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Abstract: Regularized sparse learning with the `0-norm is important in many areas, including
statistical learning and signal processing. Iterative hard thresholding (IHT) methods are the state-of-
the-art for nonconvex-constrained sparse learning due to their capability of recovering true support
and scalability with large datasets. The current theoretical analysis of IHT assumes the use of
centralized IID data. In realistic large-scale scenarios, however, data are distributed, seldom IID,
and private to edge computing devices at the local level. Consequently, it is required to study the
property of IHT in a federated environment, where local devices update the sparse model individually
and communicate with a central server for aggregation infrequently without sharing local data. In
this paper, we propose the first group of federated IHT methods: Federated Hard Thresholding
(Fed-HT) and Federated Iterative Hard Thresholding (FedIter-HT) with theoretical guarantees. We
prove that both algorithms have a linear convergence rate and guarantee for recovering the optimal
sparse estimator, which is comparable to classic IHT methods, but with decentralized, non-IID, and
unbalanced data. Empirical results demonstrate that the Fed-HT and FedIter-HT outperform their
competitor—a distributed IHT, in terms of reducing objective values with fewer communication
rounds and bandwidth requirements.

Keywords: `0-norm regularized sparse learning; iterative hard thresholding; federated learning;
decentralized non-IID data

1. Introduction

Sparse learning has emerged as a central topic of study in a variety of fields that
require high-dimensional data analysis. Sparsity-constrained statistical models exploit the
fact that high dimensional data arising from real-world applications frequently have low
intrinsic complexity and have been shown to perform accurate estimation and inference
in a variety of data mining fields, such as bioinformatics [1], image analysis [2,3], graph
sparsification [4] and engineering [5]. These models often require solving the following
optimization problem with a nonconvex, nonsmooth sparsity constraint:

min
x

f (x), subject to ‖x‖0 ≤ τ, (1)

where f (x) is a smooth and convex cost function in terms of a vector of parameters to
be optimized x, ‖x‖0 denotes the l0-norm (cardinality) of x, which computes the number
of nonzero entries in x, and τ is the sparsity level pre-specified for x. Examples of this
model include sparsity-constrained linear/logistic regression problems [6,7] and sparsity-
constrained graphical models [8].

Extensive research has been conducted for Problem (1). The methods largely fall into
the regimes of either matching pursuit methods [9–12] or iterative hard thresholding (IHT)
methods [13–15]. Even though matching pursuit methods achieve remarkable success in
minimizing quadratic loss functions (such as the `0-constrained linear regression problems),
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they require finding an optimal solution to min f (x) over the identified support after hard
thresholding at each iteration, which lacks analytical solutions for arbitrary losses and
can be time-consuming [16]. Hence, gradient-based IHT methods have gained significant
interest and become popular for nonconvex sparse learning. IHT methods currently
include the gradient descent HT (GD-HT) [14], stochastic gradient descent HT (SGD-
HT) [15], hybrid stochastic gradient HT (HSG-HT) [17], and stochastic variance reduced
gradient HT (SVRG-HT) [18,19] methods. These methods update the iterate xt as follows:
xt+1 = Hτ(xt − γtvt), where γt is the learning rate, vt can be the full gradient, stochastic
gradient or variance reduced gradient at the t-th iteration, andHτ(x) : Rd → Rd denotes
the HT operator that preserves the top τ elements in x and sets other elements to 0. However,
finding a solution to Problem (1) is generally NP-hard because of the non-convexity and
non-smoothness of the cardinality constraint [20].

Local datasets can be sensitive to sharing during the construction of a sparse inference
model when sparse learning becomes distributed and uses data collected by distributed de-
vices. For instance, meta-analyses may integrate genomic data from a large number of labs
to identify (a sparse set of) genes contributing to the risk of a disease without sharing data
across the labs [21,22]. Smartphone-based healthcare systems may need to learn the most
important mobile health indicators from a large number of users; however, the personal
health information gathered on the phone is private [23]. Furthermore, communication
efficiency can be the main challenge to distributively training a sparse learning model.
Due to the power and bandwidth limitations of various sensors, the signal processing
community, for instance, has been seeking more communication-efficient methods [24].

Federated learning (FL) is a recently proposed communication-efficient distributed
computing paradigm that enables collaborations among a collection of clients while pre-
serving data privacy on each device by avoiding the transmission of local data to the
central server [25–27]. Hence, sparse learning can benefit from the setting of federated
learning. In this paper, we solve the federated nonconvex sparsity-constrained empirical
risk minimization problem with decentralized data as follows:

min
x∈Rd

f (x) =
N

∑
i=1

pi fi(x), subject to ‖x‖0 ≤ τ, (2)

where f (x) is a smooth and convex function, fi(x) = Ez∼Di [ fi(x, z)] is the loss function of
the i-th client (or device) with weight pi ∈ [0, 1), ∑N

i=1 pi = 1, Di is the distribution of data
located locally on the i-th client, and N is the total number of clients. It is thus desirable to
solve Problem (2) in a communication-efficient way and investigate theory and algorithms
applicable to a broader class of sparse constrained learning problems in high-dimensional
data analyses [6–8,28].

We thus propose federated HT algorithms with lower communication costs and pro-
vide the corresponding theoretical analysis under practical federated settings. The analysis
of proposed methods is difficult due to the fact that distributions of training data on each
client may be non-identical and the data weights can be unbalanced across devices.

Our main contributions are summarized as follows.
(a) We develop two schemes for the federated HT method: the Federated Hard

Thresholding (Fed-HT) algorithm and Federated Iterative Hard Thresholding (FedIter-HT)
algorithm. In Fed-HT, we apply the HT operator Hτ at the central server right before
distributing the aggregated model to clients. To further improve the communication
efficiency and the ability of sparsity recovery, in FedIter-HT, we consider applyingHτ to
both local updates and the central server aggregate. Note that this is the first trial to explore
IHT algorithms under federated learning settings.

(b) We provide a set of theoretical results for the federated HT method, particularly of
Fed-HT and FedIter-HT, under the realistic condition that the distributions of training data
over devices can be unbalanced and non-independent and non-identical (non-IID), i.e., for
i 6= j,Di andDj are different. We prove that both algorithms enjoy a linear convergence rate
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and have a strong guarantee for sparsity recovery. In particular, Theorems 1 (for the Fed-
HT) and 2 (for the FedIter-HT) show that the estimation error between the algorithm iterate
xT and the optimal solution x∗ is upper bounded as: E‖xT − x∗‖ ≤ θT‖x0 − x∗‖2 + g(x∗),
where x0 is the initial guess of the solution, the convergence rate factor θ is related to the
algorithm parameter K (the number of SGD steps on each device before communication),
and the closeness between the pre-specified sparsity level τ and the true sparsity τ∗, and
g(x∗) determines a statistical bias term related not only to K but also to the gradient of
f at the sparse solution x∗ and the measurement of the non-IIDness of the data across
the devices.

The theoretical results allow us to evaluate and compare the proposed methods.
For example, greater non-IIDness among clients increases the bias of both algorithms. More
local iterations may reduce θ but increase the statistical bias. Due to the utilization of the
HT operator on local updates, the statistical bias induced by the FedIter-HT in Theorem 2
matches the best known upper bound for traditional IHT methods [17], which exhibits the
powerful capability of sparsity recovery.

(c) When instantiating the general loss function by concrete squared or logistic loss,
we arrive at specific sparse learning problems, such as sparse linear regression and sparse
logistic regression. We provide statistical analysis of the maximum likelihood estimators
(M-estimators) of these problems when using the FedIter-HT to solve them. This result can
be regarded as federated HT analysis for generalized linear models.

(d) Extensive experiments in simulations and on real-life datasets demonstrate the
effectiveness of the proposed algorithms over standard distributed IHT learning.

