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Abstract: This paper presents an inexact version of an exponential iterative method designed for
solving nonlinear equations F(x) = 0, where the function F is only locally Lipschitz continuous. The
proposed algorithm is completely new as an essential extension of the iterative exponential method
for solving nonsmooth equations. The method with backtracking is globally and superlinearly
convergent under some mild assumptions imposed on F. The presented results of the numerical
computations confirm both the theoretical properties of the new method and its practical effectiveness.
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1. Introduction

Let F : Rn → Rn be locally Lipschitz continuous. Consider the nonlinear equation in
the following simplest form:

F(x) = 0, (1)

where x = (x1, . . . , xn)T , F(x) = ( f1(x), . . . , fn(x))T and fi : Rn → R, i = 1, . . . , n. Fur-
thermore, we assume that there exists x∗ ∈ Rn, which is a solution to Equation (1) (i.e.,
F(x∗) = 0). It is worth recalling that Pang and Qi [1] presented significant motivations and
a broad scope of applications for nonsmooth equations.

Some class of iterative exponential methods for solving one-dimensional nonlinear
equations was proposed by Chen and Li [2]. One of the most interesting formulas, and si-
multaneously the simplest one, is the method which has the following form:

xk+1 = xk exp
{
− f (xk)

xk f ′(xk)

}
, k = 0, 1, 2, . . . (2)

This method turns to the classic Newton method if we use the first-order Taylor
series expansion of the expression exp

{
− f (xk)

xk f ′(xk)

}
. The above method in Equation (2)

has (at least) quadratic convergence if the function f : R → R is twice differentiable and
f ′(x) 6= 0 in a neighborhood of the solution. A substantial extension of the exponential
method in Equation (2) to the nonsmooth case in Rn was presented in [3]. This locally and
superlinearly convergent method can be written in the following two-stage form: Vkh(k) = −F(x(k))

x(k+1) = diag
(

exp
{

h(k)i

x(k)i

})
x(k)

(3)

where the matrix Vk is arbitrarily taken from the B-differential of F at x(k).
On the other hand, one traditional approach for solving nonsmooth equations is the

inexact generalized Newton method:
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∥∥∥F(x(k)) + Vkh(k)
∥∥∥ ≤ ηk

∥∥∥F(x(k))
∥∥∥, (4)

where the matrix Vk could be arbitrarily taken from some subdifferential of F at x(k)

(not only from the generalized Jacobian or B-differential but also from, for example,
the *-differential) and 0 ≤ ηk < 1 for all k = 0, 1, 2, . . . Martínez and Qi in [4] stated
the local and superlinear convergence of the generalized Jacobian-based method with
Equation (4) for solving equations with semismooth function F. Other versions of such
Newton-type methods for solving nonsmooth equations were also considered among the
others in [5–7]. The main concept of the inexact Newton-type method is to substitute the
standard Newton equation Vkh(k) = −F(x(k)) with an inequality as in Equation (4), where
the parameter ηk ∈ [0, 1) is the forcing term. Then, the Newton step hk may be determined
inexactly, such as by the use of any iterative method with feasible inaccuracy, especially
when the current approximation is far from the solution to Equation (1).

The main objective of this paper is to introduce an inexact version of the exponen-
tial method with a subdifferential for multidimensional nonsmooth cases. Therefore, we
present some new iterative methods for solving nondifferentiable problems, which can be
sufficiently effective in solving not only nonsmooth equations but also some important
problems in nonsmooth optimization. The exponential method was introduced in [2] for
finding single roots of univariate nonlinear equations and considered in [8] for solving
unconstrained optimization problems. In both cases, the proposed formulas allow solving
only smooth and one-dimensional problems. We discuss an algorithm which is intended
to solve both nonsmooth and multi-dimensional problems. Our method allows solving
Equation (1), in which the function is only Lipschitz continuous and need not be differen-
tiable. A primary extension, shown in Equation (3), was introduced in [3], but this study
focuses on the inexact approach. In this way, vector h(k) can be approximated in every
iteration with some inaccuracy, which reduces the cost of determining it. However, all these
methods are only locally convergent. A new approach also includes a backtracking proce-
dure, and as a result, we obtained a global convergence of the inexact exponential method.

This paper is organized as follows. We recall some important needed notions and
properties in Section 2. In Section 3, we not only introduce an algorithm but also prove
its global and superlinear convergence. Section 4 features the results of numerical tests.
In Section 5 at the end, we give some conclusions.

2. Preliminaries

Throughout the paper, ‖·‖ denotes the Euclidean norm on Rn, where we regard the
vector from Rn as a column vector. However, all theoretical results do not depend on the
choice of the norm.

We assume that the function F is locally Lipschitz continuous in the traditional sense.
In other words, for every U ⊂ Rn, there exists a constant L > 0 such that

‖F(x)− F(y)‖ ≤ L‖x− y‖ for all x, y ∈ U.

