ﬁ algorithms

Article

High Per Parameter: A Large-Scale Study of Hyperparameter
Tuning for Machine Learning Algorithms

Moshe Sipper

check for
updates

Citation: Sipper, M. High Per
Parameter: A Large-Scale Study of
Hyperparameter Tuning for Machine
Learning Algorithms. Algorithms
2022, 15, 315. https://doi.org/
10.3390/a15090315

Academic Editors: Luca Mariot, Luca

Manzoni and Stefano Mariani

Received: 27 July 2022
Accepted: 30 August 2022
Published: 2 September 2022

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2022 by the author.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel; sipper@bgu.ac.il

Abstract: Hyperparameters in machine learning (ML) have received a fair amount of attention,
and hyperparameter tuning has come to be regarded as an important step in the ML pipeline.
However, just how useful is said tuning? While smaller-scale experiments have been previously
conducted, herein we carry out a large-scale investigation, specifically one involving 26 ML algo-
rithms, 250 datasets (regression and both binary and multinomial classification), 6 score metrics, and
28,857,600 algorithm runs. Analyzing the results we conclude that for many ML algorithms, we
should not expect considerable gains from hyperparameter tuning on average; however, there may
be some datasets for which default hyperparameters perform poorly, especially for some algorithms.
By defining a single hp_score value, which combines an algorithm’s accumulated statistics, we are
able to rank the 26 ML algorithms from those expected to gain the most from hyperparameter tuning
to those expected to gain the least. We believe such a study shall serve ML practitioners at large.

Keywords: machine learning; hyperparemeters

1. Introduction

In machine learning (ML), a hyperparameter is a parameter whose value is given by
the user and used to control the learning process. This is in contrast to other parameters,
whose values are obtained algorithmically via training.

Hyperparameter tuning, or optimization, is often costly and software packages invari-
ably provide hyperparameter defaults. Practitioners will often tune these—either manually
or through some automated process—to gain better performance. They may resort to
previously reported “good” values or perform some hyperparameter-tuning experiments.

In recent years, there has been increased interest in software that performs automated
hyperparameter tuning, such as Hyperopt [1] and Optuna [2]. The latter, for example, is a
state-of-the-art hyperparameter tuner which formulates the hyperparameter optimization
problem as a process of minimizing or maximizing an objective function that takes a set of
hyperparameters as an input and returns its (validation) score. It also provides pruning,
i.e., automatic early stopping of unpromising trials. Moreover, our experience has shown it
to be fairly easy to set up, and indeed we used it successfully in our research [3,4].

A number of recent works, which we shall review, have tried to assess the importance
of hyperparameters through experimentation. We propose herein to examine the issue
of hyperparameter tuning through a significantly more extensive empirical study than
has been performed to date, involving multitudinous algorithms, datasets, metrics, and
hyperparameters. Our aim is to assess just how much of a performance gain can be had
per algorithm by employing a performant tuning method.

The next section presents an account of relevant previous work. Section 3 describes the
experimental setup, followed by results in Section 4. We discuss our findings in Section 5,
and end with concluding remarks in Section 6.

2. Previous Work

There has been a fair amount of work on hyperparameters and it is beyond this
paper’s scope to provide a detailed review. For that, we refer the reader to the recent

Algorithms 2022, 15, 315. https:/ /doi.org/10.3390/a15090315

https:/ /www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15090315
https://doi.org/10.3390/a15090315
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-1811-472X
https://doi.org/10.3390/a15090315
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15090315?type=check_update&version=1

Algorithms 2022, 15, 315

2 0f 10

comprehensive review: “Hyperparameter Optimization: Foundations, Algorithms, Best
Practices and Open Challenges” [5].

Interestingly, Ref. [5] wrote that “we would like to tune as few HPs [hyperparameters]
as possible. If no prior knowledge from earlier experiments or expert knowledge exists, it
is common practice to leave other HPs at their software default values. ..”.

Ref. [5] also noted that “more sophisticated HPO [hyperparameter optimization]
approaches in particular are not as widely used as they could (or should) be in prac-
tice” (the paper does not include an empirical study). We shall use a sophisticated HPO
approach herein.