Related Work

Distributed sparse learning. Existing IHT algorithms can be extended to their dis-
tributed version—Distributed IHT (see Appendix A.1. for details), in which the central
server aggregates (averages) the local parameter updates from each client and broadcasts
the latest model parameters to individual clients, whereas each client updates the param-
eters based on the distributed local data with one step of stochastic gradient descend
and sends them back to the central server. However, Distributed IHT is communication
expensive since it needs to send dense local models to the central server after each step of
stochastic gradient updates. Even though variants of the Distributed IHT, such as [29,30],
have been developed, information must be exchanged at each iteration, making communi-
cation costly and limiting bandwidth. Other distributed methods have also been proposed.
For instance, Ref. [31] tries to solve a relaxed l1-norm regularized problem and thus in-
troduces extra bias to Problem (2); Ref. [32] experimentally studies gradient compression
with practical gradient clipping techniques (i.e., the local nodes have to select threshold)
in distributed training; Ref. [33] proposed a modified distributed top-k sparsification by
choosing the largest absolute gradients before updating the model to reduce communi-
cation. The distributed algorithms proposed in [32,33] use some techniques to reduce
communication and bandwidth but are not designed for constrained optimization such as
sparse model optimization.

Federated learning. FL is a privacy-preserving learning framework for large-scale
machine learning on edge computing devices and solves the data-decentralized optimiza-
tion problem: minx∈Rd f (x) = ∑N

i=1 pi fi(x) (without the sparsity constraint in Problem (2).)
The FedAvg algorithm proposed in [25] can significantly reduce the communication cost by
running multiple local SGD steps before each communication round and has become the
de facto federated learning technique. Later, the client drift problem was observed for Fe-
dAvg [34–36], and the FedProx algorithm came to exist [37] in which the individual clients
attempt to add a proximal operator to the local subproblem to address the issue of FedAvg.
Researchers also study FL in the quantization strategy and the IoT (Internet of Things)
systems, and the local updates are sparsified and compressed using signSGD [38–40].
Ref. [41] presents an online gradient sparsification method, which ensures that different
clients provide a similar amount of updates and automatically determines the near-optimal
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communication and computation trade-off that is controlled by the degree of gradient spar-
sity. Yuan et al. recently studied a federated l1-regularized logistic regression problem and
proposed federated mirror descent algorithm [42] to solve (convex) nonsmooth composite
optimization. However, federated optimization of `0−norm regularized sparse learning
(as described in Problem (2)) is still under explored.

Organization of the paper is as follows: Section 2 provides the preliminaries formally,
which include the notations used in this study as well as several generally held assumptions
and lemmas. In Sections 3 and 4, the Fed-HT and FedIter-HT algorithms are proposed
and studied, respectively. In Section 4, we normally perform a statistical analysis for M-
estimators in order to emphasize the advantageous property of the FedIter-HT. Experiments
simulating numerical performance are presented in Section 5.1, and benchmark datasets
are analyzed in Section 5.2. Section 6 summarizes our outcomes. Appendix A contains the
proof of our theoretical results and additional experiment details.

2. Preliminaries

We formalize our problem as Problem (2) and provide the notations (Table 1), as-
sumptions and prepared lemmas used in this paper. We denote vectors by lowercase
letters, e.g., x. The model parameters form a vector x ∈ Rd. The `0-norm, `2-norm and
the `∞-norm of a vector are denoted by ‖ · ‖0, ‖ · ‖ and ‖ · ‖∞, respectively. Let O(·)
represent the asymptotic upper bound, [N] be the integer set {1, . . . , N}. The support
I (i)t,k+1 = supp(x∗) ∪ supp(x(i)t,k ) ∪ supp(x(i)t,k+1) is associated with the (k + 1)-th iteration in

the t-th round on device i. For simplicity, we use I (i) = I (i)t,k+1, I =
⋃N

i=1 I
(i)
t,k+1 throughout

the paper without ambiguity, and Ĩ = supp(H2Nτ(∇ f (x∗))) ∪ supp(x∗).

Table 1. Brief summary of notations in this paper.

Hτ(x) the HT operator that maintains the top τ items of x and sets the remaining
elements to 0

N, i the total number, the index of clients/devices

pi the weight of each loss function on client i

T, t the total number, the index of communication rounds

K, k the total number, the index of local iterations

∇ fi(·) the full gradient

∇ f I(i) (·) the stochastic gradient over the minibatch I(i)

∇ fi,z(·) the stochastic gradient over a training example indexed by z on the i-th device

γt the stepsize/learning rate of local update

I(·) an indicator function

supp(x) the support of x or the index set of nonzero elements in x
x∗ the optimal solution of Problem (2)

x(i)t,k the local parameter vector on device i at the k-th iteration of the t-th round

τ the required sparsity level

τ∗ the optimal sparsity level of Problem (2), τ∗ = ‖x∗‖0

πI (x) the projector takes only the elements of x indexed in I

E[·], E(i)[·] the expectation over stochasticity across all clients and of client i, respectively

We use the same conditions employed in the theoretical analysis of other IHT methods
by assuming that the objective function f (x) satisfies the following conditions:

Assumption 1. We assume that the loss function fi(x) on each device i



Algorithms 2022, 15, 319 5 of 22

1. is restricted ρs-strongly convex (RSC [43]) at the sparsity level s for a given s ∈ N+, i.e., there
exists a constant ρs > 0 such that ∀x1, x2 ∈ Rd with ‖x1 − x2‖0 ≤ s, i ∈ [N], we have

fi(x1)− fi(x2)− 〈∇ fi(x2), x1 − x2〉 ≥
ρs

2
‖x1 − x2‖2;

2. is restricted ls-strongly smooth (RSS [43]) at the sparsity level s for a given s ∈ N+, i.e., there
exists a constant ls > 0 such that ∀x1, x2 ∈ Rd with ‖x1 − x2‖0 ≤ s, i ∈ [N], we have

fi(x1)− fi(x2)− 〈∇ fi(x2), x1 − x2〉 ≤
ls
2
‖x1 − x2‖2;

3. has σ2
i -bounded stochastic gradient variance, i.e.,

E(i)[‖∇ fi,z(x)−∇ fi(x)‖2] ≤ σ2
i .

Remark 1. When s = d, the above assumption is no longer restricted to the support at a sparsity
level, and fi is actually ρd-strongly convex and ld-strongly smooth.

Following the same convention in FL [35,37], we also assume the dissimilarity between
the gradients of the local functions fi and the global function f is bounded as follows.

Assumption 2. The functions fi(x) (i ∈ [N]) are B-locally dissimilar, i.e., there exists a constant
B > 1, such that

N

∑
i=1

pi‖πI (∇ fi(x))‖2 ≤ B2‖πI∇ f (x)‖2

for any I .

From the assumptions mentioned in the main text, we have the following lemmas to
prepare for our theorems.

Lemma 1 ([44]). For τ > τ∗ and for any parameter x ∈ Rd, we have

‖Hτ(x)− x∗‖2
2 ≤ (1 + α)‖x− x∗‖2

2,

where α = 2
√

τ∗√
τ−τ∗

and τ∗ = ‖x∗‖0.

Lemma 2. A differentiable convex function fi(x) : Rd → R is restricted ls-strongly smooth with
parameter s, i.e., there exists a generic constant ls > 0 such that for any x1, x2 with ‖x1 − x2‖0 ≤
s and

fi(x1)− fi(x2)− 〈∇ fi(x2), x1 − x2〉 ≤
ls
2
‖x1 − x2‖2,

then we have:

‖∇ fi(x1)−∇ fi(x2)‖2 ≤ 2ls( fi(x1)− fi(x2) + 〈∇ fi(x2), x2 − x1〉).

The above two inequalities also hold for the global smoothness parameter ld.

The proof of Lemma 2 can be found in Appendix A.3.

3. The Fed-HT Algorithm

In this section, we first describe our new federated `0-norm regularized sparse learning
framework via hard thresholding—Fed-HT, and then discuss the convergence rate of our
proposed algorithm.
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A high level summary of Fed-HT is described in Algorithm 1. The Fed-HT algorithm
generates a sequence of τ−sparse vectors x1, x2, · · · , from an initial sparse approximation
x0. At the (t + 1)-th round, clients receive the global parameter update xt from the central
server, then run K steps of minibatch SGD based on local private data. In each step,
the i-th client updates x(i)t,k+1 = argminx fi(x(i)t,k ) + 〈g

(i)
t,k , x − x(i)t,k 〉 +

1
2γt
‖x − x(i)t,k‖

2 for k ∈
{0, . . . , K− 1}, i.e., x(i)t,k+1 = x(i)t,k − γtg

(i)
t,k . Clients send x(i)t,K for i ∈ [N] back to the central

server; then, the server averages them to obtain a dense global parameter vector and
applies the HT operator to obtain a sparse iterate xt+1. Unlike the commonly used FedAvg,
the Fed-HT is designed to solve the family of federated `0-norm regularized sparse learning
problems. It has a strong ability to recover the optimal sparse estimator in decentralized
non-IID and unbalanced data settings while at the same time reducing the communication
cost by a large margin because the central server broadcasts a sparse iterate for each of the
T rounds.

