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Abstract: Planning tasks are important in construction, manufacturing, logistics, and education. At
the same time, scheduling problems belong to the class of NP-hard optimization problems. Ant
colony algorithm optimization is one of the most common swarm intelligence algorithms and is a
leader in solving complex optimization problems in graphs. This paper discusses the solution to
the job-shop scheduling problem using the ant colony optimization algorithm. An original way of
representing the scheduling problem in the form of a graph, which increases the flexibility of the
approach and allows for taking into account additional restrictions in the scheduling problems, is
proposed. A dynamic evolutionary adaptation of the algorithm to the conditions of the problem is
proposed based on the genetic algorithm. In addition, some heuristic techniques that make it possible
to increase the performance of the software implementation of this evolutionary ant colony algorithm
are presented. One of these techniques is parallelization; therefore, a study of the algorithm’s
parallelization effectiveness was made. The obtained results are compared with the results of other
authors on test problems of scheduling. It is shown that the best heuristics coefficients of the ant
colony optimization algorithm differ even for similar job-shop scheduling problems.

Keywords: job-shop scheduling problem; ant colony optimization; multiphasic systems; genetic
algorithm; parallel computing

1. Introduction
1.1. Job-Shop Scheduling Problem

In all cases of human activity to achieve the desired result, as a rule, plans and sched-
ules are drafted. The complexity of task scheduling along with the continuous improvement
of automation tools for such activities has led to increased interest in scheduling synthesis
theory and calendar planning. The tasks of calendar planning reflect the process of the
distribution over time of a limited number of resources assigned to the project, which
includes a list of related works.

Problems of scheduling theory belong to the class of problems of combinatorial opti-
mization or ordering. The active research and development of scheduling theory began in
the 1950s. One of the main issues of scheduling theory was the classification of tasks and the
establishment of their complexity. Reviews of problems in scheduling theory are presented
in the works of Gary and Johnson, Lower, Brucker, Xie, Leusin, and Xiong, et al. [1–6].

The scheduling problem of the “job-shop” class is NP-hard if there are more than
two devices [5,7]. The survey [6] shows that the job-shop scheduling (JSS) problem is one
of the most difficult among all NP-class problems even from the point of view of task
formulation. As shown in [8], the number of combinations for a job-shop task with n
jobs and m devices (each job contains m stages) is proportional to the value (n!)m. At the
same time, JSS problems are important for many fields: manufacturing, semiconductors,
pharmaceuticals, supply chains, rail-bound transportation, mining, healthcare, etc. [6].
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Since planning tasks are very important in practice and have high complexity and
variety, a wide variety of methods are used to solve them, including artificial intelligence
methods [5,9,10]. Although classical optimization methods are also used, such as the branch
and bound method [11,12], dynamic programming [7], and methods based on heuristics
and rules [13–16].

Among the methods of artificial intelligence, the most commonly used is the genetic
algorithm (GA) [5,17–19] and other population-based algorithms such as the Particle
Swarm Optimization [20,21] and ant colony optimization (ACO) algorithms [22]. All
these stochastic population optimization algorithms (evolutionary or swarm) provide
high flexibility and solve scheduling problems not with 100% accuracy but with sufficient
accuracy in a reasonable time. In addition, population algorithms can be used to create
hybrids with other, deterministic approaches [7,17–19,23]. Additionally worthy of note is
the use of stochastic algorithms that are faster than population algorithms and based on
Simulated Annealing [10,24].

Despite a large number of solution methods, none of them can be called dominant.
Besides the usual reasons typical for NP-hard problems [25], the variability of planning
problems even within the same class should also be noted.

Most scheduling tasks are associated with the concept of multi-stage service systems.
These include systems in which servicing requirements consist of several stages. Despite
the diversity of production systems, the formalized description of the JSS problem can be
considered basic for a large class of multi-stage systems. The job-shop problem can be
formulated as follows.

1. There is a finite set N = {1, 2, . . . , n} of requirements (works, jobs, orders) and a
finite set M = {1, 2, . . . , m} of devices (machines, executors, workstations, etc.).

The service process for requirement i includes ri stages. At the same time, each
requirement i and each stage q (1 ≤ q ≤ ri) of its service is associated with some subset of
machines Miq from the set M. It is assumed that each machine can simultaneously serve no
more than one requirement. In such systems with successive servers, each job i is assigned
its own, characterizing for this job the sequence Li of its servicing by machines: Li = (L1

i,
L2

i, . . . , Lri
i).

The requirement i is served first by the machine L1
i, then by L2

i, and so on. Service
sequences may be different for different requirements and may contain instrument repeti-
tions. If the requirement i at stage q must be serviced by machine l, then the duration tliq of
its servicing by this machine is assumed to be given. The system operation process can be
described by setting a schedule (calendar plan), i.e., some set of indications as to whether
particular requirements are served at each moment of time.

