
Citation: Tran, M.; Pham-Hi, D.; Bui,

M. Optimizing Automated Trading

Systems with Deep Reinforcement

Learning. Algorithms 2023, 16, 23.

https://doi.org/10.3390/a16010023

Academic Editors: Jaroslaw

Krzywanski, Yunfei Gao, Marcin

Sosnowski, Karolina Grabowska,

Dorian Skrobek, Ghulam Moeen

Uddin, Anna Kulakowska, Anna

Zylka and Bachil El Fil

Received: 24 November 2022

Revised: 20 December 2022

Accepted: 27 December 2022

Published: 1 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Optimizing Automated Trading Systems with Deep
Reinforcement Learning
Minh Tran 1,2,* , Duc Pham-Hi 1,3 and Marc Bui 2

1 John von Neumann Institute, Vietnam National University, Ho Chi Minh City 70000, Vietnam
2 CHArt Laboratory EA 4004, EPHE, PSL Research University, 75014 Paris, France
3 Financial Engineering Department, ECE Paris Graduate School of Engineering, 75015 Paris, France
* Correspondence: minh.tran@jvn.edu.vn

Abstract: In this paper, we propose a novel approach to optimize parameters for strategies in
automated trading systems. Based on the framework of Reinforcement learning, our work includes
the development of a learning environment, state representation, reward function, and learning
algorithm for the cryptocurrency market. Considering two simple objective functions, cumulative
return and Sharpe ratio, the results showed that Deep Reinforcement Learning approach with Double
Deep Q-Network setting and the Bayesian Optimization approach can provide positive average
returns. Among the settings being studied, Double Deep Q-Network setting with Sharpe ratio as
reward function is the best Q-learning trading system. With a daily trading goal, the system shows
outperformed results in terms of cumulative return, volatility and execution time when compared
with the Bayesian Optimization approach. This helps traders to make quick and efficient decisions
with the latest information from the market. In long-term trading, Bayesian Optimization is a
method of parameter optimization that brings higher profits. Deep Reinforcement Learning provides
solutions to the high-dimensional problem of Bayesian Optimization in upcoming studies such as
optimizing portfolios with multiple assets and diverse trading strategies.

Keywords: parameter optimization; deep reinforcement learning; Bayesian optimization; automated
trading system

1. Introduction

An automated trading system is a type of information-based decision-making system
that allows traders to establish specific rules for both entry and exit of trades and is executed
automatically through a computer. Various platforms report about 75% of shares traded on
United States stock exchanges come from automatic trading systems [1]. In this context,
Reinforcement Learning (RL) is applied to change the way classical trading systems work.
RL is a self-training system through taking actions with the aim of maximizing rewards and
achieving the best results. Therefore, instead of making decisions based on price forecasting
explicitly, in this study our models are trained to execute trading positions directly. Over the
past few years, the use of RL has been greatly increased in the study of trading in financial
markets [2–4]. The authors in [3] applied different Deep Reinforcement Learning (DRL)
techniques to build an automated cryptocurrency trading system. As a result, The Double
Deep Q-learning trading system based on Sharpe ratio reward function was demonstrated
to be the most profitable approach for trading bitcoin. In another research, an agent is
trained in [2] to learn an adaptive stock trading strategy and showed that the DRL approach
outperforms the Buy and Hold strategy in terms of both Sharpe ratio and cumulative return.
Although there are many studies on the application of DRL in financial markets, these
studies have only focused on identifying trading signals [5–7]. In contrast, there is not much
research on parameter optimization approaches for trading strategies. Common methods
such as Genetic Algorithm [8] or Bayesian Optimization (BO) [9] still have problems with

Algorithms 2023, 16, 23. https://doi.org/10.3390/a16010023 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16010023
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-2093-9093
https://doi.org/10.3390/a16010023
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16010023?type=check_update&version=2

Algorithms 2023, 16, 23 2 of 17

parameter dimensions or expensive costs. From the above analysis, a new approach on
parameter optimization for trading strategies in financial markets with high computational
performance becomes an urgent need.

In our paper, the trading task is formatted as a decision-making problem in a large and
complex action space, which is applicable for employing reinforcement learning algorithms.
Specifically, we propose a learning environment, state representation, reward function and
learning algorithm for the purpose of strategy optimization in the cryptocurrency market
that has not been studied before. The proposed trading system not only focuses on making
decisions based on a given strategy, but also includes a parameter optimization step in the
trading process. Two configurations are considered to build the artificial intelligence agent
in the system: Double Deep Q-Network and Double Deep Q-Network setting. Bayesian
Optimization is another approach introduced for comparison purposes. Different objective
functions commonly used in trading optimization are also introduced such as cumulative
return and Sharpe ratio. The results demonstated that the DRL approach with the Double
Deep Q-Network setting and the BO approach yield positive average returns for short-term
trading purposes, where the system with the DRL approach yields better results. In terms
of execution time, the DRL approach also shows outstanding advantages with an execution
time 5.83 times faster than BO approach. When comparing performance with different
settings and objective functions, Double Deep Q-Network setting with Sharpe ratio as
reward function is the best Q-learning trading system with 15.96% monthly return. The
trading strategies are built on the simple Relative Strength Index (RSI) indicator; however,
the results in this study can be applied to any technical or market indicator. In summary,
our contribution consists of two main components:

• A novel technique based on DRL to optimize parameters for technical analysis strate-
gies is developed.

• Different approaches to parameter optimization for trading strategies are proposed
with suitable trading purpose. In short-term trading, the DRL approach outperforms
Bayesian Optimization with higher Sharpe ratio and shorter execution time. On the
contrary, Bayesian Optimization is better for long term trading purposes.

The rest of the paper is organized as follows. First of all, Section 2 introduces the
related work. Section 3 presents the research methodology in which the objective functions
and parameter optimization algorithm are studied. Next, an automated trading system
and experiments are introduced in Section 4. The results and discussion are also presented.
Finally, Section 5 concludes this work and proposes directions for future development.