Algorithm 1 Federated Hard Thresholding (Fed-HT)

Input: The learning rate γt, the sparsity level τ, and the number of clients N.
Initialize x0
for t = 0 to T − 1 do

for client i = 1 to N parallel do
x(i)t,1 = xt
for k = 1 to K do

Sample uniformly a batch I(i)t,k with batchsize b(i)t,k

g(i)t,k = ∇ f
I(i)t,k

(x(i)t,k )

x(i)t,k+1 = x(i)t,k − γtg
(i)
t,k

end for
end for
xt+1 = Hτ(∑N

i=1 pix
(i)
t,K)

end for

The following theorem characterizes our theoretical analysis of Fed-HT in terms of its
parameter estimation accuracy for sparsity-constrained problems. Although this paper is
focused on the cardinality constraint, the theoretical result is applicable to other sparsity
constraints, such as a constraint based on matrix rank. Then, we have the main theorem
and the detailed proof.

Theorem 1. Let x∗ be the optimal solution to Problem (2), τ∗ = ‖x∗‖0, and suppose f (x) satisfies
Assumptions 1 and 2. The condition number κd = ld

ρd
≥ 1. Let stepsize γt = 1

6ld
and the

batch size b(i)t,k = Γ1
ωt

1
, Γ1 ≥

ξ1 ∑N
i=1 piσ

2
i

δ1‖x0−x∗‖2 , δ1 = α(1 − 1
12κd

)K, α = 2
√

τ∗√
τ−τ∗

, the sparsity level

τ ≥ (16(12κd − 1)2 + 1)τ∗. Then the following inequality holds for the Fed-HT:

E[‖xT − x∗‖2] ≤ θT
1 ‖x0 − x∗‖2 + g1(x∗).

where θ1 = ω1 = (1 + 2α)(1− 1
12κd

)K ∈ (0, 1), g1(x∗) = ξ1B2

1−ψ1
‖∇ f (x∗)‖2, ψ1 = (1 + α)(1−

1
12κd

)K, ξ1 =
(1+α)(1−(1− 1

12κd
)K)κd

l2
d

.

The proof can be found in Appendix A.4.
Note that if the sparse solution x∗ is sufficiently close to an unconstrained minimizer

of f (x), then ‖∇ f (x∗)‖ is small, so the first exponential term on the right-hand side can
be a dominating term, which approaches 0 when T goes to infinity. We further obtain the
following corollary that bounds the number of rounds T to obtain a sub-optimal solution,
i.e., the difference between the solution and x∗ is bounded only by the second term.
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Corollary 1. If all the conditions in Theorem 1 hold, for a given precision ε > 0, we need at most
T ≤ C1 log( ‖x0−x∗‖

ε ) rounds to obtain

E[‖xT − x∗‖2] ≤ ε + g1(x∗),

where C1 = −(log(θ1))
−1, θ1 = (1 + 2α)(1− 1

12κd
)K ∈ (0, 1), and g1(x∗) = ξ1B2

1−ψ1
‖∇ f (x∗)‖2.

Remark 2. Corollary 1 indicates that under proper conditions and with sufficient rounds, the esti-
mation error of the Fed-HT is determined by the second term—the statistical bias term—which we
denote as g1(x∗). The term g1(x∗) can become small if x∗ is sufficiently close to an unconstrained
minimizer of f (x), so it represents the sparsity-induced bias to the solution of the unconstrained
optimization problem. The upper bound result guarantees that the Fed-HT can closely approach
x∗ arbitrarily under a sparsity-induced bias, and the speed of approaching the biased solution is
linear (or geometric) and determined by θ1. In Theorem 1 and Corollary 1, θ1 is closely related to the
number of local updates K. The condition number κd > 1, so (1− 1

12κd
) < 1. When K is larger, θ1

is smaller, so is the number of rounds T required for reaching a target ε. In other words, the Fed-HT
converges faster with fewer communication rounds. However, the bias term g1(x∗) will increase
when K increases. Therefore, K should be chosen to balance the convergence rate and statistical bias.

We further investigate how the objective function f (x) approaches the optimal f (x∗).

Corollary 2. If all the conditions in Theorem 1 hold, let ∆1 = ld‖x0 − x∗‖2, and g2(x∗) =
O(‖∇ f (x∗)‖2), we have

E[ f (xT)− f (x∗)] ≤ θT
1 ∆1 + g2(x∗).

The proof details can be found in Appendix A.5.
Because the local updates on each device are based on SGD with dense parameters,

without the HT operator, ld-smoothness and ρd-strongly convexity are required, which
depend on dimension d and are stronger requirements for f . Furthermore, ‖∇ f (x∗)‖ ≤
d‖ f (x∗)‖∞, i.e., g1(x∗) and g2(x∗) are O(d2‖ f (x∗)‖2

∞), which are suboptimal compared
with the results for traditional IHT methods in terms of dimension d. In order to solve such
drawbacks, we develop a new algorithm in the next section.

4. The FedIter-HT Algorithm

If we apply the HT operator to each local update as well, we obtain the FedIter-HT
algorithm, as described in Algorithm 2. Hence, the local update on each device performs
multiple SGD-HT steps, which further reduces the communication cost because model
parameters sent back from clients to the central server are also sparse. If a client has a
communication bandwidth so small that it can not effectively pass the full set of parameters,
the FedIter-HT provides a good solution and also can relax the strict requirements for the
objective function f and reduce the statistical bias. In this section, we first present a
more communication-efficient federated `0-norm regularized sparse learning framework—
FedIter-HT; then, we theoretically show it enjoys a better convergence rate compared with
Fed-HT, and we further provide statistical analysis for M-estimators under the framework
of FedIter-HT.

We again examine the convergence of the FedIter-HT by developing an upper bound
on the distance between the estimator xT and the optimal x∗, i.e., E[‖xT − x∗‖2] in the
following theorem.
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Algorithm 2 Federated Iterative Hard Thresholding (FedIter-HT)

Input: The learning rate γt, the sparsity level τ, and the number of clients N.
Initialize x0
for t = 0 to T − 1 do

for client i = 1 to N parallel do
x(i)t,1 = xt
for k = 1 to K do

Sample uniformly a batch I(i)t,k with batchsize b(i)t,k

g(i)t,k = ∇ f
I(i)t,k

(x(i)t,k )

x(i)t,k+1 = Hτ(x(i)t,k − γtg
(i)
t,k )

end for
end for
xt+1 = Hτ(∑N

i=1 pix
(i)
t,K)

end for

Theorem 2. Let x∗ be the optimal solution to (2), τ∗ = ‖x∗‖0, and suppose f (x) satisfies
Assumptions 1 and 2. The condition number κs = ls

ρs
≥ 1. Let stepsize γt =

1
6ls

and the batch

size b(i)t,k = Γ2
ωt

2
, Γ2 ≥

ξ2 ∑N
i=1 piσ

2
i

δ2‖x0−x∗‖2 , δ2 = (2α + 3α2)(1− 1
12κs

)K, α = 2
√

τ∗√
τ−τ∗

, the sparsity level

τ ≥ ( 16
(
√

12κs
12κs−1−1)2

+ 1)τ∗. Then, the following inequality holds for the FedIter-HT:

E[‖xT − x∗‖2] ≤ θT
2 ‖x0 − x∗‖2 + g3(x∗).

where θ2 = ω2 = (1 + 2α)2(1 − 1
12κs

)K ∈ (0, 1), g3(x∗) = ξ2B2

1−ψ2
‖πĨ (∇ f (x∗))‖2, ξ2 =

(1+α)2(1−(1− 1
12κs )

K)κs

l2
s

, ψ2 = (1 + α)2(1− 1
12κs

)K, α = 2
√

τ∗√
τ−τ∗

, Ĩ i = supp(H2τ(∇ fi(x∗))) ∪
supp(x∗) and Ĩ = supp(H2Nτ(∇ f (x∗))) ∪ supp(x∗).