Figure 1 shows a Gantt chart of an example of a JSS problem with jobs A (blue),
B (green), C (red), and D (yellow) and machines R, S, T, and Q. For example, job A has three
stages that require the consistent use of machines R (8 h), S (5 h), and Q (2 h).

Algorithms 2023, 16, x FOR PEER REVIEW 2 of 17 
 

time, JSS problems are important for many fields: manufacturing, semiconductors, phar-
maceuticals, supply chains, rail-bound transportation, mining, healthcare, etc. [6]. 

Since planning tasks are very important in practice and have high complexity and 
variety, a wide variety of methods are used to solve them, including artificial intelligence 
methods [5,9,10]. Although classical optimization methods are also used, such as the 
branch and bound method [11,12], dynamic programming [7], and methods based on heu-
ristics and rules [13–16]. 

Among the methods of artificial intelligence, the most commonly used is the genetic 
algorithm (GA) [5,17–19] and other population-based algorithms such as the Particle 
Swarm Optimization [20,21] and ant colony optimization (ACO) algorithms [22]. All these 
stochastic population optimization algorithms (evolutionary or swarm) provide high flex-
ibility and solve scheduling problems not with 100% accuracy but with sufficient accuracy 
in a reasonable time. In addition, population algorithms can be used to create hybrids with 
other, deterministic approaches [7,17–19,23]. Additionally worthy of note is the use of sto-
chastic algorithms that are faster than population algorithms and based on Simulated An-
nealing [10,24]. 

Despite a large number of solution methods, none of them can be called dominant. 
Besides the usual reasons typical for NP-hard problems [25], the variability of planning 
problems even within the same class should also be noted. 

Most scheduling tasks are associated with the concept of multi-stage service systems. 
These include systems in which servicing requirements consist of several stages. Despite 
the diversity of production systems, the formalized description of the JSS problem can be 
considered basic for a large class of multi-stage systems. The job-shop problem can be 
formulated as follows. 

1. There is a finite set N = {1, 2, …, n} of requirements (works, jobs, orders) and a finite 
set M = {1, 2, …, m} of devices (machines, executors, workstations, etc.). 

The service process for requirement i includes ri stages. At the same time, each re-
quirement i and each stage q (1 ≤ q ≤ ri) of its service is associated with some subset of 
machines Miq from the set M. It is assumed that each machine can simultaneously serve 
no more than one requirement. In such systems with successive servers, each job i is as-
signed its own, characterizing for this job the sequence Li of its servicing by machines: Li 
= (L1i, L2i, …, Lrii). 

The requirement i is served first by the machine L1i, then by L2i, and so on. Service 
sequences may be different for different requirements and may contain instrument repe-
titions. If the requirement i at stage q must be serviced by machine l, then the duration tliq 
of its servicing by this machine is assumed to be given. The system operation process can 
be described by setting a schedule (calendar plan), i.e., some set of indications as to 
whether particular requirements are served at each moment of time. 

Figure 1 shows a Gantt chart of an example of a JSS problem with jobs A (blue), B 
(green), C (red), and D (yellow) and machines R, S, T, and Q. For example, job A has three 
stages that require the consistent use of machines R (8 h), S (5 h), and Q (2 h). 

 
Figure 1. An example of a JSS problem solution (Gantt chart) Figure 1. An example of a JSS problem solution (Gantt chart).



Algorithms 2023, 16, 15 3 of 15

Under the assumptions made above, the schedule can be considered a vector {s1(t),
s1(t), . . . , sm(t)}, whose components are piecewise constant left continuous functions. Each
of them is given on the interval 0 ≤ t < ∞ and takes a value of 0, 1, . . . , n.

s = {s1(t), s2(t), . . . , sm(t)}. (1)

If (t′) = i, l ∈M, i ∈ N, then at the time t′, the device l serves the requirement i. When
setting the schedule, all conditions and restrictions arising from the formulation of the problem
under consideration must be observed, which means the schedule must be permissible.

If there are several permissible schedules, it is necessary to choose the best of them,
which means setting some selection criterion (quality criterion). In the classical scheduling
theory, such a criterion is the completion time of all requirements (makespan); that is, the
completion time of the last requirement. Each admissible schedule s uniquely determines
the vector of time points for completing the service of all jobs:

T(s) = (T1(s), T2(s), . . . , Tn(s)). (2)

If some valid, non-decreasing in each of the variables function F(x) is given,

F(x) = F(x1, x2, . . . , xn), (3)

then the quality of the schedule s is estimated by the value of this function at x = T(s):

F(x) = max{xi}, i = 1,2, . . . , n. (4)

In this case,

F(T(s)) = Tmax(s), where Tmax(s) = max{Ti(s)}, i = 1, 2, . . . , n, (5)

From this statement of the problem, the main difficulties are noticeable:

• Discreteness;
• Multivariance;
• Multifactorialism;
• The inability to construct an objective function in the form of an algebraic expression,

since the objective function is calculated only algorithmically.

