lemma 2 ensures that a correct process can change its commit to a subsequent valid
commit while maintaining safety.



Algorithms 2023, 16, 38 7 of 11

Lemma 7. The Nero algorithm satisfies Validity.

Proof. A correct process only sends messages with a valid value so only valid values can
be decided.

Theorem 1. The Nero algorithm achieves a multi-valued consensus, i.e., Termination, Validation
and Agreement.

Proof. Follows from Lemmas 3, 6 and 7.

3.5. Eventual State Machine Replication

In this section, we adapt the Nero consensus algorithm to achieve a variant of state
machine replication suited for DAG-based systems called eventual state machine replication.
Concretely, we change the definition of replica coordination of [15] to all non-faulty replicas
eventually receive and process the same sequence of requests.

This property can be decomposed into two parts, Agreement and Eventual Order:
Agreement requires all (non-faulty) replicas to receive all requests, and Eventual Order
requires that the order of received requests is eventually the same at all replicas.

In this section, we propose a way to eventually order the transactions while maintain-
ing the properties of the consensus algorithm. We do this by modifying the contents of the
messages sent (in this case, the transactions), with the client adding a timestamp to it, and
modifying the valid() predicate accordingly. In addition to the previous validation condi-
tions, the node now has to also validate the timestamp of the transaction according to its
own local timestamp when it receives it in order to discard invalid timestamps. Concretely,
a timestamp t of a transaction is considered valid if l − d < t < l + d, where l is the local
timestamp and d is the value to account for the local timestamps desynchronization of the
different nodes and the delay of broadcasting a message through the network. The local
timestamps can be synchronized using a decentralized protocol such as Network Time
Protocol (NTP) [26] or Network Time Security (NTS) [27].

This is not meant to provide an accurate timestamp of when a given transaction
happened but only provide a global ordering of the ledger and a common sense of time to
the nodes of the network. There is a probability of valid transactions being discarded when
the network is not on GST, but they can always be resubmitted with a new timestamp. In
order to minimize this, a node can vote on a transaction with an “invalid” timestamp (in
its view) if at least f + 1 nodes voted on that transaction, meaning that at least one correct
process received the transaction in a timely manner.

The ordering of the messages is then performed by its timestamp first and, if there is
more than one message, with the same timestamp, by the hash of the message using a hash
with the properties of [28]: compression, one way, weak collision resistance and strong
collision resistance.

Proof. Assuming the agreement and termination properties of the underlying consen-
sus algorithm, all correct processes will eventually decide on the same set of values. In the
case that the values all have different timestamps, the order is naturally done. In the case
that different values have the same timestamp, the hash of those values assures a unique
deterministic order because any value is hashable (compression property), and each hash
is unique in practice (weak collision resistance property).

4. Results

In this section, we compare the Nero algorithm to other related work from a theoretical
standpoint (communication complexity and message delays) and analyze its implementa-
tion and use case in practice.



Algorithms 2023, 16, 38 8 of 11

4.1. Comparison with Related Work

In Table 1, we compare other relevant deterministic consensus algorithms using
different parameters, such as the message complexity during normal case and view change,
the latency (message delays) and if they are leaderless or not. Note that for completeness
we also add to the table the parameters from the new Nero consensus algorithm, which
will be described in Section 4. A more complete comparison of consensus layer techniques
for several algorithms and indeed other parameters can be found in [29].

Table 1. Comparison of different consensus algorithms.

Normal Case View Change Message Delays Leaderless

PBFT [30] O(n3) O(n4) 3 No

HotStuff [31] O(n2) O(n2) 8 No

IBFT [32] O(n2) O(n2) 3 No

Tendermint [33] O(n3) - 3 No

DBFT [34] O(n3) - 4 No

Archipelago [23] O(n3) - 5 Yes

Nero O(n3) - 2 Yes

Tendermint [33] is an improved version of PBFT that does not need a view change
protocol but still has a greater latency due to the PROPOSAL message of the leader, which
Nero does not have since every process makes its proposal a PREVOTE message.

IBFT [32] has a better communication complexity but has a view change, which adds
to the implementation complexity, and it is not leaderless.

DBFT [34] does not require signatures and has the same communication complexity;
however, it is not leaderless according to our definition due to its requirement of a weak
coordinator and a greater latency.