The proof details can be found in Appendix A.6.

Remark 3. The factor θ2, compared with θ1 in Theorem 1, is smaller if 2α = 4
√

τ∗√
τ−τ∗

≤ ( 1−1/12κd
1−1/12κs

)K

−1, which means that the FedIter-HT converges faster than the Fed-HT when the beforehand-guessed
sparsity τ is much larger than the true sparsity. Both θ2 and θ1 will decrease when the number
of internal iterations K increases, but θ2 decreases faster than θ1 because 1− 1

12κs
is smaller than

1− 1
12κd

. Thus, the FedIter-HT is more likely to benefit by increasing K than the Fed-HT. The
statistical bias term g3(x∗) can be much smaller than g1(x∗) in Theorem 1 because g3(x∗) only
depends on the norm of ∇ f (x∗) restricted to the support Ĩ of size 2Nτ + τ∗. Because the norm of
the gradient is a dominating term in g1 and g3, slightly increasing K does not significantly vary the
statistical bias terms (when d� 2Nτ + τ∗).

Using the results in Theorem 2, we can further derive Corollary 3 to specify the number
of rounds required to achieve a given estimation precision.

Corollary 3. If all the conditions in Theorem 2 hold, for a given ε > 0, the FedIter-HT requires the
most T ≤ C2 log( ‖x0−x∗‖

ε ) rounds to obtain

E[‖xT − x∗‖2] ≤ ε + g3(x∗),

where C2 = −(log(θ2))
−1.

Because g3(x∗) = O(‖πĨ (∇ f (x∗))‖2), and we also know ‖πĨ (∇ f (x∗))‖2 ≤ (2Nτ +
τ∗)2‖∇ f (x∗)‖2

∞ and 2Nτ + τ∗ � d in high dimensional statistical problems, the result
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in Corollary 3 gives a tighter bound than the one obtained in Corollary 1. Similarly,
we also obtain a tighter upper bound for the convergence performance of the objective
function f (x).

Corollary 4. If all the conditions in Theorem 2 hold, let ∆2 = ls‖x0 − x∗‖2, and g4(x∗) =
O(‖πĨ (∇ f (x∗))‖2), we have

E[ f (xT)− f (x∗)] ≤ θT
2 ∆2 + g4(x∗).

The proof details can be found in Appendix A.7.
The theorem and corollaries developed in this section only depend on the ls-restricted

smoothness and ρs-restricted strong convexity, where s = 2τ + τ∗, which are the same
conditions used in the analysis of existing IHT methods. Moreover, ‖πĨ (∇ f (x∗))‖ ≤
(2Nτ + τ∗)‖∇ f (x∗)‖∞, which means g3(x∗) and g4(x∗) are O((2Nτ + τ∗)2‖∇ f (x∗)‖2

∞),
where 2Nτ + τ∗ is the size of support Ĩ . Therefore, our results match the current best-
known upper bound for the statistic bias term compared with the results for traditional
IHT methods.

Statistical Analysis for M-Estimators

Due to the good property of the FedIter-HT, we also study its constrained M-estimators
derived from more concrete learning formulations. Although we focus on the sparse linear
regression and sparse logistic regression in this paper, our method can be used to analyze
other statistical learning problems as well.

Sparse Linear Regression can be formulated as follows:

min
x∈Rd

f (x) =
1
N

N

∑
i=1

1
B
‖Y(i) − Z(i)x‖2

2,

subject to ‖x‖0 ≤ τ,

where Z(i) ∈ RB×d is a design matrix associated with client i. For each row of matrix Z(i),
we further assume that they are independently drawn from a sub-Gaussian distribution
with parameter β(i), Y(i) = Z(i)x∗ + ε(i) denotes the response vector, and ε(i) ∈ RB is a
noise vector following Normal distribution N(0, σ2 I), x∗ ∈ Rd with ‖x∗‖0 = τ∗ is the
underlying sparse regression coefficient vector.

Corollary 5. If all the conditions in Theorem 2 hold, with B ≥ C1τ log(d)maxi{(β(i))2} and a
sufficiently large number of communication rounds T, we have

E[‖xT − x∗‖2] ≤ O(
(2Nτ + τ∗)σ2B2(∑N

i=1 β(i))2 log(d)
NB

)

with a probability of at least (1− exp(−C5NB)), where C5 is a universal constant.

Proof. Let Z = [Z(1); . . . ; Z(N)] ∈ RNB×d be the overall design matrix of the linear re-
gression problem, and each row of Z can be treated as drawn IID from a sub-Gaussian
distribution with parameter ∑N

i=1 β(i). ε = [ε(1); . . . ; ε(N)] ∈ RNB×1 is the random Gaussian
noise. Then Lemma C.1 in [45] immediately implies that fi is restricted ρs-strongly convex
and restricted ls-strongly smooth with ρs =

4
5 and ls = 6

5 , respectively, with a probability
of at least (1− exp(−C2B)) if the total sample size B ≥ C1τ log(d)maxi{(β(i))2}, where
C1 and C2 are universal constants. Furthermore, we know that ‖∇ f (x∗)‖∞ = ‖ ZTε

NB ‖∞ ≤

C3σ ∑N
i=1 β(i)

√
log(d)

NB , with a probability of at least (1− exp(−C4NB)), where C3, C4 are
universal constants. Gathering everything together yields the following bound with a high
probability.



Algorithms 2022, 15, 319 10 of 22

Sparse Logistic Regression can be formulated as follows:

min
x

f (x) =
1
N

N

∑
i=1

1
B

B

∑
j=1

(log(1 + exp(zT
i,jx))− yi,jzT

i,jx)

subject to ‖x‖0 ≤ τ,

where zi,j ∈ Rd for j ∈ [B] is a predictive vector and drawn from a sub-Gaussian distribu-
tion associated with client i, each observation yi,j on client i is drawn from the Bernoulli

distribution P(yi,j|zi,j, x∗) =
exp(zT

i,jx
∗)

1+exp(zT
i,jx
∗)

, and x∗ ∈ Rd with ‖x∗‖0 = τ∗ is the underlying

true parameter that we want to recover.

Corollary 6. If all the conditions in Theorem 2 hold, ‖zi,j‖ ≤ K, Clower ≤ exp(zT
i,jx)/(1 +

exp(zT
i,jx))

2 ≤ Cupper for i ∈ [N] and j ∈ [B] and B ≥ C7τK2log(d) and with a sufficiently large
number of communication rounds T, we have

E[‖xT − x∗‖2] ≤ O(
(2Nτ + τ∗)B2K2 log(d)

NB
)

with a probability of at least (1− exp(−C6NB)−C9 exp(−C10log(d))+ C9
exp(C6 NB) exp(C10log(d)) ),

where C6, C9 and C10 are constants.

Proof. If we further assume ‖zi,j‖ ≤ K and Clower ≤ exp(zT
i,jx)/(1 + exp(zT

i,jx))
2 ≤ Cupper

for i ∈ [N] and j ∈ [B], the sparse logistic regression objective function is restricted
ρs-strongly convex and restricted ls-strongly smooth with ρs =

4
5 Clower and ls = 6

5 Cupper, re-
spectively, with a probability of at least (1− exp(−C6B)) if B ≥ C7τK2log(d), where Clower,
Cupper, C6 and C7 are constants. Furthermore, according to Corollary 2 in [46], we have
‖∇ f (x∗)‖∞ ≤ C8K

√
log(d)/NB with a probability of at least (1− C9exp(−C10log(d)),

where C8, C9 and C10 are universal constants. Therefore, we can obtain the following
corollary. Based on the above result, the estimation error specified in terms of the distances
xT and x∗ decreases when the total sample size NB is large or the dissimilarity level B and
the dimension d are small.