If F : Rn → Rn is a differentiable function, we denote the Jacobian matrix of F at x
as JF(x) and the set where F is differentiable as DF. The local Lipschitz continuity of the
function F implies that it is differentiable almost everywhere, according to Rademacher’s
theorem [9]. Then, we have

∂BF(x) =
{

lim
xi→x

JF(xi), xi ∈ DF

}
which is called the Bouligand subdifferential (B-differential for short) of F at x [10]. Further-
more, the generalized Jacobian of function F at x (in the sense of Clarke [9]) is the convex
hull of the Bouligand subdifferential such that

∂F(x) = conv∂BF(x).
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We say that the function F is BD-regular at x if F is locally Lipschitz continuous at x
and if all matrices V from ∂BF(x) are nonsingular. For BD-regular functions, Qi proved
some important properties (see Lemma 2).

In turn, the set
∂bF(x) = ∂B f1(x)× . . .× ∂B fn(x),

is called the b-differential of function F at x (defined by Sun and Han in [11]). It is easy
to verify that in a one-dimensional case (i.e., when n = 1), the generalized Jacobian
reduces to the Clarke generalized gradient and ∂BF(x) = ∂bF(x) i.e., the B-differential and
b-differential coincide). Furthermore, a ∗-differential ∂∗F(x) is a non-empty bounded set
for any x such that

∂∗F(x) ⊂ ∂ f1(x)× . . .× ∂ fn(x),

where ∂ fi(x) denotes the generalized gradient of the component function fi at x. Obviously,
for a locally Lipschitz function, all previously mentioned differentials, namely ∂F(x),
∂BF(x) and ∂bF(x), are ∗-differentials (see Gao [12]). Obviously, if all components fi of
function F are C1 at x, then ∂F(x) = ∂BF(x) = {JF(x)}.

The notion of semismoothness was primarily introduced by Mifflin [13] for functionals.
Later, Qi and Sun [14] extended the original definition to nonlinear operators. A function F
is semismooth at x if F is locally Lipschitz continuous at x and for any h ∈ Rn, the limit

lim
V∈∂F(x+th′),h′→h,t↓0

Vh′.

exists. If function F is semismooth at x, then F is directionally differentiable at x, and F′(x; h)
is equal to the above limit:

Lemma 1 (Lemma 2.2 by Qi [15]). Suppose that the function F : Rn → Rn is directionally
differentiable in a neighborhood of x. The following statements are equivalent:

(1) F is semismooth at x;
(2) F′(·, ·) is semicontinuous at x;
(3) For any V ∈ ∂F(x + h), the following is true:

Vh− F′(x; h) = o(‖h‖) as h→ 0.

Moreover, we say that function F is p-order semismooth at x if for any matrix V from
the generalized Jacobian ∂F(x + h), it holds that

Vh− F′(x, h) = O(‖h‖1+p) as h→ 0,

where 0 < p ≤ 1. If p = 1, then F is just called strongly semismooth [16].

Remark 1.

(i) Clearly, semismoothness of any order implies semismoothness.
(ii) The piecewise C2 function is strongly semismooth.

Lemma 2 (Lemma 2.6 by Qi [15]). If function F is BD-regular at x, then there is a neighborhood N
of x and a constant C > 0 such that for any y ∈ N and matrix V ∈ ∂BF(y), V is nonsingular, and∥∥∥V−1

∥∥∥ ≤ C.

If the function F is also semismooth at y ∈ N, then for any h ∈ Rn, the following is true:

‖h‖ ≤ C
∥∥F′(y; h)

∥∥.

Qi and Sun showed in [14] that if a function F is semismooth at x, then
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F(x + h)− F(x)− F′(x; h) = o(‖h‖) for any h→ 0. (5)

Furthermore, if a function F is p-order semismooth at x, then

F(x + h)− F(x)− F′(x; h) = O(‖h‖1+p) for any h→ 0. (6)

Throughout this paper, N(x, r) denotes the closed ball with a center x and radius r in
Rn (if the center is known, and a radius is negligible, just N is used).

Furthermore, for a given diagonal matrix whose diagonal entries are d1, . . . , dn such that

D = diag(d1, . . . , dn) =


d1 0 . . . 0
0 d2 . . . 0

. . . . . . . . . . . .
0 0 . . . dn

,

then exp(D) denotes a so-called exponential matrix, which has the following form:

exp(D) =


ed1 0 . . . 0
0 ed2 . . . 0

. . . . . . . . . . . .
0 0 . . . edn

.

3. The Algorithm and Its Properties

In this section, we introduce a new algorithm, and we discuss its convergence. For solv-
ing Equation (1), we can consider a method in the descriptive two-stage form{

determine h(k) using Vk and F(x(k))
compute x(k+1) using x(k) and h(k)

where matrix Vk is taken from some subdifferential of F at x(k). We suggest an approach
which is a combination of two methods: the iterative exponential one and the inexact
generalized Newton one with a decreasing function norm and backtracking. The proposed
inexact approach is similar to the algorithm presented by Birgin et al. [17] for smooth
equations, whereas the exponential formula was introduced in [3]. Because of the nondif-
ferentiability of F, as iteration matrices, we use matrices from the B-differential instead of
the Jacobians.

