
����������
�������

Citation: Simonet, G; Berry, A.

Properties and Recognition of Atom

Graphs. Algorithms 2022, 15, 294.

https://doi.org/10.3390/a15080294

Academic Editor: Qianping Gu

Received: 6 July 2022

Accepted: 15 August 2022

Published: 19 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Properties and Recognition of Atom Graphs
Geneviève Simonet 1,∗ and Anne Berry 2,∗

1 LIRMM, 161 Rue Ada, F-34 392 Montpellier, France
2 LIMOS UMR CNRS 6158, Ensemble Scientifique des Cézeaux, F-63 173 Aubière, France
* Correspondence: genevieve.simonet@umontpellier.fr (G.S.); berry@isima.fr (A.B.)

Abstract: The atom graph of a connected graph is a graph whose vertices are the atoms obtained by
clique minimal separator decomposition of this graph, and whose edges are the edges of all its atom
trees. A graph G is an atom graph if there is a graph whose atom graph is isomorphic to G. We study
the class of atom graphs, which is also the class of atom graphs of chordal graphs, and the associated
recognition problem. We prove that each atom graph is a perfect graph and give a characterization of
atom graphs in terms of a spanning tree, inspired by the characterization of clique graphs of chordal
graphs as expanded trees. We also characterize the chordal graphs having the same atom and clique
graph, and solve the recognition problem of atom graphs of two graph classes.

Keywords: clique minimal separator decomposition; atom tree; atom graph; clique graph of a chordal
graph; atom graph recognition

1. Introduction

Decomposition by clique separators was introduced by Tarjan [1] in 1985 to help the
resolution of hard problems. This decomposition of a graph G can be represented by a
binary tree whose nodes are vertex subsets of G. Its root is the vertex set of G, and for each
node V′, if G(V′) has a clique separator then the node V′ has two children A ∪ S and B ∪ S,
where {A, B, S} is a partition of V′ and S is a clique AB-separator, otherwise, V′ is a leaf
of the tree and is called an atom. However, the set of atoms depends on the choice of the
clique separators. Leimer [2] proved that the set of atoms is uniquely defined if the set
S is a clique minimal AB-separator in the definition above, leading to the notion of clique
minimal separator decomposition.

Clique minimal separator decomposition has been studied in different contexts. A
general survey is given in [3], and the complexity of its computation is improved in [4].
This decomposition is investigated in some particular graph classes [5–10] and is used in
the domains of databases [11], text mining [12], and biology [13,14].

The atoms of a chordal graph are its maximal cliques. Several graphs are defined
from a connected chordal graph G, whose nodes are the maximal cliques of G: its clique
trees [15,16], its clique graph [17], which is the intersection graph of its maximal cliques, and
the union of its clique trees, which is a subgraph of its clique graph and is shown to better
capture the structure of G than its clique graph [18,19].

These graphs, defined from a connected chordal graph, can be generalized to any
connected graph G, whose nodes are the atoms of G: its atom trees [20] and its atom graph,
which is the union of its atom trees and a subgraph of the intersection graph of its atoms,
which better captures the structure of G than the intersection graph of its atoms. Hence,
the atom trees of a connected chordal graph are its clique trees, and its atom graph is a
subgraph of its clique graph.

The notion of atom graph was introduced in 2007 in [14] to visualize biological clusters.
Several algorithms computing the atom graph of a graph are presented in [21] and extended
to the computation of the union join tree of an α-acyclic hypergraph.

Algorithms 2022, 15, 294. https://doi.org/10.3390/a15080294 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15080294
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://doi.org/10.3390/a15080294
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15080294?type=check_update&version=1

Algorithms 2022, 15, 294 2 of 20

In this paper, we focus on the class of atom graphs. A graph G is an atom graph if there
is a graph whose atom graph is isomorphic to G. First of all, we deduce from known results
that the atom graphs are exactly the atom graphs of chordal graphs, which is not the case
for clique graphs. We prove that each atom graph is a perfect graph, i.e., a graph such that
each induced subgraph has the same chromatic and clique number, or equivalently (Strong
Perfect Graph Theorem), a graph having no induced odd hole nor induced odd anti-hole.
We give a characterization of an atom graph in terms of a spanning tree, leading to an
algorithm recognizing an atom graph in O(mn−1n5) time. We also define two graph classes
such that the atom graphs of the graphs of these classes can be recognized in linear time.

The paper is organized as follows. Section 2 provides some preliminaries. Section 3
characterizes an atom graph as an atom graph of a chordal graph. Section 4 proves that
each atom graph is perfect. Section 5 characterizes the chordal graphs having the same
atom and clique graph. Sections 6 and 7 provide characterizations of an atom graph in
terms of a hypergraph and a spanning tree, respectively. Section 8 investigates the atom
graphs of the graphs of two graph classes. We conclude in Section 9.

2. Preliminaries

The preliminaries of this paper are similar to those of [21]. In order to avoid useless
repetition, we only recall here the main definitions, results and notations, and add some
results from [21], the new notions appearing in this paper and the results that are explicitly
referred to in this paper. We invite the reader to have a look at the preliminaries section
of [21] for more detail and an example.

We consider here finite and undirected graphs. For a graph G = (V, E), n = |V| (order
of G) and m = |E|. For any subset X of V, G(X) denotes the subgraph of G induced by
S. For any vertex v of G, NG(v) denotes the neighborhood of v in G, i.e., NG(v) = {w ∈
V | vw ∈ E}, and NG[v] denotes its closed neighborhood in G, i.e., NG[v] = {v} ∪ NG(v).
For any subset X of V, NG(X) = (∪v∈X NG(v)) \ X and NG[X] = X ∪ NG(X).

For each graph G, K(G) denotes the set of maximal cliques of G and the clique graph of
G, denoted by CG(G), is the intersection graph of K(G). If X and Y are nodes of a tree T,
PT(X, Y) denotes the path in T between X and Y.

For each integer k ≥ 3, a Ck is a graph which is a cycle of length k and a k-sun is
a graph obtained from a Ck by adding for each edge xy of this Ck a vertex adjacent to
x and y and adding all edges that are necessary to make this Ck into a clique. A hole is
a Ck with k ≥ 5, and an anti-hole is its complement graph. A hole or anti-hole is odd if
its number of vertices is odd. G is (odd-)(anti-)hole-free if no induced subgraph of G is an
(odd)(anti-)hole. We do not use the definition of a perfect graph in this paper, but we use
its well-known characterization as an odd-hole-free and odd-anti-hole-free graph (Strong
Perfect Graph Theorem).
Separation. Let G = (V, E) be a connected graph and let S be a subset of V. S is a separator
of G if G(V \ S) is disconnected. The connected components of G(V \ S) are called the
components of S in G. For any pair {a, b} of V \ S, S is an ab-separator of G if a and b are
in different components of S in G. S is a minimal ab-separator if it is an inclusion-minimal
ab-separator, and a minimal separator if there is some pair {a, b} of V such that S is a minimal
ab-separator. A full component of S in G is a component C of S in G such that NG(C) = S. S
is a minimal separator if S has at least two full components, and S is a minimal ab-separator
if a and b lie in two different full components of S. Let A and B be two subsets of V. S is a
(minimal) AB-separator of G if it is a (minimal) ab-separator of G for each a ∈ A and each
b ∈ B.

If G is disconnected, then a (minimal) (ab-)separator of G is a (minimal) (ab-)separator
of one of its connected components.
Chordal graph. A graph is chordal, or triangulated, if it has no chordless cycle of length
at least 4. A graph is chordal if and only if all its minimal separators are cliques [22]. A
connected graph is chordal if and only if it has a clique tree [16,23].

Algorithms 2022, 15, 294 3 of 20

Definition 1. Let G = (V, E) be a connected chordal graph. A clique tree of G is a tree
T = (K(G), ET) such that for each vertex x of G, the set Kx of nodes of T containing x induces a
subtree of T.

Characterization 1 ([15]). Let G = (V, E) be a connected chordal graph, let T be a clique tree of
G, and let S ⊆ V; then S is a minimal separator of G if and only if there is an edge XY of T such
that S = X ∩Y.

Property 1 ([24]). Let G = (V, E) be a connected chordal graph, let T be a clique tree of G, and let
S be a minimal separator of G. The number of edges XY of Tsuch that S = X ∩ Y is equal to the
number of full components of S in G minus 1.

If G is a disconnected chordal graph, we associate with G a forest whose connected
components are clique trees of the connected components of G. A clique tree (forest) can be
computed in linear time [15].

A block graph is a (necessarily chordal) graph whose minimal separators are of size 1.
Atom. In this paper, we do not use the definition of atoms as the vertex sets produced by
clique minimal separator decomposition, but their following characterization.

Characterization 2 ([2]). Let G = (V, E) be a graph and let A be a subset of V. A is an atom of
G if and only if A is an inclusion-maximal subset of V inducing a connected subgraph of G with no
clique separator.

We denote the set of atoms of G by A(G). A graph has at most n atoms.

Atom tree.

Definition 2 ([20]). Let G = (V, E) be a connected graph. An atom tree of G is a tree T =
(A(G), ET) such that for each vertex x of G, the setAx of nodes of T containing x induces a subtree
of T.

Characterization 3 ([20]). Let G = (V, E) be a connected graph, let T be an atom tree of G, and
let S ⊆ V; then S is a clique minimal separator of G if and only if there is an edge AB of T such
that S = A ∩ B.

Atom graph.

Definition 3 ([21]). The atom graph of a graph G, denoted by AG(G), is the graph (A(G), E′),
where A(G) is the set of atoms and E′ the set of pairs {A, B} of A(G) such that A ∩ B is a clique
minimal (A \ B)(B \ A)-separator of G.

Property 2 ([21]). Let A and B be distinct atoms of a graph G. Then, G(A \ B) is connected and
A ∩ B ⊆ NG(A \ B).

Property 3 ([2,21]). Let G = (V, E) be a connected graph, and let G+ be the graph obtained from
G by adding all the edges that are necessary to make each atom of G into a clique. Then G+ is
chordal, its clique trees are the atom trees of G, its atom graph is the atom graph of G and for each
clique S of G, the full components of S in G+ are the full components of S in G.

Characterization 4 ([21]). The atom graph of a connected graph G is the union of all the atom
trees of G.

Characterization 5 ([21]). Let G be a connected graph, let A and B be distinct atoms of G and let
T be an atom tree of G. Then, AB is an edge of AG(G) if and only if there is an edge A′B′ on the
path PT(A, B) from A to B in the tree T such that A ∩ B = A′ ∩ B′.

Algorithms 2022, 15, 294 4 of 20

By definition of an atom tree, for each pair {A, B} of nodes of an atom tree T and
each edge A′B′ of PT(A, B), A ∩ B ⊆ A′ ∩ B′. It follows that in Characterization 5, the
equality A ∩ B = A′ ∩ B′ can be replaced by A′ ∩ B′ ⊆ A ∩ B, |A′ ∩ B′| = |A ∩ B| or
|A′ ∩ B′| ≤ |A ∩ B|. We associate with each edge AB of an atom tree or an atom graph the
set A ∩ B of weight |A ∩ B|.
Clique graph of a chordal graph. A graph G is a clique graph of a chordal graph if there is a
chordal graph G′ such that G is isomorphic to the clique graph of G′.

Characterization 6 ([25]). A graph G is a clique graph of a chordal graph if and only if it has a
spanning tree T such that each maximal clique of G induces a subtree of T.

