
Citation: Lee, C.-L.; Lin, G.-Y.; Chen,

Y.-C. Fast Conflict Detection for

Multi-Dimensional Packet Filters.

Algorithms 2022, 15, 285. https://

doi.org/10.3390/a15080285

Academic Editors: Andras Farago,

Ionut Brandusoiu and Héctor

Migallón

Received: 13 June 2022

Accepted: 12 August 2022

Published: 14 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Fast Conflict Detection for Multi-Dimensional Packet Filters
Chun-Liang Lee 1 , Guan-Yu Lin 2,* and Yaw-Chung Chen 2

1 Department of Computer Science and Information Engineering, School of Electrical and Computer
Engineering, College of Engineering, Chang Gung University, Taoyuan 33302, Taiwan

2 Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
* Correspondence: guanyu@cs.nctu.edu.tw

Abstract: To support advanced network services, Internet routers must perform packet classification
based on a set of rules called packet filters. If two or more filters overlap, a filter conflict will occur
and lead to ambiguity in packet classification. Further, it may affect network security or even the
correctness of packet routing. Hence, it is necessary to detect conflicts to avoid the above problems. In
recent years, many conflict detection algorithms have been proposed, but most of them detect conflicts
for only prefix fields (i.e., source/destination IP address fields) of filters. For greater practicality,
conflict detection must include non-prefix fields such as source/destination IP port fields and the
protocol field. In this study, we propose an efficient conflict detection algorithm for five-dimensional
filters, which include both prefix and non-prefix fields. In the proposed algorithm, a tiny lookup table
is created for quickly filtering out a large portion of non-conflicting filter pairs, thereby reducing the
overall conflict detection time. Experimental results show that our algorithm reduces the detection
time by 10% to 28% compared with other conflict detection algorithms for 20 K filter databases.
More importantly, our algorithm can be used to extend any existing conflict detection algorithms for
two-dimensional filters to support fast conflict detection for five-dimensional filters.

Keywords: conflict detection; firewall policy; packet classification; packet filters; network security

1. Introduction

With the rapid growth of the Internet, many advanced network services such as
firewalls, differentiated services, policy-based forwarding, quality of services (QoS), and
network security have been developed. To support these services, packet classification plays
a crucial role in the Internet [1–4]. Packet filters are the rules that routers use to classify
incoming packets based on the header information. For supporting various network
services, a filter typically contains five fields, including the source/destination IP addresses,
the source/destination ports, and the protocol type [5]. An IP address field usually indicates
a prefix. An IP address that matches a prefix indicates that the IP address contains the same
prefix content. A port field usually indicates a range of values. For example, a port value
v matches a range of [s:e] if s ≤ v ≤ e. The protocol field usually indicates an exact value.
When the field content is expressed using *, it is regarded as a wildcard rule, indicating
that the value of the field covers the entire range. For a packet P and a filter F, we can say
that P matches F if the corresponding fields of P match all fields of F [1].

Packet classification ambiguity occurs when a packet P matches two or more filters
but the associated actions of matching filters are different [6]. In this situation, the classifier
cannot correctly determine the actions that should be taken on P. This may lead to incorrect
packet classification and cause security vulnerabilities of firewall-similar services as well
as data routing errors [6–9]. When the aforementioned problems occur, a heavy burden
is thrust upon Internet users. These problems also affect the transmission efficiency and
reliability of the entire network. Therefore, it is essential to detect conflicts in a filter
database to prevent incorrect classification [10]. An earlier study listed three possible
solutions [6] that are accomplished by means of the following:

Algorithms 2022, 15, 285. https://doi.org/10.3390/a15080285 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15080285
https://doi.org/10.3390/a15080285
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0002-8454-5029
https://orcid.org/0000-0002-9348-1215
https://doi.org/10.3390/a15080285
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15080285?type=check_update&version=3


Algorithms 2022, 15, 285 2 of 17

1. Select the first filter in the database that matches P.
2. Assign each filter a priority. From the set of filters that match P, select the filter having

the highest priority.
3. Assign each field a priority. From the set of filters that match P, select the filter having

the most specific field with the highest priority.

However, these solutions cannot fully resolve conflicts. We use the two-dimensional
(2D) filters in Table 1 for illustration. Suppose that the length of each field is 4 bits. The
rectangles in Figure 1 are drawn according to the filters in Table 1, with overlapping regions
indicating the conflict regions between filters. We give priority to the two conflicting filters
and define F→G to indicate that the priority of filter F is higher than that of filter G. If a
packet matches both filters F and G, the packet will execute the associated action of F. The
priorities of the four overlapping filters in Figure 1 are set as follows: a→b, b→c, c→d, and
d→a. However, the order of these four filters causes a cycle relationship. In this case, we
cannot prevent conflicts by setting priorities because we cannot sort these four filters in
an absolute order. Therefore, Hari et al. [6] proposed a method of adding resolve filters
to solve filter conflicts. In other words, the method adds a new filter to the overlapping
region of two filters and assigns it a high priority to break the cycle. For example, adding a
resolve filter e: (001*, 001*) to the overlapping region of a and b, and setting the priority of e
higher than that of a and b, solves the problem of filter conflicts.

Table 1. An example of a 2D filter database.

Filter Source IP Address Destination IP Address Action

a 001* * Accept
b * 001* Reject
c 110* * Accept
d * 110* Reject

Algorithms 2022, 15, 285 2 of 17 
 

efficiency and reliability of the entire network. Therefore, it is essential to detect conflicts 
in a filter database to prevent incorrect classification [10]. An earlier study listed three 
possible solutions [6] that are accomplished by means of the following: 
1. Select the first filter in the database that matches P. 
2. Assign each filter a priority. From the set of filters that match P, select the filter having 

the highest priority. 
3. Assign each field a priority. From the set of filters that match P, select the filter having 

the most specific field with the highest priority. 
However, these solutions cannot fully resolve conflicts. We use the two-dimensional 

(2D) filters in Table 1 for illustration. Suppose that the length of each field is 4 bits. The 
rectangles in Figure 1 are drawn according to the filters in Table 1, with overlapping re-
gions indicating the conflict regions between filters. We give priority to the two conflicting 
filters and define F→G to indicate that the priority of filter F is higher than that of filter G. 
If a packet matches both filters F and G, the packet will execute the associated action of F. 
The priorities of the four overlapping filters in Figure 1 are set as follows: a→b, b→c, c→d, 
and d→a. However, the order of these four filters causes a cycle relationship. In this case, 
we cannot prevent conflicts by setting priorities because we cannot sort these four filters 
in an absolute order. Therefore, Hari et al. [6] proposed a method of adding resolve filters 
to solve filter conflicts. In other words, the method adds a new filter to the overlapping 
region of two filters and assigns it a high priority to break the cycle. For example, adding 
a resolve filter e: (001*, 001*) to the overlapping region of a and b, and setting the priority 
of e higher than that of a and b, solves the problem of filter conflicts. 

Table 1. An example of a 2D filter database. 

Filter Source IP Address Destination IP Address Action 
a 001* * Accept 
b * 001* Reject 
c 110* * Accept 
d * 110* Reject 

 
Figure 1. Rectangular presentation of filters. 

Although filter conflicts can be resolved by adding resolve filters, it is necessary to 
update the database which affects the effectiveness of database updates. Some Internet 
service applications such as intrusion detection, stateful filtering, and customer relation-
ship management may frequently add or update filters [7,11], which may conflict with 
existing filters in the filter database. Therefore, a conflict detection algorithm must be de-
signed to determine all potential conflicts. This is necessary to ensure the security and user 
QoS whenever the database is updated with any filters, even when the new filters may 
not produce conflicts [12]. 

Figure 1. Rectangular presentation of filters.

Although filter conflicts can be resolved by adding resolve filters, it is necessary to
update the database which affects the effectiveness of database updates. Some Internet
service applications such as intrusion detection, stateful filtering, and customer relationship
management may frequently add or update filters [7,11], which may conflict with existing
filters in the filter database. Therefore, a conflict detection algorithm must be designed
to determine all potential conflicts. This is necessary to ensure the security and user QoS
whenever the database is updated with any filters, even when the new filters may not
produce conflicts [12].