2. Related Work

Trading strategy optimization has emerged as an interesting research and experimen-
tal problem in many fields such as finance [10], data science [11] and machine learning [12].
The optimal trading strategies are the result of finding and optimizing the combination of
parameters in the strategy to satisfy the profit or risk conditions. Like model optimization,
optimization of trading strategies is a process through which a model learns its parame-
ters [13]. There are mainly two kinds of parameter optimization methods, namely manual
search and automatic search methods. Manual Search attempts parameter sets manually
and requires researchers to have professional background knowledge and practical experi-
ence in the research field [14]. This makes it difficult for researchers who are not familiar
with the models or data in a new field. Furthermore, the process of optimizing parameters
is not easily repeatable. Trends and relationships in parameters are often misinterpreted or
missed as the number of parameters and range of values increases.

Many automatic search algorithms have been proposed, for example Grid Search or
Random Search [15], to overcome the drawbacks of manual search. Grid Search prevails as
the state of the art despite decades of research into global optimization [16–18]. This method
lists all combinations of parameters and then performs model testing against this list [9].
Although automatic tuning is possible and the global optimal value of the optimization
objective function can be obtained, Grid Search is inefficient both in computational time

Algorithms 2023, 16, 23 3 of 17

and in computational power. As the number of parameters increases, the number of
models to train increases exponentially [19]. To solve this problem, the Random Search
algorithm has been proposed. Random Search only randomly selects a finite number
of parameters from the list to conduct a model test [15]. By reducing the search space of
unimportant parameters, the overall efficiency is improved and the approximate solution of
the optimization function can be found. Random Search is efficient with high dimensional
space since it does not run enough cases such as Grid Search. However, some complex
models require a global optimal result of the objective function [15]; a new optimization
method is needed as an alternative to random search.

In complex models, the objective function of the optimization can be either unknown
or a black-box function. A very efficient optimization algorithm that optimizes to solve
this problem is Bayesian Optimization [20]. Bayesian Optimization uses the results from
the previous iteration to decide the next parameter value candidates. So instead of blindly
searching the parameter space such as in Grid Search and Random Search, this method
advocates the usage of intelligence to pick the next set of parameters which will improve the
model performance. Experimental results show that the Bayesian Optimization algorithm
outperforms other global optimization algorithms [9,21]. Although BO provides superior
results for parameter optimization compared to Grid Search and Random Search, this
method also has its disadvantages. The high-dimensional problem of parameters is costly
and contradicts the objective of BO.

Another optimization method used in many studies is evolutionary computing. In [22],
the authors presented a general definition of the parameter optimization problem and
discussed a Genetic Algorithm based on evolutionary computing to the optimization of
trading strategies. Evolutionary computing handles the high-dimensional problem well
and produces globally optimal or near-optimal solutions efficiently [23].

In recent years, improvements in machine learning have shown some promising results
in solving complex objective functions. In [24], the hyperparameter tuning for machine
learning models was formulated as a RL problem, then a novel policy based on Q-learning
was proposed for navigating high-dimensional hyperparameter spaces. Ref. [25] proposed
a hybrid approach, which combines technical analysis rules with machine learning to
generate trading signals, and a grid search is applied on the training data to optimize the
strategies. The application of the RL framework requires building a complex environment
suitable for each research problem and the financial market is no exception. To the best of
our knowledge, there is currently no research to build a trading environment with the RL
approach for the purpose of parameter optimization.

A summary of the notable findings described in this section is shown in Table 1. The
BO approach provides many outstanding findings; however, the high-dimensional problem
of parameters is still a matter of concern. On the other hand, RL is a promising approach to
solve this problem. Besides, there are few studies on parameter optimization for technical
analysis-based trading strategies. Therefore, this paper focuses on a novel approach to
parameter optimization based on reinforcement learning in which computational power
will be used to solve the mentioned parameter problem. The paper also aims to build a
framework for optimizing trading strategies that can be used in the real market.

In the parameter optimization problem, the objective function and evaluation metrics
depend on the developed model and the dataset. In financial models, especially in opti-
mizing trading strategies, the common objective functions are cumulative return, profit
and maximum drawdown. In [25], net profit and maximum drawdown are optimized
with multiple combinations of parameters for technical trading strategies. The authors
in [26] also use net profit as the objective function to optimize the indicators using genetic
algorithms. Cumulative return is presented in [2] as an objective function to be maximized
when designing a trading strategy. Many metrics are studied to help traders evaluate
the performance of their optimized strategies through how robust they are or whether
they will survive different market conditions. These metrics are generally divided into
two main categories. Traders use performance metrics to get a better understanding of

Algorithms 2023, 16, 23 4 of 17

an investment’s return while risk metrics are used to measure how much risk is involved
in generating that return. Two most popular performance metrics are Sharpe ratio [27]
and Sortino ratio [28]. Sharpe ratio indicates how well an equity investment is performing
compared to a risk-free investment, Sortino ratio is a variation of Sharpe ratio that only
factors in downside risk. Thus, traders often use the Sharpe ratio to evaluate a low-volatility
portfolio while the Sortino ratio is used to evaluate a high-volatility portfolio. Common
risk metrics are variance, maximum drawdown and value-at-risk. It is worth noting that
objective functions can be used as evaluation metrics and vice versa (see [6,26,27]).

Table 1. Summary of the previous research findings on parameter optimization

Authors (Year) Objectives Findings

Ni et al. (2008) Discussing evolutionary technologies to Genetic Algorithm approach provides better results in terms
[22] optimize trading strategies of returns than typical parameters and Buy&Hold strategy.

Methods: Genetic Algorithms Genetic Algorithm algorithm can be executed in parallel.

Bergstra & Bengio (2012) Comparing different approaches Random Search on the same domain in high-dimensional
[15] for neural network optimization spaces can find better models in less time than Grid Search

Methods: Random Search, Grid Search, and Manual Search.
Manual Search

Snoek et al. (2012) Presenting methods to perform BO for BO with Gaussian Process as probabilistic regression model
[9] hyperparameter selection of general and Expected Improvement as acquisition function signifi-

machine learning algorithms cantly outperforms Tree Parzen Algorithm.
Methods: BO with different acquisition BO surpasses a human expert at selecting hyperparameters
functions and beats the state of the art by over 3%.