α-acyclic hypergraphs. A simple hypergraph, or hypergraph for short, is a structure H = (V, E),
where V is its vertex set and E is a set of non-empty subsets of V, called the hyperedges of
H, whose union is equal to V. A hypergraph is a clutter if the elements of E are pairwise
non-inclusive. Its line graph, denoted by L(H), is the intersection graph of E . Its 2-section
graph, denoted by 2SEC(H), is the graph whose vertex set is V and whose edges are the
pairs of V that are contained in a hyperedge of H. H is connected if L(H) is connected, or
equivalently if 2SEC(H) is connected.

A join tree of H is a tree T whose node set is E and such that for each vertex x of H,
the set Ex of nodes of T containing x induces a subtree of T, or equivalently, such that for
each pair {X, Y} of E , X ∩ Y is a subset of each node of PT(X, Y). H is α-acyclic if it has a
join tree.

Definition 4 ([21]). The union join graph of an α-acyclic hypergraph H, denoted by UJ(H), is
the union of its join trees.

Definition 5 ([21]). Let G = (V, E) be a graph. The atom hypergraph of G is the hypergraph
H = (V,A(G)).

Property 4 ([21]). Let G be a connected graph and let H be its atom hypergraph. Then, H is a
connected α-acyclic hypergraph and the atom graph of G is the union join graph of H.

Property 5. Let H be an α-acyclic hypergraph, and let G be the 2-section graph 2SEC(H). Then,
G is chordal and if H is a clutter then it is the atom hypergraph of G.

A non-clutter α-acyclic hypergraph can be turned into a clutter by adding a specific
element to each non-inclusion-maximal hyperedge, so any connected α-acyclic hypergraph
is an atom hypergraph up to some isomorphism as stated in Property 6.

Property 6 ([21]). Let H be a connected α-acyclic hypergraph. Then, there is a connected chordal
graph G such that the atom graph of G is isomorphic to the union join graph of H.

Characterization 5 can be rewritten in terms of α-acyclic hypergraph as follows (tuj
stands for to union join).

Definition 6 ([21]). For each join tree T = (E , ET) of a hypergraph, tuj(T) is the graph whose
node set is E and whose edges are the pairs {X, Y} of E such that there is an edge X′Y′ of PT(X, Y)
such that X ∩Y = X′ ∩Y′ (or equivalently X′ ∩Y′ ⊆ X ∩Y).

Characterization 7 ([21]). For each α-acyclic hypergraph H and each join tree T of H, UJ(H) =
tuj(T).

We associate with each edge AB of a join tree or an union join graph the set A ∩ B of
weight |A ∩ B|.

Algorithms 2022, 15, 294 5 of 20

3. Atom Graphs Are Atom Graphs of Chordal Graphs

A graph is an atom graph if it is isomorphic to the atom graph of some graph. Similarly,
for a given graph class C, a graph is an atom graph of a graph of C if it is isomorphic to
the atom graph of some graph of C . The atom graph recognition problem consists of
determining whether a given graph is an atom graph. According to Definition 3, the
connected components of the atom graph of a graph are the atom graphs of the connected
components of this graph. It follows that a graph is an atom graph if and only if each one of
its connected components is, so we may, without loss of generality, assume that the given
graph is connected. We obtain similar definitions by replacing ’atom graph’ with ’clique
graph’ for which we may also assume that the given graph is connected.

We immediately deduce from Property 3 the following characterization.

Characterization 8. A graph is an atom graph if and only if it is an atom graph of a chordal graph.

Thus, the atom graph recognition problem can be reduced to an atom graph of a
chordal graph recognition problem. It is not the case for clique graph recognition, which is
NP-complete [26], whereas clique graph of a chordal graph recognition is polynomial [17].
As far as we know, the complexity of recognizing an atom graph (or equivalently an atom
graph of a chordal graph) is an open question.

4. Atom Graphs Are Perfect

The clique graph of a chordal graph is not necessarily chordal, and not even perfect.
For instance, the clique graph of the 5-sun is non-perfect, but its atom graph is chordal (see
Figure 1), which follows from Characterization 14 below since the minimal separators of the
5-sun are pairwise non-inclusive. Introducing inclusion-comparable minimal separators,
we can build a graph whose atom graph is non-chordal, as shown in Figure 2. This
non-chordal atom graph is perfect though.

• •

•
•

•
•

•
•
•

•
A B

C

D

E
F

A B

C

D

E
F

A B

C

D

E
F

Figure 1: A chordal graph, its non-perfect clique graph and its chordal atom graph.

••

• •

•

•
• •

•
E

A C
B

DF
G

A

B

C

D

E

F

G

A

B

C

D

E

F

G

Figure 2: A chordal graph, its chordal clique graph and its non-chordal (but perfect) atom
graph.

we can build a graph whose atom graph is non-chordal, as shown in Figure 2. This non-
chordal atom graph is perfect though.

We will show that each atom graph is perfect, and more accurately, that it is odd-hole-
free and anti-hole-free.

Notation 4.1 Let G = (V,E) be a graph. For each atom A and each clique S of G distinct
from A, CS(A) denotes the connected component of G(V \ S) containing A \ S.

This definition is correct since by definition of an atom, for each atom A and each clique
S of G distinct from A G(A \ S) is necessarily non-empty and connected. In particular
CS(A) is defined if S is in the form X ∩ Y where X and Y are distinct atoms of G. Note
that in that case, by Property 2.8, XY is an edge of AG(G) if and only if CS(X) 6= CS(Y).

Lemma 4.2 Let A be an atom and S a clique of a graph G such that S ⊂ A. Then
S = NG(CS(A)).

Proof: NG(CS(A)) is clearly a subset of S, and it cannot be a strict subset of S since
in that case it would be a clique ab-separator of G(A) for any a in A \ S and any b in
S \NG(CS(A)). 2

Lemma 4.3 Let G be a graph, let µ be a cycle of AG(G), let AB be an edge of µ and let
S = A ∩ B; then there is an edge A′B′ of µ such that CS(B) = CS(B′) and A′ ∩ B′ ⊆ S,
with A, B, B′, A′ in this order on µ (with possibly B = B′ or A′ = A).

7

Figure 1. A chordal graph, its non-perfect clique graph and its chordal atom graph.

• •

•
•

•
•

•
•
•

•
A B

C

D

E
F

A B

C

D

E
F

A B

C

D

E
F

Figure 1: A chordal graph, its non-perfect clique graph and its chordal atom graph.

••

• •

•

•
• •

•
E

A C
B

DF
G

A

B

C

D

E

F

G

A

B

C

D

E

F

G

Figure 2: A chordal graph, its chordal clique graph and its non-chordal (but perfect) atom
graph.

we can build a graph whose atom graph is non-chordal, as shown in Figure 2. This non-
chordal atom graph is perfect though.

We will show that each atom graph is perfect, and more accurately, that it is odd-hole-
free and anti-hole-free.

Notation 4.1 Let G = (V,E) be a graph. For each atom A and each clique S of G distinct
from A, CS(A) denotes the connected component of G(V \ S) containing A \ S.

This definition is correct since by definition of an atom, for each atom A and each clique
S of G distinct from A G(A \ S) is necessarily non-empty and connected. In particular
CS(A) is defined if S is in the form X ∩ Y where X and Y are distinct atoms of G. Note
that in that case, by Property 2.8, XY is an edge of AG(G) if and only if CS(X) 6= CS(Y).

Lemma 4.2 Let A be an atom and S a clique of a graph G such that S ⊂ A. Then
S = NG(CS(A)).

Proof: NG(CS(A)) is clearly a subset of S, and it cannot be a strict subset of S since
in that case it would be a clique ab-separator of G(A) for any a in A \ S and any b in
S \NG(CS(A)). 2

Lemma 4.3 Let G be a graph, let µ be a cycle of AG(G), let AB be an edge of µ and let
S = A ∩ B; then there is an edge A′B′ of µ such that CS(B) = CS(B′) and A′ ∩ B′ ⊆ S,
with A, B, B′, A′ in this order on µ (with possibly B = B′ or A′ = A).

7

Figure 2. A chordal graph, its chordal clique graph and its non-chordal (but perfect) atom graph.

We will show that each atom graph is perfect, and more accurately, that it is odd-hole-
free and anti-hole-free.

Notation 1. Let G = (V, E) be a graph. For each atom A and each clique S of G distinct from A,
CS(A) denotes the connected component of G(V \ S) containing A \ S.

This definition is correct since by definition of an atom, for each atom A and each
clique S of G distinct from A G(A \ S) is necessarily non-empty and connected. In particular

Algorithms 2022, 15, 294 6 of 20

CS(A) is defined if S is in the form X ∩Y where X and Y are distinct atoms of G. Note that
in that case, by Property 2, XY is an edge of AG(G) if and only if CS(X) 6= CS(Y).

Lemma 1. Let A be an atom and S a clique of a graph G such that S ⊂ A. Then S = NG(CS(A)).

Proof. NG(CS(A)) is clearly a subset of S, and it cannot be a strict subset of S since
in that case it would be a clique ab-separator of G(A) for any a in A \ S and any b in
S \ NG(CS(A)).

Lemma 2. Let G be a graph, let µ be a cycle of AG(G), let AB be an edge of µ and let S = A ∩ B;
then there is an edge A′B′ of µ such that CS(B) = CS(B′) and A′ ∩ B′ ⊆ S, with A, B, B′, A′ in
this order on µ (with possibly B = B′ or A′ = A).

Proof. As AB is an edge of AG(G), CS(A) 6= CS(B). Let A′ be the first node X of the path
µ− {AB} from B such that CS(X) 6= CS(B), and let B′ be the node preceding A′ on this
path from B. CS(B) = CS(B′) with A, B, B′, A′ in this order on µ, and as CS(A′) 6= CS(B),
it follows that CS(A′) 6= CS(B′), and therefore A′ ∩ B′ ⊆ S.

We deduce from Lemma 2 the following properties of atom graphs. Property 8 is
proved in [18] for chordal graphs.

Property 7. Let G be a graph, let µ be a cycle of AG(G) and let S be an inclusion-minimal set
among the sets associated with the edges of µ; then S is associated with at least two edges of µ.

Property 8. Let G be a graph and let µ be a C3 of AG(G); then two of the clique minimal separators
associated with the edges of µ are equal and included in the third one.

Lemma 3. Let G be a connected graph, let X, X′ and Y be atoms and let S be the intersection of
two distinct atoms of G.
(a) If S ⊆ X and CS(X) 6= CS(Y) then (XY is an edge of AG(G)⇔ N(CS(Y)) ⊆ Y),
(b) If S ⊆ X ∩Y and CS(X) 6= CS(Y) then XY is an edge of AG(G),
(c) If S ⊆ X ∩ X′, CS(X) = CS(X′) and Y is adjacent to X but not to X′ in AG(G) then
CS(X) = CS(Y).

Proof. (a) Let G = (V, E). We assume that S ⊆ X and CS(X) 6= CS(Y). Let us show that
XY is an edge of AG(G)⇔ N(CS(Y)) ⊆ Y.

XY is an edge of AG(G) if CX∩Y(X) 6= CX∩Y(Y), which is still equivalent to CX∩Y(Y) ∩
(X \Y) = ∅. Let C = CX∩Y(Y). It is sufficient to show that N(CS(Y)) ⊆ Y ⇔ C ∩ (X \Y) = ∅.