We present below only recent papers that are directly relevant to ours, “ancestors” of
the current study, as it were.

A major work by [6] formalized the problem of hyperparameter tuning from a statisti-
cal point of view, defined data-based defaults, and suggested general measures quantifying
the tunability of hyperparameters. The overall tunability of an ML algorithm or that of a
specific hyperparameter was essentially defined by comparing the gain attained through
tuning with some baseline performance, usually attained when using default hyperparam-
eters. They also conducted an empirical study involving 38 binary classification datasets
from OpenML, and six ML algorithms: elastic net, decision tree, k-nearest neighbors,
support vector machine, random forest, and xgboost. Tuning was performed through a
random search. They found that some algorithms benefited from tuning more than others,
with elastic net and svm showing the highest improvement and random forest showing
the lowest.

Ref. [7] presented a methodology to determine the importance of tuning a hyperpa-
rameter based on a non-inferiority test and tuning risk, i.e., the performance loss that is
incurred when a hyperparameter is not tuned, but set to a default value. They performed
an empirical study involving 59 datasets from OpenML and two ML algorithms: support
vector machine and random forest. Tuning was performed through random search. Their
results showed that leaving particular hyperparameters at their default value is noninferior
to tuning these hyperparameters. In some cases, leaving the hyperparameter at its default
value even outperformed tuning it.

Finally, Ref. [8] recently presented results and insights pertaining to the black-box opti-
mization (BBO) challenge at NeurIPS 2020. Analyzing the performance of 65 submitted en-
tries, they concluded that, “Bayesian optimization is superior to random search for machine
learning hyperparameter tuning” (indeed this is the paper’s title) (NB: a random search is
usually better than a grid search, e.g., [9]). We shall use Bayesian optimization herein.

The Current Study

After examining these recent studies, we made the following decisions regarding the
experiments that we shall carry out herein:

¢ Consider significantly more algorithms;

e Consider significantly more datasets;

¢ Consider Bayesian optimization, rather than weaker-performing random search or
grid search.

3. Experimental Setup

Our setup involves numerous runs across a plethora of algorithms and datasets,
comparing tuned and untuned performance over six distinct metrics. Below, we detail the
following setup components:

Datasets;

Algorithms;

Metrics;
Hyperparameter tuning;
Overall flow.

AR

Algorithms 2022, 15, 315

30f10

3.1. Datasets.

We used the recently introduced PMLB repository [10], which includes 166 classifica-
tion datasets and 122 regression datasets. As we were interested in performing numerous
runs, we retained the 144 classification datasets with number of samples < 10,992 and
number of features < 100, and the 106 regression datasets with number of samples < 8192
and number of features < 100. Figure 1 presents a summary of dataset characteristics. Note
that classification problems are both binary and multinomial.

Classification: Samples vs. Features Classification: Samples vs. Classes

100 | . 181 »
L] 16 4
o o
80 - o 14
° []
° ° 124
& 601 o i °] ° .
2 410 o o o .
g ® o ° o °
'S 40 E LN] 8
o3° ® ° . .
M 4 61 ee o0 o °
© A ° - .
i * e o
20 : l'. ¢ ‘ ° 41 ee e o .
¢ e ase o o o ° °
(1] L4 °
0 i 2 4 caEDe» e LN] LN] L] L] []
0 2000 4000 6000 8000 10,000 0 2000 4000 6000 8000 10,000
Samples Samples
Classification: Features vs. Classes Regression: Samples vs. Features
181 e 100 o
16 1
12 ¢ 801
L]
12
] . . 2 60
ﬁ 10 L] ° ° ° ° ° § oo o
(=] °]
81 & 40
L] L] °
61 ® o [1] ese o
L L 1] L] L] L] 20 4 L]
4 - oo o ° °
wmm e o o ° ° 5 e o :
2 onnunan ®ee meee o (X} ° ° 0- . . ° °
0 20 40 60 80 100 0 2000 4000 6000 8000
Features Samples

Figure 1. Characteristics of the 144 classification datasets and 106 regression datasets used in
our study.