Wu et al. (2019) Proposing a hyperparameter tuning BO algorithm based on Gaussian process can achieve high
[14] algorithm for machine learning models accuracy and less running time than Manual Search.

Methods: BO, Manual Search

Jomaa et al. (2019) Solving hyperparameter optimization The model based on RL approach does not rely on a heuristic
[24] problem with RL approach acquisition function like BO. RL method outperforms the

Methods: Random Search, BO, RL Random Search and BO approaches.

Ayala et al. (2021) Optimizing technical analysis strategies Linear model and artificial neural network outperform other
[25] using machine learning machine learning models. The hybrid approach shows

Methods: Grid Search improved profits and reduced risk of losses.

3. Research Methodology

In our problem, the goal is to train the artificial intelligence (AI) agent such that given
a trading scenario, it could give an optimized parameter set of the trading strategy and
earn a possibly highest reward after a finite number of iterations, as quickly as possible.
Instead of using classical optimization approaches, we adapt the Deep Q-Learning (DQN)
algorithm [24] for our learning model. This approach is proposed because it does not
require prior knowledge of how to efficiently optimize a trading strategy, and the learning
algorithm is able to self-evolve when being exposed to unseen scenarios. DRL was selected
since it increases the potential of automation for many decision-making problems that were
previously intractable because of their high-dimensional state and action spaces. In this
section, we briefly describe our learning environment and AI agent, discuss the learning
process and some implementation considerations. Accordingly, an automated trading
system is introduced to optimize the trading strategies of the experiments performed in
this work.

3.1. Learning Environment

The parameter optimization problem is formulated as a Markov Decision Process
represented by a tuple (S ,A, R, τ), where S is the set of possible states, A is the set of legal
actions, a reward function R : S ×A → R and the transition function τ : S ×A×R → S
that generates a new state in a possibly stochastic or deterministic environment E .

Algorithms 2023, 16, 23 5 of 17

The scenario or the state of the environment is defined as the data sets D plus the
history of evaluated parameter configurations and their corresponding response:

S = D × (Λ×R). (1)

The agent navigates the parameter response space through a series of actions, which
are simply the next parameter configurations to be evaluated, and thus the action space
corresponds to the space of all parameter configurations through the function g : A →
Λ. According to the definition of the action space, the agent executes an action from
A = {1, ..., |A|}. For example, action a = 1, a ∈ A, corresponds to parameter set λ =
g(a) = {λ1}dim(Λ) and action a = |A| corresponds to parameter set λ = {λ|A|}dim(Λ).

The parameter response surface can be any performance metric which is defined by
the function f : D×Λ→ R. The response surface is to estimate the value from an objective
function L of a strategy Mλ ∈ M, with parameters λ ∈ Λ, over a data set D ⊂ D:

f (D, λ) = L(Mλ, D). (2)

Considering that the agent’s task is to maximize the reward, the reward function is set
as the parameter response function, and depends on the data set D and the action selected,
as shown below:

R(D, a) = − f
(

D, λ = g(a)
)

. (3)

The observed reward depends solely on the data set and the parameter configuration
selected. Once an action is selected, a new parameter configuration is evaluated.

The transition function then generates a new state, s′ ∈ S , by appending the newly
evaluated parameter configuration, λ, and the corresponding reward r ∈ R observed to
the previous state s ∈ S :

s′ = τ(s, a, r) =
(

s, (λ = g(a), r)
)

. (4)

The agent reaches the terminal state in case of exceeding the prescribed budget T. At
each step t ∈ T, agent study the data d ∈ D, the state st = (dt, (λ0, r0), ..., (λt, rt)) and the
next step st+1 = (dt+1, (λ0, r0), ..., (λt, rt), (λt+1, rt+1)). This means each state s includes all
previously parameter configurations and their corresponding response. The budget could
be the running time/target reward is reached or the same parameter set is selected twice
in a row. The last condition causes the agent to keep on exploring the parameter space
without getting stuck in a specific reward configuration.

3.2. Artificial Intelligent Agent

The agent interacts with the environment E with the task of maximizing the expected
discounted reward. They execute actions from the action space and receive observations
and rewards. At each time step, which ranges over a set of discrete time intervals, the agent
selects an action a at state s. The behavior of the agent is governed by a stochastic policy,
π : S → A, which tells the agent which actions should be selected for each possible state.
As a result of each action, the agent receives a scalar reward r, and observes the next state
s′. The policy is used to compute the true state-action value, Qπ(s, a), as:

Qπ(s, a) = Eπ

[∞

∑
t=0

γtrt|s0 = s, a0 = a
]
, (5)

where γ ∈ [0, 1] represents the discount factor balancing between immediate and future
rewards. This basically helps to avoid infinity as a reward in case the task has no termi-
nal state.

The aim of the agent is to learn an optimal policy which defines the probability of se-
lecting action that maximizes the discounted cumulative reward, π∗(s) ∈ argmaxaQ∗(s, a),
where Q∗(s, a) denotes the optimal action value. One of the most popular value-based

Algorithms 2023, 16, 23 6 of 17

methods for solving RL problems is Q-learning algorithm [29]. The basic version of the
Q-learning algorithm makes use of the Bellman equation for the Q-value function, whose
unique solution is the optimal value function Q∗(s, a):

Q∗(s, a) = Eπ

[
r + γmaxa′Q

∗(s′, a′)|s0 = s, a0 = a
]
. (6)

3.3. Learning Mechanism

The interaction between AI agent and learning environment is the core mechanism for
training and testing in the RL framework. Starting at a random location in the parameter
space of a random data set, the agent needs to navigate the parameter response surface,
including the parameter configuration and corresponding reward of a given model. At
each step, the agent explores the environment, selects the next best parameter set with
the ε-greedy technique, and sends it to the environment. The policy ε-greedy(Q) to select
action at is defined, as follows:

at =

{
∼ Uni f (Λ), if x ∼ Uni f ([0, 1]) < ε,
argmaxaQ∗(st, a), otherwise.