As Internet Protocol version 6 (IPv6) gradually gains popularity and the number
of filters becomes greater, it is expected that new advanced network services will con-
stantly emerge and dynamic filter updates will be more frequent. In addition, in the
new generation network, architecture known as a software-defined network (SDN) [13],
12 or more filter fields must be compared. Packet classification technology must be able



Algorithms 2022, 15, 285 3 of 17

to cope with these great changes [14]. To improve the efficiency of packet classification,
many packet classification algorithms have been proposed and they can be divided into
two implementation types: software-based [3,11,14–18] and hardware-based [4,19–23].
Because conflict detection can ensure the correctness of packet classification, the conflict
detection process must be performed whenever filters are updated. In this case, conflict
detection performance must also be considered; otherwise, it will become the bottleneck of
router performance.

The majority of existing conflict detection algorithms can only detect conflicts for 2D
filters. For greater practicality, the following three non-prefix fields must be considered:
source port, destination port, and protocol fields. To extend conflict detection from two to
more than two dimensions, the first problem encountered is the inconsistent data formats of
fields. Using the same data structures to store the information of different fields is difficult.
When processing these non-prefix fields, the previous works restrict the field to be either
exact values or a wildcard [6], or by converting all the fields into prefixes [7]. However, the
port field is usually represented as a range, and range-to-prefix conversion may cause filter
replication. For example, suppose that the longest prefix length is 4, the range [1:14] can
be represented by as many as six prefixes: 0001, 001*, 01*, 10*, 110*, and 1110. If the port
field value of a filter is [1:14], this filter must have six replications so that six new filters can
indicate the same range as the original filter. As the number of filters increases, the filter
replication may cause the number of filters to grow exponentially. As a result, not only
larger memory space but also longer time are required to perform the conflict detection.

The objectives of this study are as follows: (1) to analyze the characteristics of non-
prefix fields in five-dimensional (5D) filters; (2) to investigate the rules for determining
whether two 5D filters conflict based on the results of the prefix field comparisons and the
non-prefix field comparisons; and (3) to propose an efficient algorithm that can be used
either to extend an existing 2D conflict detection algorithm to support 5D filters, or to
increase the throughput of an existing 5D conflict detection algorithm.

In our proposed algorithm, we divide the 5D conflict detection process into two parts.
First, we obtain comparison combinations of two filters in prefix fields then, based on these
combinations, we sum up the matching combinations of non-prefix fields to ensure that
conflicts occur after combined detection. We classify the common values of non-prefix
fields into several sets, then discuss the relationship between different sets and analyze
the comparison results of every combination. Finally, we create a lookup table based on
each comparison result. When we detect the non-prefix fields of filters, the table checking
process can filter out the combinations with known results to reduce the number of detected
filter pairs and thus reduce the required time of conflict detection.

The remainder of this paper is organized as follows. Section 2 reviews the exist-
ing conflict detection algorithms. Section 3 defines the conditions for 5D filter conflicts.
Section 4 presents our key research ideas and explains how to construct the data structure
and execution mode of our algorithm. Section 5 describes our experimental procedures
and results. Section 6 concludes this study.

2. Related Work

To detect all filter conflicts, a straightforward approach is to compare every pair of
filters in the filter database. Obviously, this approach is simple and does not require extra
storage. However, it takes O(n2) time to detect all conflicts, where n is the number of filters,
which is not feasible for large filter databases. Thus, several conflict detection algorithms
have been proposed in recent years. In this section, we divide these algorithms into two
groups based on whether they can be directly extended to 5D conflict detection.

2.1. Conflict Detection for 5D Filters

Hari et al. [6] first defined the source IP address and destination IP address fields as
2D prefix fields and introduced the notion of 2D filter conflict. Two filters, F and G, are in
conflict if and only if one of the following conditions holds:



Algorithms 2022, 15, 285 4 of 17

1. F[1] is a prefix of G[1] and G[2] is a prefix of F[2], or
2. G[1] is a prefix of F[1] and F[2] is a prefix of G[2].

F[1] and G[1] indicate the first prefix field of F and G, respectively, whereas F[2] and
G[2] indicate the second prefix field of F and G, respectively.

Hari et al. proposed the FastDetect algorithm [6] using the Grid-of-Trie and a switch
pointer [24] for 2D conflict detection. All conflicting filter pairs can be reported in O(nW + S)
time, where W is the length of the longest prefix and S is the number of conflicting filter
pairs. The memory requirement of the FastDetect algorithm is O(nW). When the FastDetect
algorithm is extended for 5D conflict detection, for non-prefix fields, Hari et al. assumed
the port fields of a filter must be either an exact value or a wildcard, while the protocol
field of a filter must be one of the following: transmission control protocol (TCP), user
datagram protocol (UDP), or a wildcard. In case a filter whose protocol field is a wildcard,
the filter will be replicated three times: once with the protocol field set to TCP, once to
UDP, and once to the special value OTHER. Finally, the filter sets are divided into sets
of TCP, UDP, and OTHER according to the protocol values, thus ensuring that filters
in different sets do not conflict [6]. Based on these assumptions, the number of filters
that require comparison during conflict detection can be reduced and it does not require
extra auxiliary information. However, filter replication caused by the aforementioned
method will consume considerable memory space. In addition, the port and protocol
field values can only be exact values or a wildcard, and clearly this does not conform to a
practical application.

Baboescu and Varghese [7] proposed the scalable bit vector (SBV) conflict detection al-
gorithm based on the bit vector (BV) scheme [25] and the aggregated bit vector scheme [26].
They proposed to use compressed binary tries (each field bit requires the use of a trie) and
n bit vectors to determine dynamically whether new filters conflict with the original filter
sets in O(nW) time. Their proposed algorithm can detect all conflicts with O(knW) time
and O(kn2) space, where k indicates the number of fields in a filter. In the study [7], all the
non-prefix fields are converted into the prefix fields by using the method described in [26]
during 5D conflict detection; this method causes many filter replications and requires
considerable memory space. Lai and Wang [10] proposed several algorithms that modified
the original BV scheme to prevent the defect of massive memory duplication caused by
conversion from range to prefix and developed a method for comparing range fields. This
allows the algorithm to support 5D conflict detection. However, it remains costly in terms
of memory requirements due to the high cost of the auxiliary information used to compare
the range fields. Kuo et al. [27] proposed a compact bit vector (CBV) conflict detection
algorithm to improve the constructed matching tries of the SBV algorithm. In the CBV
algorithm, they proposed a redundancy reduction scheme and exploited the covering
and potential conflict relationships between filters to significantly reduce the number of
filters that must be involved in the construction of matching tries. The CBV algorithm then
further merged the redundant match nodes in each matching trie by adopting an upward
merging approach. Finally, the highly compact matching tries were built to represent the
relationships between filters. However, the CBV algorithm does not consider the case
where the non-prefix field is represented as an ambiguity range. Similar to [7,10], using the
trie-based data structure incurs a high memory requirement, and a highly compact scheme
will degrade the performance of updating filters.

2.2. Conflict Detection for 2D Filters

Lu and Sahni [12] determined that when a 2D filter is represented by a geometric
area, two conflicting filters will generate an overlapping area in the plane, and at least
one perfect crossing among the segments of two areas must exist. Lu and Sahni defined
perfect crossing as two line segments of the share point perfectly crossing if and only if they
cross and the crossing point is not an endpoint of either line segment. In addition, they
proposed a magnifying mechanism to ensure that each filter conflict has the characteristics
of perfect crossing. They then used Bentley’s and Ottmann’s algorithm [28] to detect all



Algorithms 2022, 15, 285 5 of 17

existing perfect crossings and finally to determine all conflicts. The time complexity of
this algorithm is O(nlogn + S) and the space complexity is O(n). Lee et al. [29] proposed a
2D tuple space search algorithm (TCDA) based on a tuple space data structure and hash
search. The execution of conflict detection in each filter can be accelerated by adding a
marker pointer and filter pointer. The TCDA can determine all conflicts in O(nW + S)
time. Kwok and Poon [30] studied the 2D packet conflict problem and discovered that
the problem can be reduced to the persistent predecessor problem. They used a balanced
binary search tree to perform 2D conflict detection, with the time complexity further

improved to O(n min
{

log w log log n
log log w ,

√
log n

log log n

}
+ S). Maindorfer et al. [31] converted all

arbitrary 1D range filters into consecutive slabs and defined all conflict relationships
between all consecutive slabs. They used a slab-detect algorithm and proposed an output-
sensitive algorithm that was able to detect all filter conflicts in O(nlogn) time with the space
complexity being O(n). Zhang et al. [9] used a formal method to analyze the meaning of
IPv6 firewall filters and took the formal validation tool (satisfiability modulo theories solver
Z3) [32] to find all the conflicts between every two firewall filters.