3.2. Algorithms

We investigated 26 ML algorithms—13 classifiers and 13 regressors—using the follow-
ing software packages: scikit-learn [11], xgboost [12], and lightgbm [13]. The algorithms are
listed in Table 1, along with the hyperparameter ranges or sets used in the hyperparameter
search (described below).

3.3. Metrics
We used three separate metrics for classification problems:

1. Accuracy: a fraction of correct predictions (€[0, 1]).

2. Balanced accuracy: an accuracy score that takes into account class imbalances, essen-
tially the accuracy score with class-balanced sample weights [14] (€[0, 1]).

3. F1 score: a harmonic mean of precision and recall; in the multi-class case, this is the
average of the F1 score per class with weighting (€[0,1])
We used three separate metrics for regression problems:

1. RZscore: an R? (coefficient of determination) regression score function (€[—oo, 1]).
Adjusted R? score: a modified version of the R? score that adjusts for the number of
predictors in a regression model. Itis definedas1— (1 —-r2)«(n—1)/(n—p—1),

Algorithms 2022, 15, 315 40f 10

with r2 being the R? score, 1 being the number of samples, and p being the number of
features (€[—o0, 1]).

3. Complement RMSE: a complement of root mean squared error (RMSE), defined as
1 — RMSE (&[—o00, 1]). This has the same range as the previous two metrics.

Table 1. Value ranges or sets used by Optuna for hyperparameter tuning. For ease of reference, we use
the function names of the respective software packages: scikit-learn, xgboost, and lightgbm. Values
sampled from a range in the log domain are marked as ‘log’, otherwise sampling is linear (uniform).

Classification
Algorithm Hyperparameter Values
. n_estimators [10, 1000] (log)
AdaBoostClassifier learning_rate [0.1,10] (log)
max_depth [2,10]
DecisionTreeClassifier min_impurity_decrease [0.0, 0.5]
criterion {gini, entropy}
n_estimators [10, 1000] (log)
GradientBoostingClassifier learning_rate [0.01, 0.3]
subsample [0.1, 1]
weights {uniform, distance}
KNeighborsClassifier algorithm {auto, ball_tree, kd_tree, brute}
n_neighbors [2,20]
n_estimators [10, 1000] (log)
LGBMClassifier learning_rate [0.01, 0.2]
bagging_fraction [0.5, 0.95]
max_iter [10, 10,000] (log)
LinearSVC tol [1 x 1075,0.1] (log)
C [0.01, 10] (log)
L. . penalty {11, 12}
LogisticRegression solver {liblinear, saga}
. . alpha [0.01, 10] (log)
MultinomialNB fit_prior {True, False}
C [0.01, 10] (log)
PassiveAggressiveClassifier fit_intercept {True, False}
max_iter [10, 1000] (log)

RandomForestClassifier

n_estimators
min_weight_fraction_leaf
max_features

[10, 1000] (log)
[0.0, 0.5]
{auto, sqrt, log?2}

. . solver {auto, svd, cholesky, Isqr, sparse_cg, sag, saga}
RidgeClassifier alpha [0.001, 10] (log)
" penalty {12, 11, elasticnet}
SGDClassifier alpha [1 x 10-5,1] (log)
n_estimators [10, 1000] (log)
XGBClassifier learning_rate [0.01, 0.2]
gamma [0.0, 0.4]
Regression
Algorithm Hyperparameter Values
AdaBoostRegressor n_estimators [10, 1000] (log)

learning_rate

[0.1, 10] (log)

Algorithms 2022, 15, 315

50f 10

Table 1. Cont.

Regression
Algorithm Hyperparameter Values
n_iter [10, 1000] (log)
L alpha_1 [1x1077,1 x 107°] (log)
B R i’
ayesianRidge lambda_1 [1x 1077,1 x 10~°] (log)
tol [1 x 107%,0.1] (log)
max_depth [2,10]
DecisionTreeRegressor min_impurity_decrease [0.0, 0.5]
criterion {squared_error, friedman_mse, absolute_error}

n_estimators

[10, 1000] (log)