(7)

Learning environment will update the current state, evaluate it and send feedback
back to agent as a reward. When the agent runs out of a number of episodes, he will be
relocated to the response surface of another data set. The transitions are stored in the replay
memory where a small batch of experiences is sampled to update the Q-network. By using
experience replay, it breaks down the successive correlation among samples and also allows
the network to make use of experiences better.

Algorithm 1 can be used to describe the learning process of the agent, including train-
ing phase and testing phase. The main purposes of the training phase include generating
learning samples, training the Deep Q-network using DRL algorithm. While in the testing
phase, given an unseen scenario, the target network is used to predict an optimal parameter
set. The step by step algorithm for training is as follows.

1. Learning environment randomly sampling a data set D = {d0, ..., dT} where each
data dt ∼ Uni f (D) for t = 1, ..., T.

2. The input for DRL algorithm is represented as a one-hot encoded state vector, s0 =

(d0, ({λinit}dim(Λ), 0)).
3. Given the state vector st, a candidate action at is selected with the ε-greedy technique.
4. The parameter λt is computed. Then, it is sent to the learning environment to compute

the reward rt and generate the next scenario s′t (or st+1).
5. The sample tuples (st, at, rt, st+1) is stored in replay buffer for later use in train-

ing model.
6. When the replay buffer has stored enough samples (≥ the minimum replay buffer

size, NB), the oldest tuple will be replaced. A batch of samples is sampled randomly
from a replay buffer for training.

7. The Q-network is updated by minimizing the defined loss function which is similar
to training supervised learning model.

8. Finally, the target networks are updated after a preset number of steps Nu.
9. If the end of the episode is reached, the searching step will be stopped and go back to

step 1. Else, increase t = t + 1 and go back to step 3.

Algorithms 2023, 16, 23 7 of 17

Algorithm 1 DRL algorithm for parameter optimization

1: Initialize network Q and target network Q̂
2: Initialize experience replay memory B
3: Initialize the Agent to interact with the Environment
4: for Ne iterations do . Ne - number of episodes
5: Randomly sampling a data set D = {d0, ..., dT}, d ∼ Uni f (D)
6: Get state s0 = (d0, ({λinit}dim(Λ), 0))
7: for t ∈ {0, ..., T} and while st is not terminal do
8: Determine next action at from state st using policy ε-greedy(Q) . Equation (7)
9: Receive reward rt = R(dt, λ = g(at)) . Equation (3)

10: Generate new state s′t = τ(st, at, rt) . Equation (4)
11: Store transition (st, at, rt, s′t) in the experience replay memory B
12: Replace oldest tuple if |B| > NB . NB - replay buffer size
13: if enough experience in B then
14: Sample a random minibatch of N transitions from B
15: for every transition (si, ai, ri, s′i) in minibatch do

yi =

{
ri, if s′i is terminal;
ri + γmaxa′ Q̂(s′i, a′), otherwise.

16: end for
17: Update Q by minimizing the loss

L = 1/K ∑K−1
i=0

(
Q(si, ai)− yi

)2

18: Copy weights from Q to Q̂ for every Nu steps
19: end if
20: end for
21: end for

The testing phase is relatively simple since we only need to get the final optimized
parameter set for a given scenario. However, in practical use, the experiences generated in
this phase can also be stored in a replay buffer for tuning the model via batch training. This
setting can help the model tuning to be faster and keep the model up-to-date with new
incoming data. The step-by-step algorithm for testing is described as follows.

1. An unseen data set D from the learning environment is given.
2. The state of the environment is defined as the data set D plus the history of evaluated

parameter configurations and their corresponding response.
3. Given state vector, an action a∗t is suggested.
4. The parameter λ∗t is calculated and sent to the environment. If the end of the episode

is reached, go to the next step, else compute the next state si+1, i = i + 1 and return to
step 3.

5. Given state vector and optimal action, the Q-value, Q∗(s, a∗), could be computed.
6. Finally, the Q-value along with corresponding parameter set λ∗ is stored to evaluate

performance.

3.4. The Trading System

From the concepts for parameter optimization described, in this section, we proceed to
build a trading system that can both give trading signals and optimize strategies automati-
cally. To provide the trading environment, we study the state representation and present it
in a form that the agent can understand. We propose a definition of an agent’s parameter
selection and a mapping from the act of choosing parameters for trading strategies to
investment decisions. Each decision can be scored using the proposed reward function.
The main components of the proposed system are described as follows.

• Learning environment: The trading scenario or state of environment, st, is represented
as a one-hot encoded vector and decomposed into two parts: the data price dt ∈ D, and
the sequence of selected parameter configurations and their corresponding rewards,

Algorithms 2023, 16, 23 8 of 17

(λt, rt) ∈ (Λ ×R). Given a certain state of the environment, the agent navigates
the parameter response surface to select a set of parameters to optimize the reward.
He then applies the chosen set of parameters to his trading strategy and executes a
sequence of orders (buy, hold or sell) based on the trading rules. These orders are sent
to the trading environment to compute the reward and generate the next scenario, s′t.

• Artificial intelligent agent: The aim of the agent is to learn an optimal policy, which
defines the probability of selecting a parameter set that maximizes the discounted
cumulative return or Sharpe ratio generated from trading strategies.

• Learning mechanism: Figure 1 illustrates the interaction between the trader and
the trading environment where the arrows show the steps in Algorithm 1. The
blue arrows in Figure 1 are the main steps to illustrate a general DRL problem with
experience replay. In the proposed environment, the agent can take a random action
with probability, ε, or follow the policy that is believed to be optimal with probability,
1− ε. An initial value for epsilon of the ε-greedy action, εstart, is selected for the first
observations and then is set to a new value, εend, after a number of observations. The
learning process of agents can be built on a Deep Q-Learning Network. During the
trading process, the trader executes orders and calculates the performance through
a backtesting step. In our experiment, the trading strategy is built with the common
and simple indicator RSI (see [30] for detailed definition). However, the algorithm can
be applied to any other technical indicator. The trading rules are presented as follows.
A buy signal is produced when RSI falls below oversold zone (RSI < 30) and rises
above 30 again. When the RSI rises above the overbought zone (RSI > 70) and falls
below 70 again, a sell signal is obtained.