First, note that as N(CS(Y)) ⊆ S ⊆ X, we have N(CS(Y)) ⊆ X, and that as CS(X) 6=
CS(Y), we have X ∩Y ⊆ S, and therefore CS(Y) ⊆ C ⊆ V \ (X ∩Y).

⇒: We assume that N(CS(Y)) ⊆ Y. Then, N(CS(Y)) ⊆ X ∩ Y, with CS(Y) being a
connected subset of V \ (X ∩Y), so C = CS(Y) and therefore C∩ (X \Y) ⊆ CS(Y)∩X = ∅.

⇐: We now assume that N(CS(Y)) 6⊆ Y. Let x ∈ N(CS(Y)) \ Y. x ∈ X \ Y, and as
x 6∈ X ∩Y and x has a neighbor in CS(Y) with CS(Y) ⊆ C, x ∈ C. Hence, x ∈ C ∩ (X \Y),
and therefore C ∩ (X \Y) 6= ∅.

(b) As N(CS(Y)) ⊆ S ⊆ Y, by a) XY is an edge of AG(G).
(c) We assume for contradiction that S ⊆ X ∩ X′, CS(X) = CS(X′), Y is adjacent to X

but not to X′ in AG(G) and CS(X) 6= CS(Y). By (a) on X and Y, N(CS(Y)) ⊆ Y, and by (a)
on X′ and Y, N(CS(Y)) 6⊆ Y, a contradiction.

Property 9. Let G be a graph and let µ be a chordless cycle of AG(G) of length at least 4; then
either µ is of length 4 and its four edges are associated with the same clique minimal separator or
there is an integer k ≥ 2 such that µ is of length 2k, there are exactly k distinct clique minimal
separators associated with the edges of µ which are pairwise non-inclusive and each such separator
is associated with two consecutive edges of µ.

Algorithms 2022, 15, 294 7 of 20

In both cases, for each set of consecutive edges XY and YZ of µ associated with the same clique
minimal separator S, CS(X) = CS(Z).

Proof. Let AB be an edge of µ such that A ∩ B is inclusion-minimal among the clique
minimal separators associated with the edges of µ and let S = A ∩ B. Let us first prove the
following property P1.
P1: for each pair {X, Y} of nodes of µ such that CS(X) 6= CS(Y), the following propositions
are equivalent:

(1) XY is an edge of µ,
(2) X ∩Y = S,
(3) S ⊆ X ∩Y.
1 ⇒ 2: as CS(X) 6= CS(Y) X ∩ Y ⊆ S, and by the minimality of S X ∩ Y 6⊂ S, so

X ∩Y = S.
2⇒ 3 is evident.
3⇒ 1: by Lemma 3 (b) XY is an edge of AG(G), and therefore of µ since µ is chordless.
By Lemma 2, there is an edge A′B′ of µ such that CS(B) = CS(B′) and A′ ∩ B′ ⊆ S,

with A, B, B′, A′ in this order on µ. By the minimality of S, A′ ∩ B′ = S. As AB is an edge
of AG(G), CS(A) 6= CS(B), and therefore CS(A) 6= CS(B′). As S ⊆ A ∩ B′, by P1 AB′ is an
edge of µ. It follows that B = B′ or A = A′. We assume, without loss of generality, that
B = B′. By P1 again, as S ⊆ A ∩ A′ and AA′ is not an edge of µ, CS(A) = CS(A′). Let D be
the neighbor of A on µ different from B.

First case : CS(D) = CS(B)
As CS(A) 6= CS(D) and AD is an edge of µ, by P1 A ∩ D = S. Hence, as CS(D) 6=

CS(A′) and S ⊆ D∩ A′, by P1 DA′ is an edge of µ and D∩ A′ = S. Thus, µ satisfies the first
alternative of Property 9 and for each set of consecutive edges XY and YZ of µ associated
with the same clique minimal separator S, CS(X) = CS(Z).

Second case : CS(D) 6= CS(B)
Let us show that for each node X of µ − {A, B, A′}, S 6⊆ X. Let X be a node of

µ− {A, B, A′}, and let Y be a node of {A, B} such that CS(X) 6= CS(Y) and XY is not an
edge of µ (if X = D then Y = B otherwise Y exists since neither XA nor XB is an edge of µ
and CS(A) 6= CS(B)). By P1 S 6⊆ X∩Y, so as S ⊆ Y, S 6⊆ X. It follows that for each edge XY
of µ− {B}, S 6⊆ X ∩Y. Hence, S is associated with no other edge than the two consecutive
edges AB and A′B of µ. It also follows that S is a strict subset of no other clique minimal
separator associated with an edge of µ, and as this holds for each inclusion-minimal clique
minimal separator associated with an edge of µ, the clique minimal separators associated
with the edges of µ are pairwise non-inclusive and therefore all inclusion-minimal. Hence,
µ satisfies the second alternative of Property 9, and for each set of consecutive edges XY
and YZ of µ associated with the same clique minimal separator S, CS(X) = CS(Z).

Example 1. A graph and its atom graph having an induced C4 satisfying the first alternative of
Property 9 is shown in Figure 3 (the cycle (A, D, C, F) is such a C4). A graph and its atom graph
having an induced C4 satisfying the second alternative of Property 9 is shown in Figure 4 (the cycle
(A, B, E, D) is such a C4). Note that in both cases, the graph is chordal and has a clique tree which
is a path: the path (A, B, C, D, E, F), for instance, in the first case, and (A, B, C, D, E), for instance,
in the second case. This contradicts the claim from [18] that any path of a clique tree of a chordal
graph induces a chordal subgraph of its atom graph.

For each k ≥ 3, the atom graph of the graph obtained from a k-sun by adding a vertex of
degree 1 adjacent to x for each vertex x of the clique of size k has an induced C2k satisfying the
second alternative of Property 9 (see Figure 2 for k = 3).

Algorithms 2022, 15, 294 8 of 20

•
• •

•

•
••

•
•

A
B

C

D
E

F

S

A

B

C

D

E

F

SS

S S

Figure 3: A graph and its atom graph having an induced C4 whose edges are associated
with the same clique minimal separator S.

•1

•2

•3 •4 •5 •6

•
7
•
8

B = {2, 3, 4, 7} D = {2, 5, 6, 7}A

C

E

A

B C D

E

{2}

{7} {7}

{2}

Figure 4: A graph and its atom graph having an induced C4 whose edges are associated
with two distinct clique minimal separators ({2} and {7}).

in the first case, and (A,B,C,D,E) for instance in the second case. This contradicts the
claim from [17] that any path of a clique tree of a chordal graph induces a chordal subgraph
of its atom graph.
For each k ≥ 3, the atom graph of the graph obtained from a k-sun by adding a vertex of
degree 1 adjacent to x for each vertex x of the clique of size k has an induced C2k satisfying
the second alternative of Property 4.7 (see Figure 2 for k = 3).

Corollary 4.9 Each atom graph is odd-hole-free.

Property 4.10 Each atom graph is anti-hole-free.

Proof: We assume for contradiction that some induced subgraph of some atom graph
G is an anti-hole, and let k be its length. k ≥ 6 by Corollary 4.9 since an anti-hole
of length 5 is a hole. Let G′ be a graph such that G is isomorphic to AG(G′), let µ
be a chordless cycle of AG(G′) of length k, and let (A′, A,D1, B1, B2) be a sequence of
consecutive nodes of µ. As k ≥ 6 {A′, A,B1, B2} induces a C4 of AG(G′), so by Property 4.7
A ∩ B1 is equal to A′ ∩ B1 or to A ∩ B2. We assume w.l.o.g. that A ∩ B1 = A′ ∩ B1.
Let (A′, A,D1, B1, . . . , Bp, Dp) be the full sequence of consecutive vertices of µ, and for
each i ∈ [1, p], let Si = A ∩ Bi and let P (i) be the predicate Si = A′ ∩ Bi. As P (1)

10

Figure 3. A graph and its atom graph having an induced C4 whose edges are associated with the
same clique minimal separator S.

•
• •

•

•
••

•
•

A
B

C

D
E

F

S

A

B

C

D

E

F

SS

S S

Figure 3: A graph and its atom graph having an induced C4 whose edges are associated
with the same clique minimal separator S.

•1

•2

•3 •4 •5 •6

•
7
•
8

B = {2, 3, 4, 7} D = {2, 5, 6, 7}A

C

E

A

B C D

E

{2}

{7} {7}

{2}

Figure 4: A graph and its atom graph having an induced C4 whose edges are associated
with two distinct clique minimal separators ({2} and {7}).

in the first case, and (A,B,C,D,E) for instance in the second case. This contradicts the
claim from [17] that any path of a clique tree of a chordal graph induces a chordal subgraph
of its atom graph.
For each k ≥ 3, the atom graph of the graph obtained from a k-sun by adding a vertex of
degree 1 adjacent to x for each vertex x of the clique of size k has an induced C2k satisfying
the second alternative of Property 4.7 (see Figure 2 for k = 3).

Corollary 4.9 Each atom graph is odd-hole-free.

Property 4.10 Each atom graph is anti-hole-free.

Proof: We assume for contradiction that some induced subgraph of some atom graph
G is an anti-hole, and let k be its length. k ≥ 6 by Corollary 4.9 since an anti-hole
of length 5 is a hole. Let G′ be a graph such that G is isomorphic to AG(G′), let µ
be a chordless cycle of AG(G′) of length k, and let (A′, A,D1, B1, B2) be a sequence of
consecutive nodes of µ. As k ≥ 6 {A′, A,B1, B2} induces a C4 of AG(G′), so by Property 4.7
A ∩ B1 is equal to A′ ∩ B1 or to A ∩ B2. We assume w.l.o.g. that A ∩ B1 = A′ ∩ B1.
Let (A′, A,D1, B1, . . . , Bp, Dp) be the full sequence of consecutive vertices of µ, and for
each i ∈ [1, p], let Si = A ∩ Bi and let P (i) be the predicate Si = A′ ∩ Bi. As P (1)

10

Figure 4. A graph and its atom graph having an induced C4 whose edges are associated with two
distinct clique minimal separators ({2} and {7}).

Corollary 1. Each atom graph is odd-hole-free.

Property 10. Each atom graph is anti-hole-free.

Proof. We assume for contradiction that some induced subgraph of some atom graph G
is an anti-hole and let k be its length. k ≥ 6 by Corollary 1 since an anti-hole of length
5 is a hole. Let G′ be a graph such that G is isomorphic to AG(G′), let µ be a chordless
cycle of AG(G′) of length k, and let (A′, A, D1, B1, B2) be a sequence of consecutive nodes
of µ. As k ≥ 6 {A′, A, B1, B2} induces a C4 of AG(G′), so by Property 9 A ∩ B1 is equal
to A′ ∩ B1 or to A ∩ B2. We assume without loss of generality that A ∩ B1 = A′ ∩ B1. Let
(A′, A, D1, B1, . . . , Bp, Dp) be the full sequence of consecutive vertices of µ, and for each
i ∈ [1, p], let Si = A ∩ Bi and let P(i) be the predicate Si = A′ ∩ Bi. As P(1) holds and
for each i ∈ [1, p− 1],P(i) ⇒ P(i + 1) holds by Property 9, it follows by induction that
∀i ∈ [1, p] P(i). Let Y ∈ {D1, Dp} and let i ∈ {1, p}. As ABi is an edge of AG(G′) CSi (A) 6=
CSi (Bi), and by Property 9 CSi (A) = CSi (A′). By Lemma 3 c) with {X, X′} = {A, A′},
CSi (A) = CSi (Y). It follows that CSi (Bi) 6= CSi (Y), so by Lemma 3 a) (BiY is an edge of
AG(G′)⇔ NG′(CSi (Y)) ⊆ Y). By Lemma 1 Si = NG′(CSi (A)), so Si = NG′(CSi (Y)), and
therefore we have the equivalence (BiY is an edge of AG(G′)⇔ Si ⊆ Y). Hence S1 6⊆ D1,
Sp ⊆ D1, S1 ⊆ Dp and Sp 6⊆ Dp. Let x ∈ S1 \ D1 and let y ∈ Sp \ Dp. x ∈ Dp \ D1,
y ∈ D1 \ Dp and {x, y} ⊆ A \ (D1 ∩ Dp) ⊆ CD1∩Dp(A). Hence D1Dp is not an edge of
AG(G′), a contradiction.