GradientBoostingRegressor learning_rate [0.01, 0.3]
subsample [0.1,1]
weights {uniform, distance}
KNeighborsRegressor algorithm {auto, ball_tree, kd_tree, brute}
n_neighbors [2,20]
kernel {linear, poly, rbf, sigmoid}
KernelRidge alpha [0.1,10] (log)
gamma [0.1, 10] (log)
lambda_I1 [1 x 1078, 10.0] (log)
LGBMRegressor lambda_I2 [1 x 1078,10.0] (log)
num_leaves [2,256]
. . fit_intercept {True, False}
LinearRegression normalize {True, False}
{epsilon_insensitive,
loss squared_epsilon_insensitive}
LinearSVR tol [1 x 105, 0.1] (log)
C [0.01, 10] (log)
C [0.01, 10] (log)
PassiveAggressiveRegressor fit_intercept {True, False}
max_iter [10, 1000] (log)

RandomForestRegressor

n_estimators
min_weight_fraction_leaf
max_features

[10, 1000] (log)
[0.0, 0.5]
{auto, sqrt, log2}

alpha [1 x 1075, 1] (log)
SGDRegressor penalty {12, 11, elasticnet}
n_estimators [10, 1000] (log)
XGBRegressor learning_rate [0.01,0.2]
gamma [0.0, 0.4]

3.4. Hyperparameter Tuning

For hyperparameter tuning, we used Optuna, a state-of-the-art automatic hyperpa-

rameter optimization software framework [2]. Optuna offers a define-by-run-style user API
where one can dynamically construct the search space, and an efficient sampling algorithm
and pruning algorithm. Moreover, our experience has shown it to be fairly easy to set up.
Optuna formulates the hyperparameter optimization problem as a process of minimizing
or maximizing an objective function that takes a set of hyperparameters as an input and
returns its (validation) score. We used the default tree-structured Parzen estimator (TPE)
Bayesian sampling algorithm. Optuna also provides pruning, i.e., the automatic early
stopping of unpromising trials [2].

Algorithms 2022, 15, 315

6 of 10

3.5. Overall Flow

Algorithm 1 presents the top-level flow of the experimental setup. For each combi-

nation of algorithm and dataset, we perform 30 replicate runs. Each replicate separately
assesses model performance over the respective three classification or regression metrics. A
replicate begins by splitting the dataset into training and test sets, and scaling them. Then,
for each metric:

1.

2.

Optuna is run over the training set for 50 trials to tune the model’s hyperparameters,
the best model is retained, and the best model’s test-set metric score is computed.
Fifty models are evaluated over the training set with default parameters, the best
model is retained, and the best model’s test-set metric score is computed. Strictly
speaking, a few algorithms—decision tree, KNN, Bayesian—are essentially determin-
istic. For consistency, we still performed the 50 default hyperparameter trials. Further,
our examination of the respective implementations revealed possible randomness, e.g.,
for decision tree, when max_features < n_features, the algorithm will select max_features
at random; though the default is max_features = n_features we still took no chances of
there being some hidden randomness deep within the code.

An evaluation of the model is carried out through five-fold cross-validation. At the

end of each replicate, the test-set percent improvement in Optuna’s best model is computed
over the default’s best model.

Algorithm 1 Experimental setup (per algorithm and dataset)

Input:

algorithm <— algorithm to run
dataset < dataset to be used
n_replicates < 30 (number of replicates)

n_trials < 50 (number of Optuna trials, also number of runs with default values)
time_limit <— 72 h (for all replicates)

Output:

Final scores (over test sets)

'metricl', 'metric2', 'metric3' are, respectively:

- For classification: accuracy, balanced accuracy, F1

- For regression: R?, adjusted R?, complement RMSE
eval_score is 5-fold cross-validation score

1: Load dataset
2: for rep < 1 to n_replicates do
Randomly split dataset into 70% training_set and 30% test_set
Fit MinMaxScaler to training_set and apply fitted scaler to training_set and test_set
for metricin 'metricl', 'metric2', 'metric3' do
Run Optuna with algorithm for n_trials trials over training_set and obtain best_model # use eval_score for single-trial evaluation
Train best_model over training_set
Compute metric for best_model over test_set

3:

4
5
6:
7:
8.
9

10:
11:
12:
13:
14:
15:
16:
17:
18:

for i in n_trials do

Initialize a model with default hyperparameters
Evaluate model over training_set using eval_score
if eval_score is best obtained so far then

Save model as best_model

Train best_model over training_set
Compute metric for best_model over test_set

impl, imp2, imp3 = percent improvement Optuna over default for 'metric1’', 'metric2', 'metric3' # Compute and record replicate scores

if runtime > time_limit then
break

4. Results

A total of 96,192 replicates were performed, each comprising 300 algorithm runs

(8 metrics x 50 Optuna trials, 3 metrics x 50 default trials), with the final tally thus being

Algorithms 2022, 15, 315

7 of 10

28,857,600 algorithm runs. Note that for each run, we used the fit method of the respective
algorithm five times during five-fold cross validation, i.e., the learning algorithm was
executed five times. Table 2 presents our results.

Table 2. Compendium of final results over 26 ML algorithms, 250 datasets, 96,192 replicates, and
28,857,600 algorithm runs. A table row presents results of a single ML algorithm, showing a summary
of all replicates and datasets. A table cell summarizes the results of an algorithm—metric pair. Cell
values show median and mean(std), where median: median over all replicates and datasets of Optuna’s
percent improvement over default; mean(std): mean (with standard deviation) over all replicates
and datasets of Optuna’s percent improvement over default. The total number of replicates for
which these statistics were computed is also shown. Acc: accuracy score; Bal: balanced accuracy
score; F1: F1 score; R?: R? score; Adj RZ: adjusted R? score; C-RMSE: complement RMSE; Reps: total
number of replicates *.

Classification

Acc Bal F1 Reps

Algorithm Median Mean(std) Median Mean(std) Median Mean(std)
AdaBoostClassifier 1.9 20.9 (65.3) 22 21.5(57.4) 1.9 39.3 (150.1) 4320
DecisionTreeClassifier 0.0 115.6 2.3 x 10%) 0.0 96.0 (2.2 x 10%) 0.0 55.7 (1.3 x 10%) 4220
GradientBoostingClassifier 0.5 451 (1.4 x 10%) 0.6 489 (1.4 x 10%) 0.6 42.0 (1.1 x 10%) 4096
KNeighborsClassifier 0.8 3.8(13.8) 1.8 5.9 (16.7) 1.5 5.1(17.7) 4254
LGBMClassifier 0.0 1.2 (11.5) 0.0 1.0 (11.9) 0.0 0.9 (12.1) 4287
LinearSVC 0.0 1.0 (8.3) 0.0 1.9 (8.5) 0.0 1.7 (8.2) 4299
LogisticRegression 0.0 1.5(8.2) 0.0 3.4 (12.5) 0.0 3.4(11.8) 4307
MultinomialNB 0.0 9.8 (58.9) 8.5 27.5(48.9) 10.5 40.5 (128.6) 4149
PassiveAggressiveClassifier 1.9 7.8 (24.0) 1.8 5.9 (18.6) 3.0 10.8 (28.8) 4301
RandomForestClassifier 0.0 153.6 (2.3 x 10%) 0.0 218.8 (3.0 x 10%) 0.0 134.1 2.0 x 10%) 4320
RidgeClassifier 0.0 1.0 (6.8) 0.0 1.4(7.3) 0.0 1.9 (7.9) 4273
SGDClassifier 1.2 5.0 (20.6) 1.6 52(16.7) 2.0 8.6 (26.7) 4212
XGBClassifier 0.0 13.5 (643.1) 0.0 11.4 (431.2) 0.0 10.1 (467.6) 4111