Mathematically, the JSS problem can be divided into several subtypes according to
their constrictions, criteria, and other features. The review [6] identifies 37 subtypes of the
JSS problem. It also provides mathematical formulations for various subtypes and a review
of solution methods. A variety of tasks and methods and the fact that research on this issue
does not stop indicate both the relevance and high complexity of the JSS problem.

1.2. Ant Colony Optimization Algorithm

Ants solve pathfinding problems using chemical regulation [26]. Each ant leaves a
trail of special substances on the ground (named pheromones). Another ant, sensing a
footprint on the ground, rushes along it. The more ants have passed along one path, the
more noticeable the trace for them, and the more noticeable the trace, the greater the desire
to go in the same direction arises in ants. Since the ants that find the shortest path to the
“feeder” spend less time traveling back and forth, their trail quickly becomes the most
visible. It attracts more ants, so the process of finding a shorter path is completed quickly.
Other, less-used paths gradually disappear. It is possible to formulate the basic principles
of interaction between ants: stochastic; multiplicity; positive feedback.

Since each ant performs primitive actions, the algorithm turns out to be very simple
and boils down to multiple traversals of some graph, the edges of which have not only
weight but also an additional, dynamically changing quantitative characteristic, called the
amount of pheromone or simply pheromone.
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The ACO algorithm is inherently the most suitable for solving optimization problems
related to graphs and routes [26–29]. Currently, research related to the ACO algorithm is
aimed at solving problems such as finding an efficient starting point [28,29], hybridization
with other methods that solve subproblems (local search [30,31], exact large neighborhood
search [32], etc.), the usage of adaptation methods, and the meta-optimization of the
algorithm [33,34]. The application of the local search and neighborhood search [30–32] is
difficult for JSS problems because of their non-trivial formulation [6].

Research in which the ACO algorithm would be applied to scheduling problems
began as soon as ACO algorithms became known; for example, the application of ACO to
single-machine scheduling problems [35,36] or JSS problems in general [37]. In particular,
authors use techniques for combining the ACO algorithm and specialized methods for
solving JSS problems; for example, to perform local searches [38,39]. The JSS problem differs
significantly from route search problems and other problems on graphs. In studies, the
process of schedule creation is presented as moving along a schedule-based graph [40,41],
which imposes some restrictions on the capabilities of the ACO algorithm [42]. In addition,
it is not clear how best to assign weights to edges with the JSS problem.

The issue of setting the ACO algorithm parameters requires separate research. It
is important to understand how the best algorithm parameters differ for different JSS
problems, and whether they depend on the dimension of the problem (numbers of jobs,
stages, and machines). The studies cited above do not address this issue in detail. The
authors of papers [37,41,42] used the same parameters for all tasks, and the parameters’
values were selected experimentally. In the works [38,43], the parameters were tuned
using only one JSS problem instance. The number of ants and a parameter influencing the
pheromone updating were studied in [40]; it was shown that different values should be
chosen for different JSS problem instances.

1.3. Meta-Optimization Approach

Genetic algorithm (GA) usage in conjunction with other (heuristic, as a rule) algorithms
is a common practice [44,45]. Most often, the GA is used as the main algorithm for solving
the problem with a local search additional algorithm. Studies [5,16,19,46] applied this
approach to the JSS problem. In [18], another approach is presented wherein a heuristic
algorithm is used to determine the initial population of the GA.

Finally, the third approach is using the GA as a meta-optimizer [18,47]. The GA adjusts
the hyper-parameters of another optimization algorithm. This approach is relatively rarely
used because it requires large computational costs.

In this paper, a new way of representing the graph along which ants move is proposed
for solving the scheduling problem. It is distinguished by simplicity, versatility, and, at the
same time, flexibility. In particular, it can be used in case of dynamic changes in constraints
or initial data (for example, replacing stages in jobs or changing their execution time). Some
techniques are given to improve the performance in software implementation. To study the
parameters of the ACO algorithm in the JSS problem, meta-optimization was implemented
using the GA. As noted above, this evolutionary meta-optimization approach has not been
used previously for the ACO algorithm and JSS problem because of the high computational
complexity. However, in scheduling problems and with long-term production processes,
the high computational complexity is not a critical flaw.

The structure of the paper is as follows. Section 2 presents, first, the proposed method for
constructing the pheromone graph and traversing it, suitable for applying the ACO algorithm;
second, the method of adjusting the coefficients of the ACO algorithm; third, techniques for im-
proving software implementation performance. Section 3 presents the results of computational
experiments and their analysis. The conclusion summarizes the results.