5. Experiments

We empirically evaluate our methods in both simulations and on three real-world
datasets: E2006-tfidf, RCV1 and MNIST (Table 2, which are downloaded from the LibSVM
website (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/, accessed on 1 July
2022)), and compare them against a baseline method. The baseline method is a standard
Distributed IHT and communicates every local update to the central server, which then
aggregates and broadcasts back to clients (see Appendix A.1 for more details). Specifically,
experiments for simulation I and on the E2006-tfidf dataset are conducted for sparse linear
regression. We solve the sparse logistic regression problem in simulation II and for the RCV1
data set. The last experiment uses MNIST data in a multi-class softmax regression problem.
The exact loss functions for the various problems are available in the Appendix A.2.

Following the convention in the federated learning literature, we use the number
of communication rounds to measure the communication cost. For a comprehensive
comparison, we also include the number of iterations. For both synthetic and real-world
datasets, algorithm parameters are determined by the following criteria. The number of
local iterations K is searched from {3, 5, 8, 10}. We have tested the performance of our
proposed algorithms under different K conditions (see Figure 1). The stepsize γ for each
algorithm is set by a grid search from {10, 1, 0.6, 0.3, 0.1, 0.06, 0.03, 0.01, 0.001}. All the
algorithms are initialized with x(0) = 0. The sparsity τ is 500 for the MNIST dataset and
200 for the other two datasets.

https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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Table 2. Statistics of three real-world datasets in the federated setting.

Dataset Samples Dimension
Samples Per Device

Mean Stdev

E2006-tfidf 3308 150,360 33.8 9.1
RCV1 20,242 47,236 202.4 114.5

MNIST 60,000 784 600 –

5.1. Simulations

To generate synthetic data, we follow a similar setup to that in [37]. In simulation
I, for each device i ∈ [100], we generate samples (zi,j, yi,j) for j ∈ [100] according to
yi,j = zT

i,jxi + bi,j, where zi,j ∈ R1000, xi ∈ R1000. The first 100 elements of xi are drawn
from N (ui, 1) and the remaining elements in xi are zeros, bi,j ∼ N (ui, 1), ui ∼ N (0.1, α),
zi,j ∼ N (vi, Σ), where Σ is a diagonal matrix with the i-th diagonal element equal to 1

i1.2 .
Each element in the mean vector vi is drawn from N (Bi, 1), Bi ∼ N (0, β). Therefore, α
controls how much the local models differ from each other, and β controls how much
the local on-device data differ between one another; hence, we have simulated Non-IID
federated data. In simulation I, (α, β) ∈ {(0.1, 0.1), (0.5, 0.5), (1, 1)}. The data generation
procedure for simulation II is the same as the procedure of simulation I, except that
y′i,j = exp(zT

i,jxi + bi,j)/(1 + exp(zT
i,jxi + bi,j)); then, for the i-th client, we set yi,j = 1

corresponding to the top 100 of y′i,j for j ∈ [1000]; otherwise, yi,j = 0. In simulation II, we
also set (α, β) ∈ {(0.1, 0.1), (0.5, 0.5), (1, 1)}.

The results in Figure 2 show that, with a higher degree of Non-IID, both Fed-HT and
FedIter-HT tend to converge slower. We also compare the proposed methods with the
baseline method—Distributed IHT. In Figure 3, we observe that in simulation I, FedIter-HT
only needs 20 (∼5× less) communication rounds to reach the same objective value that
the Distributed-IHT obtains with more than 100 communication rounds; in simulation II,
the FedIter-HT needs 50 communication rounds (∼4× less) to achieve the same objective
value that the Distributed-IHT obtains with 200 communication rounds.

Figure 1. The comparison of proposed algorithms for different K values in terms of the objective
function value vs. communication rounds (a,b).

Figure 2. The objective function value vs. communication rounds for regression (a,b) and classifica-
tion (c,d), and for Fed-HT (a,c) and FedIter-HT (b,d) with varying degrees of non-IID data.
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Figure 3. The comparison of different algorithms in terms of the objective function value vs. commu-
nication rounds (a,b) and for regression (a) and classification (b). Note that the Distributed-IHT is the
baseline method that communicates every local update (so the number of rounds equals the number
of iterations) and may be the best scenario for reducing the objective value.

5.2. Benchmark Datasets

We use the E2006-tfidf dataset [47] to predict the volatility of stock returns based on the
SEC-mandated financial text report, represented by tf-idf. It was collected from thousands
of publicly traded U.S. companies, for which data from different companies are inherently
non-identical and the privacy consideration for financial data demands federated learning.
The RCV1 dataset [48] is used to predict categories of newswire stories recently collected
by Reuters, Ltd. The RCV1 can be naturally partitioned based on the news category and
used for federated learning experiments since readers may only be interested in one or two
categories of news. Our model training process mimics the personalized privacy-preserving
news recommender system where we use the K-means method to partition the datasets,
respectively, into 10 clusters. Each device randomly selects two of the clusters for use in the
learning. We run t-SNE to visualize the hidden structures found by K-means as shown in
Figures 4 and 5, respectively, for the E2006-tfidf dataset (sparse linear regression) and the
RCV1 dataset (sparse logistic regression). For the MNIST images, there are 10 digits that
automatically serve as the clusters.

For all datasets, the data in each cluster are evenly partitioned into 20 parts, and each
client randomly picks two clusters and selects one part of data from each of the clusters.
Because the MNIST images are evenly collected for each digit, the partitioned decentral-
ized MNIST data are balanced in terms of categories, whereas the other two datasets
are unbalanced.

Figure 4. Visualization of 10 K-means clusters for E2006-dfidf using t-SNE.
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Figure 5. Visualization of 10 K-means clusters for RCV1 using t-SNE.

Figure 6 shows that our proposed Fed-HT and FedIter-HT can significantly reduce
the communication rounds required to achieve a given accuracy. In Figure 6a,c, we further
notice that federated learning displays more randomness when approaching the optimal
solution. This may be caused by dissimilarity across clients. For instance, the three different
algorithms in Figure 6c reach the neighborhood of different solutions at the end, where the
proposed FedIter-HT obtains the lowest objective value. These behaviors may be worth
exploring further in the future.

Figure 6. Comparison of the algorithms on different datasets in terms of the objective function value
vs. communication rounds. f ∗ is a lower bound of f (x). FedIter-HT performs consistently better
across all datasets, which confirms our theoretical result.

6. Conclusions

In this paper, we propose two communication-efficient federated IHT methods—Fed-
HT and FedIter-HT—to deal with `0-norm regularized sparse learning with decentralized
non-IID data. The Fed-HT algorithm is designed to impose a hard thresholding operator at
a central server, whereas the FedIter-HT applies this operator at each update regardless
of local clients or a central server. Both methods reduce communication costs—in both
the communication rounds and the communication load at each round. Theoretical anal-
yses show a linear convergence rate for both algorithms where the Fed-HT has a better
convergence rate θ, but the FedIter-HT has a better statistical estimation bias. Similar to
the conventional IHT methods with IID data, there is still a guarantee to recover the best
sparse estimator even with decentralized non-IID data. They outperform the traditional
Distributed-IHT in simulations and on benchmark datasets, according to empirical findings.
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Appendix A

Appendix A.1. Distributed IHT Algorithm

Here we describe the distributed implementation of the IHT method in Algorithm A1,
and we use it as a baseline to compare with the two federated IHT methods proposed in
the present paper.

Algorithm A1 Distributed-IHT

Input: Learning rate γt, number of workers N.
Initialize x0
for t = 0 to T − 1 do

for worker i = 1 to N parallel do
Receive x(i)t = xt from the central server

Calculate unbiased stochastic gradient direction v(i)t on worker i
Locally update: x(i)t+1 = x(i)t − γtv

(i)
t

Send x(i)t+1 to the central server
end for
Receive all local updates and average on a remote server: xt+1 = Hτ(∑N

i=1 pix
(i)
t+1)

end for

Appendix A.2. More Experimental Details

In more detail, experiments in simulation I and on the real-life dataset E2006-tfidf
were conducted with sparse linear regression,

min
x∈Rd

f (x) =
1
N

N

∑
i=1

1
B(i)
‖Y(i) − Z(i)x‖2

2, subject to ‖x‖0 ≤ τ.
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Experiments in simulation II and on the RCV1 dataset were conducted with sparse
logistic regression

min
x

f (x) =
1
N

N

∑
i=1

1
B(i)

B(i)

∑
j=1

(log(1 + exp(yi,jzT
i,jx)) +

λ

2
‖x‖2), subject to ‖x‖0 ≤ τ.