Figure 1. Illustration of the learning mechanism in trading environment.

In our novel DRL-based parameter optimization method, the DQN algorithm is
modified and improved to adapt to the specific trading decision-making problem. The
modifications and improvements are summarized as below.

• Neural network architecture: to approximate the action-value function, architecture of
the Deep Neural Network (DNN) can be built using Convolutional Neural Network
(CNN) or classical feedforward DNN. In [27], the classical feedforward DNN with
leaky rectified linear unit (Leaky ReLU) activation function is used due to the different
nature of the input which is time series in our case. CNN is usually used with image
input; however, CNN can still be used with an univariate time series, as input as in [31].
CNNs are appropriate for multivariate time series with use of features extracted via
the convolutional and the pooling layers. Because of the potential for applying data

Algorithms 2023, 16, 23 9 of 17

other than price such as volume, multiple moving average time series, CNN is applied
in our network.

• Double DQN and Dueling DQN: These two networks are improved versions of regular
DQN. The double DQN uses two networks to avoid over-optimistic Q-values and,
as a consequence, helps us train faster and have more stable learning [32]. Instead
of using the Bellman equation as in the DQN algorithm, Double DQN changes it by
decoupling the action selection from the action evaluation. Dueling DQN separates
the estimator using two new streams, value and advantage; they are then combined
through a special aggregation layer. This architecture helps us accelerate the training.
The value of a state can be calculated without calculating the Q-values for each action
at that state. From the above advantages, two networks are applied in our model to
compare performance and execution time.

• Optimizer: The classical DQN algorithm usually implements the RMSProp optimizer.
ADAM optimizer is the developed version of the RMSprop, it is proven to be able to
improve the training stability and convergence speed of the DRL algorithm in [29].
Moreover, this algorithm requires low memory, suitable for large data and parameter
problems. Therefore, the ADAM algorithm is chosen to optimize the weights.

• Loss function: Some commonly used functions are Mean Squared Error (MSE) and
Mean Absolute Error (MAE). MSE is the simplest and most common loss function;
however, the error will be exaggerated if our model gives a very bad prediction. MAE
can overcome the MSE disadvantage since it does not put too much weight on outliers;
however, it has the disadvantage of not being differentiable at 0. Since outliers can
result in parameter estimation biases, invalid inferences and weak volatility forecasts
in financial data, to ensure that our trained model does not predict outliers, MSE is
chosen as the loss function. In future work, Huber loss can be considered as it is a
good trade-off between MSE and MAE, which can make DNN update slower and
more stable [27].

4. Experiment
4.1. Dataset

In this experiment, we consider the 15-min historical data (open, high, low and close
price) of BTC-USDT from the 25 March 2022 to the 31 August 2022 (15,360 observations).
The data are publicly available at https://www.binance.com/en/landing/data, accessed
on 1 November 2022. To get more information from the data, trend analysis is applied with
two techniques: the rolling means and the distribution of price increments. First, the trend
of our data is visualized using rolling means at 7-days and 30-days scales. As shown in
Figure 2, we can observe that the overall trend of 30-days rolling closing price is decreasing
over time, which indicates that the market is in a major downtrend in a large time frame. In
a bearish market, common strategies such as the Buy and Hold strategy are not profitable.
In smaller time frames such as the 7-days rolling closing price, the market shows signs of
slight recovery from early July to mid-August.

Figure 2. Trend analysis for BTC-USDT closing price.

https://www.binance.com/en/landing/data

Algorithms 2023, 16, 23 10 of 17

Beside the rolling means, the median values can also be useful for exploratory data
analysis. The distribution of price increments for each weekday is plotted in Figure 3. The
fluctuation range of all trading days is large, indicating that the seasonal stability is not
good. This is consistent with the strong downtrend results of the markets given in the trend
analysis step. A good result is that the data does not contain outliers, so we can skip the
outlier detection step when pre-processing the data. The median values from Saturday to
Tuesday suggest that the crypto market is likely to fall during this time period. Wednesday
to Friday is the time when the market goes up again. Saturday’s data is marked by high
volatility and the market tends to decrease on this day, so traders can build a strategy to buy
on Wednesdays and sell on Saturdays. In addition, intraday trades can also be executed
based on strong fluctuations in the minimum and maximum values of the trading days.

Figure 3. Average price increment ranges by weekday.

4.2. Experiment Procedure

To avoid the case where the optimization techniques are over-fitted or the obtained
parameters do not yield any profit in other periods, we consider 100 periods with the
size of each period being 3456 observations (36 days). For each period, the start date and
end date are different, the first 80% of the dataset is dedicated for training purposes and
the remaining 20% is used for testing the performance. This ratio is chosen according
to the Pareto principle, which is commonly applied to optimization efforts in computer
science [33]. Without a loss of generality, other ratios can also be applied.