2. Materials and Methods
2.1. Proposed Application of the ACO Algorithm for the JSS Problem

To solve the JSS problem by using the ACO algorithm, it is necessary to:
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1. Present the problem as a directed graph;
2. Determine the heuristics of the behavior of ants when constructing a solution;
3. Adjust the algorithm parameters.

The iterative ACO algorithm includes building a solution by all ants, improving the
solution using the local search method, and updating the pheromone. Building a solution
starts with an empty partial solution, which is expanded by adding a new, permissible
solution component to it.

Based on the algorithm and formulas proposed in [26], in this study, the calculation
relations presented below, which are used when adapting the method to the problems of JSS,
have been written down. The choice of the solution component is carried out according to the
rules of probabilistic choice at each step of constructing the solution in accordance with:

Pk =
( fk)

α

∑
i
( fi)

α (6)

The coefficient α determines the influence of the amount of pheromone on the k-th
edges (fk) on the probability that the ant will choose this edge. The denominator is the sum
over all edges accessible from the node. The proposed approach does not use any heuristic
information; for example, the duration of the selected stage or the duration of the job to
which the selected stage belongs. Preliminary experiments have shown that it does not
improve accuracy. For the traveling salesman problem, a route does not include all edges.
Therefore, it makes sense to increase the probability of choosing a shorter graph edge for
each step. For the scheduling problem, a route must include all stages in any case.

Pheromone renewal is necessary to increase it on the best (short) path and to decrease
its amount on paths corresponding to bad decisions. Pheromone evaporation is also used
in order to avoid the too-fast convergence of the algorithm.

If F is the value of the objective function on the route, then the amount of pheromone
applied by the ant to all edges of the route ∆f can be determined:

∆ f =
(γ

F

)β
(7)

Here β and γ are the intensity coefficients of pheromone release. The coefficient β was
introduced in this work in order to make the dependence of applying the pheromone on
the graph more flexible (not necessarily linear).

The coefficient ρ characterizes the pheromone evaporability. Here, it is considered that
a certain minimum non-zero amount of pheromone should always remain on the edges.
Otherwise, the probability of choosing an edge may be zero and it will be “ignored” by the
ants. The maximum value is also limited, which prevents the convergence of the algorithm
to a solution far from the optimal one. The coefficient takes values from 0 (no evaporation)
to 1 (evaporates to a minimum level).

f ′ =


f (1− ρ), fmin < f (1− ρ) < fmax

fmin, f (1− ρ) ≤ fmin
fmax, f (1− ρ) ≥ fmin

(8)

During the experimental studies, an improvement in results was revealed with an
increase in the significance of the current best solution. To do this, on all edges of the path
corresponding to the best result at each iteration, a certain amount of pheromone is added,
which is determined by the coefficient λ:

fbest =

{
fbest · λ, fbest · λ < fmax

fmax, fbest · λ ≥ fmax
(9)

Thus, the limit on the maximum amount of pheromone is taken into account here as well.
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It is possible to present the search for a solution to the JSS problem as follows.
In order to completely set the schedule, it is enough to determine which job to load on

the device it needs at each i-th step, I = 1, 2, . . . , Cs, where Cs is the total number of stages
of all jobs from the set N. Then, the graph will have Cs+1 vertexes, with the first vertex
connected only to the second, the second to the first and third, the third to the second and
fourth, and so on (the graph is direct). The vertex numbered Cs+1 is connected only to the
vertex Cs. The edges connecting the vertices correspond to jobs.

Passing along the graph, the ant remembers its path—in this case, the sequence of jobs.
As soon as job j enters into this sequence as many times as it has stages (rj), the ant starts
ignoring the edges corresponding to it until the end of the path.

For example, there are three requirements, N = {A, B, C}, n = 3. Requirement A has
two stages and requirements B and C each have three stages. Figure 2 shows the graph.
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For example, an ant in the first step chose requirement A, then B, and again A. Re-
quirement A has two stages, so the ant will ignore its remaining edges in the next steps
(shown by the dotted line in Figure 3). Then, let the ant select requirements C, C, B, and C
in succession, then only edge B remains valid at the 8th node. Because of the above pass, a
sequence of requirements {A, B, A, C, C, B, C, B} will be obtained. Using this sequence, it is
easy to obtain the stage selection sequence vector:

L** = {l1A, l1B, l2A, l1C, l2C, l2B, l3C, l3B}.
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Figure 3 shows the path of the ant along the graph for this example. The selected
edges are shown with thicker lines. The dotted line shows the edges that were ignored by
the particle based on the selections made.

Thus, the problem under consideration differs from the weighted undirected graph
traversal problem. However, to adapt the algorithm to these conditions, it is enough to
place the leftmost vertex in the list of vertices of the graph that are allowed to start the
bypass. The graph is not weighted; this is equivalent to the unit weight of all graph edges.