Regression

R? Adj C-RMSE Reps

Algorithm median mean(std) median mean(std) median mean(std)
AdaBoostRegressor 2.0 3.6 (33.5) 21 —741.3 (9.5 x 10%) 3.8 5.1(20.9) 3179
BayesianRidge 0.0 6.8 x 10% (3.7 x 10°%) —0.0 —3.3(55.3) 0.0 1.0 (9.8) 3117
DecisionTreeRegressor 3.8 61.5 (788.0) 4.0 49.1 (841.5) 7.0 63.4 (1.3 x 10°%) 3150
GradientBoostingRegressor 1.6 17.3 (430.9) 1.7 —6.6 x 10° (2.4 x 107) 41 2.3 (126.4) 3180
KNeighborsRegressor 35 77.8 (627.4) 3.5 18.8 (471.6) 45 203.5 (5.3 x 10°) 3160
KernelRidge 69.5 —9.3 x 10° (5.0 x 107) 65.9 3.6 x 10% (1.7 x 10°) 495 1.7 x 103 (8.1 x 10*) 3053
LGBMRegressor 0.0 0.0 (25.6) 0.0 —-1.2(34.4) 0.0 04(2.1) 3179
LinearRegression 0.0 2.3 (70.4) 0.0 —35.1 (469.4) 0.0 —1.7 (62.8) 3170
LinearSVR 25.1 86.4 (2.7 x 10%) 243 173.5 (2.8 x 10°) 239 159.7 (2.2 x 10?) 3161
PassiveAggressiveRegressor 71.6 180.7 (1.7 x 10%) 58.5 —304.3 (4.1 x 10%) 62.0 331.9 (5.5 x 10%) 3167
RandomForestRegressor —0.1 1.5 (44.2) —0.2 —1.2 x 10° (4.6 x 10%) —-0.5 —1.5(13.2) 3180
SGDRegressor 0.0 2.6 (68.6) 0.0 —41.4 (2.0 x 10%) 0.0 2.2 (39.8) 3167
XGBRegressor 0.9 20.0 (717.1) 0.8 —675.6 (7.4 x 10%) 2.3 6.8 (164.6) 3180

* The number of replicates may be smaller than the maximal possible value (144 x 30 = 4320 for classification
datasets, and 106 x 30 = 3180 for regression datasets). This is due to edge cases that cause a single replicate to
terminate with an error, the vicissitudes of life on the cluster, and (in small part) long runtimes evoking the 72 h
timeout (this happened with GradientBoostingClassifier for 14 datasets and with XGBClassifier for 8 datasets).

Algorithms 2022, 15, 315

8 of 10

Table 2 shows several interesting points. First, regressors are somewhat more suscepti-
ble to hyperparameter tuning, i.e., there is more to be gained by tuning vis-a-vis the default
hyperparameters.

For most classifiers and—to a lesser extent—regressors, the median value shows little
to be gained from tuning, yet the mean value along with the standard deviation suggests
that for some algorithms there is a wide range in terms of tuning effectiveness. Indeed, by
examining the collected raw experimental results, we noted that there was a “low-hanging
fruit” case at times. The default hyperparameters yielded very poor performance on some
datasets, leaving room for considerable improvement through tuning.

It would seem useful to define a “bottom-line” measure—a summary score, as it were,
which essentially summarizes an entire table row, i.e., an ML algorithm’s sensitivity to
hyperparameter tuning. We believe any such measure would be inherently arbitrary to
some extent; that said, we nonetheless put forward the following definition of hp_score:

* The 13 algorithms and 9 measures of Table 2 are considered (separately for classi-
fiers and regressors) as a dataset with 13 samples and the following 9 features: met-
ricl_median, metric2_median, metric3_median, metricl_mean, metric2_mean, metric3_mean,
metricl_std, metric2_std, metric3_std.

e Scikit-learn’s RobustScaler is applied, which scales features using statistics that are
robust to outliers: “This Scaler removes the median and scales the data according
to the quantile range (defaults to IQR: Interquartile Range). The IQR is the range
between the 1st quartile (25th quantile) and the 3rd quartile (75th quantile). Centering
and scaling happen independently on each feature...” [14].

¢ The hp_score of an algorithm is then simply the mean of its nine scaled features.

This hp_score is unbounded because improvements or impairments can be arbitrarily
high or low. A higher value means that the algorithm is expected to gain more from
hyperparameter tuning, while a lower value means that the algorithm is expected to gain
less from hyperparameter tuning (on average).

Table 3 presents the hp_scores of all 26 algorithms, sorted from highest to lowest
per algorithm category (classifier or regressor). While simple and immanently imperfect,
hp_score nonetheless seems to summarize the trends observable in Table 2 fairly well.