Corollary 2. Each atom graph is perfect.

5. Atom Graph and Clique Graph of a Chordal Graph

The atom graph of a chordal graph G is a subgraph of its clique graph with the same
node set. These two graphs may be equal. It is the case if G is a block graph by Lemma 6
below, or the graph obtained from a C4 by adding a chord, which is not a block graph. We
have the following characterization.

Algorithms 2022, 15, 294 9 of 20

Characterization 9. Let G be a connected chordal graph. The following propositions are equivalent
(CS(A) is defined in Notation 1):

1. AG(G) = CG(G),
2. for each minimal separator S of G and each maximal clique A of G, S ∩ A = ∅ or N(CS(A)) ⊆ A,
3. each cycle of CG(G) has two edges that are of minimum weight among the edges of this cycle

and are associated with the same set,
4. each cycle of CG(G) has two edges that are of minimum weight among the edges of this cycle.

Proof. Let T be a clique tree of G.
1⇒ 2: let S be a minimal separator of G and let A be a maximal clique of G such that

S ∩ A 6= ∅. Let us show that N(CS(A)) ⊆ A. Let XY be an edge of T associated with S.
As CS(X) 6= CS(Y), at least one of them, say CS(X) is different from CS(A). Moreover, as
S ⊆ X and S ∩ A 6= ∅, it follows that X ∩ A 6= ∅. Hence, XA is an edge of CG(G), i.e., of
AG(G), so by item (a) of Lemma 3, N(CS(A)) ⊆ A.

2 ⇒ 1: as AG(G) is a subgraph of CG(G) with the same node set, it is sufficient to
show that each edge of CG(G) is an edge of AG(G). Let XY be an edge of CG(G), and
let us show that it is an edge of AG(G). Let Y′ be the neighbor of X on PT(X, Y) and let
S = X ∩Y′. As XY is an edge of CG(G) and X ∩Y ⊆ S ∩Y, it follows that S ∩Y 6= ∅, and
therefore N(CS(Y)) ⊆ Y. As X and Y are in different connected components of T − {XY′},
CS(X) 6= CS(Y) [15], so by item a) of Lemma 3 again XY is an edge of AG(G).

1⇒ 3 immediately follows from Property 7.
3⇒ 4 is evident.
4 ⇒ 1: we assume for contradiction that AG(G) 6= CG(G). Let XY be an edge of

CG(G) that is not an edge of AG(G). Then, by Characterization 5 for each edge X′Y′ of
PT(X, Y) X ∩Y ⊂ X′ ∩Y′. Hence, XY is the unique edge of minimum weight of the cycle
of CG(G) formed by XY and PT(X, Y), a contradiction.

We immediately refind from Characterization 9 that a block graph has the same atom
and clique graph since it satisfies item 2. If G is not chordal then its atom graph is necessarily
different from its clique graph since its atoms are not its maximal cliques (a chordless cycle
of length at least 4 is connected and has no clique separator, and therefore is a subset of
some atom). However, Characterization 9 extends to each connected graph, replacing
‘CG(G)’ by ‘the intersection graph of the set of atoms of G’, ‘minimal separator’ by ‘clique
minimal separator’ and ‘maximal clique’ by ‘atom’ by Property 3.

These classes are inclusion-uncomparable. The 3-sun is an atom graph (it is the atom
graph of the graph shown in Figure 5).

•
••

•
•

•

•

•

A

B E

F

C D

AB

C D

E

F

Figure 5: The 3-sun is an atom graph.

S = X ∩Y ′. As XY is an edge of CG(G) and X ∩Y ⊆ S∩Y , it follows that S∩Y 6= ∅, and
therefore N(CS(Y)) ⊆ Y . As X and Y are in different connected components of T−{XY ′},
CS(X) 6= CS(Y) [8], so by item a) of Lemma 4.6 again XY is an edge of AG(G).
1⇒ 3 immediately follows from Property 4.4.
3⇒ 4 is evident.
4⇒ 1: we assume for contradiction that AG(G) 6= CG(G). Let XY be an edge of CG(G)
that is not an edge of AG(G). Then by Characterization 2.11 for each edge X ′Y ′ of PT (X, Y)
X ∩ Y ⊂ X ′ ∩ Y ′. Hence XY is the unique edge of minimum weight of the cycle of CG(G)
formed by XY and PT (X, Y), a contradiction. 2

We immediately refind from Characterization 5.1 that a block graph has the same atom
and clique graph since it satisfies item 2. If G is not chordal then its atom graph is necessarily
different from its clique graph since its atoms are not its maximal cliques (a chordless cycle
of length at least 4 is connected and has no clique separator, and therefore is a subset
of some atom). However Characterization 5.1 extends to each connected graph, replacing
‘CG(G)’ by ‘the intersection graph of the set of atoms of G’, ‘minimal separator’ by ‘clique
minimal separator’ and ‘maximal clique’ by ‘atom’ by Property 2.9..

These classes are inclusion-uncomparable. The 3-sun is an atom graph (it is the atom
graph of the graph shown in Figure 5) but by Characterization 2.12 it is not a clique graph
of a chordal graph (if it had a spanning tree T such that each maximal clique induces a
subtree of T then each one of the 3 extermal triangles of the 3-sun would induce a subtree
of T , and therefore T would have a cycle). Conversely, the non-perfect clique graph of a
chordal graph shown in Figure 1 is not an atom graph since atom graphs are perfect. It
follows that no necessary (resp. sufficient) condition for a graph to be a clique graph of a
chordal graph immediately extends to atom graphs. We will go further into the comparison
of these two classes in Section 7.

6 Atom graph and union join graph

We immediately deduce from Properties 2.15 and 2.17 and from Characterization 2.19 the
following result, which will be usefull to prove the characterization of an atom graph as an
AG-expanded tree in Section 7.

12

Figure 5. The 3-sun is an atom graph.

However, by Characterization 6 it is not a clique graph of a chordal graph (if it had
a spanning tree T such that each maximal clique induces a subtree of T then each one
of the three external triangles of the 3-sun would induce a subtree of T, and therefore T
would have a cycle). Conversely, the non-perfect clique graph of a chordal graph shown in
Figure 1 is not an atom graph since atom graphs are perfect. It follows that no necessary
(resp. sufficient) condition for a graph to be a clique graph of a chordal graph immediately
extends to atom graphs. We will go further into the comparison of these two classes in
Section 7.

Algorithms 2022, 15, 294 10 of 20

6. Atom Graph and Union Join Graph

We immediately deduce from Properties 4 and 6 and from Characterization 7 the
following result, which will be useful to prove the characterization of an atom graph as an
AG-expanded tree in Section 7.

Characterization 10. A connected graph. G is an atom graph if and only if there is a join tree T of
a connected α-acyclic hypergraph such that G is isomorphic to tuj(T).

Let H be a connected α-acyclic hypergraph. By Property 6 there is a connected chordal
graph G such that UJ(H) = AG(G) and L(H) = CG(G) up to some isomorphism. It
follows that UJ(H) is a subgraph of L(H) with the same node set and that we can deduce
from Characterization 9 the following characterizations of a connected α-acyclic hypergraph
having the same union join graph and line graph.

Characterization 11. Let H be a connected α-acyclic hypergraph. The following propositions
are equivalent:

1. UJ(H) = L(H),
2. each cycle of L(H) has two edges that are of minimum weight among the edges of this cycle

and are associated with the same set,
3. each cycle of L(H) has two edges that are of minimum weight among the edges of this cycle.

7. Characterizations in Terms of Spanning Trees

The polynomial complexity of recognizing a clique graph of a chordal graph is proved
using a characterization of this graph as an expanded tree [17]. We recall this characterization,
which will give inspiration for a characterization of an atom graph.

Definition 7. A graph G is an expanded tree if there is a spanning tree T of G such that for each
edge xy of G, the set of vertices of PT(x, y) is a clique of G.

The clique graph of a chordal graph G is an expanded tree since any clique tree of G
satisfies the condition. The converse holds by the following characterization.

Characterization 12 ([17]). A connected graph is a clique graph of a chordal graph if and only if
it is an expanded tree.

For instance, trees and complete graphs are clearly expanded trees, and therefore
clique graphs of chordal graphs, which also follows from Characterization 14.

We now come to a characterization of an atom graph in terms of a spanning tree.

Definition 8. An AG-structure of a graph G = (V, E) is a triple (T, Se, SV) where T is a
spanning tree of G, Se is an ordering (e1, . . . , ep) of the edges of T and SV is a sequence (V1, . . . , Vp)
of subsets of V such that for each i, j ∈ [1, p], T(Vi) is a subtree of T containing the edge ei and if ej
is an edge of T(Vi) then j ≥ i and Vj ⊆ Vi, and for each pair {x, y} of V, xy is an edge of G if and
only if {x, y} ⊆ Vi, where i = min{j ∈ [1, p], ej is an edge o f PT(x, y)}.
G is an AG-expanded tree if it has an AG-structure.

Example 2. Figure 6 shows a graph G and an AG-structure (T, Se, SV) of G: the edges of T
are represented by full lines, Se = (e1 = {2, 5}, e2 = {4, 5}, e3 = {1, 5}, e4 = {3, 5}) and
SV = (V1 = {1, 2, 3, 5}, V2 = {1, 3, 4, 5}, V3 = e3, V4 = e4). Underlining ei means that Vi = ei.
It follows that G is an AG-expanded tree, and it is an atom graph since it is isomorphic to the atom
graph of the graph shown in Figure 4.

Algorithms 2022, 15, 294 11 of 20

•1

•2

•3

•
4

•5

G

•1

•2

•3

•
4

•5

(, T, Se, SV)

e3

e1

e4
e2

V1

V2

Figure 6: An AG-expanded tree G and one of its AG-expanded structures.

the edge ei and if ej is an edge of T (Vi) then j ≥ i and Vj ⊆ Vi, and for each pair {x, y} of
V , xy is an edge of G if and only if {x, y} ⊆ Vi, where i = min{j ∈ [1, p], ej is an edge of
PT (x, y)}.
G is an AG-expanded tree if it has an AG-structure.

Example 7.4 Figure 6 shows a graph G and an AG-structure (T, Se, SV) of G: the edges
of T are represented by full lines, Se = (e1 = {2, 5}, e2 = {4, 5}, e3 = {1, 5}, e4 = {3, 5})
and SV = (V1 = {1, 2, 3, 5}, V2 = {1, 3, 4, 5}, V3 = e3, V4 = e4). Underlining ei means that
Vi = ei. It follows that G is an AG-expanded tree, and it is an atom graph since it is
isomorphic to the atom graph of the graph shown in Figure 4.