Remark 2.

(i) The matrix Vk may be chosen absolutely arbitrarily from known elements of the Bouligand
subdifferential (in Step 1 of Algorithm 1). Appropriate matrices are usually suitable Jacobians
of F.

(ii) The backtracking approach used in Step 2 is a particular case of the minimum reduction
algorithm.

(iii) The formula in Equation (10) for obtaining x(k+1) could be written in a substitute form,
which explicitly shows how to generate a new approximation x(k+1) using components of the
previous approximation x(k):

x(k+1)
i = x(k)i exp

{
αkh(k)i

x(k)i

}
, i = 1, . . . , n. (7)

(iv) Various strategies for the choice of the forcing sequence can be found in [18] but for the inexact
methods for solving smooth equations. Therefore, most of these strategies would need to be
modified with respect to the nondifferentiability of F. For example, we could set ηk ∈ [0, 1) as
a small constant or use the following rule:
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ηk =

 ‖Vkh(k)+F(x(k))‖
‖F(x(k))‖ if F(x(k)) 6= 0

0 otherwise,

where Vk ∈ ∂BF(x(k)). Then, Equation (8) holds with equality.

Before the convergence of Algorithm 1 is proven, we present a necessary important
assumption:

Algorithm 1: Inexact exponential method (IEM).

Assume that θ ∈ (0, 1), τ1, τ2 ∈ (0, 1) and τ1 < τ2. Let x(0) ∈ Rn be an arbitrary
starting approximation. The steps for obtaining x(k+1) from x(k) are as follows:
Step 1: Determine ηk ∈ [0, 1) and find an h(k) value that satisfies∥∥∥Vkh(k) + F(x(k))

∥∥∥ ≤ ηk

∥∥∥F(x(k))
∥∥∥, (8)

where Vk ∈ ∂BF(x(k)). Set α = 1.
Step 2: If ∥∥∥∥∥F

(
diag

(
exp

{
αh(k)i

x(k)i

})
x(k)

)∥∥∥∥∥ ≤ [1− αθ(1− ηk)]
∥∥∥F(x(k))

∥∥∥ (9)

then set αk = α and

x(k+1) = diag

(
exp

{
αkh(k)i

x(k)i

})
x(k). (10)

Otherwise, choose α′ ∈ [τ1α, τ2α], set α = α′, and repeat Step 2.

Assumption 1. Function F satisfies Assumption 1 at x if for any y from a neighborhood N of x
and any matrix Vy ∈ ∂BF(y), it holds that

F(y)− F(x) = Vy(y− x) + o(‖y− x‖).

Furthermore, function F satisfies Assumption 1 at x with a degree ρ if the following holds:

F(y)− F(x) = Vy(y− x) + O(‖y− x‖ρ).

Remark 3.

(i) It is not difficult to indicate functions that satisfy Assumption 1. We can indicate three
classes of such functions. Assumption 1 is implied not only by semismoothness but also
by H-differentiability (introduced by Song et al. [19]) and second-order C-differentiability
(introduced by Qi [10]).

(ii) If function F is BD-regular at x and satisfies Assumption 1 at x, then there is a neighborhood
N of x and a constant C > 0 such that for any y ∈ N and matrix V ∈ ∂BF(y), the following
is true:

‖y− x‖ ≤ C
∥∥Vy(y− x)

∥∥. (11)

(iii) Lemma 2, proven in [7], states that if function F is BD-regular at x∗, satisfies Assumption 1

at x∗ and l = max
{

2β, 1
2β +

∥∥Vy
∥∥}, where β =

∥∥∥V−1
y

∥∥∥ and Vy ∈ ∂BF(y), then

1
l
‖y− x∗‖ ≤ ‖F(y)‖ ≤ l‖y− x∗‖ for all y ∈ N,

where N is a neighborhood of x∗.
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Now, we establish some theoretical foundations for Algorithm 1:

Lemma 3. Assume that Algorithm 1 is carried out with ηk ∈ (0, 1) determined in such way that
the inequality in Equation (9) holds. If the series ∑∞

k=1(1− ηk) is divergent, then

lim
k→∞

F(x(k)) = 0.

Proof of Lemma 3. Under Equation (9), the following is true:∥∥∥F(x(k))
∥∥∥ ≤ [1− αθ(1− ηk)]

∥∥∥F(x(k−1))
∥∥∥

≤
∥∥∥F(x(0))

∥∥∥ ∏
0≤j<k

[1− αθ(1− ηk)]

≤
∥∥∥F(x(0))

∥∥∥ exp

{
−αθ ∑

0≤j<k
(1− ηk)

}

Since 1− ηk ≥ 0 and αθ > 0, convergence F(x(k)) to 0 follows from the divergence of
∑k≥0(1− ηk).