HotStuff, despite having a better communication complexity, has high latency and its
throughput drops to zero when the leader fails and until some view-change completes [35].

Archipelago [23] is the only other leaderless deterministic consensus algorithm and
has the same communication complexity; however, it has a greater latency.

4.2. Implementation

We implemented the Nero consensus algorithm in the Rust programming language
(https://github.com/Fiono11/nero_consensus.git (accessed on 3 January 2023), and we
benchmarked its latency and throughput for a different number of processes in Ubuntu
18.04, Intel Core i7-4790 3.60 GHz, 16 GB RAM. As expected, the latency increases and
the throughput decreases with the number of nodes, as shown in Figure 1. We show that
the algorithm has very little latency, which was the primary goal, and that its through-
put is enough to have real-world applications, although it can still be improved with
optimizations such as batching of votes.

https://github.com/Fiono11/nero_consensus.git


Algorithms 2023, 16, 38 9 of 11

Figure 1. Latency and throughput of Nero.

5. Conclusions

This work presents a deterministic leaderless consensus and provides a mechanism of
eventual ordering that makes it suitable for DAG-based cryptocurrencies without harming
scalability and decentralization.

We show that it is competitive with other consensus algorithms in the communica-
tion complexity and improves the latency. The prototype implementation indicates that
Nero can be used in real world payment applications; however, it can still be optimized
and improved.

Future work will focus on formal verification using ByMC [36] and testing the imple-
mentation in a real-world scenario.

Author Contributions: Conceptualization, R.M.; Methodology, V.L.; Investigation, P.C.; Writing—
original draft, R.M.; Writing—review & editing, R.M., P.C. and V.L.; Supervision, P.C. All authors
have read and agreed to the published version of the manuscript.

Funding: This work is funded by FCT/MCTES through national funds and when applicable co-
funded EU funds under the project UIDB/EEA/50008/2020 and by NOVA LINCS (UIDB/04516/2020)
with the financial support of FCT—Fundação para a Ciência e a Tecnologia, by operation Centro
2020—Centro-01-0145-FEDER-000019-C4—Centro de Competências em Cloud Computing and by the
project UIDB/05064/2020 (VALORIZA—Research Centre for Endogenous Resource Valorization).

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to thank the support of the RELEASE, RELiablE And SE-
cure Computation Research Group at the University of Beira Interior and the Networks Architectures
and Protocols group of the Instituto de Telecomunicações.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pease, M.; Shostak, R.; Lamport, L. Reaching Agreement in the Presence of Faults. J. Assoc. Comput. Mach. 1980, 27, 228–234.

[CrossRef]
2. Lamport, L.; Shostak, R.; Pease, M. The Byzantine Generals Problem. ACM Trans. Program. Lang. Syst. 1982, 4 , 382–401.

[CrossRef]
3. Dolev, D.; Strong, H. Authenticated Algorithms for Byzantine Agreement. SIAM J. Comput. 1983, 12, 656–666. [CrossRef]

http://doi.org/10.1145/322186.322188
http://dx.doi.org/10.1145/357172.357176
http://dx.doi.org/10.1137/0212045


Algorithms 2023, 16, 38 10 of 11

4. Fischer, M.J.; Lynch, N.A.; Paterson, M.S. Impossibility of Distributed Consensus with One Faulty Process. J. ACM 1985,
32, 374–382. [CrossRef]

5. Miller, A.; Xia, Y.; Croman, K.; Shi, E.; Song, D. The Honey Badger of BFT Protocols. In Proceedings of the CCS ’16: 2016
ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24–28 October 2016 ; Association for
Computing Machinery: New York, NY, USA, 2016; pp. 31–42. [CrossRef]

6. Dwork, C.; Lynch, N.; Stockmeyer, L. Consensus in the Presence of Partial Synchrony. J. ACM 1988, 35, 288–323. [CrossRef]
7. Correia, M.; Neves, N.; Veríssimo, P. From Consensus to Atomic Broadcast: Time-Free Byzantine-Resistant Protocols without

Signatures. Comput. J. 2006, 49, 82–96. [CrossRef]
8. Kihlstrom, K.P.; Moser, L.E.; Melliar-Smith, P.M. Byzantine Fault Detectors for Solving Consensus. Comput. J. 2003, 46, 16–35.