As for expanded trees, each tree T is an AG-expanded tree (with the AG-structure
(T, S, S) where S is an arbitrary ordering of the edges of T) and each complete graph G is
an AG-expanded tree (with the AG-structure (P, Se, SV) where P is a spanning path of G,
Se is a natural ordering (e1, . . . , ep) of the edges of P and SV is the sequence (V1, . . . , Vp)
such that for each i from 1 to p Vi is the union of the edges ej, j ≥ i. Hence, according to
Characterization 7.5 below, trees and complete graphs are atom graphs, which also follows
from Characterization 8.2.

Characterization 7.5 A connected graph is an atom graph if and only if it is an AG-
expanded tree.

To prove Characterization 7.5, we will use the following Lemma.

Lemma 7.6 Let T be a join tree of a connected hypergraph, let X, Y be distinct nodes of
T and let XmYm be an edge of PT (X, Y) whose associated set is inclusion-minimal among
the sets associated with the edges of PT (X, Y). Then XY is an edge of tuj(T) if and only
if X ∩ Y = Xm ∩ Ym (or equivalently Xm ∩ Ym ⊆ X ∩ Y).

Proof: We assume that XY is an edge of tuj(T). Let X ′Y ′ be an edge of PT (X, Y)
such that X ∩ Y = X ′ ∩ Y ′. As X ∩ Y ⊆ Xm ∩ Ym and X ∩ Y = X ′ ∩ Y ′ 6⊂ Xm ∩ Ym,
X ∩ Y = Xm ∩ Ym. The converse implication is evident 2

14

Figure 6. An AG-expanded tree G and one of its AG-expanded structures.

As for expanded trees, each tree T is an AG-expanded tree (with the AG-structure
(T, S, S) where S is an arbitrary ordering of the edges of T) and each complete graph G is
an AG-expanded tree (with the AG-structure (P, Se, SV) where P is a spanning path of G,
Se is a natural ordering (e1, . . . , ep) of the edges of P and SV is the sequence (V1, . . . , Vp)
such that for each i from 1 to p Vi is the union of the edges ej, j ≥ i. Hence, according to
Characterization 13 below, trees and complete graphs are atom graphs, which also follows
from Characterization 14.

Characterization 13. A connected graph is an atom graph if and only if it is an AG-expanded tree.

To prove Characterization 13, we will use the following Lemma.

Lemma 4. Let T be a join tree of a connected hypergraph, let X, Y be distinct nodes of T and let
XmYm be an edge of PT(X, Y) whose associated set is inclusion-minimal among the sets associated
with the edges of PT(X, Y). Then, XY is an edge of tuj(T) if and only if X ∩ Y = Xm ∩ Ym (or
equivalently Xm ∩Ym ⊆ X ∩Y).

Proof. We assume that XY is an edge of tuj(T). Let X′Y′ be an edge of PT(X, Y) such that
X ∩Y = X′ ∩Y′. As X ∩Y ⊆ Xm ∩Ym and X ∩Y = X′ ∩Y′ 6⊂ Xm ∩Ym, X ∩Y = Xm ∩Ym.
The converse implication is evident

Proof. (of Characterization 13) By Characterization 10 it is sufficient to show that there is a
join tree T of a connected α-acyclic hypergraph such that G is isomorphic to tuj(T) if and
only if G is an AG-expanded tree.

⇒: let T be a join tree of a connected hypergraph such that G is isomorphic to
tuj(T). It is sufficient to show that tuj(T) is an AG-expanded tree. Let Se = (e1 =
X1Y1, . . . , ep = XpYp) be an ordering of the edges of T ordered by increasing weight, and
let SV = (V1, . . . , Vp) where Vi is the connected component of T(ESi)− {ej, 1 ≤ j < i}
containing ei, ESi being the set of nodes of T containing Si = Xi ∩Yi, for each i ∈ [1, p]. Let
us show that (T, Se, SV) is an AG-structure of tuj(T). T is a spanning tree of tuj(T). Let
i, j ∈ [1, p]. By definition of Vi, T(Vi) is a subtree of T containing the edge ei and if ej is an
edge of T(Vi) then j ≥ i and Vj ⊆ Vi (as ej ⊆ Vi, Si ⊆ Xj ∩Yj = Sj). Let {X, Y} be a pair of
nodes of T, and let i = min{j ∈ [1, p], ej is an edge o f PT(X, Y)}. Let us show that XY is an
edge of tuj(T) if and only if {X, Y} ⊆ Vi. By Lemma 4 and the definition of i, XY is an edge
of tuj(T) if and only ifSi ⊆ X ∩ Y, which is still equivalent to {X, Y} ⊆ Vi since T(ESi) is
connected and for each edge ej of PT(X, Y), j ≥ i. Hence, (T, Se, Sv) is an AG-structure of
tuj(T), which implies that tuj(T) it is an AG-expanded tree.

⇐: let G = (V, E) and let (T, Se, SV) be an AG-structure of G, with Se = (e1 =
x1y1, . . . , ep = xpyp) and SV = (V1, . . . , Vp). Let H be the hypergraph (V′, E) where
V′ = V + {v1, . . . , vp} and E = {Ax, x ∈ V}, with Ax = {x}+ {vi, i ∈ [1, p] ∧ x ∈ Vi}.
Let f map each vertex x of G to the hyperedge Ax of H, and let T′ = f (T). As T(Vi) is a
subtree of T for each i ∈ [1, p], T′ is a join tree of H, and as no edge of T′ is associated with

Algorithms 2022, 15, 294 12 of 20

the empty set (the set associated with f (ei) contains at least vi since ei is an edge of T(Vi)),
H is connected.

Let us show that G is isomorphic to tuj(T′). Let {x, y} ⊆ V. Let us show that xy is
an edge of G if and only if Ax Ay is an edge of tuj(T′). Let i = min{j ∈ [1, p], ej is an edge
o f PT(x, y)}. As xy is an edge of G if and only if {x, y} ⊆ Vi, it is sufficient to show that
{x, y} ⊆ Vi if and only if Ax Ay is an edge of tuj(T′). We assume that {x, y} ⊆ Vi. Let us
show that Ax Ay is an edge of tuj(T′). It is sufficient to show that Axi ∩ Ayi ⊆ Ax ∩ Ay.
Let v ∈ Axi ∩ Ayi , and let j ∈ [1, p] such that v = vj. As ei is an edge of T(Vj), Vi ⊆ Vj, so
{x, y} ⊆ Vj, i.e., vj ∈ Ax ∩ Ay, and therefore v ∈ Ax ∩ Ay. Hence, Axi ∩ Ayi ⊆ Ax ∩ Ay.
Conversely, we assume that Ax Ay is an edge of tuj(T′). Let us show that {x, y} ⊆ Vi. Let
j ∈ [1, p] such that ej is an edge of PT(x, y) and Ax ∩ Ay = Axj ∩ Ayj . As ej is an edge of
T(Vj), vj ∈ Axj ∩ Ayj , and therefore vj ∈ Ax ∩ Ay, i.e., {x, y} ⊆ Vj. As T(Vj) is a subtree of
T, ei is an edge of T(Vj) and therefore i ≥ j. As i ≤ j by definition of i, i = j and therefore
{x, y} ⊆ Vi. Hence, G is isomorphic to tuj(T′).

The proof of the implication from right to left of Characterization 13 describes how
to define a chordal graph G′ such that G is isomorphic to AG(G′) from an AG-structure
(T, Se = (e1, . . . , ep), SV = (V1, . . . , Vp)) of G. As the hyperedges Ax of the hypergraph
H defined in the proof are pairwise non-inclusive (because of the presence of x in Ax)
H is a clutter. It follows by Property 5 that G is isomorphic to the atom graph of the
chordal graph G′ = 2SEC(H) having T′ as a clique tree. Note that G′ can be defined
from the set {V1, . . . , Vp} alone: G′ = (V′, E′), with V′ = V + {v1, . . . , vp} and E′ = {xvi,
x ∈ V ∧ i ∈ [1, p] ∧ x ∈ Vi}+ {vivj, {i, j} ⊆ [1, p] ∧Vi ∩Vj 6= ∅}.

Example 3. We recall in Figure 7 the graph G and its AG-structure shown in Figure 6, and we
add the join tree T′ as defined in the proof of Characterization 13 and the chordal graph G′ such
that G is isomorphic to AG(G′) as defined above. The edges incident to vertex 5 in G′ are dashed
because vertex 5 may be removed (it is not necessary in A5 to turn H into a clutter). We refind the
graph shown in Figure 4 whose atom graph is G (up to isomorphism).

Characterization 13 can be used to show that a graph is or is not an atom graph, and
to deduce some properties of atom graphs. We leave as an open question whether it can
be used to determine the complexity of atom graph recognition, as was the case for the
characterization as an expanded tree for clique graph of a chordal graph recognition. We
first define a superclass of both the classes of expanded and AG-expanded trees.

Definition 9. A join-path spanning tree of a graph G is a spanning tree T of G such that for each
edge xy of G, there is an edge x′y′ of PT(x, y), with x, x′, y′, y in this order on this path, such that
each vertex of PT(x, x′) is adjacent to each vertex of PT(y′, y) in G (i.e., the join of the subgraphs of
G induced by the paths PT(x, x′) and PT(y′, y) is a subgraph of G).
G is an join-path-expanded tree if it has a join-path spanning tree.

Note that if T is a join-path spanning tree of G then for each edge xy of G, each vertex
of PT(x, y) is adjacent to x or y in G).

We immediately deduce from the characterizations of a clique graph of a chordal
graph and an atom graph as an expanded tree and an AG-expanded tree, respectively, the
following property.

Algorithms 2022, 15, 294 13 of 20

•1

•2

•3

•
4

•5

G

•1

•2

•3

•
4

•5

(T, Se, SV)

e3

e1

e4
e2

V1

V2

{1, v1, v2, v3}

{2, v1}

{3, v1, v2, v4}

{4, v2}

{5, v1, v2, v3, v4}

T ′

•1

•2

•3

•
4

•5

•v1

•
v2

•v3 •v4

G′

Figure 7: Construction of a graph G′ such that G is isomorphic to AG(G′) from an AG-
structure of G.

Example 7.7 We recall in Figure 7 the graph G and its AG-structure shown in Figure 6,
and we add the join tree T ′ as defined in the proof of Characterization 7.5 and the chordal
graph G′ such that G is isomorphic to AG(G′) as defined above. The edges incident to
vertex 5 in G′ are dashed because vertex 5 may be removed (it is not necessary in A5 to turn
H into a clutter). We refind the graph shown in Figure 4 whose atom graph is G (up to
isomorphism).

Characterization 7.5 can be used to show that a graph is or is not an atom graph, and
to deduce some properties of atom graphs. We leave as an open question whether it can
be used to determine the complexity of atom graph recognition, as was the case for the
characterization as an expanded tree for clique graph of a chordal graph recognition. We
first define a superclass of both the classes of expanded and AG-expanded trees.

Definition 7.8 A join-path spanning tree of a graph G is a spanning tree T of G such that
for each edge xy of G, there is an edge x′y′ of PT (x, y), with x, x′, y′, y in this order on this
path, such that each vertex of PT (x, x′) is adjacent to each vertex of PT (y′, y) in G (i.e. the

16

Figure 7. Construction of a graph G′ such that G is isomorphic to AG(G′) from an AG-structure of G.