The divergence of series ∑∞
k=1(1− ηk) implies a satisfactory decrease in ‖F‖ over all

steps such that F(x(k))→ 0, namely if the inequality in Equation (9) holds.

Lemma 4. Let θ ∈ (0, 1) and x be given, and assume that there is h̄, which satisfies
∥∥Vh̄ + F(x)

∥∥ <
‖F(x)‖, where V ∈ ∂BF(x). If function F satisfies Assumption 1 at x, then there is ηmin ∈ [0, 1)
such that for any η ∈ [ηmin, 1), there exists h, which satisfies

‖Vh + F(x)‖ ≤ η‖F(x)‖ and
∥∥∥∥F
(

diag
(

exp
{

αhi
xi

})
x
)∥∥∥∥ ≤ [1− αθ(1− η)]‖F(x)‖,

where α ∈ (0, 1].

Proof of Lemma 4. Obviously, F(x) 6= 0 and h̄ 6= 0.

Set
η̄ =

‖Vh̄+F(x)‖
‖F(x)‖ ,

ηmin = max
{

η̄, 1− (1−η̄)δ

‖h̄‖

}
,

ε = (1−αθ)(1−η̄)‖F(x)‖
‖h̄‖ ,

where δ > 0 is sufficiently small for the following inequality to be satisfied:∥∥∥∥F
(

diag
(

exp
{

αhi
xi

})
x
)
− F(x)−Vh

∥∥∥∥ ≤ ε‖h‖,

whenever ‖h‖ ≤ αδ. Under Assumption 1, such a value of δ exists. Since η̄ < 1, then
ηmin < 1.

Let
h =

1− η

1− η̄
h̄

for any η ∈ [ηmin, 1). Then, we have

‖Vh + F(x)‖ =
‖(1−η)Vh̄+(1−η̄)F(x)‖

1−η̄

≤ 1−η
1−η̄

∥∥Vh̄ + F(x)
∥∥+ η−η̄

1−η̄ ‖F(x)‖
= 1−η

1−η̄ η̄‖F(x)‖+ η−η̄
1−η̄ ‖F(x)‖

= η‖F(x)‖.
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In addition, since

‖h‖ = 1− η

1− η̄

∥∥h̄
∥∥ ≤ 1− ηmin

1− η̄

∥∥h̄
∥∥ ≤ δ,

then ∥∥∥F
(

diag
(

exp
{

αhi
xi

})
x
)∥∥∥

≤
∥∥∥F
(

diag
(

exp
{

αhi
xi

})
x
)
− F(x)−Vh

∥∥∥+ ‖Vh + F(x)‖
≤ ε

1−η
1−η̄

∥∥h̄
∥∥+ η‖F(x)‖

= (1− αθ)(1− η)‖F(x)‖+ η‖F(x)‖
= [1− αθ(1− η)]‖F(x)‖.

Lemma 4 above implies that the inexact exponential step is well-defined for the current
approximation x(k), and suitable ηk and h(k) values exist for any θ ∈ (0, 1).

Now, we will prove that the method described by Algorithm 1 is convergent. The first
theorem regarding convergence is analogous to the one presented in [20] for the inexact
generalized Newton method for solving nonsmooth equations, albeit with some significant
changes in the proof:

Theorem 1. Let {x(k)} be a sequence generated by Algorithm 1 with ηk → 0, and for each k, there
is a constant M > 0 such that the following holds:∥∥∥Vkh(k) + F(x(k))

∥∥∥ ≤ ηk

∥∥∥F(x(k))
∥∥∥

and ∥∥∥h(k)
∥∥∥ ≤ M

for any matrix Vk ∈ ∂BF(x(k)).
If function F satisfies Assumption 1 at x∗, then every limiting point of the sequence {x(k)} is

a solution to Equation (1), and
lim
k→∞

F(x(k)) = 0.

Proof of Theorem 1. Suppose that K is a sequence of indices such that limk∈K x(k) = x∗.
We have two cases due to the behavior of the sequence {αk}:
(i) {αk} is not convergent to 0.

Then, there is a sequence of indices K0 ⊂ K and ᾱ > 0 such that αk ≥ ᾱ > 0 for all
k ∈ K0. Clearly, for all k /∈ K0, the following is true:∥∥∥F(x(k+1))

∥∥∥ ≤ ∥∥∥F(x(k))
∥∥∥.

In turn, according to Equation (9), we have∥∥∥F(x(k+1))
∥∥∥ ≤ ∥∥∥F(x(k))

∥∥∥− ᾱθ(1− ηk)
∥∥∥F(x(k))

∥∥∥ for all k ∈ K0.

By adding all these inequalities side by side, we obtain the following inequality:

ᾱθ ∑
k∈K0

(1− ηk)
∥∥∥F
(

x(k)
)∥∥∥ ≤ ∥∥∥F

(
x(0)

)∥∥∥.