These 2D conflict detection algorithms cannot be directly extended for 5D conflict
detection due to the limitation of the constructed data structures. More specifically, it is
difficult or even impossible to represent 5D filters as geometric areas [12], tuple spaces [29],
or binary trees [30]. A simple way to make a 2D conflict detection algorithm capable of
handling 5D filters is to compare prefix fields and non-prefix fields separately. However,
without a good design of data structure and algorithm for non-prefix fields, it is difficult to
achieve a satisfactory detection speed.

3. Definition of 5D Filter Conflict

In this section, we define the relationship between two filters in this study. A
d-dimensional filter database indicates that every filter in the database contains d fields.
F[k] indicates the value of the kth field of filter F, 1 ≤ k ≤ d. F[k] ⊂ G[k] indicates that F[k]
must be a strict subset of G[k]. For example, prefix 100* is a strict subset of prefix 10* and
range [0:1023] is a strict subset of range [0:65535]. However, range [0:1023] is not a strict
subset of range [1000:2000]. F[k] ⊆ G[k] indicates that F[k] is a general subset of G[k]. The
difference between general and strict subsets is that the relationship of F[k] = G[k] is also
contained by the general subset. F[k] ∩ G[k] = ∅ indicates that the intersection of F[k] and
G[k] is the empty set. In other words, we cannot find a value that matches both F[k] and
G[k]. Therefore, F does not conflict with G in this condition. In this study, we define 5D
conflict detection for five fields of a filter, including two prefix fields (source/destination IP
address) and three non-prefix fields (source/destination port and the protocol).

If the conflict conditions defined by [6] are extended for 5D conflict detection, a conflict
occurs between F and G if and only if the following two conditions hold:

Condition 1. F ∩ G 6= ∅.

This condition comes directly from the definition of filter conflict. More specifically,
this condition can be expressed as ∀1≤k≤5F[k] ∩ G[k] 6= ∅.

Condition 2. ∃1≤i≤5∃1≤j≤5((i 6= j) ∧ (F[i] ⊂ G[i]) ∧ (F[j] ⊃ G[j])).

This condition states that there exist two fields, say ith and jth fields, such that F[i] is a
strict subset of G[i] and G[j] is a strict subset of F[j]. This condition excludes the case where
F is a subset of G or vice versa.

4. An Efficient Conflict Detection Algorithm for Non-Prefix Fields

For 5D conflict detection, we notice that when Condition 1 defined in Section 3 is
satisfied, in the five fields, up to ten (C5

2) types of two-field (i, j) combinations exist to
satisfy Condition 2 defined in Section 3. To determine the two fields to satisfy Condition 2,
an extremely complex execution process is required. Moreover, since the fields of filters
are stored in different data formats, it is difficult to design an effective data structure



Algorithms 2022, 15, 285 6 of 17

and algorithm to detect all conflicts. Therefore, if the existing algorithms are extended to
detect 5D conflicts, the performance of most of them will be seriously affected. In order
to simplify conflict detection, the key idea of our study is to divide the conflict detection
into the detection of prefix fields and detection of non-prefix fields. We firstly analyze the
comparison result combinations of filters F and G in prefix fields, then match them with
the combinations of non-prefix fields of F and G to report conflict with our pre-computed
information, which can reduce the number of comparisons of non-prefix fields and further
speed up the execution of 5D conflict detection.

The remainder of this section is organized as follows: Section 4.1 introduces our
combined detection method, which can reduce the complexity of 5D conflict detection by
analyzing all combinations for 5D filter conflicts. Section 4.2 explores the characterization
and classification of non-prefix fields and defines the results of comparing two filters in a
single non-prefix field. Section 4.3 explores the results of comparing all non-prefix fields
and describes how to use our pre-computed information to reduce conflict detection for
non-prefix fields. Section 4.4 describes how to construct a lookup table based on our
pre-computed information and illustrates how to extend the existing 2D algorithm to
5D conflict detection with our proposed algorithm. The database in Table 2 is used as a
supplementary explanation.

Table 2. An example of a 5D filter database.

Filter Source IP
Address

Destination IP
Address Source Port Destination Port Protocol

F1 000* 01* 80 * TCP
F2 100* 01* * * TCP
F3 100* 01* * 60 *
F4 10* 0* * 0–1023 TCP
F5 00* 011* 0–1023 * *
F6 00* 011* 1024–65,535 * UDP
F7 0* 0* * * TCP
F8 * 000* * 1000–5000 *

4.1. Combined Detection Method for 5D Conflict Detection

The comparison results of prefix fields x and y of F and G can be divided into the
following three combinations except for the empty set (Condition 1 defined in Section 3):

Combination 1. (F[x] ⊂ G[x]) ∧ (F[y] ⊃ G[y])

Because the comparison results of F and G in the prefix fields already satisfy Condition 2
defined in Section 3, the conflict conditions can be reached after the final combined detection,
when the comparison results of non-prefix fields are not empty. The prefix field comparison
results of filter pairs (F1, F5), (F1, F6), (F4, F8), and (F7, F8) in Table 2 belong to this type.
After combined detection, (F1, F5), (F4, F8), and (F7, F8) are conflicting filter pairs. By
contrast, filter pair (F1, F6) is not in conflict because F1[Protocol] ∩ F6[Protocol] = ∅.

Combination 2. (F[x] ⊆ G[x]) ∧ (F[y] ⊂ G[y])

In this combination, the values of the prefix field of F are the strict subset of G, or
the comparison results of F and G are equal in field x, whereas F[y] is the strict subset of
G[y]. To reach conflict conditions after the combined detection, the comparison results of F
and G in non-prefix fields must not be empty, and at least a field s causes the relationship
F[s] ⊃ G[s] to be valid. The prefix field comparison results of filter pairs (F1, F7), (F2, F4),
(F3, F4), (F5, F7), and (F6, F7) in Table 2 belong to this type. After combined detection,
(F2, F4), (F3, F4), and (F5, F7) are conflicting filter pairs. Although the comparison re-
sults of filter pair (F1, F7) in non-prefix fields are not empty, no field s causes the rela-
tionship F[s] ⊃ G[s] to be valid. Similarly, filter pair (F6, F7) is not in conflict because
F6[Protocol] ∩ F7[Protocol] = ∅.



Algorithms 2022, 15, 285 7 of 17

Combination 3. (F[x] = G[x]) ∧ (F[x] = G[x])

In this combination, all values of prefix fields of F are equal to those of G. To reach
conflict conditions after combined detection, the comparison results of F and G in non-
prefix fields must not be empty, and at least two fields s and t cause the relationship
(F[s] ⊃ G[s]) ∧ (F[t] ⊂ G[t]) to be valid. The prefix field comparison results of filter
pairs (F2, F3) and (F5, F6) in Table 2 belong to this type. Because filter pair (F2, F3)
contain fields Destination port and Protocol, which produce F2[Protocol] ⊂ F3[Protocol]
and F2[Destination port] ⊃ F3[Destination port], filter pair (F2, F3) is in conflict. Because
F5[Source port] ∩ F6[Source port] = ∅, (F5, F6) is not in conflict.

Based on the analytical results, all conflicting filter pairs can be divided into the three
combinations listed in Table 3. The sets of non-prefix field combinations of Combinations
1–3 are expressed as 3Dset1, 3Dset2, and 3Dset3, and the relationship between these sets is
3Dset1 ⊃ 3Dset2 ⊃ 3Dset3. From this relationship, we can determine the following:

1. When the non-prefix field combinations belong to 3Dset3, it means that we can find
any two non-prefix fields s and t of filters F and G which satisfy Condition 2 defined in
Section 3. Regardless of the combination to which the prefix field comparison results
belong (except for the empty set), conflicts occur after combined detection.

2. When the non-prefix field combinations belong to 3Dset2, regardless of whether the
prefix field comparison results belong to Combination 1 or 2, conflicts occur after
combined detection because we can find at least one prefix field x and non-prefix field
s of filters F and G which satisfy Condition 2.

3. When the non-prefix field combinations belong to 3Dset1, conflicts may not occur
after combined detection with the prefix field comparison results that belong to
Combination 2 because some non-prefix field combinations belong to 3Dset1 but do
not belong to 3Dset2. Similarly, when the non-prefix field combinations belong to
3Dset2, conflicts may not occur after the combined detection with the prefix field
comparison results that belong to Combination 3. In this situation, we may not find
any two fields i and j of filters F and G which satisfy Condition 2.

Table 3. All combinations for 5D filter conflict.