This approach to graph representation is universal, as it allows for considering various
additional requirements. For example, in the classical formulation of the JSS problem, there
are no dependencies between different stages of different jobs (all jobs are independent). For
the proposed approach, it is easy to take into account such a modification of the problem.
In addition, it becomes possible to solve scheduling problems that dynamically change. For
example, when, after the plan is drawn up and the execution begins, the order of stages or
the duration of stages change, or new works appear.

A more formalized description of the algorithm is given in Algorithms 1 and 2. Algorithm 1
presents the algorithm in general; Algorithm 2 shows the traversal of the graph by one ant.
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Algorithm 1. Pseudocode for the ACO Algorithm Application for JSS Problem

Input: N, M, Iaco, Cant, f min, f max, α, β, γ, ρ, λ

Output: T, makespan
Auxiliary Variables: f, Cs, routes, makespans, best_route, best_makespan
Initialization: Cs = Count_stages(N), f = I[n × Cs] · f min,
best_makespan = ∞
Begin ACO-JSS Algorithm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

for (i = 1, . . . , Iaco) do
for (a = 1, . . . , Cant) do

makespanesa, routesa = Ant_route(N, M, Cs, f, α, β)
end for
for (a = 1, . . . , Cant) do

for (s = 1, . . . , Cs) do
j = routesa,s
fs, j = fs,j + (γ/makespanesa)β

end for
end for
a = argmina(makespanesa)
if (makespanesa < best_makespan) then

best_makespan = makespanesa
best_route = routesa

end if
for (s = 1, . . . , Cs) do

j = best_routes
fs,j = λ·fs,j

end for
for (ϕ ∈ f ) do
ϕ = max(min(ϕ·(1 − ρ), f max), f min)
end for

end for
T = JSS(best_route)
makespan = best_makespan
return T, makespan

End ACO-JSS Algorithm

In Algorithm 1 the following designations are introduced: Iaco is the number of ACO
algorithm iterations; Cant is the number of ants; Cs is the total number of all stages of all
jobs; I[A × B] is an identity matrix A × B.

Each ant traverses the graph at each algorithm iteration (rows 2–4). After that, the
application of the pheromone is performed in accordance with Equations (7) (rows 5–10),
(9) (rows 11–19), and (8) (rows 20–22). The schedule obtained with the best-found route is
the output result of the algorithm (rows 24–26).

In Algorithm 2, the following designations are introduced: tabu_list is the list of job
numbers for which all stages are added to the schedule; stage_counters is the vector of the
counters of added stages for each job; stages is the vector of the number of stages in each job.

During the traversal, the ant at each step chooses an edge. Edge selection means job
selection, as shown in Figures 2 and 3. The next stage of the selected job will be added to
the schedule with the start of execution as soon as possible. Edge selection probabilities
are calculated according to Equation 6 (rows 3–15). The probabilistic choice is made
using roulette wheel simulation (rows 16–17). If the selected stage is the last stage for the
corresponding job, then the stages of this job can no longer be selected (rows 18–21).
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Algorithm 2. Pseudo Code for the Ant_route

Input: N, M, Cs, α, f
Output: makespan, route
Auxiliary Variables: p, sp, tabu_list, stage_counters, stages
Initialization: route = 0[Cs], tabu_list = {}, stage_counters = 0[n]
stagesi = Count_stages(Ni), i = 1, . . . , n
Begin Ant_route Algorithm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

for (s = 1, . . . , Cs) do
sp = 0
for (j = 1, . . . , n) do

if (j /∈ tabu_list) then
pj = (fs,j)α

sp = sp + pj
else

pj = 0
end if

end for
for (j = 1, . . . , n) do

if (j /∈ tabu_list) then
pj = pj/sp

end if
end for
j = Roulette_Selection(p)
routes = j
stage_countersj + = 1
if (stage_countersj = stagesj) then

tabu_list = tabu_list ∪ j
end if

end for
T = JSS(route)
makespan = max(T)
return makespan, route

End Ant_route Algorithm

2.2. Adaptive Selection of Algorithm Parameters

As noted in [26,27,33,34,40,43], the quality of the solutions obtained using the ACO
algorithm strongly depends on the coefficients (parameters) used in it. In the above
algorithm, such coefficients are α, β, γ, ρ, λ (Equations (6)–(9). Since each of the coefficients
can take an infinite number of values, the question arises of choosing the coefficients
that make it possible to obtain a solution that is closest to the optimal one. Selecting
coefficients manually is inefficient because of the large range of their values and the lack of
methods for their selection. In this study, it is proposed to select coefficients using their
evolutionary selection. The most common method for implementing such a selection is a
genetic algorithm.

Algorithm 3 presents the GA application for tuning ACO parameters.
The ACO parameters selection is carried out according to the scheme described below:

1. Generation of a random initial state. The first generation is created from randomly
selected solutions (chromosomes), where the parameters α, β, γ, ρ, λ are used as genes
(initialization in Algorithm 3).