Property 11. Each connected atom graph (resp. clique graph of a chordal) is a join-path-expanded tree.

As the classes of clique graphs of chordal graphs and atom graphs are inclusion-
uncomparable, they are necessarily strict subclasses of the class of join-path-expanded
trees, so having a join-path spanning tree is a necessary, but non-sufficient, condition for a
connected graph to be an atom graph (or a clique graph of a chordal graph).

Property 12. No cycle of length at least 4 is an atom graph.

Proof. We assume for contradiction that some cycle G of length at least 4 is an atom graph.
Then by Property 11 G has a join-path spanning tree T, which is necessarily a path whose
extremities x and y are adjacent in G. As T is a join-path spanning tree of G, each vertex of
G is adjacent to x or y in G, a contradiction.

Though a C4 is not an atom graph, the graph obtained from a C4 by adding a universal
vertex is an atom graph, as is shown in Figure 7. We have the following result.

Corollary 3. The class of atom graphs is not hereditary.

Note that these results also hold for clique graphs of chordal graphs. No cycle of length
at least 4 is a clique graph of a chordal graph for the same reason as for atom graphs. As any
graph having a universal vertex is a clique graph of a chordal graph (by Characterization 6,
considering the spanning tree whose edges are the edges incident to a universal vertex) the
class of clique graphs of chordal graphs also fails to be hereditary.

We deduce from the proof of Characterization 13 the following property.

Property 13. Each connected atom graph of order n is isomorphic to the atom graph of some chordal
graph of order 2n− 1 whose minimal separators have exactly 2 full components.

Algorithms 2022, 15, 294 14 of 20

Proof. In the proof of Characterization 13 we define from an AG-structure of a connected
graph G of order n a clique tree T′ of a chordal graph G′ such that G is isomorphic to
AG(G′). G′ has n + p vertices, where p is the number of edges of a spanning tree of G, so
G′ is of order 2n− 1. Let us show that the sets associated with the edges of T′ are pairwise
distinct. Let i, j ∈ [1, p] such that . Axi ∩ Ayi = Axj ∩ Ayj . Let us show that i = j. As
ei is an edge of T(Vi), vi ∈ Axi ∩ Ayi , so vi ∈ Axj ∩ Ayj , i.e., ej is an edge of T(Vi), and
therefore j ≥ i. Symetrically i ≥ j, so i = j. Hence, the sets associated with the edges
of T′ are pairwise distinct, so by Property 1 each minimal separator of G′ has exactly 2
full components.

Property 13 provides a polynomial certificate for atom graph recognition. Given a
graph G of order n, the certificate is composed of a graph G′ of order 2n− 1, its atom graph
G′′ and an isomorphism f from G to G′′. We can check in polynomial time that G′′ is the
atom graph of G′ and that f is an isomorphism from G to G′′.

Corollary 4. Atom graph recognition is in NP.

Property 13 also provides a brute force algorithm recognizing an atom graph: comput-
ing all the graphs having 2n− 1 given vertices, and for each one of these graphs satisfying
the conditions of Property 13, computing its atom graph and determining whether it is
isomorphic to the input graph. We deduce from Characterization 13 another brute force
algorithm which is (relatively !) more efficient since it runs in O(mn−1n5) time. Whereas
the number of graphs having 2n− 1 given vertices is 2(2n−1)(2n−2)/2, i.e., (22n−1)n−1. Note
that this algorithm is still quite intractable except for very small graphs.

Theorem 1. An atom graph can be recognized in O(mn−1n5) time.

Proof. We assume without loss of generality that G is connected. The idea is to consider
each spanning tree of G and each ordering of its edges. For that, we associate each edge
of G with an integer from 1 to m. A subset of n − 1 edges (potential set of edges of a
spanning tree) is represented by the sequence of their associated integers in increasing
order. There are (m

n−1) such sequences that we process in lexicographic order. As finding the
next sequence in lexicographic order and checking that it defines a spanning tree (connected
and covering all vertices) take O(n) time, this process is in O(n(m

n−1)) time, and therefore
in O(nmn−1/(n− 1)!) time.

An ordering of the edges is represented by the sequence of their associated integers.
There are (n− 1)! such sequences that we process in lexicographic order. As finding the
next sequence in this order takes O(n) time, this process is in O(n(n− 1)!) time.

Now, given a spanning tree T and an ordering (e1, . . . , ep), for each i from 1 to p, Vi
is necessarily the set defined as follows. Let ei = xiyi, and Vxi (resp. Vyi) be the connected
component of T − {ej, j ∈ [1, i]} containing xi (resp. yi). Vi is the union of the set of
neighbors of xi in Vyi and the set of neighbors of yi in Vxi . Computing Vi and checking
its connexity takes O(n) time, and therefore O(n2) time for all i. If ej is an edge of T(Vi)

then necessarily j ≥ i, and checking that Vj ⊆ Vi takes O(n) time, and therefore O(n3)
time for all i, j. It is sufficient to check the equivalence “xy is an edge of G if and only if
{x, y} ⊆ Vi” for each pair {x, y} such that x is in Vxi and y is in Vyi (Vxi and Vyi defined as
above), since these pairs are exactly the pairs {x, y} such that i = min{j ∈ [1, p], ej is an
edge o f PT(x, y)}. This process adds a time complexity in O(n2) for all i, since the sets Vxi

and Vyi have already been computed and each pair {x, y} is checked exactly once.
Hence, the algorithm is in O(nmn−1/(n− 1)! ∗ n(n− 1)!) ∗ n3) time , i.e., in O(mn−1n5)
time.

We use Characterization 13 to show that the k-sun is not an atom graph if k ≥ 4. We
recall that the 3-sun is an atom graph (it is the atom graph of the graph shown in Figure 5).

Algorithms 2022, 15, 294 15 of 20

Property 14. There is no integer k ≥ 4 such that the k-sun is an atom graph.

Proof. We assume for contradiction that there is an integer k ≥ 4 such that the k-sun is
an atom graph, and therefore an AG-expanded tree. Let G = (V, E) be a k-sun and let
(T, (e1, . . . , ep), (V1, . . . , Vp)) be an AG-structure of G. Let C be the clique of G of size k, let
D = V \ C, let D1 (resp. D2) be the set of vertices of D of degree 1 (resp. 2) in T, and let
C2 = C ∪ D2. T(C2) is a subtree of T. Let i0 = min{i ∈ [1, p], ei is an edge o f T(C2)}, let
ei0 = x1x2, and for each i ∈ {1, 2} let Xi be the connected component of T-{ei0} containing
xi and let yi be equal to xi if xi ∈ C and to the neighbor of xi in Xi otherwise, so that in both
cases yi ∈ C ∩ Xi. Let us show that C2 ⊆ Vi0 .

Let us first show that C ⊆ Vi0 . Let x ∈ C, and let i, j such that x ∈ Xi and {i, j} = {1, 2}.
As T(C2) is a subtree of T, PT(x, yj) is a path in T(C2), so i0 = min{i ∈ [1, p], ei is an edge
o f PT(x, yj)}. As xyj is an edge of G, x ∈ Vi0 . Hence, C ⊆ Vi0 . As T(Vi0) is connected and
each vertex of D2 is on the path in T between its two neighbors which belong to C and
therefore to Vi0 , C2 ⊆ Vi0 .

Let us show that for any triangle (c, c′, d) in G such that d ∈ D1 \Vi0 , there is an integer
j in [1, p] such that Vj = ej = cc′. Let (c, c′, d) be such a triangle. We assume w.l.o.g. that
c is the neighbor of d in T. Let i = min{r ∈ [1, p], er is an edge o f PT(c′, d)}. As c′d is an
edge of G, {c′, d} ⊆ Vi. It follows that ei = cd (otherwise ei would be a subset of C2, and
therefore an edge of T(Vi0), so Vi would be a subset of Vi0 and would not contain d). Hence,
d is adjacent to each vertex of Vi \ {d}, so Vi = {c, c′, d} and cc′ is an edge of T. Let j be the
integer such that cc′ = ej. As ej is an edge of T(Vi), Vj ⊆ Vi and as Vj contains the edge ej,
but not the edge ei since i < j, Vj = ej.

Now, as the vertices of D are pairwise non-adjacent in G, there is some i ∈ {1, 2}
such that D ∩Vi0 ⊆ Xi. We assume without loss of generality that i = 1. Then, D ∩Vi0 ⊆
Vi0 ∩ X1 ⊆ NG(y2). As G is a k-sun with k ≥ 4, there are 2 triangles (c, c1, d1) and (c, c2, d2)
such that for each i ∈ {1, 2}, di is in D \ NG(y2), and therefore in D \Vi0 , which is equal to
D1 \Vi0 since D2 ⊆ Vi0 . So by the preceding argument, for each i ∈ {1, 2} there is an integer
ji in [1, p] such that Vji = eji = cci. Hence, there is no integer r such that er is an edge of
PT(c1, c2) and {c1, c2} ⊆ Vr, and therefore c1c2 is not an edge of G, a contradiction.

We showed in Section 5 that by Characterization 6 the 3-sun is not a clique graph of a
chordal graph. The same argument holds for each k ≥ 3: there is no integer k such that the
k-sun is a clique graph of a chordal graph. However, the k-sun is a join-path-expanded tree
for each k ≥ 3: it is easy to check that any spanning tree T of the k-sun which is a spanning
tree of the union of its external triangles such that each vertex of degree 2 in the k-sun is
of degree 1 in T is a join-path spanning tree of the k-sun. A join-path spanning tree of the
4-sun is shown in Figure 8 (its edges are represented by full lines). It follows that the union
of the classes of atom graphs and clique graphs of chordal graphs is a strict subclass of the
class of join-path-expanded graphs.

•
•
•
•
•
•

•
•

•
•
•
•
•
•

•
•

Figure 8: The 4-sun is a join-path-expanded tree.

the k-sun is a clique graph of a chordal graph. However, the k-sun is a join-path-expanded
tree for each k ≥ 3: it is easy to check that any spanning tree T of the k-sun which is a
spanning tree of the union of its external triangles such that each vertex of degree 2 in the
k-sun is of degree 1 in T is a join-path spanning tree of the k-sun. A join-path spanning
tree of the 4-sun is shown in Figure 8 (its edges are represented by full lines). It follows
that the union of the classes of atom graphs and clique graphs of chordal graphs is a strict
subclass of the class of join-path-expanded graphs.

8 Atom graph subclasses

8.1 Atom graphs of graphs of Gninc
Notation 8.1 Gninc denotes the class of graphs whose clique minimal separators are pair-
wise non-inclusive (ninc stands for non-inclusive).

Equivalently, Gninc is the class of graphs whose clique minimal separators have only full
components (since the minimal separators that are subsets of a minimal separator S in a
connected graph G are the neignborhoods of the connected components of G(V \ S)). We
recall that a block graph is a chordal graph whose minimal separators are of size 1. Each
block graph is in Gninc. As announced in Section 4, the atom graph of a graph of Gninc is
necessarily chordal. Moreover, it is a block graph, and is an atom graph of a block graph.

Characterization 8.2 Let G be a connected graph. The following propositions are equiva-
lent.

1. G is an atom graph of a graph of Gninc,

2. G is a block graph,

3. G is an atom graph of a block graph,

4. G is a clique graph of a block graph,

20

Figure 8. The 4-sun is a join-path-expanded tree.