The parameters used for training the agent are shown in Table 2. The agent is assumed
to start with an initial capital of 1,000,000 and a cost of 0.1% is applied to each executed
transaction for a more realistic study. The values of other parameters in the system are
selected from practice and from previous studies [3,29,34]. In our case, future rewards play
a more important role because of the volatility of the price, so in this study, γ is assigned
a value of 0.98. An initial εstart = 1 is selected for the first observations and then is set
to a new value εend = 0.12 after 300 observations (εstep = 300). Studying the experiment
in [3], we apply the ADAM algorithm to optimize the weights because of its simplicity in
implementation, computational efficiency, and low memory requirements. This algorithm
is suitable for large data and parameter problems when compared to other stochastic
optimization methods such as RMSProp [35], AdaGrad [36]. The Mean Squared Error is
used as the loss function for simplicity, the activation function is set as the Leaky Rectified
Linear Units function because of additional gains in final system performance relative
to more commonly used sigmoidal nonlinearities [34]. The learning process of agents is
powered by Double Deep Q-Network (DDQN) and Dueling Double Deep Q-Network
(D-DDQN). In both cases, the networks are composed of 2 Convolutional Neural Network
(CNN) layers with 120 neurons each. In the case of D-DDQN, CNN layers are followed
by two streams of fully connected layers: the first with 60 neurons dedicated to estimate
the value function and the second with 60 neurons to estimate the advantage function. We
compare the results of the system against two objective functions, the cumulative return
and the Sharpe ratio. The performance statistics from the DRL approach are compared
with the Bayesian Optimization approach and discussions are presented.

Algorithms 2023, 16, 23 11 of 17

Table 2. Parameters for training the AI agent.

Parameters Description Value

Ne Number of episodes 100
NB Max capacity of replay memory 10,000

batch_size Batch size 40
Nu Period of Q target network updates 10
γ Discount factor for future rewards 0.98

εstart Initial value for epsilon of the ε-greedy 1
εend Final value for epsilon of the ε-greedy 0.12

learning_rate Learning rate of ADAM optimizer 0.001

Three evaluation metrics are introduced to evaluate our results. The first metric is
the average reward, which is the average of daily returns over the experimental period.
The second metric is the average standard deviation of daily returns. The third metric is
the total cumulative reward, which is the total returns at the end of the trading episode.
The results from the metrics are discussed together to choose the best configuration for the
proposed trading system.

4.3. Results and Discussion
4.3.1. DDQN and D-DDQN Comparision

The results with different settings are presented in the tables and figures below. First,
the trading system with the cumulative return reward function is considered. In Figure 4a,
the average returns in percentage over the training data sets are reported, and the average
returns over the 100 testing sets with different start dates and end dates are plotted in
Figure 4b. The DDQN setting can beat the D-DDQN setting in terms of return for all the
periods; for example, in the training period, DDQN provides the maximum return of 3.95%
and maximum loss of −3.48% while the D-DDQN return is 2.87% and loss is −3.61%.

(a) (b)

Figure 4. Average returns from DRL approach with return reward function. (a) Training period;
(b) Testing period.

More specifically, Table 3 shows statistical results where the reward function is the
cumulative return. Compared with the D-DDQN setting, the system based on DDQN
achieves higher average returns in both the training and testing period. However, the
standard deviation is also larger, which indicates the instability of the results when trading
with short-term periods. In the real market, trading performance is evaluated by the profit
achieved after a larger period of time, e.g., weekly or monthly, while this experiment
focuses on the daily profit and thus, high volatility is acceptable. In future work, the system
could consider different time intervals to compare the stability of the profit achieved.

Algorithms 2023, 16, 23 12 of 17

Table 3. Average return performance with return reward function.

Period Setting Avg. (%) Max (%) Min (%) SD.

Training DDQN 0.31 3.95 −3.48 1.39
D-DDQN 0.06 2.87 −3.61 1.10

Testing DDQN 0.15 3.30 −4.22 2.26
D-DDQN −0.07 1.46 −2.55 0.90

An example of backtesting results and trading details of the trading system in a
trading day is shown in Figure 5. To see more clearly the performance of the D-DDQN
setting compared with the DDQN setting, we consider the cumulative average returns in
all periods. Figure 6a shows the cumulative average return achieved when trading for
the entire training period and the performance for the entire testing period is plotted in
Figure 6b. The returns of DDQN in the training and testing periods are 6.26% (8.94% per
month) and 2.23% (4.46% per month) while the returns of D-DDQN are 1.14% (1.63% per
month) and−1.08% (−2.16% per month), respectively. The results show that DDQN setting
has better performance than D-DDQN setting with the return reward function.

Figure 5. Backtesting results of the trading system with DDQN setting.

(a) (b)

Figure 6. Cumulative average returns from DRL approach with return reward function. (a) Training
period; (b) Testing period.

Algorithms 2023, 16, 23 13 of 17

Next, the trading system with the Sharpe reward function is considered. In Figure 7,
the average Sharpe value over all the periods is plotted and statistical indicators are
summarized in Table 4. Although the D-DDQN setting provides better average returns
than DDQN over the training period, other statistical indicators all show that DDQN
provides better performance. Furthermore, the DDQN setting provides positive returns
and less volatility in all periods.

(a) (b)

Figure 7. Average returns from DRL approach with Sharpe reward function. (a) Training period;
(b) Testing period.

Table 4. Average return performance with Sharpe reward function.

Period Setting Avg. (%) Max (%) Min (%) SD.

Training DDQN 0.05 2.58 −1.34 0.64
D-DDQN 0.12 1.24 −1.93 0.58

Testing DDQN 0.53 4.15 −0.93 1.44
D-DDQN −0.62 1.8 −5.34 1.76

Figure 8a,b report the cumulative average returns over the entire training and testing
periods, respectively. The returns of DDQN in the training and testing periods are 1.08%
(1.54% per month) and 7.98% (15.96% per month) while the returns of D-DDQN are 2.60%
(3.71% per month) and −9.32% (−18.64% per month), respectively. We can see strong
fluctuations in the returns of the D-DDQN setting during the training and testing period,
whereas DDQN setting provides positive returns in both periods.

(a) (b)

Figure 8. Cumulative average returns from DRL approach with Sharpe reward function. (a) Training
period; (b) Testing period.

From the preliminary analyzes above, the DDQN setting with Sharpe ratio as the
reward function proved to be the best Q-learning trading system; this result is consistent
with the study in [3].

Algorithms 2023, 16, 23 14 of 17

4.3.2. DRL and Bayesian Optimization Comparision

As a benchmark for comparison, the performance of the trading system applying
Bayesian Optimization to optimize the strategy is presented in the following figures and
tables. The cumulative average return with the return fitness function over 100 testing
periods is shown in Figure 9 with a positive return, 1.38%. When compared with the DRL
approach, the DDQN setting provides a higher cumulative return (see Figure 6).