The last experiment solves a multi-class softmax regression problem on the MNIST
dataset as follows:

min
x
{ f (x) =

1
N

N

∑
i=1

1
B(i)

B(i)

∑
j=1

(
c

∑
r=1

(−I(yi,j = r) log(
exp(zT

i,jxr)

∑c
l=1 exp(zT

i,jxl)
) +

λ

2
‖xr‖2))},

subject to ‖xr‖0 ≤ τ, ∀r ∈ {1, 2, . . . , c}.

Appendix A.3. Proof of Lemma 2

Results of Lemma 2 are used particularly in the proof of the Corollary 2, we provide a
brief proof of this lemma.

Proof. Let φ(v) = fi(v) − 〈∇ fi(x), v〉, then φ(y) is restricted ls-strongly smooth with
parameter s too. Because fi is convex, φ(v) is also convex, and x is a minimizer of φ(v) due
to ∇φ(x) = 0. We define

φ(x) = min
v

φ(v) (A1)

≤ min
v
{φ(y) + 〈∇φ(y), v− y〉+ ls

2
‖v− y‖2} (A2)

= φ(y)− 1
2ls
‖∇φ(y)‖2

where the equality (A1) is due to ∇φ(x) = 0; inequality (A2) is due to restricted ls-
strongly smoothness.

Let y = x1 and x = x2 and reorganize, we have

‖∇ fi(x1)−∇ fi(x2)‖2 ≤ 2ls( fi(x1)− fi(x2) + 〈∇ fi(x2), x2 − x1〉).

Furthermore, for the global smoothness parameter ld, we have

‖∇ fi(x1)−∇ fi(x2)‖2 ≤ 2ld( fi(x1)− fi(x2) + 〈∇ fi(x2), x2 − x1〉).

Appendix A.4. Proof of Theorem 1

Proof. For the Fed-HT algorithm:

E[‖xt+1 − x∗‖2] = E[‖Hτ(
N

∑
i=1

pix
(i)
t,K)− x∗‖2]

≤ (1 + α)E[‖
N

∑
i=1

pix
(i)
t,K − x∗‖2] (A3)

= (1 + α)E[‖
N

∑
i=1

pix
(i)
t,K −

N

∑
i=1

pix∗‖2] (A4)

≤ (1 + α)
N

∑
i=1

piE(i)[‖x(i)t,K − x∗‖2]. (A5)
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Equation (A3) holds due to Lemma 1, Equation (A4) holds because ∑N
i=1 pi = 1,

Equation (A5) holds due to Jensen’s Inequality, and the sampling procedures across differ-
ent clients are independent of each other.

We calculate the stochastic gradient, which is essential in a local update, and we
split the stochastic gradient into three terms. Note that the last inequality holds due to
bounded variance on support assumption and the inequality ‖∇ fi(xt) − ∇ fi(x∗)‖2 ≤
2ld( fi(xt)− fi(x∗) + 〈∇ fi(x∗), xt − x∗〉).

N

∑
i=1

piE(i)[‖g(i)t,K−1‖
2] =

N

∑
i=1

piE(i)[‖g(i)t,K−1 −∇ fi(x(i)t,K−1) +∇ fi(x(i)t,K−1)−∇ fi(x∗) +∇ fi(x∗)‖2]

≤ 3
N

∑
i=1

piE(i)[‖g(i)t,K−1 −∇ fi(x(i)t,K−1)‖
2] + 3

N

∑
i=1

piE(i)[‖∇ fi(x(i)t,K−1)−∇ fi(x∗)‖2]

+ 3
N

∑
i=1

pi‖∇ fi(x∗)‖2

≤ 3
N

∑
i=1

pi
σ2

i
bt

+ 3
N

∑
i=1

pi‖∇ fi(x∗)‖2 + 6ld
N

∑
i=1

piE(i)[( fi(x(i)t,K−1)− fi(x∗) + 〈∇ fi(x∗), x(i)t,K−1 − x∗〉)]. (A6)

Next, we want to build the connection of ∑N
i=1 piE(i)[‖x(i)t,K − x∗‖2] and ∑N

i=1 piE(i)

[‖x(i)t,K−1 − x∗‖2]. Let γt =
1

6ld
. Consider the inner loop iteration:

N

∑
i=1

piE(i)[‖x(i)t,K − x∗‖2] =
N

∑
i=1

piE(i)[‖x(i)t,K−1 −
1

6ld
g(i)t,K−1 − x∗‖2]

=
N

∑
i=1

piE(i)[‖x(i)t,K−1 − x∗‖2] +
1

36l2
d

N

∑
i=1

piE(i)[‖g(i)t,K−1‖
2]− 1

3ld

N

∑
i=1

piE(i)[〈x(i)t,K−1 − x∗, g(i)t,K−1〉]

≤
N

∑
i=1

piE(i)[‖x(i)t,K−1 − x∗‖2] +
1

36l2
d

N

∑
i=1

piE(i)[‖g(i)t,K−1‖
2]− 1

3ld

N

∑
i=1

piE(i)[ fi(x(i)t,K−1)− fi(x∗)].

Plug in (A6), and we further derive

N

∑
i=1

piE(i)[‖x(i)t,K − x∗‖2]

≤
N

∑
i=1

piE(i)[‖x(i)t,K−1 − x∗‖2] +
1

36l2
d
(3

N

∑
i=1

pi
σ2

i
bt

+ 6ld
N

∑
i=1

piE(i)[ fi(x(i)t,K−1)− fi(x∗)

+ 〈∇ fi(x∗), x(i)t,K−1 − x∗〉] + 3
N

∑
i=1

pi‖∇ fi(x∗)‖2)− 1
3ld

N

∑
i=1

piE(i)[ fi(x(i)t,K−1)− fi(x∗)]

=
N

∑
i=1

piE(i)[‖x(i)t,K−1 − x∗‖2] +
1

12l2
d

N

∑
i=1

pi
σ2

i
bt
− 1

6ld

N

∑
i=1

piE(i)[ fi(x(i)t,K−1)− fi(x∗)]

+
1

6ld

N

∑
i=1

piE(i)[〈πI(∇ fi(x∗)), x(i)t,K−1 − x∗〉] + 1
12l2

d

N

∑
i=1

pi‖∇ fi(x∗)‖2

≤
N

∑
i=1

piE(i)[‖x(i)t,K−1 − x∗‖2] +
1

12l2
d

N

∑
i=1

pi
σ2

i
bt
− 1

6ld

N

∑
i=1

piE(i)[〈πI(∇ fi(x∗)), x(i)t,K−1 − x∗〉

+
ρd
2
‖x(i)t,K−1 − x∗‖2] +

1
12l2

d

N

∑
i=1

pi‖∇ fi(x∗)‖2 +
1

6ld

N

∑
i=1

piE(i)[〈πI(∇ fi(x∗)), x(i)t,K−1 − x∗〉]

= (1− 1
12κd

)
N

∑
i=1

piE(i)[‖x(i)t,K−1 − x∗‖2] +
1

12l2
d

N

∑
i=1

pi
σ2

i
bt

+
1

12l2
d

N

∑
i=1

pi‖∇ fi(x∗)‖2,
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where the last inequality holds due to strongly restricted convexity and κd = ld
ρd

. Then,
iteratively, we have

N

∑
i=1

piE(i)[‖x(i)t,K − x∗‖2] ≤ (1− 1
12κd

)K
N

∑
i=1

piE(i)[‖x(i)t,0 − x∗‖2] +
K−1

∑
k=0

(1− 1
12κd

)k 1
12l2

d

N

∑
i=1

pi
σ2

i
bt

+
K−1

∑
k=0

(1− 1
12κd

)k 1
12l2

d

N

∑
i=1

pi‖∇ fi(x∗)‖2

≤ (1− 1
12κd

)K
N

∑
i=1

piE(i)[‖x(i)t,0 − x∗‖2] +
K−1

∑
k=0

(1− 1
12κd

)k 1
12l2

d

N

∑
i=1

pi(
σ2

i
bt

+ ‖∇ fi(x∗)‖2).