Table 3. The hp_score of each ML algorithm, computed from the values in Table 2. A higher value
means that the algorithm is expected to gain more from hyperparameter tuning, while a lower value
means that the algorithm is expected to gain less from hyperparameter tuning.

Classification Regression
RandomForestClassifier ~ 3.89 KernelRidge 2110.75
DecisionTreeClassifier = 2.43 GradientBoostingRegressor 183.97
GradientBoostingClassifier ~ 1.52 BayesianRidge 35.19
MultinomiaINB 1.36 PassiveAggressiveRegressor 5.34
AdaBoostClassifier ~ 0.79 LinearSVR 2.13
PassiveAggressiveClassifier ~ 0.56 KNeighborsRegressor 0.59
XGBClassifier 0.38 DecisionTreeRegressor 0.35
SGDClassifier 0.35 RandomForestRegressor 0.09
KNeighborsClassifier ~ 0.27 AdaBoostRegressor —0.07
LogisticRegression —0.08 XGBRegressor —0.10
LinearSVC —0.09 SGDRegressor —0.23
RidgeClassifier =~ —0.10 LinearRegression —0.25
LGBMClassifier —0.10 LGBMRegressor —0.26

5. Discussion

The main takeaway from Tables 2 and 3 is as follows. For most ML algorithms, we
should not expect huge gains from hyperparameter tuning on average; however, there may
be some datasets for which default hyperparameters perform poorly, especially for some
algorithms. In particular, those algorithms at the bottom of the lists in Table 3 would

Algorithms 2022, 15, 315

9 0f 10

References

likely not benefit greatly from a significant investment in hyperparameter tuning. Some
algorithms are robust to hyperparameter selection, while others are somewhat less robust.
Perhaps the main limitation of this work (as in others involving hyperparameter
experimentation) pertains to the somewhat subjective choice of value ranges (Table 1).
This is, ipso facto, unavoidable in empirical research such as this. While this limitation
cannot be completely overcome, it can be offset given that the code is publicly available at
https:/ /github.com/moshesipper (accessed on 1 September 2022), and we and others may
enhance our experiment and add additional findings. Indeed, we hope this to be the case.
Table 3 can be used in practice by an ML practitioner to:

1. Decide how much to invest in hyperparameter tuning of a particular algorithm;
2. Select algorithms that require less tuning to hopefully save time—as well as energy [15].

6. Concluding Remarks

We performed a large-scale experiment of hyperparameter-tuning effectiveness, across
multiple ML algorithms and datasets. We found that for many ML algorithms, we should
not expect considerable gains from hyperparameter tuning on average; however, there
may be some datasets for which default hyperparameters perform poorly, especially for
some algorithms. By defining a single hp_score value, which combines an algorithm’s
accumulated statistics, we were able to rank the 26 ML algorithms from those expected to
gain the most from hyperparameter tuning to those expected to gain the least. We believe
such a study may serve ML practitioners at large, in several ways, as noted above.

There are many avenues for future work:

Algorithms may be added to the study.

Datasets may be added to the study.

Hyperparameters that have not been considered herein may be added.

Specific components of the setup may be managed (e.g., the metrics and the scaler of
Algorithm 1).

Additional summary scores, like the hp_score, may be devised.

6. For algorithms at the top of the lists in Table 3, we may inquire as to whether particular
hyperparameters are the root cause of their hyperparameter sensitivity; further, we
may seek out better defaults. For example, [16] recently focused on hyperparameter
tuning for KernelRidge, which is at the top of the regressor list in Table 3. Ref [6]
discussed the tunability of a specific hyperparameter, though they noted the problem
of hyperparameter dependency.

LN e

o1

Given the findings herein, it seems that, more often than not, hyperparameter tuning
will not provide huge gains over the default hyperparameters of the respective software
packages examined. A modicum of tuning would seem to be advisable, though other
factors will likely play a stronger role in final model performance, including, to name a few,
the quality of raw data, the solidity of data preprocessing, and the choice of ML algorithm
(curiously, the latter can be considered a tunable hyperparameter [3]).