Figure 9. Cumulative average return performance from BO approach in testing period.

Next, Table 5 summarizes the performance of BO approach over 100 different testing
sets; the results show that the average return is positive. The highest return is 28.88% and
the worst result is−22.45%, which is a big difference indicating the instability of the trading
results. The cause of the problem is using only a large data set of the past for training,
which is suitable for long-term trading purposes. To solve the problem, the system can
regularly update the optimal set of parameters through the rolling training data set, which
is consistent with the definition of the DRL approach. Despite using a large data set of
the past for training, the system with the DRL setting divides the data into states with
each state corresponding to data of a trading day. This means the system takes in new
information and updates it to make the best decisions every day. Without loss of generality,
the system can be changed to smaller intervals for high frequency purposes.

Table 5. Statistics of average return performance from BO approach.

Avg. Return (%) Max Return (%) Min Return (%) SD.

1.61 28.88 −22.45 9.84

4.3.3. Execution Time Comparison

Finally, the average execution time for the trading system with different approaches
is shown in Table 6. The DRL approach with D-DDQN setting has the shortest execution
time. DDQN setting provides smaller volatility than BO approach but it takes longer
time to execute. Although DDQN setting could not beat BO in terms of running time in
this experiment, the DRL approach still has the potential to outperform BO in practice
by looking at better settings with recurrent neural networks. When trading in the real
market, traders need to select or combine multiple trading strategies, which creates a
large set of parameters that need to be optimized. DRL approach with Deep Q-Network
can solve the above challenge while BO meets the problem of high-dimensional domain.
Furthermore, the results from BO also show large variability in return performance (see
Table 5), so the system needs to be trained continuously as new data sets are added and the
validation process should be considered to avoid over-fitting. Let us take an example for
this experiment; the system needs to update 100 times to find new optimal parameter sets
for 100 different testing sets, and the execution time is doubled when the validation step is
included; the total execution time of BO is 2870 s, which is 5.83 times higher than DDQN.

Algorithms 2023, 16, 23 15 of 17

Table 6. Execution time for different optimization methods.

Method Execution Time (s)

DDQN 6285
D-DDQN 492

BO 1435

5. Conclusions

This paper presented multiple techniques to optimize the parameters for a trading
strategy with RSI indicator. An experiment is carried out with the objective of evaluating
the performance of an automated AI trading system with optimized parameters in the
framework of Reinforcement Learning. DRL approach with DDQN setting and Bayesian
Optimization approach produced positive average returns for high frequency trading
purposes. With daily trading goals, the system with DRL approach provided better results
when compared to Bayesian Optimization approach. The results also demonstrated that the
DDQN setting with Sharpe ratio as the reward function is the best Q-learning trading sys-
tem. These results provide two options for traders. Traders can apply BO approach with the
goal of building a highly profitable trading strategy in the long-term. In contrast, the DRL
approach can be applied to regularly update strategies when receiving new information
from the market, which helps traders make more effective decisions in short-term trading.
The system with DRL settings can also solve the high dimensional problem of parameters of
Bayesian Optimization approach; thus, different trading strategies and objective functions
as well as new data can be integrated into the system to improve performance.

This research is the first step towards optimizing trading strategies with the Rein-
forcement Learning framework from popular tools such as Double Deep Q-Network and
Dueling Double Deep Q-Network. In future research, the proposed approaches should be
compared with recent AI techniques, such as the actor–critic algorithm with deep double
recurrent network, for a more accurate comparison study. Another promising approach
is to study the impact of financial news on the price movements of cryptocurrencies and
incorporate them into automated trading systems.

Author Contributions: Conceptualization, M.T.; formal analysis, M.T.; investigation, M.T.; methodol-
ogy, M.T.; supervision, D.P.-H. and M.B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are publicly available at https://www.binance.com/en/
landing/data, accessed on 1 November 2022.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

RL Reinforcement learning
DRL Deep reinforcement learning
BO Bayesian Optimization
RSI Relative Strength Index
SR Sharpe ratio
DDQN Double Deep Q-Network
D-DDQN Dueling Double Deep Q-Network
DNN Deep Neural Network
CNN Convolutional Neural Network

https://www.binance.com/en/landing/data
https://www.binance.com/en/landing/data

Algorithms 2023, 16, 23 16 of 17

References
1. Chan, E.P. Quantitative Trading: How to Build Your Own Algorithmic Trading Business; John Wiley & Sons: Hoboken, NJ, USA, 2021.
2. Xiong, Z.; Liu, X.Y.; Zhong, S.; Yang, H.; Walid, A. Practical deep reinforcement learning approach for stock trading. arXiv 2018,

arXiv:1811.07522.
3. Lucarelli, G.; Borrotti, M. A deep reinforcement learning approach for automated cryptocurrency trading. In Proceedings of the

IFIP International Conference on Artificial Intelligence Applications and Innovations, Crete, Greece, 24–26 May 2019; Springer:
Berlin/Heidelberg, Germany, 2019; pp. 247–258.

4. Liu, Y.; Liu, Q.; Zhao, H.; Pan, Z.; Liu, C. Adaptive quantitative trading: An imitative deep reinforcement learning approach. In
Proceedings of the AAAI Conference on Artificial Intelligence, New York, NY, USA, 7–12 February 2020; Volume 34, pp. 2128–2135.

5. Ma, C.; Zhang, J.; Liu, J.; Ji, L.; Gao, F. A parallel multi-module deep reinforcement learning algorithm for stock trading.
Neurocomputing 2021, 449, 290–302. [CrossRef]

6. Pricope, T.V. Deep reinforcement learning in quantitative algorithmic trading: A review. arXiv 2021, arXiv:2106.00123.
7. Millea, A. Deep reinforcement learning for trading—A critical survey. Data 2021, 6, 119. [CrossRef]
8. Fayek, M.B.; El-Boghdadi, H.M.; Omran, S.M. Multi-objective optimization of technical stock market indicators using gas. Int. J.