Therefore, limk∈K0 F(x(k)) = 0. Hence, F(x∗) = 0.

(ii) {αk} is convergent to 0.
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For k at large enough values, under the choice α′ (according to Step 2 of Algorithm 1),
there is α′k > αk, α′k ∈ [αk/τ2, αk/τ1] such that

lim
k∈K

α′k = 0

and ∥∥∥∥∥F

(
diag

(
exp

{
α′kh(k)i

x(k)i

})
x(k)

)∥∥∥∥∥ >
[
1− α′kθ(1− ηk)

]∥∥∥F(x(k))
∥∥∥.

Therefore, for some Vk ∈ ∂BF(x(k)) such that Equation (8) is satisfied, it holds that[
1− α′kθ(1− ηk)

]∥∥∥F(x(k))
∥∥∥

<

∥∥∥∥F
(

diag
(

exp
{

α′kh(k)i

x(k)i

})
x(k)

)
−
[

F(x(k)) + Vkα′kh(k)
]∥∥∥∥+ ∥∥∥F(x(k)) + Vkα′kh(k)

∥∥∥
≤

∥∥∥∥F
(

diag
(

exp
{

α′kh(k)i

x(k)i

})
x(k)

)
− F(x(k))−Vkα′kh(k)

∥∥∥∥+ ∥∥∥α′k

[
F(x(k)) + Vkh(k)

]∥∥∥
+

(
1− α′k

)∥∥∥F(x(k))
∥∥∥ ≤ ∥∥∥∥F

(
diag

(
exp

{
α′kh(k)i

x(k)i

})
x(k)

)
− F(x(k))−Vkα′kh(k)

∥∥∥∥
+ α′kηk

∥∥∥F(x(k))
∥∥∥+ (1− α′k

)∥∥∥F(x(k))
∥∥∥,

which implies that[
1− α′kθ(1− ηk)

]∥∥∥F(x(k))
∥∥∥− α′kηk

∥∥∥F(x(k))
∥∥∥− (1− α′k

)∥∥∥F(x(k))
∥∥∥

<

∥∥∥∥F
(

diag
(

exp
{

α′kh(k)i

x(k)i

})
x(k)

)
− F(x(k))−Vkα′kh(k)

∥∥∥∥,

and finally

α′k(1− θ)(1− ηk)
∥∥∥F(x(k))

∥∥∥
<

∥∥∥∥F
(

diag
(

exp
{

α′kh(k)i

x(k)i

})
x(k)

)
− F(x(k))−Vkα′kh(k)

∥∥∥∥.

Because αk > 0, then

(1− θ)(1− ηk)
∥∥∥F(x(k))

∥∥∥
<

∥∥∥∥∥F

(
diag

(
exp

{
α′kh(k)i

x(k)i

})
x(k)

)
−F(x(k))−Vkα′kh(k)

∥∥∥∥∥
‖α′kh(k)‖

∥∥∥h(k)
∥∥∥.

Since ‖h(k)‖ is bounded, α′k and ηk tend toward zero, Assumption 1 and the local
Lipschitz continuity of function F imply that the product on the right side of the above
inequality tends toward zero for large enough values of k. Hence, limk∈K ‖F(x(k))‖ = 0
and F(x∗) = 0.

Let ε > 0 be arbitrary. Let j ∈ K be such that ‖F(x(j))‖ < ε. Note that 0 ≤ 1−
αθ(1− ηk) < 1. Therefore, according to Equation (9), the following holds:∥∥∥F(x(k))

∥∥∥ ≤ ∥∥∥F(x(k−1))
∥∥∥ for all k ≥ 1.

Therefore, if k > j, we have that
∥∥∥F(x(k))

∥∥∥ ≤ ∥∥∥F(x(j))
∥∥∥ ≤ ε, and thus

lim
k→∞

F(x(k)) = 0.



Algorithms 2023, 16, 27 9 of 15

The main theoretical result of this section is presented in the theorem below. Theorem 2
establishes the sufficient conditions for superlinear convergence of the inexact exponential
method for solving nonsmooth equations:

Theorem 2. Let {x(k)} be a sequence generated by Algorithm 1 with ηk → 0. If x∗ is a limiting
point of {x(k)}, function F is BD-regular at x∗ and satisfies Assumption 1 at x∗, then the sequence
{x(k)} is superlinearly convergent to x∗.

Proof of Theorem 2. If matrix Vk is nonsingular, then by Equation (8), we have that∥∥∥h(k)
∥∥∥ =

∥∥∥V−1
k Vkh(k)

∥∥∥
=

∥∥∥V−1
k

[
Vkh(k) + F(x(k))

]
−V−1

k F(x(k))
∥∥∥

≤
∥∥∥V−1

k

∥∥∥ηk

∥∥∥F(x(k))
∥∥∥+ ∥∥∥V−1

k

∥∥∥∥∥∥F(x(k))
∥∥∥

=
∥∥∥V−1

k

∥∥∥(ηk + 1)
∥∥∥F(x(k))

∥∥∥.