8. Atom Graph Subclasses
8.1. Atom Graphs of Gninc

Notation 2. Gninc denotes the class of graphs whose clique minimal separators are pairwise non-
inclusive (ninc stands for non-inclusive).

Algorithms 2022, 15, 294 16 of 20

Equivalently, Gninc is the class of graphs whose clique minimal separators have only
full components (since the minimal separators that are subsets of a minimal separator S in
a connected graph G are the neighborhoods of the connected components of G(V \ S)). We
recall that a block graph is a chordal graph whose minimal separators are of size 1. Each
block graph is in Gninc. As announced in Section 4, the atom graph of a graph of Gninc is
necessarily chordal. Moreover, it is a block graph and is an atom graph of a block graph.

Characterization 14. Let G be a connected graph. The following propositions are equivalent.

1. G is an atom graph of a graph of Gninc,
2. G is a block graph,
3. G is an atom graph of a block graph,
4. G is a clique graph of a block graph,

To prove Characterization 14 we will use the following results. We first recall a
characterization of the edges of the atom graph that are associated with a given clique
minimal separator.

Characterization 15 ([21]). Let G be a connected graph, let T be an atom tree of G and let S be
a minimal separator of G. Then the edges of AG(G) associated with S are the pairs of nodes of T
whose endpoints are in different connected components of T(AS)− ES, where AS is the set of nodes
of T containing S and ES is the set of edges of T associated with S.

Lemma 5. Let G be a connected graph of Gninc. Then AG(G) is a block graph, and if G has at least
two atoms then the maximal cliques of AG(G) are the sets AS of atoms of G containing S for each
clique minimal separator S of G, and each edge in the clique AS is associated with S.

Proof. If G has a unique atom then AG(G) is clearly a block graph.
We assume now that G has at least two atoms. Let S be a clique minimal separator of

G, let T be an atom tree of G, and letAS and ES be defined as in Characterization 15. As the
edges of T(AS) are associated with clique minimal separators containing S and G ∈ Gninc,
all the edges of T(AS) are in ES. It follows from Characterization 15 that AS is a clique of
AG(G) and each edge in AS is associated with S. Hence, to show that the maximal cliques
of AG(G) are the setsAS, it is sufficient to show that each element of K(AG(G)) is a subset
of AS for some clique minimal separator S. Let K ∈ K(AG(G)). As G has at least two
atoms |K| ≥ 2. Let {X, Y} ⊆ K and let S = X ∩ Y. Let us show that K ⊆ AS. Let Z ∈ K.
Let us show that Z ∈ AS. It is evident if Z ∈ {X, Y}. Otherwise by Property 8 and the fact
that G ∈ Gninc, the three edges of the triangle (X, Y, Z) are associated with S, and therefore
Z ∈ AS. Hence K ⊆ AS. Hence, the maximal cliques of AG(G) are the sets AS for each
clique minimal separator S.

Let us show that AG(G) is chordal. Let µ be a cycle in AG(G) of length ≥ 4. By
Property 7 two edges of µ are associated with the same set S, which are contained in the
clique AS of AG(G). Hence, µ has a chord, and therefore AG(G) is chordal. It follows that
each minimal separator of AG(G) is the intersection of two maximal cliques of AG(G),
and therefore is of size 1 since otherwise, there would be a pair {S, S′} of clique minimal
separators of G and an edge of AG(G) in AS ∩AS′ which would be associated with both S
and S′. It follows that AG(G) is a block graph.

Lemma 6. For each connected block graph G, AG(G) = CG(G).

Proof. As G is chordal, AG(G) is a subgraph of CG(G) with the same node set. Let us
show that each edge of CG(G) is an edge of AG(G). Let XY be an edge of CG(G), let T be
an atom tree of G and let X′Y′ be an edge of PT(X, Y). As 1 ≤ |X ∩Y| ≤ |X′ ∩Y′| = 1 with
X ∩Y ⊆ X′ ∩Y′, it follows that X ∩Y = X′ ∩Y′, and therefore XY is an edge of AG(G) by
Characterization 5.

Algorithms 2022, 15, 294 17 of 20

To prove that a block graph is an atom graph of a block graph, or equivalently by
Lemma 6, a clique graph of a block graph, we will use a well-known technique allowing to
compute a chordal graph whose clique graph is isomorphic to a given graph.

Notation 3. For each graph G = (V, E), RetroCG(G) denotes the intesection graph of the set
K(G) ∪ {{x}, x ∈ V}.

Lemma 7. Let G = (V, E) be a connected graph, and let G′ = RetroCG(G). If CG(G) is chordal
and for each maximal clique K of CG(G), the elements of K have a non-empty intersection then G′

is chordal, G is isomorphic to CG(G′) and the maximal cliques of G′ are the sets NG′ [{x}] for each
element x of V.

Proof. We recall the following properties of RetroCG(G), which are easy to check:
(1) For each x ∈ V, NG′ [{x}] is a maximal clique of G′,
(2) For each {x, y} ⊆ V xy is an edge of G if and only if NG′ [{x}] ∩ NG′ [{y}] 6= ∅,
(3) If for each maximal clique K of CG(G), the elements of K have a non-empty

intersection then the maximal cliques of G′ are the sets NG′ [{x}] for each element x of V,
(4) CG(G) is chordal if and only if G′ is chordal.
It follows from these properties that under the hypothesis of the lemma, G′ is chordal,

and the mapping associating each vertex x of G with NG′ [{x}] is an isomorphism from G
to CG(G′).

Lemma 8. Let G = (V, E) be a connected block graph, and let G′ = RetroCG(G). Then G′ is a
block graph and G is isomorphic to CG(G′).

Proof. By Lemma 6 CG(G) = AG(G), so by Lemma 5 CG(G) is chordal. Let K be a
maximal clique of CG(G), let us show that the elements ofK have a non-empty intersection.
If G has a unique atom then it is trivial, otherwise by Lemma 5 again it is the case since all
the elements of K contain a given clique minimal separator S of G. Hence, by Lemma 7 G′

is chordal, G is isomorphic to CG(G′) and the maximal cliques of G′ are the sets NG′ [{x}]
for each element x of V. Let us show that each minimal separator of G′ is of size 1. We
assume for contradiction that it is not the case. Then, there is a pair {x, y} of V and a pair
{K, L} of K(G) in NG′ [{x}] ∩ NG′ [{y}], i.e., such that {x, y} ⊆ K ∩ L. It follows that KL
is an edge of CG(G), i.e., of AG(G), and therefore is associated with a minimal separator
of G of size at least 2, which contradicts the fact that G is a block graph. Hence, G′ is a
block graph.

Proof. (of Characterization 14) 1⇒ 2 follows from Lemma 5, 2⇒ 4 follows from Lemma 8,
4⇒ 3 follows from Lemma 6, and 3⇒ 1 is evident.

Example 4. The 5-sun shown in Figure 1 is a graph of Gninc and its atom graph is a block graph,
with {F} as unique minimal separator. Let G be this atom graph and let G′ = RetroCG(G). The
5-sun, G and G′ are shown in Figure 9. G′ is a block graph whose atom graph is isomorphic to G.
Note that G is also isomorphic to the atom graph of G′ − {F}, as the presence in G′ of the node {F}
is not necessary since NG′({F}) is already a maximal clique of G′.
The graph shown in Figure 2 is not a graph of Gninc. Its atom graph is not a block graph, and is
isomorphic to the atom graph of no graph of Gninc by Characterization 14.

Algorithms 2022, 15, 294 18 of 20

• •

•
•

•
•

•
•
•

•
A B

C

D

E
F

A B

C

D

E
F

G

AF BF

CF

DF

EF
{F}

{A} {B}

{C}

{D}

{E}

G′

Figure 9: A graph of Gninc, its atom graph G, which is a block graph, and the block graph
G′ = RetroCG(G) whose atom graph is isomorphic to G.

G′ = RetroCG(G). The 5-sun, G and G′ are shown in Figure 9. G′ is a block graph
whose atom graph is isomorphic to G. Note that G is also isomorphic to the atom graph of
G′−{F}, as the presence in G′ of the node {F} is not necessary since NG′({F}) is already
a maximal clique of G′.
The graph shown in Figure 2 is not a graph of Gninc. Its atom graph is not a block graph,
and is isomorphic to the atom graph of no graph of Gninc by Characterization 8.2.

It follows that block graphs, and in particular trees and complete graphs, are atom
graphs. We have the following complexity results.

Lemma 8.10 Let G be a connected block graph. Then RetroCG(G) can be computed on
O(n2) time.

Proof: Let G′ = RetroCG(G). Its node set is computed in linear linear timme since G is
chordal. The edges of G′ that are incident to a node of size 1 are computed in linear time
too by scanning the maximal cliques of G, as the sum of their sizes is bounded by n + m.
The other edges are computed by making NG′({v}) into a clique for each vertex v of G.
Each edge is added only once by this process since two distinct non-disjoint maximal cliques
of G have exactly one vertex in common since by Lemma 8.5, their intersection is a minimal
separator of G and G is a block graph. So this process takes O(n2) time, as G has at most
n maximal cliques, and therefore G′ is computed in O(n2) time. 2

Theorem 8.11 Recognition of an atom graph of a graph of Gninc takes linear time, and if
it is the case then a block graph whose atom graph is isomorphic to the input graph can be
computed on O(n2) time.

Proof: The first result results from Characterization 8.2 and the fact that recognizing a
block tree takes linear time. The second one results from Lemmas 8.5, 8.8 and 8.10. 2

23

Figure 9. A graph of Gninc, its atom graph G, which is a block graph, and the block graph G′ =
RetroCG(G) whose atom graph is isomorphic to G.

It follows that block graphs, and in particular trees and complete graphs, are atom
graphs. We have the following complexity results.

Lemma 9. Let G be a connected block graph. Then RetroCG(G) can be computed on O(n2) time.

Proof. Let G′ = RetroCG(G). Its node set is computed in linear time since G is chordal.
The edges of G′ that are incident to a node of size 1 are computed in linear time too by
scanning the maximal cliques of G, as the sum of their sizes is bounded by n + m. The
other edges are computed by making NG′({v}) into a clique for each vertex v of G. Each
edge is added only once by this process since two distinct non-disjoint maximal cliques of
G have exactly one vertex in common since, by Lemma 6, their intersection is a minimal
separator of G and G is a block graph. So this process takes O(n2) time, as G has at most n
maximal cliques, and therefore G′ is computed in O(n2) time.

Theorem 2. Recognition of an atom graph of a graph of Gninc takes linear time, and if it is the
case then a block graph whose atom graph is isomorphic to the input graph can be computed on
O(n2) time.

Proof. The first result results from Characterization 14 and the fact that recognizing a block
tree takes linear time. The second one results from Lemmas 6, 8 and 9.

A block graph can be the atom graph of a graph not belonging to Gninc. For instance, if
G is the chordal graph whose maximal cliques are {1, 2, 3}, {1, 2, 4}, and {1, 5}, its minimal
separators are {1, 2}, and {1}, so G is not in Gninc but its atom graph is a block graph since
it is a complete graph.

8.2. Atom Graphs of G2
ninc

Notation 4. G2
ninc denotes the class of graphs whose clique minimal separators have exactly

2 components.

G2
ninc ⊆ Gninc since a minimal separator has at least two full components. Thus, G2

ninc is
the set of graphs of Gninc whose clique minimal separators have exactly two full components.