[CrossRef]
9. Haeberlen, A.; Kuznetsov, P.; Druschel, P. The case for Byzantine fault detection. In Proceedings of the Second Conference on Hot

Topics in System Dependability, Seattle, WA, USA, 8 November 2006; p. 5.
10. Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. 2008. https://bitcoin.org/bitcoin.pdf (accessed on 4 January 2023).
11. Ren, L. Analysis of Nakamoto Consensus. IACR Cryptol. ePrint Arch. 2019, 2019, 943.
12. Saleh, F. Blockchain without Waste: Proof-of-Stake. Rev. Financ. Stud. 2020, 34, 1156–1190. [CrossRef]
13. Kiayias, A.; Russell, A.; David, B.; Oliynykov, R. Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In

Proceedings of the Advances in Cryptology—CRYPTO 2017, Santa Barbara, CA, USA, 20–24 August 2017; Katz, J., Shacham, H.,
Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 357–388.

14. Li, W.; Andreina, S.; Bohli, J.M.; Karame, G. Securing Proof-of-Stake Blockchain Protocols. In Proceedings of the Data
Privacy Management, Cryptocurrencies and Blockchain Technology, Oslo, Norway, 14–15 September 2017; Garcia-Alfaro, J.,
Navarro-Arribas, G., Hartenstein, H., Herrera-Joancomartí, J., Eds.; Springer International Publishing: Cham, Switzerland, 2017;
pp. 297–315.

15. Schneider, F.B. Implementing Fault-Tolerant Services Using the State Machine Approach: A Tutorial. ACM Comput. Surv. 1990,
22, 299–319. [CrossRef]

16. Cao, B.; Zhang, Z.; Feng, D.; Zhang, S.; Zhang, L.; Peng, M.; Li, Y. Performance analysis and comparison of PoW, PoS and DAG
based blockchains. Digit. Commun. Netw. 2020, 6, 480–485. [CrossRef]

17. Baird, L.; Luykx, A. The Hashgraph Protocol: Efficient Asynchronous BFT for High-Throughput Distributed Ledgers. In
Proceedings of the 2020 International Conference on Omni-layer Intelligent Systems (COINS), Barcelona, Spain, 31 August–2
September 2020; pp. 1–7. [CrossRef]

18. Danezis, G.; Kokoris-Kogias, L.; Sonnino, A.; Spiegelman, A. Narwhal and Tusk: A DAG-Based Mempool and Efficient BFT
Consensus. In Proceedings of the EuroSys ’22: Seventeenth European Conference on Computer Systems, Rennes, France, 5–8
April 2022; Association for Computing Machinery: New York, NY, USA, 2022; pp. 34–50. [CrossRef]

19. Keidar, I.; Kokoris-Kogias, E.; Naor, O.; Spiegelman, A. All You Need is DAG. In Proceedings of the PODC’21: 2021 ACM
Symposium on Principles of Distributed Computing, Virtual Event, 26–30 July 2021; Association for Computing Machinery: New
York, NY, USA, 2021; pp. 165–175. [CrossRef]

20. Chen, T.Y.; Huang, W.N.; Kuo, P.C.; Chung, H.; Chao, T.W. DEXON: A Highly Scalable, Decentralized DAG-Based Consensus
Algorithm. arXiv 2018, arXiv:1811.07525.

21. Müller, S.; Penzkofer, A.; Polyanskii, N.; Theis, J.; Sanders, W.; Moog, H. Tangle 2.0 Leaderless Nakamoto Consensus on the
Heaviest DAG. arXiv 2022, arXiv:2205.02177.

22. Snowflake to Avalanche: A Novel Metastable Consensus Protocol Family for Cryptocurrencies Team Rocket. arXiv 2018,
arXiv:1906.08936v2.

23. Antoniadis, K.; Desjardins, A.; Gramoli, V.; Guerraoui, R.; Zablotchi, I. Leaderless Consensus. In Proceedings of the 2021 IEEE
41st International Conference on Distributed Computing Systems (ICDCS), Washington, DC, USA, 7–10 July 2021. [CrossRef]

24. Crain, T.; Gramoli, V.; Larrea, M.; Raynal, M. (Leader/Randomization/Signature)-free Byzantine Consensus for Consortium
Blockchains. arXiv 2017, arXiv:1702.03068v2.