From the BD-regularity of function F at x∗, there is a δ1 > 0 such that for any x(k) ∈
N(x∗, δ1) and any Vk ∈ ∂BF(x(k)), we have

∥∥∥V−1
k

∥∥∥ ≤ C. Therefore, we have∥∥∥h(k)
∥∥∥ ≤ 2C

∥∥∥F(x(k))
∥∥∥ for all k. (12)

Thus, from Theorem 1, it follows that

lim
k→∞

∥∥∥F(x(k))
∥∥∥ = 0 (13)

and every limiting point of {x(k)} is a solution to Equation (1). Furthermore, the construc-
tion of new approximation x(k+1) in Algorithm 1 and Equation (12) implies that

lim
k→∞

∥∥∥x(k+1) − x(k)
∥∥∥ = 0.

Since function F is BD-regular at x∗, the inverse function theorem guarantees that
there is δ2 > 0 such that ‖F(x)‖ > 0, provided 0 < ‖x− x∗‖ < δ2. Let ε ∈ (0, δ2) be
arbitrary. Then, the set N(x∗, ε, δ2) := {x ∈ Rn : ε ≤ ‖x− x∗‖ ≤ δ2} cannot contain any
solution. Therefore, not only does it not contain any limiting point, but it can also contain a
finite number of approximations. Hence, there is k0 such that, for all k ≥ k0, we have

x(k) /∈ N(x∗, ε, δ2).

Let k1 ≥ k0 be such that∥∥∥x(k+1) − x(k)
∥∥∥ < δ2 − ε for all k ≥ k1.

Since x∗ is a limiting point, there is k ≥ k1 such that ‖x(k) − x∗‖ < ε, and hence∥∥∥x(k+1) − x∗
∥∥∥ ≤ ∥∥∥x(k+1) − x(k)

∥∥∥+ ∥∥∥x(k) − x∗
∥∥∥ < δ2.

However, we have that ‖x(k+1) − x∗‖ < ε because k ≥ k0. Therefore, we also have
that ‖x(k+j) − x∗‖ ≤ ε for all integers j ≥ 1. A number ε is arbitrary, so the sequence {x(k)}
converges to a solution x∗ to Equation (1).

According to Equation (8) and Assumption 1, for large enough k values, we have∥∥∥∥F
(

diag
(

exp
{

αkh(k)i

x(k)i

})
x(k)

)∥∥∥∥ ≤
∥∥∥F(x(k)) + Vkh(k)

∥∥∥+ o(‖h(k)‖)

≤ ηk

∥∥∥F(x(k))
∥∥∥+ o(‖h(k)‖).
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Since both ηk → 0 and
∥∥∥F(x(k))

∥∥∥→ 0, we obtain

lim
k→∞

∥∥∥∥F
(

diag
(

exp
{

αkh(k)i

x(k)i

})
x(k)

)∥∥∥∥∥∥F
(
x(k)

)∥∥ = 0.

Thus, for k values that are large enough, we have∥∥∥∥∥F

(
diag

(
exp

{
αkh(k)i

x(k)i

})
x(k)

)∥∥∥∥∥ ≤ (1− θ)
∥∥∥F(x(k))

∥∥∥.

Therefore, the inequality in Equation (9) holds with α = 1, and for k values that are
large enough, we obtain

x(k+1) = diag

(
exp

{
αkh(k)i

x(k)i

})
x(k).

Hence, we have

lim
k→∞

∥∥∥F(x(k+1))
∥∥∥∥∥F(x(k))
∥∥ = 0. (14)

Now, under the local Lipschitz continuity and BD-regularity of function F at x∗ and
Assumption 1, there exists l > 0 such that

1
l
‖x− x∗‖ ≤ ‖F(x)‖ ≤ l‖x− x∗‖

for all x in a neighborhood of x∗ (see Remark 3 (iii)). Then, according to Equation (14),
we have

lim
k→∞

‖x(k+1) − x∗‖
‖x(k) − x∗‖

= 0.

Remark 4.

(i) It is not hard to check that Theorem 2 is still true if our new Algorithm 1 is used with one of
other subdifferentials mentioned in Section 1.

(ii) The method is quadratically convergent if the function F satisfies Assumption 1 at x∗ with a
degree of two.

Some versions of the inexact Newton methods have superlinear convergence under
an assumption called a local error bound condition. It requires that

c‖x− x∗‖ ≤ ‖F(x)‖ for all x ∈ N

holds for a positive constant c in a neighborhood N of the solution to Equation (1). A local
error bound holds, for example, for a piecewise linear function with non-unique solutions.

In solving smooth equations, a local error bound condition is noticeably weaker than
the nonsingularity of the Jacobian F′(x∗) (see [21]). In our nonsmooth case, this condition
can be used as a weaker assumption instead of the BD-regularity. Obviously, for our inexact
exponential method, both the BD-regularity and local error bound perform the same role
as the nonsingularity of the Jacobian in a smooth case.