2. Calculation of the coefficient of survival (fitness). Each solution (chromosome) is
assigned a certain numerical value, depending on its proximity to the value of the
fitness function (rows 2–12).

3. Reproduction. Chromosomes with greater fitness are more likely to pass to offspring,
roulette selection, and a single-point crossover operation is performed (rows 13–25).

4. Mutation. If it is randomly determined that it is necessary to carry out a mutation,
then the chromosome is changed to a new random chromosome (rows 21–31).
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5. If the specified number of iterations is completed, then the problem is solved. Other-
wise, steps 2–4 are repeated.

In Algorithm 3, the following designations are introduced: Ig—the number of GA itera-
tions; Cg—the number of chromosomes; and population—the population of GA chromosomes.

Algorithm 3. Pseudo Code for the ACO Algorithm with GA Adaptation

Input: N, M, Ig, Cg, Iaco, Cant, f min, f max
Output: T, makespan, α, β, γ, ρ, λ

Auxiliary Variables: population, prob, fitnesses, best_parameters, best_fitness, Pm
Initialization: population = I[Cg × 5] · Random[Cg × 5], fitnesses = [], prob = 0[Cg]
best_fitness = ∞, Pm = 0.05
Begin ACO-GA Algorithm
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

for (i = 1, . . . , Ig) do
for (g = 1, . . . , Cg) do

α, β, γ, ρ, λ = Scale(populationg)
T, makespane = ACO_JSS(N, M, Iaco, Cant, f min, f max, α, β, γ, ρ, λ)
fitnessesg = makespane

end for
for (g = 1, . . . , Cg) do

if (fitnessesg < best_fitness) do
best_fitness = fitnessesg
best_parameters = populationg

end if
end for
next_population = population
for (j = 1, . . . , Cg/2) do

prob = 1/fitnesses
a = Roulette_Selection(prob)

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

b = Roulette_Selection(prob)
x = round(Random()·4)
next_ population2j–1 = populationa,1 . . . x ‖ populationb, x+1 . . . 5
next_ population2j = populationb, 1 . . . x ‖ populationa,x+1 . . . 5

end for
for (j = 1, . . . , Cg) do

if (Random() < Pm)do
next_ populationj = Random [5]

end if
end for
population = next_population

end for
α, β, γ, ρ, λ = Scale(best_parameters)

T, makespane = ACO_JSS(N, M, Iaco, Cant, f min, f max, α, β, γ, ρ, λ)
return T, makespan, α, β, γ, ρ, λ

End ACO-GA Algorithm

The operation of the genetic algorithm is an iterative process until a stopping crite-
rion is met, such as a number of generations. In this case, we consider the problem of
continuous optimization:

min F(x), D = {x1, x2, x3, x4, x5|xi ∈ [ai, bi]}, (10)

where F(x) is the objective function to be minimized (in this work, it is the function calculated
by Equation (5)), D is the search area, and x = {α, β, γ, ρ, λ}. The results of the implementation
of the adaptive properties of the ACO algorithm are given below, in Section 3. In this work,
a genetic algorithm with a single-point crossover of two parents, 95% crossover probability,
and 10% mutation probability is used. During mutation, one randomly selected coefficient
is changed to a random number in the allowable range.
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2.3. Improving the Performance of the Software Implementation of the Algorithm

With the approach described above, the solution search time increases dramatically,
since the solution of the problem by the ACO algorithm is launched many times. The
search speed can be significantly increased by parallelizing calculations by dividing the
population into parts and distributing the computational load for working with these parts
between processors.

The mutation and calculation of the fitness function of individuals can be easily
parallelized since they occur independently for each individual. At the same time, data
common to all individuals is used only for reading, so there are no difficulties with the
need to synchronize these stages and waste time on blocking processes while waiting for
resources to be released.

Crossover is more difficult to parallelize since during this stage there is an interaction
between individuals from different parts of the population. However, there is no need for
parallelization, since this stage takes negligible time compared to other calculations.

However, the higher the efficiency of parallelization, the higher the level at which it
is performed. Since the ACO algorithm is stochastic, it seems reasonable to simply run
multiple independent instances of the algorithm at the same time. Since this paper uses
meta-optimization based on a genetic algorithm, then parallelization is performed at the
level of calculating the GA fitness function. In Algorithm 3, row 4 occupies the vast majority
of the running time of the entire algorithm and, at the same time, the loop in rows 2–6 is
easily parallelized.

Since the algorithm requires multiple traversals of the graph and changing the pheromone
on edges, the choice of the graph structure and the mechanism for applying the pheromone
is very important. At first glance, it might seem that an implementation of a graph would
be a set of nodes containing a list of edges, each of which contains a pointer to a neighboring
node and quantitative characteristics (weight and amount of pheromone). However, the
graph can be represented as a matrix of weights and a pheromone matrix. It is, first, easier
to implement; second, lesser in terms of the amount of memory required (no need to store
lists of pointers in each node); and, third, it works faster.