The equivalence between items 1 and 3 of Characterization 16 is proved in [24] for
chordal graphs.

Characterization 16. Let G be a connected graph. The following propositions are equivalent.

1. G is a graph of G2
ninc;

2. AG(G) is a tree;
3. G has a unique atom tree;
4. The sets associated with the edges of AG(G) are pairwise distinct;
5. Each minimal separator of G is a subset of exactly 2 atoms of G.

Algorithms 2022, 15, 294 19 of 20

Proof. Let S be a clique minimal separator of G, let AS be the set of atoms of G containing
S, let T be a clique tree of G, and let ES (resp. E′S) be the set of edges of T (resp. AG(G))
associated with S. By Properties 1 and 3 the number of full components of S in G is equal
to |ES|+ 1.

1 ⇒ 5: as G ∈ Gninc, each edge of T(AS) is in ES, and as S has exactly two full
components, |ES| = 1. Hence T(AS) has a unique edge, and therefore two nodes.

5⇒ 4: each edge of E′S is a subset of AS.
4⇒ 3: As T is a subgraph of AG(G) by Characterization 4, ES ⊆ E′S with 1 ≤ |ES| ≤

|E′S| = 1. Hence, ES = E′S for each S, and therefore T = AG(G).
3⇒ 2: it follows from Characterization 4.
2 ⇒ 1: there is no clique minimal separator S′ stricly containing S, otherwise by

Characterization 15 there would be a triangle in AG(G) whose edges are associated with S′,
S and S, respectively, and |ES| = 1, otherwise by Characterization 15 again there would be
a triangle in AG(G) whose edges are associated with S. As this holds for each S, G ∈ Gninc
and each clique minimal separator has exactly 2 full components, i.e., G ∈ G2

ninc.

Characterization 17. A connected graph is an atom graph of a graph of G2
ninc if and only if it is

a tree.

Proof. The implication from left to right follows from Characterization 16. The converse
implication follows from the fact that by Characterization 14, a tree is an atom graph, and
from Characterization 16.

We deduce from Theorem 2 and Characterizations 16 and 17 the following corollary.

Corollary 5. Recognition of an atom graph of a graph of G2
ninc takes linear time, and if it is the case

then a block graph of G2
ninc whose atom graph is isomorphic to the input graph can be computed on

O(n2) time.

Contrary to the block graphs which are the atom graphs of block graphs, the trees are
not the atom graphs of trees. As a non-path tree has a vertex of degree at least 3, its atom
graph has a clique of size at least 3 and therefore is not a tree. It follows that conversely, a
non-path tree is not an atom graph of a tree since it is an atom graph of neither a path nor a
non-path tree. We easily check that the paths are the atom graphs of paths (though a path
may be the atom graph of a non-path graph) and that the paths are the trees of G2

ninc. Still
contrary to blocks graphs which can be atom graphs of graphs not belonging to Gninc, a
tree can only be an atom graph of a graph of G2

ninc by Characterization 16.

9. Conclusions

We have studied several aspects of atom graphs and atom graph recognition. We
proved that each atom graph is perfect, presented characterizations of atom graphs and
investigated the relationship between atom graphs, or equivalently atom graphs of chordal
graphs, and clique graphs of chordal graphs. We also proved that the atom graphs of the
graphs of two graph classes can be recognized in linear time. However, we leave as an
open question the complexity of atom graph recognition. We only proved that it is in NP
with a complexity in O(mn−1n5) time. This result follows from the characterization of an
atom graph as an AG-expanded tree, which is inspired by the characterization of a clique
graph of a chordal graph as an expanded tree. As this characterization of a clique graph of
a chordal graph leads to a polynomial recognition algorithm, this polynomial algorithm
may be a source of inspiration for polynomial atom graph recognition. On the other side,
as the definition of an AG-expanded tree is significantly more complex than that of an
expanded tree, it is also possible that atom graph recognition is NP-complete.

Author Contributions: Conceptualization, G.S. and A.B.; methodology, G.S. and A.B.; no software;
validation, G.S.; formal analysis, G.S.; investigation, G.S. and A.B.; resources, A.B.; data curation, A.B.;

Algorithms 2022, 15, 294 20 of 20

writing—original draft preparation, G.S. and A.B.; writing—review and editing, G.S.; visualization,
G.S.; supervision, G.S.; project administration, G.S.; no funding acquisition. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tarjan, R.E. Decomposition by clique separators. Discret. Math. 1985, 55, 221–232. [CrossRef]
2. Leimer, H.-G. Optimal decomposition by clique separators. Discret. Math. 1993, 113, 99–123. [CrossRef]
3. Berry, A.; Pogorelcnik, R.; Simonet, G. An introduction to clique minimal separator decomposition. J. Algorithms 2010, 3, 197–215.

[CrossRef]
4. Coudert, D.; Ducoffe, G. Clique-decomposition revisited. [Research Report] Sophia Antipolis INRIA - I3S, hal-01266147,

2016. Available online: https://hal.archives-ouvertes.fr/hal-01266147/file/clique-decomposition-revisited.pdf (accessed on
18 August 2022).

5. Berry, A.; Brandstädt, A.; Giakoumakis, V.; Maffray, F. Efficiently decomposing, recognizing and triangulating hole-free graphs
without diamonds. Discrete Appl. Math. 2015, 184, 50–61. [CrossRef]

6. Berry, A.; Wagler, A. Triangulation and clique separator decomposition of claw-free graphs. LNCS Lect. Notes Comput. Sci. 2012,
7551, 7–21.

7. Brandstädt, A.; Giakoumakis, V.; Maffray, F. Clique separator decomposition of hole-free and diamond-free graphs and
algorithmic consequences. Discrete Appl. Math. 2012, 160, 471–478. [CrossRef]

8. Brandstädt, A.; Hoàng, C.T. On clique separators, nearly chordal graphs, and the Maximum Weight Stable Set Problem. Theoret.
Comput. Sci. 2007, 389, 295–306. [CrossRef]

9. Brandstädt, A.; Le, V.B.; Mahfud, S. New applications of clique separator decomposition for the Maximum Weight Stable Set
Problem. Theoret. Comput. Sci. 2007, 370, 229–239. [CrossRef]

10. Bruhn, H.; Saito, A. Clique or hole in claw-free graphs. J. Comb. Theory Ser. B 2012, 102, 1–13. [CrossRef]
11. Olesen, K.G.; Madsen, A.L. Maximal prime subgraph decomposition of Bayesian networks. IEEE Trans. Syst. Man Cybern. Part B

Cybern. 2002, 32, 21–31. [CrossRef]
12. Biha, M.D.; Kaba, B.; Meurs, M.-J.; SanJuan, E. Graph decomposition approaches for terminology graphs. In MICAI 2007, Lecture

Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2007; Volume 4827, pp. 883–893.
13. Jachiet, P.-A.; Pogorelcnik, R.; Berry, A.; Lopez, P.; Bapteste, E. MosaicFinder: Identification of fused gene families in sequence

similarity networks. Bioinformatics 2013, 29, 837–844. [CrossRef] [PubMed]
14. Kaba, B.; Pinet, N.; Lelandais, G.; Berry, A. Clustering gene expression data using graph separators. In Silico Biol. 2007, 7, 433–452.

[PubMed]
15. Blair, J.R.S.; Peyton, B.W. An introduction to chordal graphs and clique trees. Graph Theory Sparse Matrix Comput. 1993, 56, 1–29.
16. Gavril, F. The intersection graphs of subtrees in trees are exactly the chordal graphs. J. Combin. Theory Ser. B 1974, 16, 47–56.

[CrossRef]
17. Szwarcfiter, J.L.; Bornstein, C.F. Clique Graphs of Chordal and Path Graphs. SIAM J. Discrete Math. 1994, 7, 331–336. [CrossRef]
18. Galinier, P.; Habib, M.; Paul, C. Chordal.graphs and their clique graphs. In Graph Theoretic Concepts in Computer Science (WG’95),

Lecture Notes in Computer Science; Springer: Berlin, Germany , 1995; Volume 1017, pp. 358–371.
19. Habib, M.; Stacho, J. Reduced clique graphs of chordal.graphs. Eur. J. Comb. 2012, 33, 712–735. [CrossRef]
20. Berry, A.; Pogorelcnik, R.; Simonet, G. Organizing the atoms of the clique separator decomposition into an atom tree. Discret.

Appl. Math. 2014, 177, 1–13. [CrossRef]
21. Berry, A.; Simonet, G. Computing the atom graph of a graph and the union join graph of a hypergraph. Algorithms 2021, 14,

347–367. [CrossRef]
22. Dirac, G.A. On rigid circuit graphs. Abh. Math. Sem. Univ. Hamburg 1961, 25, 71–76. [CrossRef]
23. Buneman, P. A characterization of rigid circuit graphs. Discrete Math. 1974, 9, 205–212. [CrossRef]
24. Kumar, P.S.; Madhavan, C.E.V. Clique tree generalization and new subclasses of chordal graphs. Discret. Appl. Math. 2002, 117,

109–131. [CrossRef]
25. Brandstädt, A.; Dragan, F.F.; Chepoi, V.; Voloshin, V. Dually Chordal Graphs. SIAM J. Discrte Math. 1998, 11, 437–455. [CrossRef]
26. Alcón, L.; Faria, L.; Figueiredo, C.M.H.D.; Gutierez, M. The complexity of clique graph recognition. Theor. Comput. Sci. 2009, 410,

2072–2083. [CrossRef]

http://doi.org/10.1016/0012-365X(85)90051-2
http://dx.doi.org/10.1016/0012-365X(93)90510-Z
http://dx.doi.org/10.3390/a3020197
https://hal.archives-ouvertes.fr/hal-01266147/file/clique-decomposition-revisited.pdf
http://dx.doi.org/10.1016/j.dam.2014.11.018
http://dx.doi.org/10.1016/j.dam.2011.10.031
http://dx.doi.org/10.1016/j.tcs.2007.09.031
http://dx.doi.org/10.1016/j.tcs.2006.10.035
http://dx.doi.org/10.1016/j.jctb.2011.02.004
http://dx.doi.org/10.1109/3477.979956
http://dx.doi.org/10.1093/bioinformatics/btt049
http://www.ncbi.nlm.nih.gov/pubmed/23365410
http://www.ncbi.nlm.nih.gov/pubmed/18391236
http://dx.doi.org/10.1016/0095-8956(74)90094-X
http://dx.doi.org/10.1137/S0895480191223191
http://dx.doi.org/10.1016/j.ejc.2011.09.031
http://dx.doi.org/10.1016/j.dam.2014.05.030
http://dx.doi.org/10.3390/a14120347
http://dx.doi.org/10.1007/BF02992776
http://dx.doi.org/10.1016/0012-365X(74)90002-8
http://dx.doi.org/10.1016/S0166-218X(00)00336-X
http://dx.doi.org/10.1137/S0895480193253415
http://dx.doi.org/10.1016/j.tcs.2009.01.018

	Introduction
	Preliminaries
	Atom Graphs Are Atom Graphs of Chordal Graphs
	Atom Graphs Are Perfect
	Atom Graph and Clique Graph of a Chordal Graph
	Atom Graph and Union Join Graph
	Characterizations in Terms of Spanning Trees
	Atom Graph Subclasses
	Atom Graphs of Gninc
	Atom Graphs of Gninc2

	Conclusions
	References