4. Numerical Experiments

Now, we present some numerical results which help us to confirm the theoretical prop-
erties of the algorithm. We solved a few different problems. Algorithm 1 was implemented
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in C++ with double precision arithmetic and performed using Apache NetBeans. In all
examples, the crucial parameters were set to be alike as follows: θ = 0.999, ηk = 0.5 for
all k and τ1 = τ2 = 0.5. The stopping criterion was the condition ‖F(x(k))‖2 ≤ 1.0× 10−7.
A flowchart of Algorithm 1 is presented in Figure 1. In our opinion, the results of the
numerical computations were satisfactory, as we will now demonstrate.

Figure 1. Flowchart for Algorithm 1.

In all examples, x(0) is the starting approximation, and NIEM is the number of iterations
performed by Algorithm 1. For comparison of the efficiency of the new method, we also
show the results obtained in tests by the inexact generalized Newton (IGM) method
presented in [20] (NIGM), which also has superlinear convergence.

Example 1. As the first (double) test problem, we chose the usual Equation (1) with two different
nonsmooth functions:

F1(x) = 0.2x|x− 1|+ ex−0.5 − 1.05,

F2(x) =

[
|x1|+ (x2 − 1)2 − 1
(x1 − 1)2 + |x2| − 1

]
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The equation with function F1 has one solution x∗ = 0.5, while the equation with function F2
has two solutions: (0, 0) and (1, 1). Both equations have one nondifferentiability point each: x = 1
for F1 and x = (0, 0) for F2.

Both functions F1 and F2 are locally Lipschitz at their solution points. F1 is C1 at x∗ because

F′1(x) =
{
−0.2(x− 2) + ex−0.5 for x < 1,
0.2(x− 2) + ex−0.5 for x > 1,

Therefore, F1 is also semismooth at x∗. In turn, Qi and Sun proved in [14] that the function is
semismooth at some point if and only if all of its component functions are semismooth at this point.
And the component functions of F2 are semismooth as the sum of the semismooth functions (the
local Lipschitz continuities of the absolute value function and quadratic function are easy to check).
Moreover, the Bouligand subdifferential of F1 at (0, 0) has the form

∂BF((0, 0) =
{[
−1 −2
−2 −1

]
,
[
−1 −2
−2 1

]
,
[

1 −2
−2 −1

]
,
[

1 −2
−2 1

]}
.

The equations can be solved by Algorithm 1. The only point of nondifferentiability of the
function F1 is not a solution, and function F2 satisfies Assumption 1 (it follows from Remark 3(i))
and is BD-regular at x∗ = (0, 0). The exemplary results are shown in Tables 1 and 2.

Table 1. The numerical results obtained for the equation with function F1 from Example 1.

x(0) NIEM NIGM

−1 34 41
0.1 16 19
0.3 5 6
0.7 5 6
1 7 9
5 13 16
10 18 20
50 69 74

100 132 147

Table 2. The numerical results obtained for the equation with function F2 from Example 1 (x∗

indicates to which solution the sequence converged.).

x(0) NIEM NIGM x∗

(−100,−100) 33 35 (0,0)
(−10,−10) 28 27 (0,0)
(−10,−5) 34 38 (0,0)
(−5,−5) 21 26 (0,0)
(−1,−1) 15 17 (0,0)

(−0.5,−0.5) 13 15 (0,0)
(0.5,0.5) 17 19 (1,1)

(5,5) 8 10 (1,1)
(5,10) 9 12 (1,1)

(10,10) 10 14 (1,1)
(100,100) 16 19 (1,1)
(−1,0.5) 27 31 (0,0)
(2,−0.5) 34 39 (1,1)

Example 2. The second test problem was Equation (1) with the function F : Rn → Rn (used
among the others in [4]), defined by

fi(x) =
{

c1gi(x) for gi(x) ≥ 0,
c2gi(x) for gi(x) ≤ 0,
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with

gi(x) = i−
i

∑
j=1

{
cos(xj − 1) + j

[
1− cos(xj − 1)

]
− sin(xj − 1)

}
.

Obviously, if c1 = c2, then function F is differentiable. Therefore, the value |c1 − c2| may be
treated as the degree of nondifferentiability of function F [22]. Equation (1) has an infinite number
of solutions (1 + 2k1π, . . . , 1 + 2knπ)T , where k1, . . . , kn ∈ Z are arbitrary. First, the starting
approximation was (0, . . . , 0). We used Algorithm 1 to solve one series of smooth problems (with
c1 = c2 = 1) and three series of nonsmooth problems with various parameters c1 = −c2 =
1, 10, 100.

Function F is semismooth as a composite of semismooth functions (as mentioned in Example 1),
and all functions fi are semismooth as piecewise smooth functions (see [13]).

In the smooth case, Algorithm 1 (IEM) stopped after six iterations, while Algorithm IGM
generated seven successive approximations. The most interesting results we selected are presented
in Table 3.