Results of Prefix
Fields of F and G Corresponding to the Combination of Non-Prefix Fields

Combination 1 3Dset1 : ∀3≤r≤5(F[r] ∩ G[r]) 6= ∅
Combination 2 3Dset2 : ∀3≤r≤5(F[r] ∩ G[r]) 6= ∅ ∧ ∃3≤r≤5(F[s] ⊃ G[s])
Combination 3 3Dset3 : ∀3≤r≤5(F[r] ∩ G[r]) 6= ∅ ∧ ∃3≤s≤5∃3≤t≤5((s 6= t) ∧ (F[s] ⊃ G[s]) ∧ (F[t] ⊂ G[t]))

Our combined detection method analyzed all combinations for 5D filter conflict,
which can reduce the complexity of the original 5D conflict detection according to the
predefined information of prefix fields and non-prefix fields sets. It can also be applied
to any existing 2D filter conflict detection algorithm that extends to 5D conflict detection
because the combined detection method compares non-prefix fields based on the results of
prefix-field comparison.

4.2. Characteristic Analysis and Classification for Non-Prefix Field

Without any pre-computed information, complete information regarding non-prefix
fields of the two to-be-compared filters must be fetched prior to non-prefix field conflict
detection, and the results of combined detection can be determined after a series of logic
comparison processes. We call this an exact comparison. If exact comparison is used
during every combined detection, it may cause too many memory accesses and increase
the detection time. If the results of combined detection can be obtained based on the
pre-computed information prior to executing an exact comparison, then only part of the
combined detections require exact comparison, hence the number of memory accesses can
be reduced. Therefore, we analyze the characteristics of the non-prefix field and use the



Algorithms 2022, 15, 285 8 of 17

rarely pre-computed information to design a filtering algorithm so that the number of exact
comparisons can be reduced.

According to [33], the values of the source/destination port field can be divided into
the following five classes, while the values of the protocol field can be divided into the
following four classes, as shown in Tables 4 and 5, respectively:

Table 4. Five classes of the source/destination port field.

Value Description

WC Wildcard (*)
HI Ephemeral user port range [1024:65535]
LO Well-known system port range [0:1023]
AR An arbitrary range, for example [1000:5000]
EM Exact value, for example [21:21]

Table 5. Four classes of the protocol field.

Value Description

WC Wildcard (*)
TCP Transmission control protocol
UDP User datagram protocol
Other The other protocol values, for example ICMP, ESP, etc.

When a port field value is a type of AR or EM, it can be classified as an HI or LO based
on its covered region. For example, if a field value belongs to an EM category and has an
exact value of 23, it can be classified as an LO; if the field value is in an AR class and has
an arbitrary range [2000:5000], it can be classified as an HI. However, a special case exists
in which the AR category field value covers both HI and LO regions (e.g., number range
[20:5000]). Since it cannot be exactly classified as HI or LO, we classify the field values of
this classes as a new class called Both. Finally, the port field values can be classified into
four new classes: WC, HI, LO, and Both. According to the statistics in [24], the common
values of protocol fields contain TCP, UDP, and wildcard. The other protocol values are rare,
so we can classify them as a new class called Other. Finally, the protocol field values are
also classified into four classes: WC, TCP, UDP, and Other. Table 6 shows the classification
results of the database in Table 2.

Table 6. After classification based on each non-prefix field value in Table 2.

Filter Source IP
Address

Destination IP
Address Source Port Destination Port Protocol

F1 000* 01* LO WC TCP
F2 100* 01* WC WC TCP
F3 100* 01* WC LO WC
F4 10* 0* WC LO TCP
F5 00* 011* LO WC WC
F6 00* 011* HI WC UDP
F7 0* 0* WC WC TCP
F8 * 000* WC Both WC

After port and protocol fields are classified based on their values, the comparison
results of a field can have the following three relationships:

1. Disjoint: When the two compared port field values belong to HI and LO, respectively,
we can determine that the comparison results of the two filters in this field must be an
empty set because the values in these two classes are disjoint. For example, we cannot
find a value that is located in both regions [1024:65,535] and [0:1023]. With the same
method, except the case in which the protocol value is a wildcard, different protocols
are disjoint.



Algorithms 2022, 15, 285 9 of 17

2. Overlap: For port and protocol fields, when one of the two compared fields is a
wildcard or the values of both two compared protocol fields are TCP or UDP, we can
determine that the comparison results of this field must not be an empty set because
the wildcard indicates that the value covers all ranges. If it is compared with any
other classes, they will certainly overlap.

3. Requiring exact comparison: In this relationship, we must fetch the complete in-
formation of this field for an exact comparison to determine the final comparison
results. For example, if the two compared port values are exact values 23 and 80,
respectively, which are classified as LO, we know that they are disjoint only after an
exact comparison. With the same method, if the two compared port values are an
exact value 80 and a range [0:1023], respectively, we know that they are overlapping
only after exact comparison. Similarly, if the protocol field belongs to Other, further
exact comparison is required to determine the result.

Table 7 lists all comparison combinations of two filters F and G in a single non-
prefix field. When a single non-prefix field comparison is extended to all non-prefix fields
comparison, we can list the classes of all comparison combinations of non-prefix fields
based on the three conflicting combinations described in Section 4.1 because each field has
several types of comparison results. We can then analyze the comparison results to identify
those combinations that are known without exact comparison.

Table 7. All comparison combinations of two filters F and G in a single non-prefix field.

Relationship Disjoint Overlap Requiring Exact Comparison

(F, G)

Port Field Protocol Field Port Field Protocol Field Port Field Protocol Field

(HI, LO)
(LO, HI)

(TCP, UDP)
(TCP, Other)
(UDP, TCP)

(UDP, Other)
(Other, TCP)
(Other, UDP)

(WC, *)
(*, WC)

(WC, *)
(*, WC)

(TCP, TCP)
(UDP, UDP)

(HI, HI)
(HI, Both)
(LO, LO)

(LO, Both)
(Both, HI)
(Both, LO)

(Both, Both)

(Other, Other)

4.3. Relationships of Non-Prefix Field Combined Comparison

After defining the comparison results of two filters in a single non-prefix field, all
comparison result combinations of all non-prefix fields can be classified into the following
three sets:

1. Disjoint: In these compared non-prefix fields, the comparison results of at least one
field are disjoint. When the compared non-prefix fields belong to the combination of
this type, no conflict exists after combined detection regardless of the combination
to which the comparison results of the prefix fields of filters F and G belong. For
example, the non-prefix field combinations of filter pair (F1, F6) are (LO, WC, TCP)
and (HI, WC, UDP). Filter pair (F1, F6) is not in conflict because the comparison results
in fields Source port and Protocol are disjoint.

2. Overlap: The comparison results of these compared non-prefix fields all overlap.
When these compared non-prefix fields belong to the combinations of a set that is
the same as the 3Dset1 set listed in Table 3 (i.e., the comparison result of prefix fields
of filters F and G is Combination 1 defined in Section 4.1,), it will conflict with the
non-prefix field combination in this set after combined detection. In Section 4.1,
we discussed the relationship between these three sets: 3Dset1, 3Dset2, and 3Dset3.
Therefore, in this set we can also find a set of three field combinations that matches
3Dset2 and 3Dset3. The set of non-prefix field combinations that these two sets match
is derived as follows. 3Dset2: In the non-prefix fields of F and G comparison, at
least one field s exists and the value of F[s] is a wildcard, but not the value of G[s]
(e.g., the destination port field of filter pair (F2, F4) are WC, LO in Table 6). 3Dset3: In



Algorithms 2022, 15, 285 10 of 17

the non-prefix fields of F and G comparison, at least two fields s and t exist, the value
of F[s] is wildcard, and the value of G[s] is not; or the value of F[t] is not wildcard and
the value of G[t] is wildcard (e.g., the destination port and protocol fields of filter pair
(F7, F8) are (WC, Both) and (TCP, WC) in Table 6).

3. Requiring exact comparison: In these compared non-prefix fields, the comparison
results of at least one field require exact comparison, whereas the comparison results of
other fields overlap. When the compared non-prefix fields belong to the combination
of this set, exact comparison is required after combined detection regardless of the
combination to which the comparison results of the prefix fields of filters F and G
belong. For example, if the combinations of filter pair (F1, F5) are (LO, WC, TCP) and
(LO, WC, WC), the comparison results of filter pair (F1, F5) can be determined only
after exact comparison of the source port field.

To distinguish among three sets 3Dset1, 3Dset2, and 3Dset3, we divide the overlapped
set of three compared fields into three disjoint sets. The method selects the combinations
that satisfy the conditions of 3Dset3 set as distinguished from 3Dset1 set and includes them
in an independent set 3Dset3’. It then includes the combinations that meet the conditions of
the 3Dset2 set into an independent set 3Dset2’. The remaining combinations in the 3Dset1
are treated as an independent set 3Dset1’. The combinations of the three compared fields
can be classified into five parts, as shown in Figure 2.