The following method is especially effective: apply the pheromone to the matrix
representing the graph, not at the end of each iteration (after the graph has been traversed
by all ants), but create a copy of the matrix and, after each ant has traversed, increase the
value of the pheromone in this copy, and after the traversal stage is over, perform a reverse
replacement.

Using this method (let us designate two pheromone graphs as fGraph and fTmpGraph)
allows us to significantly increase the speed of calculations by applying the following
trick. Within one iteration, the number of pheromones on each edge remains unchanged;
therefore, the fkα values from Equation (6) also do not change within one iteration. In
this case, there is no need to calculate them for each ant again. Then, at the initialization
stage, the fTmpGraph edges receive the initial value of the pheromone, and the fGraph
edges receive the initial value to the power of α. At each iteration, the ants, bypassing the
graph, are guided by fGraph (it is no longer necessary to calculate fkα—it is the essence of
increasing the speed), and the pheromone is deposited on fTmpGraph. After all the ants
traverse the graph and the pheromone evaporates from the graph fTmpGraph, each k-th
branch of fGraph receives a pheromone value equal to fTmpGraphk = (fTmpGraphk)α.

Equation (6) contains the operations of exponentiation. Depending on the compiler,
raising a number to the power of e and calculating the natural logarithm may be faster
than raising a number to an arbitrary power, so in the first case, the operation fα should be
replaced as follows: f α = eαln(f ). It should be noted that there are ways to quickly calculate
the exponent and the natural logarithm. If there is a high probability that the coefficient α
will be an integer, especially 1 or 2, then for this case it is possible to add a variant of the
algorithm in which multiplication will replace the exponentiation functions.
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3. Results and Discussion

The software implementation of the proposed algorithm has been tested on the well-
known model JSS problems from [48–50] and the real-life manufacturing problems from [51].
Table 1 shows the values of the ACO algorithm’s coefficients, which were selected by the
GA as the best for test tasks.

Table 1. Examples of the best sets of coefficients obtained using the genetic algorithm.

Problem Iz Lmin Lavg Iaco Cant α β ρ γ λ

abz6 40 948 977.333 1000 100 0.63 2.0 0.696 28 1.3
abz6 40 945 982.524 1000 100 1.1 1.0 0.499 900 1.3
ft10 40 950 995.866 1000 100 0.63 1.2 0.7 1000 1.1
ft10 20 951 1006.1 1000 50 0.3781 1.711 0.97 1108.7 2.277
la17 20 784 805.4 1000 100 0.392 2.7701 0.2998 425.5387 1.9615
la17 20 785 798.25 1000 100 0.0341 1.7968 0.5461 949.1535 4.5589
la15 20 1207 1215.45 1000 100 0.531 1.72 0.663 1032 1.2

3_Plates 10 657.55 662.075 30 10 0.2782 0.4251 0.4919 296.61 2.5373
3_Plates 10 657.55 662.3275 30 10 0.1754 0.5705 0.3836 326.05 2.5083

la01 10 666 670.2 200 20 0.2262 0.8665 0.6883 903.3459 2.0363
la01 10 666 669.4 200 20 0.3542 0.6527 0.8001 120.8012 2.1305
la21 10 1107 1150.9 2000 100 0.7478 1.1134 0.3488 790.57 2.2236

6_Plates 20 107 111.45 30 10 0.6218 2.7953 0.6995 335.6241 1.2376
6_Plates 20 107 111.5 30 10 0.6204 0.2863 0.0775 137.6017 1.479

In Table 1 and the next two tables, the following designations are introduced:

• Iz is the number of runs over which averaging was carried out (with the same coeffi-
cients);

• Lmin is the best-obtained solution;
• Lavg is the solution averaged over Iz launches;
• Iaco is the number of ACO iterations;
• Cant is the number of ants;
• α is the degree of significance of the pheromone when choosing the graph edge

(Equation (6));
• β is the non-linear pheromone deposition coefficient (Equation (7));
• ρ is the pheromone evaporation coefficient (Equation (8));
• γ is the linear coefficient of pheromone application (Equation (7));
• λ is the accounting factor for the best current solution (Equation (9)).

It follows from the data obtained that the best-found sets of coefficients differ even
when solving the same problem. The search for the relationship between the coefficients
and their correlation is a direction for further research.

The experiments showed a significant improvement in the results compared to those
obtained earlier without the evolutionary selection of coefficients (best and average results
were determined by 40 runs), which is reflected in Table 2.



Algorithms 2023, 16, 15 12 of 15

Table 2. Examples of the best sets of coefficients obtained using the genetic algorithm.