In these tests, we noticed that the choice of starting point did not affect the number of iterations
very much when Algorithm 1 generated a convergent sequence. Therefore, we omitted the results
for other starting points. The number of iterations was actually very similar for a small number of
variables. However, Algorithm 1 showed its advantage for larger problems (i.e., when a system of
nonlinear equations has at least a dozen unknowns).

Table 3. The numerical results obtained for the equation from Example 2 (n is the number of
component functions.).

c1 = −c2 = 1 c1 = −c2 = 10 c1 = −c2 = 100
n NIEM NIGM NIEM NIGM NIEM NIGM

2 5 6 5 6 5 6
3 5 6 5 7 6 7
4 6 7 7 8 8 8
5 6 8 7 8 8 9
8 8 10 9 9 9 10

10 9 10 9 10 10 11
12 10 11 10 11 11 11
15 19 21 23 27 25 30
20 17 19 19 23 18 21

Example 3. The last test problem was the Walrasian production–price problem [23] with the
demand function ξ defined in the following form:

ξ j(π) =
l

∑
i=1

aijφi(π)

π
bi
j

, j = 1, . . . , m.

Here, π ∈ Rm is the price vector, aij measures the i-th consumer’s intensity of demand for
commodity j, and bi is the i-th consumer’s elasticity of substitution for i = 1, . . . , l. Furthermore,
the following

φi(π) =
∑m

k=1 πkωik

∑m
k=1 aikπ

1−bi
k

is a function of the price chosen in such way to satisfy the budget constraint for each unit. Let
B ∈ Rm×n denote the technology, w ∈ Rm denote the total endowment of the economy prior to
production and y ∈ Rn denote the production plan.

Then, the Walrasian model can be written as the nonlinear complementarity problem (NCP) in
the form

min(g(x), f (x)) = 0
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with the following functions:

g(π, y) =
[

π
y

]
and f (π, y) =

[
ω− ξ(π) + By
−BTπ

]
,

where the operator “min” denotes the component-wise minimum of the vectors.
Function F(x) = min(g(x), f (x)) is locally Lipschitzian, semismooth and BD-regular, so we

can use Algorithm 1 to solve nonsmooth Equation (1).
An approximate solution of such a problem (NCP) with m = 6, n = 8 and l = 5 is

x̃ = (0.220, 0.251, 0.161, 0.055, 0.106, 0.207, 0.463, 0, 3.940, 0.006, 0, 0, 0.438, 0).

We solved this problem using the inexact exponential method with various starting approxima-
tions from the neighborhood of x̃ in the form

x(0) = x̃ + a1 ė + a2 ë,

where ė = (1, 1, 1, 1, 1, 1, 0, . . . , 0) ∈ R14 and ë = (0, 0, 0, 0, 0, 0, 1, . . . , 1) ∈ R14. The exemplary
results are shown in Table 4.

Table 4. The numerical results obtained for the Walrasian production–price problem from Example 3
with various parameters a1 and a2.

a1 0.02 0.2 0.0 0.5 2.0
a2 0.02 0.0 0.2 0.5 2.0

NIEM 20 11 79 63 224
NIGM 22 12 97 73 253

The Broyden-like method (from [24]) generated somewhat comparable results, which was not
surprising since all these methods have the same order of convergence. The number of iterations
was equal to 27, 9, −, 66 and 263 for the same initial points as in Table 4. In this test problem,
the convergence significantly depended on the location of the starting point (parameters a1 and a2).
Here, Algorithm 1 showed its advantage for initial points further from the solution.

5. Conclusions

We have proposed a new inexact exponential method for solving systems of nons-
mooth equations (Equation (1)). We proved that the presented method has global and
superlinear convergence under some mild assumptions when function F is locally Lipschitz
continuous. In practice, Algorithm 1 (IEM) was significantly faster than the usual inexact
generalized Newton (IGM) method. The used globalization technique turned out to be
an effective approach to improve convergence behavior. The results of the numerical tests
confirmed that the new inexact exponential method can be used to effectively solve miscel-
laneous nonsmooth problems such as nonsmooth equations, nonlinear complementarity
problems or equlibrium problems.
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3. Śmietański, M.J. On a new exponential iterative method for solving nonsmooth equations. Numer. Linear Algebra Appl. 2019,
25, e2255. [CrossRef]

4. Martínez, J.M.; Qi, L. Inexact Newton method for solving nonsmooth equations. J. Comput. Appl. Math. 1995, 60, 127–145.
[CrossRef]

5. Pu, D.; Tian, W. Globally convergent inexact generalized Newton’s methods for nonsmooth equations. J. Comput. Appl. Math.
2002, 138, 37–49. [CrossRef]

6. Bonettini, S.; Tinti, F. A nonmonotone semismooth inexact Newton method. Optim. Meth. Soft. 2007, 22, 637–657. [CrossRef]
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