Algorithms 2022, 15, 285 10 of 17 
 

1. Disjoint: In these compared non-prefix fields, the comparison results of at least one 
field are disjoint. When the compared non-prefix fields belong to the combination of 
this type, no conflict exists after combined detection regardless of the combination to 
which the comparison results of the prefix fields of filters F and G belong. For exam-
ple, the non-prefix field combinations of filter pair (F1, F6) are (LO, WC, TCP) and (HI, 
WC, UDP). Filter pair (F1, F6) is not in conflict because the comparison results in fields 
Source port and Protocol are disjoint. 

2. Overlap: The comparison results of these compared non-prefix fields all overlap. 
When these compared non-prefix fields belong to the combinations of a set that is the 
same as the 3Dset1 set listed in Table 3 (i.e., the comparison result of prefix fields of 
filters F and G is Combination 1 defined in Section 4.1,), it will conflict with the non-
prefix field combination in this set after combined detection. In Section 4.1, we dis-
cussed the relationship between these three sets: 3Dset1, 3Dset2, and 3Dset3. There-
fore, in this set we can also find a set of three field combinations that matches 3Dset2 
and 3Dset3. The set of non-prefix field combinations that these two sets match is de-
rived as follows. 3Dset2: In the non-prefix fields of F and G comparison, at least one 
field s exists and the value of F[s] is a wildcard, but not the value of G[s] (e.g., the 
destination port field of filter pair (F2, F4) are WC and LO in Table 6). 3Dset3: In the 
non-prefix fields of F and G comparison, at least two fields s and t exist, the value of 
F[s] is wildcard, and the value of G[s] is not; or the value of F[t] is not wildcard and 
the value of G[t] is wildcard (e.g., the destination port and protocol fields of filter pair 
(F7, F8) are (WC, Both) and (TCP, W) in Table 6). 

3. Requiring exact comparison: In these compared non-prefix fields, the comparison re-
sults of at least one field require exact comparison, whereas the comparison results 
of other fields overlap. When the compared non-prefix fields belong to the combina-
tion of this set, exact comparison is required after combined detection regardless of 
the combination to which the comparison results of the prefix fields of filters F and 
G belong. For example, if the combinations of filter pair (F1, F5) are (LO, WC, TCP) 
and (LO, WC, WC), the comparison results of filter pair (F1, F5) can be determined 
only after exact comparison of the source port field. 
To distinguish among three sets 3Dset1, 3Dset2, and 3Dset3, we divide the overlapped 

set of three compared fields into three disjoint sets. The method selects the combinations 
that satisfy the conditions of 3Dset3 set as distinguished from 3Dset1 set and includes them 
in an independent set 3Dset3’. It then includes the combinations that meet the conditions 
of the 3Dset2 set into an independent set 3Dset2’. The remaining combinations in the 
3Dset1 are treated as an independent set 3Dset1’. The combinations of the three compared 
fields can be classified into five parts, as shown in Figure 2. 

 
Figure 2. Five results of combined comparison. 

From the aforementioned five combined comparison results and the examples pro-
vided, we can predict the situation of each non-prefix field comparison based on classifi-
cation of the port and protocol values. When the comparison result is disjoint or overlaps, 
we can determine whether the two compared filters conflict without requiring exact com-
parison. Based on our designed pre-computed information, the filter pairs that do not re-
quire exact comparison can be filtered out to reduce the frequencies of memory access 

Figure 2. Five results of combined comparison.

From the aforementioned five combined comparison results and the examples pro-
vided, we can predict the situation of each non-prefix field comparison based on classifica-
tion of the port and protocol values. When the comparison result is disjoint or overlaps, we
can determine whether the two compared filters conflict without requiring exact compari-
son. Based on our designed pre-computed information, the filter pairs that do not require
exact comparison can be filtered out to reduce the frequencies of memory access caused
by reading complete information and by exact comparison. As a consequence, the overall
conflict detection can be performed faster.

4.4. Lookup Table Construction

Based on the analysis in Section 4.3, we can divide all comparison results of non-prefix
fields into five cases. In order to implement our proposed algorithm, for each conflict
case, we create a comparison result lookup table by listing each matching result. To
minimize the memory requirement for the comparison result lookup table, we use binary
code to represent the list of classes for port and protocol fields, and list corresponding
values for the results, as shown in Tables 8 and 9, respectively. The binary codes of two
filters are combined in serial to form a 12-bit-length index value. For example, the index
value is (100001, 000001) after filters F1 and F2 in Table 6 are combined. Each index value
indicates the information content of the non-prefix fields of the two filters. According
to the conflicting comparison combinations defined in Table 3, the corresponding values
of the comparison results can be defined. During non-prefix field conflict detection, we
determine whether an exact comparison action is required based on the comparison results,
or determine whether conflicts exist based on the comparison results of prefix fields.
Table 10 provides an example of a comparison result lookup table. Finally, we use Figure 3



Algorithms 2022, 15, 285 11 of 17

to show the overall process of our 5D conflict detection flow. When two compared filters
F and G are in conflict during prefix field comparison, we must read and combine the
binary code serials of F and G, perform an index value search to obtain the corresponding
value for a comparison result, and finally combine the detection process to obtain the final
results. If the final results are disjoint, then exact comparison is not required in order to
shorten the overall conflict detection time. For example, during conflict detection of filters
F2 and F3 in Table 3, the comparison result of prefix fields is equal, then prefetching the
binary code serials of filters F2 and F3 is (000001, 001000) which represent as (WC, WC,
TCP) and (WC, LO, WC). The comparison result of index value (000001, 001000) is 100
which belongs to 3Dset3’. Finally, we determine that filters F2 and F3 are in conflict without
an exact comparison because the comparison result satisfies Combination 3 defined in
Section 4.1. Similarly, we determine that filters F6 and F7 in Table 3 do not have conflict
without an exact comparison because the comparison using (010010, 000001) as the index
value of the lookup table result is 000. Here, we conclude that the greater the number of
exact comparisons that are filtered, the faster conflict detection will be.

Table 8. Code of port and protocol field.

Port Field Code Protocol Field Code

WC 00 WC 00
HI 01 TCP 01
LO 10 UDP 10

Both 11 Other 11

Table 9. Code of the combined comparison results.

Comparison Result Code

Disjoint 000
Requiring exact comparison 001

Set 3Dset1’ 010
Set 3Dset2’ 011
Set 3Dset3’ 100

Table 10. The comparison result lookup table.

(Filter F, Filter G) Code of Comparison Result

(000000, 000000) 011
(000000, 000001) 011
(000000, 000010) 011

Algorithms 2022, 15, 285 12 of 17 
 

Both 11 Other 11 

Table 9. Code of the combined comparison results. 

Comparison Result Code 
Disjoint 000 

Requiring exact comparison 001 
Set 3Dset1’ 010 
Set 3Dset2’ 011 
Set 3Dset3’ 100 

Table 10. The comparison result lookup table. 

(Filter F, Filter G) Code of Comparison Result 
(000000, 000000) 011 
(000000, 000001) 011 
(000000, 000010) 011 

⁞ ⁞ 
(000001, 001000) 100 

⁞ ⁞ 
(010010, 000001) 000 

⁞ ⁞ 
(111111, 111101) 000 
(111111, 111110) 000 
(111111, 111111) 001 

5. Experimental Results 
In this section, we evaluate the performance of our proposed algorithm for 5D con-

flict detection. In the experiment, the tested filter databases were synthesized by Class-
Bench [33], which is widely used in packet classification and conflict detection research 
for test simulation. ClassBench can generate filter databases with different properties by 
using 12 seed files, including three practical application types: access control lists (ACL), 
firewalls (FW), and IP chains (IPC). For each seed file, we generate three filter sets con-
taining 5 K, 10 K, and 20 K filters, respectively. The performance metrics is the average 
conflict detection time in microseconds (μs) required for each filter. In our simulation ex-
periment, we compared our proposed algorithm with those existing 5D conflict detection 
of two other types. The first part of the experiment tested the difference in performance 
between the non-prefix field comparison using our algorithm and the non-prefix field 
comparison using exact comparison, under the condition that the existing 2D conflict de-
tection algorithm was extended to a 5D conflict detection algorithm without any pre-com-
puted information. Because the comparison focused on the efficiency of detecting non-
prefix fields, no noticeable difference was observed between our algorithm and any exist-
ing 2D conflict detection algorithm for comparison of prefix fields. We then compared our 
algorithm with the FastDetect algorithm [6] because the authors have shown how their 
algorithm performs conflict detection for non-prefix fields without additional data struc-
ture, and it is helpful to compare the performance between the existing 2D algorithms and 
our algorithm for non-prefix fields. The second part of the experiment compared our al-
gorithm with the existing detection algorithm which can be extended from 2D detection 
to 5D detection. To support conflict detection for non-prefix fields, this latter type of algo-
rithm requires a new auxiliary data structure. Therefore, we tested the differences in time 
and space performance between non-prefix field conflict detection using the original com-
parison mode and that using our algorithm. Here, the SBV algorithm was used for com-
parison [7]. All algorithms were implemented in C++ and benchmarked on an Intel Core 
i5–4440 3.1-GHz processor with 12 GB memory. 