25. Antoniadis, K.; Guerraoui, R.; Malkhi, D.; Seredinschi, D.A. State Machine Replication Is More Expensive Than Consensus. In
Proceedings of the DISC, New Orleans, LA, USA, 15–19 October 2018.

26. Mills, D.L. Computer Network Time Synchronization: The Network Time Protocol on Earth and in Space, 2nd ed.; CRC Press, Inc.: Boca
Raton, FL, USA, 2010.

27. Lamshöft, K.; Dittmann, J. Covert Channels in Network Time Security. In Proceedings of the IH&MMSec ’22: 2022 ACM
Workshop on Information Hiding and Multimedia Security, Santa Barbara, CA, USA, 27–28 June 2022 ; Association for Computing
Machinery: New York, NY, USA, 2022; pp. 69–79. [CrossRef]

28. Menezes, A.J.; Vanstone, S.A.; Oorschot, P.C.V. Handbook of Applied Cryptography, 1st ed.; CRC Press, Inc.: Boca Raton, FL,
USA, 1996.

29. Antwi, R.; Gadze, J.D.; Tchao, E.T.; Sikora, A.; Nunoo-Mensah, H.; Agbemenu, A.S.; Obour Agyekum, K.O.B.; Agyemang, J.O.;
Welte, D.; Keelson, E. A Survey on Network Optimization Techniques for Blockchain Systems. Algorithms 2022, 15, 193. [CrossRef]

30. Castro, M.; Liskov, B. Practical Byzantine Fault Tolerance. In Proceedings of the OSDI ’99: Third Symposium on Operating
Systems Design and Implementation, New Orleans, LA, USA, 22–25 February 1999; USENIX Association: Berkeley, CA, USA,
1999; pp. 173–186.

http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1145/2976749.2978399
http://dx.doi.org/10.1145/42282.42283
http://dx.doi.org/10.1093/comjnl/bxh145
http://dx.doi.org/10.1093/comjnl/46.1.16
https://bitcoin.org/bitcoin.pdf
http://dx.doi.org/10.1093/rfs/hhaa075
http://dx.doi.org/10.1145/98163.98167
http://dx.doi.org/10.1016/j.dcan.2019.12.001
http://dx.doi.org/10.1109/COINS49042.2020.9191430
http://dx.doi.org/10.1145/3492321.3519594
http://dx.doi.org/10.1145/3465084.3467905
http://dx.doi.org/10.1109/ICDCS51616.2021.00045
http://dx.doi.org/10.1145/3531536.3532947
http://dx.doi.org/10.3390/a15060193


Algorithms 2023, 16, 38 11 of 11

31. Yin, M.; Malkhi, D.; Reiter, M.K.; Gueta, G.G.; Abraham, I. HotStuff: BFT Consensus with Linearity and Responsiveness. In
Proceedings of the PODC ’19: 2019 ACM Symposium on Principles of Distributed Computing, Toronto, ON, Canada, 29 July–2
August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 347–356. [CrossRef]

32. Moniz, H. The Istanbul BFT Consensus Algorithm. arXiv 2020, arXiv:2002.03613.
33. Buchman, E.; Kwon, J.; Milosevic, Z. The latest gossip on BFT consensus. arXiv 2018, arXiv:1807.04938.
34. Crain, T.; Gramoli, V.; Larrea, M.; Raynal, M. DBFT: Efficient Leaderless Byzantine Consensus and its Application to Blockchains.

In Proceedings of the 2018 IEEE 17th International Symposium on Network Computing and Applications (NCA), Cambridge,
MA, USA, 1–3 November 2018; pp. 1–8. [CrossRef]

35. Voron, G.; Gramoli, V. Dispel: Byzantine SMR with Distributed Pipelining. arXiv 2019, arXiv:1912.10367.
36. Konnov, I.V.; Widder, J. ByMC: Byzantine Model Checker. In Proceedings of the ISoLA, Limassol, Cyprus, 5–9 November 2018.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3293611.3331591
http://dx.doi.org/10.1109/NCA.2018.8548057

	Introduction
	Preliminares
	Multi-Valued Consensus
	System Model

	The Nero Algorithm
	Overview and Intuition
	Data Structures
	The Algorithm
	Correctness
	Eventual State Machine Replication

	Results
	Comparison with Related Work
	Implementation

	Conclusions
	References