Problem Lm1 La1 Lg Lga Lm2 La2 Iaco Cant

abz6 980 1005.3 945 977.33 948 985.26 1000 100
ft06 55 55.16 55 55 55 55.16 30 10
ft10 1017 1038.8 950 995.87 975 1013.84 1000 100
la01 666 673.08 666 669.4 666 673.08 30 10
la10 958 958 958 958 958 958 1000 100
la15 1211 1220.6 1207 1215.45 1207 1220.62 1000 100
la17 796 809.32 784 798.25 787 809.32 1000 100
la21 1121 1168.1 1107 1150.9 1118 1154.06 1000 100

3_Plates 657.55 664.782 657.55 662.08 657.55 664.782 30 10
6_Plates 109 113.22 107 111.45 108 112.12 30 10

In Table 2, in addition to those already described, the following notations are used:

• Lm1 is the best solution that was recorded before using the GA (the coefficients were
selected manually);

• La1 is the average value of the solutions that were recorded before using the GA;
• Lg is the best solution that was obtained using the GA;
• Lga is the average value of the solutions that were obtained using the coefficients found

by the GA;
• Lm2 is the best solution that was obtained using the coefficients found by averaging

over other solved problems;
• La2 is the average value of the solutions that were obtained using the coefficients found

by averaging over other solved problems (except for the coefficient γ).

Here, averaged coefficients are understood as a set of coefficients found as the arith-
metic means among the best-found coefficients for problems of similar dimensions.

To assess the improvement in the quality of schedules compiled with the adaptation
of the method parameters, quasi-optimal solutions to test problems were used [52]. The
results are shown in Table 3. For the problem of processing plates, the result 657.55 [51] is
given, which also coincides with the solution obtained in this paper.

Table 3. Comparison of results.

Problem Lm1 La1 Lgm Lga Iaco Cant Best known

abz6 980 1005.3 945 977.33 1000 100 943
ft06 55 55.16 55 55 30 10 55
ft10 1017 1038.8 950 995.87 1000 100 930
la01 666 673.08 666 669.4 30 10 666
la10 958 958 958 958 1000 100 958
la15 1211 1220.6 1207 1215.45 1000 100 1207
la17 796 809.32 784 798.25 1000 100 784
la21 1121 1168.1 1107 1150.9 1000 100 1048

3_Plates 657.55 664.782 657.55 662.08 30 10 657.55
6_Plates 109 113.22 107 111.45 30 10 107

The experiments showed a significant improvement in the results (up to 12%) com-
pared to those found earlier (without the adaptation of the coefficients).

The solutions obtained by the proposed adaptive algorithm for many problems
from [47–49] turned out to be no worse than the known quasi-optimal solutions for these
problems. The deviation from the known quasi-optimal solutions does not exceed 6% (in
the work of the founders of the ACO algorithm [27], they state the 10% deviation in their
results to job-shop problems). At the same time, the adaptive method makes it possible to
obtain guaranteed solutions of the specified quality at each run with enough iterations.
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Figure 4 shows experimental data on the increase in the speed of parallel calculations
compared to sequential operation, depending on the number of processors (cores) used.
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Figure 4. The parallelization effect.

It can be seen from the figure that the proposed approach can significantly reduce
the computation time. The greater the effect of parallelization, the greater the number of
calculations in solving the problem by the ACO algorithm, i.e., the greater the dimension
of the problem, the number of ants, and the number of iterations. Indeed, according to
Amdahl’s law, parallel computing is more effective the greater the proportion of calculations
performed in parallel. In the test examples under consideration, the proportion of such
calculations was 3–5%.

The greater the gain from the above technique of using two graphs, the greater the
number of ants and the size of the graph. In test tasks of scheduling with 10 requirements in
five stages, the calculation time was reduced by about four times; in tasks with 10 requirements
in 10 stages—five times; in tasks with 50 requirements in 10 stages—seven times.

4. Conclusions

This study considers ways to improve the speed, accuracy, and flexibility of the ant
colony optimization algorithm for solving scheduling problems. A new way of representing
the problem as a problem of finding the shortest path on a graph is proposed, which is
distinguished by a high level of universality and flexibility. At the same time, its use
allows for obtaining acceptable job-shop scheduling problem solutions. It is shown that the
use of the Genetic Algorithm as a meta-optimizer for tuning the parameters of the ACO
algorithm simplifies the study, makes the algorithm adaptive to the problem being solved,
and improves the resulting plans. It is determined that the sets of the best parameters of
the algorithm differ from task to task.

For the next steps, we plan to conduct a study on a larger basis of scheduling instances,
while covering not only job-shop scheduling problems but also open-shop scheduling
(OSS) problems and flexible JSS and OSS problems [6,41,53,54] and considering the ad-
vantages of the proposed approach for planning problems with dynamically changing
conditions [54–56]. In addition, the study of dependencies between the properties of the
scheduling problem, the best values of the parameters of the ACO algorithm, and the
efficiency of the solutions will be continued.
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