Algorithms 2022, 15, 285 12 of 17 
 

Both 11 Other 11 

Table 9. Code of the combined comparison results. 

Comparison Result Code 
Disjoint 000 

Requiring exact comparison 001 
Set 3Dset1’ 010 
Set 3Dset2’ 011 
Set 3Dset3’ 100 

Table 10. The comparison result lookup table. 

(Filter F, Filter G) Code of Comparison Result 
(000000, 000000) 011 
(000000, 000001) 011 
(000000, 000010) 011 

⁞ ⁞ 
(000001, 001000) 100 

⁞ ⁞ 
(010010, 000001) 000 

⁞ ⁞ 
(111111, 111101) 000 
(111111, 111110) 000 
(111111, 111111) 001 

5. Experimental Results 
In this section, we evaluate the performance of our proposed algorithm for 5D con-

flict detection. In the experiment, the tested filter databases were synthesized by Class-
Bench [33], which is widely used in packet classification and conflict detection research 
for test simulation. ClassBench can generate filter databases with different properties by 
using 12 seed files, including three practical application types: access control lists (ACL), 
firewalls (FW), and IP chains (IPC). For each seed file, we generate three filter sets con-
taining 5 K, 10 K, and 20 K filters, respectively. The performance metrics is the average 
conflict detection time in microseconds (μs) required for each filter. In our simulation ex-
periment, we compared our proposed algorithm with those existing 5D conflict detection 
of two other types. The first part of the experiment tested the difference in performance 
between the non-prefix field comparison using our algorithm and the non-prefix field 
comparison using exact comparison, under the condition that the existing 2D conflict de-
tection algorithm was extended to a 5D conflict detection algorithm without any pre-com-
puted information. Because the comparison focused on the efficiency of detecting non-
prefix fields, no noticeable difference was observed between our algorithm and any exist-
ing 2D conflict detection algorithm for comparison of prefix fields. We then compared our 
algorithm with the FastDetect algorithm [6] because the authors have shown how their 
algorithm performs conflict detection for non-prefix fields without additional data struc-
ture, and it is helpful to compare the performance between the existing 2D algorithms and 
our algorithm for non-prefix fields. The second part of the experiment compared our al-
gorithm with the existing detection algorithm which can be extended from 2D detection 
to 5D detection. To support conflict detection for non-prefix fields, this latter type of algo-
rithm requires a new auxiliary data structure. Therefore, we tested the differences in time 
and space performance between non-prefix field conflict detection using the original com-
parison mode and that using our algorithm. Here, the SBV algorithm was used for com-
parison [7]. All algorithms were implemented in C++ and benchmarked on an Intel Core 
i5–4440 3.1-GHz processor with 12 GB memory. 

(000001, 001000) 100

Algorithms 2022, 15, 285 12 of 17 
 

Both 11 Other 11 

Table 9. Code of the combined comparison results. 

Comparison Result Code 
Disjoint 000 

Requiring exact comparison 001 
Set 3Dset1’ 010 
Set 3Dset2’ 011 
Set 3Dset3’ 100 

Table 10. The comparison result lookup table. 

(Filter F, Filter G) Code of Comparison Result 
(000000, 000000) 011 
(000000, 000001) 011 
(000000, 000010) 011 

⁞ ⁞ 
(000001, 001000) 100 

⁞ ⁞ 
(010010, 000001) 000 

⁞ ⁞ 
(111111, 111101) 000 
(111111, 111110) 000 
(111111, 111111) 001 

5. Experimental Results 
In this section, we evaluate the performance of our proposed algorithm for 5D con-

flict detection. In the experiment, the tested filter databases were synthesized by Class-
Bench [33], which is widely used in packet classification and conflict detection research 
for test simulation. ClassBench can generate filter databases with different properties by 
using 12 seed files, including three practical application types: access control lists (ACL), 
firewalls (FW), and IP chains (IPC). For each seed file, we generate three filter sets con-
taining 5 K, 10 K, and 20 K filters, respectively. The performance metrics is the average 
conflict detection time in microseconds (μs) required for each filter. In our simulation ex-
periment, we compared our proposed algorithm with those existing 5D conflict detection 
of two other types. The first part of the experiment tested the difference in performance 
between the non-prefix field comparison using our algorithm and the non-prefix field 
comparison using exact comparison, under the condition that the existing 2D conflict de-
tection algorithm was extended to a 5D conflict detection algorithm without any pre-com-
puted information. Because the comparison focused on the efficiency of detecting non-
prefix fields, no noticeable difference was observed between our algorithm and any exist-
ing 2D conflict detection algorithm for comparison of prefix fields. We then compared our 
algorithm with the FastDetect algorithm [6] because the authors have shown how their 
algorithm performs conflict detection for non-prefix fields without additional data struc-
ture, and it is helpful to compare the performance between the existing 2D algorithms and 
our algorithm for non-prefix fields. The second part of the experiment compared our al-
gorithm with the existing detection algorithm which can be extended from 2D detection 
to 5D detection. To support conflict detection for non-prefix fields, this latter type of algo-
rithm requires a new auxiliary data structure. Therefore, we tested the differences in time 
and space performance between non-prefix field conflict detection using the original com-
parison mode and that using our algorithm. Here, the SBV algorithm was used for com-
parison [7]. All algorithms were implemented in C++ and benchmarked on an Intel Core 
i5–4440 3.1-GHz processor with 12 GB memory. 

Algorithms 2022, 15, 285 12 of 17 
 

Both 11 Other 11 

Table 9. Code of the combined comparison results. 

Comparison Result Code 
Disjoint 000 

Requiring exact comparison 001 
Set 3Dset1’ 010 
Set 3Dset2’ 011 
Set 3Dset3’ 100 

Table 10. The comparison result lookup table. 

(Filter F, Filter G) Code of Comparison Result 
(000000, 000000) 011 
(000000, 000001) 011 
(000000, 000010) 011 

⁞ ⁞ 
(000001, 001000) 100 

⁞ ⁞ 
(010010, 000001) 000 

⁞ ⁞ 
(111111, 111101) 000 
(111111, 111110) 000 
(111111, 111111) 001 

5. Experimental Results 
In this section, we evaluate the performance of our proposed algorithm for 5D con-

flict detection. In the experiment, the tested filter databases were synthesized by Class-
Bench [33], which is widely used in packet classification and conflict detection research 
for test simulation. ClassBench can generate filter databases with different properties by 
using 12 seed files, including three practical application types: access control lists (ACL), 
firewalls (FW), and IP chains (IPC). For each seed file, we generate three filter sets con-
taining 5 K, 10 K, and 20 K filters, respectively. The performance metrics is the average 
conflict detection time in microseconds (μs) required for each filter. In our simulation ex-
periment, we compared our proposed algorithm with those existing 5D conflict detection 
of two other types. The first part of the experiment tested the difference in performance 
between the non-prefix field comparison using our algorithm and the non-prefix field 
comparison using exact comparison, under the condition that the existing 2D conflict de-
tection algorithm was extended to a 5D conflict detection algorithm without any pre-com-
puted information. Because the comparison focused on the efficiency of detecting non-
prefix fields, no noticeable difference was observed between our algorithm and any exist-
ing 2D conflict detection algorithm for comparison of prefix fields. We then compared our 
algorithm with the FastDetect algorithm [6] because the authors have shown how their 
algorithm performs conflict detection for non-prefix fields without additional data struc-
ture, and it is helpful to compare the performance between the existing 2D algorithms and 
our algorithm for non-prefix fields. The second part of the experiment compared our al-
gorithm with the existing detection algorithm which can be extended from 2D detection 
to 5D detection. To support conflict detection for non-prefix fields, this latter type of algo-
rithm requires a new auxiliary data structure. Therefore, we tested the differences in time 
and space performance between non-prefix field conflict detection using the original com-
parison mode and that using our algorithm. Here, the SBV algorithm was used for com-
parison [7]. All algorithms were implemented in C++ and benchmarked on an Intel Core 
i5–4440 3.1-GHz processor with 12 GB memory. 