Comput. Appl. 2013, 68, 41–48.
9. Snoek, J.; Larochelle, H.; Adams, R.P. Practical bayesian optimization of machine learning algorithms. Adv. Neural Inf. Process.

Syst. 2012, 25, 2951–2959.
10. Ehrentreich, N. Technical trading in the Santa Fe Institute artificial stock market revisited. J. Econ. Behav. Organ. 2006, 61, 599–616.

[CrossRef]
11. Bigiotti, A.; Navarra, A. Optimizing automated trading systems. In Proceedings of the The 2018 International Conference on

Digital Science, Budva, Montenegro, 19–21 October 2018; Springer: Berlin/Heidelberg, Germany, 2018; pp. 254–261.
12. Snow, D. Machine learning in asset management—Part 1: Portfolio construction—Trading strategies. J. Financ. Data Sci. 2020,

2, 10–23. [CrossRef]
13. Pardo, R. The Evaluation and Optimization of Trading Strategies; John Wiley & Sons: Hoboken, NJ, USA, 2011; Volume 314.
14. Wu, J.; Chen, X.Y.; Zhang, H.; Xiong, L.D.; Lei, H.; Deng, S.H. Hyperparameter optimization for machine learning models based

on Bayesian optimization. J. Electron. Sci. Technol. 2019, 17, 26–40.
15. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13.
16. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313. [CrossRef]
17. Kirkpatrick, S.; Gelatt, C.D.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
18. Powell, M.J. A direct search optimization method that models the objective and constraint functions by linear interpolation. In

Advances in Optimization and Numerical Analysis; Springer: Berlin/Heidelberg, Germany, 1994; pp. 51–67.
19. Fu, W.; Nair, V.; Menzies, T. Why is differential evolution better than grid search for tuning defect predictors? arXiv 2016,

arXiv:1609.02613.
20. Betrò, B. Bayesian methods in global optimization. J. Glob. Optim. 1991, 1, 1–14. [CrossRef]
21. Jones, D.R. A taxonomy of global optimization methods based on response surfaces. J. Glob. Optim. 2001, 21, 345–383. [CrossRef]
22. Ni, J.; Cao, L.; Zhang, C. Evolutionary optimization of trading strategies. In Applications of Data Mining in E-Business and Finance;

IOS Press: Amsterdam, The Netherlands, 2008; pp. 11–24.
23. Zhi-Hua, Z. Applications of data mining in e-business and finance: Introduction. Appl. Data Min. E-Bus. Financ. 2008, 177, 1.
24. Jomaa, H.S.; Grabocka, J.; Schmidt-Thieme, L. Hyp-rl: Hyperparameter optimization by reinforcement learning. arXiv 2019,

arXiv:1906.11527.
25. Ayala, J.; García-Torres, M.; Noguera, J.L.V.; Gómez-Vela, F.; Divina, F. Technical analysis strategy optimization using a machine

learning approach in stock market indices. Knowl.-Based Syst. 2021, 225, 107119. [CrossRef]
26. Fernández-Blanco, P.; Bodas-Sagi, D.J.; Soltero, F.J.; Hidalgo, J.I. Technical market indicators optimization using evolutionary

algorithms. In Proceedings of the 10th Annual Conference Companion on Genetic and Evolutionary Computation, Lille, France,
10–14 July 2008; pp. 1851–1858.

27. Théate, T.; Ernst, D. An application of deep reinforcement learning to algorithmic trading. Expert Syst. Appl. 2021, 173, 114632.
[CrossRef]

28. Chen, H.H.; Yang, C.B.; Peng, Y.H. The trading on the mutual funds by gene expression programming with Sortino ratio. Appl.
Soft Comput. 2014, 15, 219–230. [CrossRef]

29. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
30. Wilder, J.W. New Concepts in Technical Trading Systems; Trend Research: Greensboro, NC, USA, 1978.
31. Chandra, R.; Goyal, S.; Gupta, R. Evaluation of deep learning models for multi-step ahead time series prediction. IEEE Access

2021, 9, 83105–83123. [CrossRef]
32. Hessel, M.; Modayil, J.; Van Hasselt, H.; Schaul, T.; Ostrovski, G.; Dabney, W.; Horgan, D.; Piot, B.; Azar, M.; Silver, D. Rainbow:

Combining improvements in deep reinforcement learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, New Orleans, LA, USA, 2–7 February 2018.

33. Gen, M.; Cheng, R. Genetic Algorithms and Engineering Optimization; John Wiley & Sons: Hoboken, NJ, USA, 1999; Volume 7.
34. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the Icml,

Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3.

http://doi.org/10.1016/j.neucom.2021.04.005
http://dx.doi.org/10.3390/data6110119
http://dx.doi.org/10.1016/j.jebo.2004.07.022
http://dx.doi.org/10.3905/jfds.2019.1.021
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1007/BF00120661
http://dx.doi.org/10.1023/A:1012771025575
http://dx.doi.org/10.1016/j.knosys.2021.107119
http://dx.doi.org/10.1016/j.eswa.2021.114632
http://dx.doi.org/10.1016/j.asoc.2013.09.011
http://dx.doi.org/10.1109/ACCESS.2021.3085085

Algorithms 2023, 16, 23 17 of 17

35. Tieleman, T.; Hinton, G. Neural networks for machine learning. Coursera (Lecture-Rmsprop) 2012, 138, 26–31.
36. Duchi, J.; Hazan, E.; Singer, Y. Adaptive subgradient methods for online learning and stochastic optimization. J. Mach. Learn. Res.

2011, 12, 2121–2159.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

	Introduction
	Related Work
	Research Methodology
	Learning Environment
	Artificial Intelligent Agent
	Learning Mechanism
	The Trading System

	Experiment
	Dataset
	Experiment Procedure
	Results and Discussion
	DDQN and D-DDQN Comparision
	DRL and Bayesian Optimization Comparision
	Execution Time Comparison

	Conclusions
	References