Let ψ1 = (1 + α)(1− 1
12κd

)K and ξ1 =
(1+α)(1−(1− 1

12κd
)K)κd

l2
d

. Then, we have

E[‖xt+1 − x∗‖2] ≤ (1 + α)(1− 1
12κd

)K
N

∑
i=1

piE(i)[‖x(i)t,0 − x∗‖2]

+
(1 + α)(1− (1− 1

12κd
)K)κd

l2
d

N

∑
i=1

pi(
σ2

i
bt

+ ‖∇ fi(x∗)‖2)

= ψ1

N

∑
i=1

piE(i)[‖x(i)t,0 − x∗‖2] +
ξ1 ∑N

i=1 piσ
2
i

bt
+ ξ1

N

∑
i=1

pi‖∇ fi(x∗)‖2.

Since xt,0 = xt, we derive the relation between ‖xt+1 − x∗‖2 and ‖xt − x∗‖2,

E[‖xt+1 − x∗‖2] ≤ ψ1E[‖xt − x∗‖2] +
ξ1 ∑N

i=1 piσ
2
i

bt
+ ξ1

N

∑
i=1

pi‖∇ fi(x∗)‖2.

We further set bt =
Γ1
ωt

1
and assume Γ1 is large enough such that

υ :=
ξ1 ∑N

i=1 piσ
2
i

Γ1
≤ δ1‖x0 − x∗‖2,

where δ1 is a positive constant and will be set later.
We now use mathematical induction to prove that there exists a θ1 ∈ (0, 1) such that

the following inequality holds.

E[‖xt − x∗‖2] ≤ θt
1E[‖x0 − x∗‖2] +

ξ1

1− ψ1

N

∑
i=1

pi‖∇ fi(x∗)‖2.

When t = 0, the above inequality is true. Now we assume that for k = t, it holds.
Then, for k = t + 1, we have

E[‖xt+1 − x∗‖2] ≤ ψ1E[‖xt − x∗‖2] +
ξ1 ∑N

i=1 piσ
2
i

bt
+ ξ1

N

∑
i=1

pi‖∇ fi(x∗)‖2

≤ ψ1E[‖xt − x∗‖2] + ωt
1δ1‖x0 − x∗‖2 + ξ1

N

∑
i=1

pi‖∇ fi(x∗)‖2

≤ (ψ1θt
1 + δ1ωt

1)E[‖x0 − x∗‖2] + (
ψ1

1− ψ1
+ 1)ξ1

N

∑
i=1

pi‖∇ fi(x∗)‖2

≤ (ψ1θt
1 + δ1ωt

1)E[‖x0 − x∗‖2] +
ξ1

1− ψ1

N

∑
i=1

pi‖∇ fi(x∗)‖2.
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We now find an appropriate value for θ1. Let θ1 = ω1 = ψ1 + δ1, we have ψ1θt
1 +

δ1ωt
1 = θt+1

1 , and then further obtain

E[‖xt+1 − x∗‖2] ≤ θt+1
1 E[‖x0 − x∗‖2] +

ξ1

1− ψ1

N

∑
i=1

pi‖∇ fi(x∗)‖2

≤ θt+1
1 E[‖x0 − x∗‖2] +

ξ1B2

1− ψ1
‖∇ f (x∗)‖2.

Furthermore, there exists a large Γ1 ≥
ξ1 ∑N

i=1 piσ
2
i

δ1‖x0−x∗‖2 , such that δ1 = α(1− 1
12κd

)K. Then

we have θ1 = ψ1 + δ1 = (1 + 2α)(1 − 1
12κd

)K. If we require θ1 < 1, (and we also set

α = 2
√

τ∗/
√

τ − τ∗), we can derive the restriction on sparse parameter τ ≥ (16(12κd −
1)2 + 1)τ∗.

Appendix A.5. Proof of Corollary 2

Proof of Corollary 2. In the next stage, we use a previous upper bound for E[‖xT − x∗‖2]
and ld-restricted strongly smooth conditions to establish epoch-based convergence of
f (xT)− f (x∗).

We first use ls-restricted strongly smooth conditions and 〈a, b〉 ≤ 1
2‖a‖2 + 1

2‖b‖2

and obtain:

f (xT) ≤ f (x∗) + 〈∇ f (x∗), xT − x∗〉+ ld
2
‖xT − x∗‖2

= f (x∗) + (〈∇ f (x∗), xT − x∗〉) + ld
2
‖xT − x∗‖2

≤ f (x∗) +
1

2ld
‖(∇ f (x∗))‖2 +

ld
2
‖xT − x∗‖2 +

ld
2
‖xT − x∗‖2

= f (x∗) +
1

2ld
‖(∇ f (x∗))‖2 + ld‖xT − x∗‖2.

Take the expectation on both sides,

E[ f (xT)− f (x∗)] =
1

2ld
‖(∇ f (x∗))‖2 + ldE[‖xT − x∗‖2].

From the upper bound of E[‖xT − x∗‖2],

E[‖xT − x∗‖2] ≤ θT
1 ‖x0 − x∗‖2 +

ξ1B2

1− ψ1
‖∇ f (x∗)‖2.

We can obtain the final convergence result:

E[ f (xT)− f (x∗)] ≤ 1
2ld
‖(∇ f (x∗))‖2 + ldE[‖xT − x∗‖2]

≤ θT
1 ld‖x0 − x∗‖2 + (

ξ1B2ld
1− ψ1

+
1

2ld
)‖∇ f (x∗)‖2 = θT

1 ∆1 + g2(x∗),

where ∆1 = ld‖x0 − x∗‖2, g2(x∗) = ( ξ1B2ld
1−ψ1

+ 1
2ld

)‖∇ f (x∗)‖2 = O(‖∇ f (x∗)‖2).

Appendix A.6. Proof of Theorem 2

Proof. For the FedIter-HT Algorithm, we also begin with

E[‖xt+1 − x∗‖2] = E[‖Hτ(
N

∑
i=1

pix
(i)
t,K)− x∗‖2] ≤ (1 + α)

N

∑
i=1

piE(i)[‖x(i)t,K − x∗‖2].
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This time we calculate the stochastic gradient on support, which is different from the
analysis of the Fed-HT Algorithm. We also split the stochastic gradient on support into
three terms,

N

∑
i=1

piE(i)[‖πI (i)(g(i)t,K−1)‖
2]

=
N

∑
i=1

piE(i)[‖πI (i)(g(i)t,K−1 −∇ fi(x(i)t,K−1) +∇ fi(x(i)t,K−1)−∇ fi(x∗) +∇ fi(x∗))‖2]

≤ 3
N

∑
i=1

piE(i)[‖πI (i)(g(i)t,K−1 −∇ fi(x(i)t,K−1))‖
2] + 3

N

∑
i=1

piE(i)[‖πI (i)(∇ fi(x(i)t,K−1)−∇ fi(x∗))‖2]

+ 3
N

∑
i=1

pi‖πI (i)(∇ fi(x∗))‖2

≤ 3
N

∑
i=1

pi
σ2

i
bt

+ 6ls
N

∑
i=1

piE(i)[( fi(x(i)t,K−1)− fi(x∗) + 〈πI (i)(∇ fi(x∗)), x(i)t,K−1 − x∗〉)]

+ 3
N

∑
i=1

pi‖πI (i)(∇ fi(x∗))‖2, (A7)

where the last inequality holds due to bounded variance on the support assumption and the
inequality ‖πI (i)(∇ fi(xt)−∇ fi(x∗))‖2 ≤ 2ls( fi(xt)− fi(x∗) + 〈πI (i)(∇ fi(x∗)), xt − x∗〉).