(010010, 000001) 000

Algorithms 2022, 15, 285 12 of 17 
 

Both 11 Other 11 

Table 9. Code of the combined comparison results. 

Comparison Result Code 
Disjoint 000 

Requiring exact comparison 001 
Set 3Dset1’ 010 
Set 3Dset2’ 011 
Set 3Dset3’ 100 

Table 10. The comparison result lookup table. 

(Filter F, Filter G) Code of Comparison Result 
(000000, 000000) 011 
(000000, 000001) 011 
(000000, 000010) 011 

⁞ ⁞ 
(000001, 001000) 100 

⁞ ⁞ 
(010010, 000001) 000 

⁞ ⁞ 
(111111, 111101) 000 
(111111, 111110) 000 
(111111, 111111) 001 

5. Experimental Results 
In this section, we evaluate the performance of our proposed algorithm for 5D con-

flict detection. In the experiment, the tested filter databases were synthesized by Class-
Bench [33], which is widely used in packet classification and conflict detection research 
for test simulation. ClassBench can generate filter databases with different properties by 
using 12 seed files, including three practical application types: access control lists (ACL), 
firewalls (FW), and IP chains (IPC). For each seed file, we generate three filter sets con-
taining 5 K, 10 K, and 20 K filters, respectively. The performance metrics is the average 
conflict detection time in microseconds (μs) required for each filter. In our simulation ex-
periment, we compared our proposed algorithm with those existing 5D conflict detection 
of two other types. The first part of the experiment tested the difference in performance 
between the non-prefix field comparison using our algorithm and the non-prefix field 
comparison using exact comparison, under the condition that the existing 2D conflict de-
tection algorithm was extended to a 5D conflict detection algorithm without any pre-com-
puted information. Because the comparison focused on the efficiency of detecting non-
prefix fields, no noticeable difference was observed between our algorithm and any exist-
ing 2D conflict detection algorithm for comparison of prefix fields. We then compared our 
algorithm with the FastDetect algorithm [6] because the authors have shown how their 
algorithm performs conflict detection for non-prefix fields without additional data struc-
ture, and it is helpful to compare the performance between the existing 2D algorithms and 
our algorithm for non-prefix fields. The second part of the experiment compared our al-
gorithm with the existing detection algorithm which can be extended from 2D detection 
to 5D detection. To support conflict detection for non-prefix fields, this latter type of algo-
rithm requires a new auxiliary data structure. Therefore, we tested the differences in time 
and space performance between non-prefix field conflict detection using the original com-
parison mode and that using our algorithm. Here, the SBV algorithm was used for com-
parison [7]. All algorithms were implemented in C++ and benchmarked on an Intel Core 
i5–4440 3.1-GHz processor with 12 GB memory. 

Algorithms 2022, 15, 285 12 of 17 
 

Both 11 Other 11 

Table 9. Code of the combined comparison results. 

Comparison Result Code 
Disjoint 000 

Requiring exact comparison 001 
Set 3Dset1’ 010 
Set 3Dset2’ 011 
Set 3Dset3’ 100 

Table 10. The comparison result lookup table. 

(Filter F, Filter G) Code of Comparison Result 
(000000, 000000) 011 
(000000, 000001) 011 
(000000, 000010) 011 

⁞ ⁞ 
(000001, 001000) 100 

⁞ ⁞ 
(010010, 000001) 000 

⁞ ⁞ 
(111111, 111101) 000 
(111111, 111110) 000 
(111111, 111111) 001 

5. Experimental Results 
In this section, we evaluate the performance of our proposed algorithm for 5D con-

flict detection. In the experiment, the tested filter databases were synthesized by Class-
Bench [33], which is widely used in packet classification and conflict detection research 
for test simulation. ClassBench can generate filter databases with different properties by 
using 12 seed files, including three practical application types: access control lists (ACL), 
firewalls (FW), and IP chains (IPC). For each seed file, we generate three filter sets con-
taining 5 K, 10 K, and 20 K filters, respectively. The performance metrics is the average 
conflict detection time in microseconds (μs) required for each filter. In our simulation ex-
periment, we compared our proposed algorithm with those existing 5D conflict detection 
of two other types. The first part of the experiment tested the difference in performance 
between the non-prefix field comparison using our algorithm and the non-prefix field 
comparison using exact comparison, under the condition that the existing 2D conflict de-
tection algorithm was extended to a 5D conflict detection algorithm without any pre-com-
puted information. Because the comparison focused on the efficiency of detecting non-
prefix fields, no noticeable difference was observed between our algorithm and any exist-
ing 2D conflict detection algorithm for comparison of prefix fields. We then compared our 
algorithm with the FastDetect algorithm [6] because the authors have shown how their 
algorithm performs conflict detection for non-prefix fields without additional data struc-
ture, and it is helpful to compare the performance between the existing 2D algorithms and 
our algorithm for non-prefix fields. The second part of the experiment compared our al-
gorithm with the existing detection algorithm which can be extended from 2D detection 
to 5D detection. To support conflict detection for non-prefix fields, this latter type of algo-
rithm requires a new auxiliary data structure. Therefore, we tested the differences in time 
and space performance between non-prefix field conflict detection using the original com-
parison mode and that using our algorithm. Here, the SBV algorithm was used for com-
parison [7]. All algorithms were implemented in C++ and benchmarked on an Intel Core 
i5–4440 3.1-GHz processor with 12 GB memory. 

(111111, 111101) 000
(111111, 111110) 000
(111111, 111111) 001

Algorithms 2022, 15, 285 11 of 17 
 

caused by reading complete information and by exact comparison. As a consequence, the 
overall conflict detection can be performed faster. 

4.4. Lookup Table Construction 
Based on the analysis in Section 4.3, we can divide all comparison results of non-

prefix fields into five cases. In order to implement our proposed algorithm, for each con-
flict case, we create a comparison result lookup table by listing each matching result. To 
minimize the memory requirement for the comparison result lookup table, we use binary 
code to represent the list of classes for port and protocol fields, and list corresponding 
values for the results, as shown in Tables 8 and 9, respectively. The binary codes of two 
filters are combined in serial to form a 12-bit-length index value. For example, the index 
value is (100001, 000001) after filters F1 and F2 in Table 6 are combined. Each index value 
indicates the information content of the non-prefix fields of the two filters. According to 
the conflicting comparison combinations defined in Table 3, the corresponding values of 
the comparison results can be defined. During non-prefix field conflict detection, we de-
termine whether an exact comparison action is required based on the comparison results, 
or determine whether conflicts exist based on the comparison results of prefix fields. Table 
10 provides an example of a comparison result lookup table. Finally, we use Figure 3 to 
show the overall process of our 5D conflict detection flow. When two compared filters F 
and G are in conflict during prefix field comparison, we must read and combine the binary 
code serials of F and G, perform an index value search to obtain the corresponding value 
for a comparison result, and finally combine the detection process to obtain the final re-
sults. If the final results are disjoint, then exact comparison is not required in order to 
shorten the overall conflict detection time. For example, during conflict detection of filters 
F2 and F3 in Table 3, the comparison result of prefix fields is equal, then prefetching the 
binary code serials of filters F2 and F3 is (000001, 001000) which represent as (WC, WC, 
TCP) and (WC, LO, WC). The comparison result of index value (000001, 001000) is 100 
which belongs to 3Dset3’. Finally, we determine that filters F2 and F3 are in conflict without 
an exact comparison because the comparison result satisfies Combination 3 defined in 
Section 4.1. Similarly, we determine that filters F6 and F7 in Table 3 do not have conflict 
without an exact comparison because the comparison using (010010, 000001) as the index 
value of the lookup table result is 000. Here, we conclude that the greater the number of 
exact comparisons that are filtered, the faster conflict detection will be. 

 
Figure 3. The process flow of 5D conflict detection. 

The size of the entire lookup table is 212 (the number of index values) × 3 (the number 
of bits required by the matching result) = 3 × 212 bits. In other words, only 1.5 KB is needed. 
For each filter, only an additional 6 bits of memory space are required to store its code 
information. 

Table 8. Code of port and protocol field. 

Port Field Code Protocol Field Code 
WC 00 WC 00 
HI 01 TCP 01 
LO 10 UDP 10 

Figure 3. The process flow of 5D conflict detection.