Funding: This research received no external funding.
Data Availability Statement: Not applicable.

Acknowledgments: I thank Raz Lapid for helpful comments.

Conflicts of Interest: The authors declare no conflicts of interest.

1. Bergstra, J.; Yamins, D.; Cox, D.D. Hyperopt: A python library for optimizing the hyperparameters of machine learning
algorithms. In Proceedings of the 12th Python in Science Conference, Austin, TX, USA, 11-17 July 2013; Volume 13, p. 20.

2. Akiba, T,; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A Next-Generation Hyperparameter Optimization Framework. In
Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA,
4-8 August 2019; Association for Computing Machinery: New York, NY, USA, 2019; pp. 2623-2631.

https://github.com/moshesipper

Algorithms 2022, 15, 315 10 of 10

11.

12.

13.

14.
15.

16.

Sipper, M.; Moore,] H. AddGBoost: A gradient boosting-style algorithm based on strong learners. Mach. Learn. Appl. 2022,
7,100243. [CrossRef]

Sipper, M. Neural networks with a la carte selection of activation functions. SN Comput. Sci. 2021, 2, 1-9. [CrossRef]

Bischl, B.; Binder, M.; Lang, M.; Pielok, T.; Richter, J.; Coors, S.; Thomas, J.; Ullmann, T.; Becker, M.; Boulesteix, A.L.; et al.
Hyperparameter Optimization: Foundations, Algorithms, Best Practices and Open Challenges. arXiv 2021, arXiv:2107.05847.
Probst, P.; Boulesteix, A.L.; Bischl, B. Tunability: Importance of Hyperparameters of Machine Learning Algorithms.]. Mach.
Learn. Res. 2019, 20, 1-32.

Weerts, H.J.P.; Mueller, A.C.; Vanschoren, J. Importance of Tuning Hyperparameters of Machine Learning Algorithms. arXiv
2020, arXiv:2007.07588.

Turner, R.; Eriksson, D.; McCourt, M.; Kiili, J.; Laaksonen, E.; Xu, Z.; Guyon, I. Bayesian Optimization is Superior to Random
Search for Machine Learning Hyperparameter Tuning: Analysis of the Black-Box Optimization Challenge 2020. In Proceedings of
the NeurIPS 2020 Competition and Demonstration Track, Virtual Event/Vancouver, BC, Canada, 6-12 December 2020; Volume
133, pp. 3-26.

Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281-305.

Romano,].D.; Le, T.T.; La Cava, W.; Gregg,].T.; Goldberg, D.].; Chakraborty, P; Ray, N.L.; Himmelstein, D.; Fu, W.; Moore,].H.
PMLB v1.0: An open source dataset collection for benchmarking machine learning methods. arXiv 2021, arXiv:2012.00058v2.
Pedregosa, F; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825-2830.

Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13-17 August 2016; ACM: New York, NY, USA,
2016; pp. 785-794. [CrossRef]

Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W,; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient gradient boosting decision
tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3146-3154.

Scikit-Learn: Machine Learning in Python. 2022. Available online: https:/ /scikit-learn.org/ (accessed on 22 June 2022).
Garcia-Martin, E.; Rodrigues, C.F; Riley, G.; Grahn, H. Estimation of energy consumption in machine learning. J. Parallel Distrib.
Comput. 2019, 134, 75-88. [CrossRef]

Stuke, A.; Rinke, P; Todorovi¢, M. Efficient hyperparameter tuning for kernel ridge regression with Bayesian optimization. Mach.
Learn. Sci. Technol. 2021, 2, 035022. [CrossRef]

http://doi.org/10.1016/j.mlwa.2021.100243
http://dx.doi.org/10.1007/s42979-021-00885-1
http://dx.doi.org/10.1145/2939672.2939785
https://scikit-learn.org/
http://dx.doi.org/10.1016/j.jpdc.2019.07.007
http://dx.doi.org/10.1088/2632-2153/abee59

	Introduction
	Previous Work
	Experimental Setup
	Datasets.
	Algorithms
	Metrics
	Hyperparameter Tuning
	Overall Flow

	Results
	Discussion
	Concluding Remarks
	References