Next, we want to build the connection of ∑N
i=1 piE(i)[‖x(i)t,K − x∗‖2] and ∑N

i=1 piE(i)

[‖x(i)t,K−1 − x∗‖2]. Let γt =
1

6ls
. Consider the inner loop iteration,

N

∑
i=1

piE(i)[‖x(i)t,K − x∗‖2] =
N

∑
i=1

piE(i)[‖Hτ(x(i)t,K−1 −
1

6ls
πI (i)(g(i)t,K−1))− x∗‖2]

≤ (1 + α)
N

∑
i=1

piE(i)[‖x(i)t,K−1 −
1

6ls
πI (i)(g(i)t,K−1)− x∗‖2].

Further deriving from the above result yields

N

∑
i=1

piE(i)[‖x(i)t,K−1 −
1

6ls
πI (i)(g(i)t,K−1)− x∗‖2]

≤ (1− 1
12κs

)
N

∑
i=1

piE(i)[‖x(i)t,K−1 − x∗‖2] +
1

12l2
s

N

∑
i=1

pi
σ2

i
bt

+
1

12l2
s

N

∑
i=1

pi‖πI (i)(∇ fi(x∗))‖2,

and then we can have

N

∑
i=1

piE(i)[‖x(i)t,K − x∗‖2] ≤ (1 + α)(1− 1
12κs

)
N

∑
i=1

piE(i)[‖x(i)t,K−1 − x∗‖2]

+
(1 + α)(1− (1− 1

12κs
)K)κs

l2
s

(
N

∑
i=1

pi
σ2

i
bt

+ ‖πI (i)(∇ fi(x∗))‖2)

E[‖xt+1 − x∗‖2] ≤ (1 + α)2(1− 1
12κs

)K
N

∑
i=1

piE(i)[‖x(i)t,0 − x∗‖2]

+
(1 + α)2(1− (1− 1

12κs
)K)κs

l2
s

(
N

∑
i=1

pi
σ2

i
b

+ ‖πI (i)(∇ fi(x∗))‖2).
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Similarly, we have the following result:

E[‖xt+1 − x∗‖2] ≤ θt+1
2 E[‖x0 − x∗‖2] +

ξ2B2

1− ψ2

N

∑
i=1

pi‖πI (i)(∇ fi(x∗))‖2,

where θ2 = (1 + 2α)2(1− 1
12κs

)K, ξ2 =
(1+α)2(1−(1− 1

12κs )
K)κs

l2
s

, ψ2 = (1 + α)2(1− 1
12κs

)K and

bt =
Γ2
ωt

2
. Furthermore, there exists a large Γ2 ≥

ξ2B2 ∑N
i=1 piσ

2
i

δ2‖x0−x∗‖2 , such that δ2 = (2α + 3α2)(1−
1

12κs
)K. Therefore, we have ω2 = θ2 = ψ2 + δ2 = (1 + 2α)2(1− 1

12κs
)K < 1. Then, we can

derive the restriction on sparse parameter τ ≥ ( 16
(
√

12κs
12κs−1−1)2

+ 1)τ∗.

Appendix A.7. Proof of Corollary 4

Proof. In the next stage, we use the previous upper bound for E[‖xT − x∗‖2] and ls-
restricted strongly smooth conditions to establish epoch-based convergence of f (xT)−
f (x∗).

We first use ls-restricted strongly smooth conditions and 〈a, b〉 ≤ 1
2‖a‖2 + 1

2‖b‖2

and obtain:

f (xT) ≤ f (x∗) + 〈∇ f (x∗), xT − x∗〉+ ls
2
‖xT − x∗‖2

= f (x∗) + πĨ (〈∇ f (x∗), xT − x∗〉) + ls
2
‖xT − x∗‖2

≤ f (x∗) +
1

2ls
‖πĨ (∇ f (x∗))‖2 +

ls
2
‖xT − x∗‖2 +

ls
2
‖xT − x∗‖2

= f (x∗) +
1

2ls
‖πĨ (∇ f (x∗))‖2 + ls‖xT − x∗‖2.

Take the expectation on both sides,

E[ f (xT)− f (x∗)] ≤ 1
2ls
‖πĨ (∇ f (x∗))‖2 + lsE[‖xT − x∗‖2].

From the upper bound of E[‖xT − x∗‖2],

E[‖xT − x∗‖2] ≤ θT
2 ‖x0 − x∗‖2 +

ξ2B2

1− ψ2
‖πĨ (∇ f (x∗))‖2.

Then, we can obtain the final convergence result:

E[ f (xT)− f (x∗)] ≤ θT
2 ls‖x0 − x∗‖2 + (

ξ2B2ls
1− ψ2

+
1

2ls
)‖∇ f (x∗)‖2

= θT
2 ∆2 + g4(x∗)

where ∆2 = ls‖x0 − x∗‖2, g4(x∗) = ( ξ2B2ls
1−ψ2

+ 1
2ls
)‖∇ f (x∗)‖2 = O(πĨ (‖∇ f (x∗)‖2)).
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arXiv 2020, arXiv:2003.00295.

37. Li, T.; Sahu, A.K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.; Smith, V. Federated optimization in heterogeneous networks. arXiv 2018,
arXiv:1812.06127.

38. Bernstein, J.; Zhao, J.; Azizzadenesheli, K.; Anandkumar, A. signSGD with majority vote is communication efficient and fault
tolerant. arXiv 2018, arXiv:1810.05291.

39. Sattler, F.; Wiedemann, S.; Müller, K.R.; Samek, W. Robust and communication-efficient federated learning from non-iid data.
IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 3400–3413. [CrossRef]

40. Li, C.; Li, G.; Varshney, P.K. Communication-efficient federated learning based on compressed sensing. IEEE Internet Things J.
2021, 8, 15531–15541. [CrossRef]

41. Han, P.; Wang, S.; Leung, K.K. Adaptive gradient sparsification for efficient federated learning: An online learning approach.
In Proceedings of the 2020 IEEE 40th International Conference on Distributed Computing Systems (ICDCS), Singapore, 29
November–1 December 2020; pp. 300–310.

42. Yuan, H.; Zaheer, M.; Reddi, S. Federated composite optimization. In Proceedings of the International Conference on Machine
Learning, Baltimore, MD, USA, 18–24 July 2021; pp. 12253–12266.

43. Agarwal, A.; Negahban, S.; Wainwright, M.J. Fast Global Convergence Rates of Gradient Methods for High-Dimensional Statistical
Recovery. Available online: https://proceedings.neurips.cc/paper/2010/file/7cce53cf90577442771720a370c3c723-Paper.pdf
(accessed on 1 July 2022).

44. Li, X.; Arora, R.; Liu, H.; Haupt, J.; Zhao, T. Nonconvex sparse learning via stochastic optimization with progressive variance
reduction. arXiv 2016, arXiv:1605.02711.

45. Wang, L.; Gu, Q. Differentially Private Iterative Gradient Hard Thresholding for Sparse Learning. In Proceedings of the 28th
International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019.

46. Loh, P.L.; Wainwright, M.J. Regularized M-estimators with nonconvexity: Statistical and algorithmic theory for local optima. J.
Mach. Learn. Res. 2015, 16, 559–616.

47. Kogan, S.; Levin, D.; Routledge, B.R.; Sagi, J.S.; Smith, N.A. Predicting risk from financial reports with regression. In Proceedings
of the Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for
Computational Linguistics, Boulder, CO, USA, 31 May–5 June 2009; Association for Computational Linguistics: Boulder, CO,
USA, 2009; pp. 272–280.

48. Lewis, D.D.; Yang, Y.; Rose, T.G.; Li, F. Rcv1: A new benchmark collection for text categorization research. J. Mach. Learn. Res.
2004, 5, 361–397.

http://dx.doi.org/10.1109/TNNLS.2019.2944481
http://dx.doi.org/10.1109/JIOT.2021.3073112
https://proceedings.neurips.cc/paper/2010/file/7cce53cf90577442771720a370c3c723-Paper.pdf

	Introduction
	Preliminaries
	The Fed-HT Algorithm
	The FedIter-HT Algorithm
	Experiments
	Simulations
	Benchmark Datasets

	Conclusions
	Appendix A
	Distributed IHT Algorithm
	More Experimental Details
	 Proof of Lemma 2
	 Proof of Theorem 1
	 Proof of Corollary 2
	 Proof of Theorem 2
	 Proof of Corollary 4

	References