Algorithms 2022, 15, 285 12 of 17

The size of the entire lookup table is 212 (the number of index values) × 3 (the number
of bits required by the matching result) = 3 × 212 bits. In other words, only 1.5 KB is
needed. For each filter, only an additional 6 bits of memory space are required to store its
code information.

5. Experimental Results

In this section, we evaluate the performance of our proposed algorithm for 5D con-
flict detection. In the experiment, the tested filter databases were synthesized by Class-
Bench [33], which is widely used in packet classification and conflict detection research
for test simulation. ClassBench can generate filter databases with different properties by
using 12 seed files, including three practical application types: access control lists (ACL),
firewalls (FW), and IP chains (IPC). For each seed file, we generate three filter sets contain-
ing 5 K, 10 K, and 20 K filters, respectively. The performance metrics is the average conflict
detection time in microseconds (µs) required for each filter. In our simulation experiment,
we compared our proposed algorithm with those existing 5D conflict detection of two other
types. The first part of the experiment tested the difference in performance between the
non-prefix field comparison using our algorithm and the non-prefix field comparison using
exact comparison, under the condition that the existing 2D conflict detection algorithm
was extended to a 5D conflict detection algorithm without any pre-computed informa-
tion. Because the comparison focused on the efficiency of detecting non-prefix fields, no
noticeable difference was observed between our algorithm and any existing 2D conflict
detection algorithm for comparison of prefix fields. We then compared our algorithm with
the FastDetect algorithm [6] because the authors have shown how their algorithm performs
conflict detection for non-prefix fields without additional data structure, and it is helpful
to compare the performance between the existing 2D algorithms and our algorithm for
non-prefix fields. The second part of the experiment compared our algorithm with the
existing detection algorithm which can be extended from 2D detection to 5D detection. To
support conflict detection for non-prefix fields, this latter type of algorithm requires a new
auxiliary data structure. Therefore, we tested the differences in time and space performance
between non-prefix field conflict detection using the original comparison mode and that
using our algorithm. Here, the SBV algorithm was used for comparison [7]. All algorithms
were implemented in C++ and benchmarked on an Intel Core i5–4440 3.1-GHz processor
with 12 GB memory.

5.1. Filtering Ratio of the Comparison Result Lookup

We first examine how much the lookup table mentioned above can help in reducing
exact comparisons. The results listed in Table 11 show that considerable differences exist
between the average numbers of performing non-prefix field comparisons for every filter
in a range of 20 K databases. The trend revealed was: the fewer conflicting pairs in the
database, the lower the average exact comparison for filters. On average, exact comparison
was performed for filters in the ACL5 database less than once, whereas it was performed
almost 2500 times for filters in the FW5 database. The numbers required to perform exact
comparison for filters in the ACL databases were far fewer than those for the FW databases,
while the difference between the two IPC databases was also considerable.

The difference of the comparison result distribution between different databases was
also considerable. The three rightmost columns show the percentage distributions of the
results of non-prefix field comparisons for all databases. As defined in Section 4.3, the
sum of the percentages of set Disjoint and set Conflict indicates the probability of knowing
detection results after a single comparison conducted during filter conflict detection. By
contrast, the percentage of the set requiring exact comparison indicates the probability of
detection results that are uncertain in this stage and require exact comparison. For example,
our algorithm reduces the average number of exact comparisons performed for each filter
in the ACL2 database from 250.98 to 27.43 (250.98× 10.93% = 27.43), which proves that our



Algorithms 2022, 15, 285 13 of 17

algorithm features high filtering efficiency. The percentage of confirmed conflict includes
the three combinations that will conflict after combined detection is performed.

Table 11. Performance evaluation for 20 K filter databases.

Databases

Statistics Average Number of
Non-Prefix Field

Comparisons
per Filter

Percentage Distribution of the Results of
Non-Prefix Field Comparisons

Number
of Filters

Number of total
Non-Prefix Field

Comparisons
Disjoint Conflict

Requiring
Exact

Comparison

ACL1 19,912 188,707 9.48 23.38% 46.46% 30.16%
ACL2 18,674 4,686,814 250.98 19.45% 69.62% 10.93%
ACL3 19,049 3,576,805 187.77 64.70% 12.04% 23.25%
ACL4 19,221 3,022,216 157.24 65.46% 11.06% 23.48%
ACL5 13,585 994 0.07 75.96% 0.00% 24.04%
FW1 18,643 38,711,274 2076.45 67.13% 20.45% 12.42%
FW2 19,254 24,533,881 1274.22 0.00% 68.63% 31.37%
FW3 17,743 39,051,434 2200.95 69.93% 13.10% 16.97%
FW4 17,333 23,916,573 1379.83 59.04% 19.57% 21.39%
FW5 17,470 42,750,196 2447.06 60.57% 21.78% 17.65%
IPC1 19,477 3,532,940 181.39 32.49% 50.13% 17.38%
IPC2 20,000 12,162,906 608.15 0.00% 66.90% 33.10%

5.2. Comparing Time Performance with Original 2D Detection Algorithms

In this subsection, we test the time performance difference between our algorithm
and the FastDetect algorithm using exact comparison in non-prefix field conflict detection.
Table 12 shows the average conflict detection time required for each filter in different–sized
databases. Experimental data shows that our algorithm was no less than 10% faster than
the general exact comparison methods in non-prefix field conflict detection for databases
of different types and sizes. This also proves that filtering out the time in which exact
comparison is not required will improve the time performance. Because the average time
of performing exact comparison for every filter in databases ACL1 and ACL5 was minimal,
the effect of the filtering algorithm was not obvious. The required time was almost the
same for the filter conflict detection of these two databases. The performance of the ACL2
database was better than the other ACL databases except for ACL1 and ACL5 due to ACL2
containing the lowest ratio of requiring exact comparison sets. Similarly, FW1 performed
better than most FW databases. For IPC databases, the huge difference in the number
of exact comparisons required between databases IPC1 and IPC2 also showed that our
algorithm performs better.

Our method requires only small memory space to extend the original 2D conflict
detection to 5D conflict detection for specific performance improvement. Since an additional
data structure is not required, it prevents the possibility that the existing data structure will
change with frequent addition of dynamic filters and application updates, and reduces the
impact to the overall performance.

5.3. Comparing Time Performance with Extended 5D Algorithms

In this subsection, we discuss the difference in performance between our proposed
algorithm and the comparison method that the SBV algorithm employs for non-prefix field
conflict detection. Because the original SBV algorithm cannot detect the conflicts defined
in [6], we refer to the method provided in [10] to adjust the SBV algorithm so that it can
detect these conflicts. Table 13 shows the average conflict detection time for every filter in
different-sized databases. The data shows that our algorithm is 10% faster than the SBV
algorithm in most databases. For databases FW1, FW3, and FW5, our algorithm does not
improve the efficiency as obviously as do the other databases because the characteristics of
the SBV algorithm include the filtering function. The SBV algorithm creates a binary search



Algorithms 2022, 15, 285 14 of 17

trie for every to-be-compared field and the algorithm searches the target node of the binary
search trie during detection. When k compared fields exist, the AND logic comparison
results of k-bit vectors collected finally may overlap the detecting filters. In other words,
the final results may exclude the sets that do not overlap the detecting filters. The effect
is the same as the disjoint results in our comparison result lookup table. Therefore, if
the ratio of disjoint sets is high in the database, the SBV algorithm can also filter out a
considerable number of filter sets that do not require exact comparison. Table 11 shows the
high ratios (more than 60%) of disjoint sets in databases FW1, FW3, and FW5. Similarly,
the performance of databases ACL3 and ACL4 is less than that of other ACL databases.
Although database ACL5 contains a high ratio of disjoint sets, the impact on its performance
is not obvious because this database requires only few instances of exact comparison, on
average. By contrast, if the ratio of confirmed conflicts in the comparison result query is
high and the ratio of disjoint sets is relatively low (less than 40%), the SBV algorithm cannot
filter out most filter sets that do not require exact comparison. Therefore, our algorithm
performs much better than the SBV algorithm with the databases ACL1, ACL2, FW2, IPC1,
and IPC2.

Table 12. Average detection time required to detect conflicts for databases of three sizes.

Databases

5K 10K 20K

Average
Detection Time Speedup

Average
Detection Time Speedup

Average
Detection Time Speedup

Fast Ours Fast Ours Fast Ours

ACL1 0.45 0.36 20.00% 0.69 0.62 10.14% 0.97 0.75 22.68%
ACL2 8.15 6.83 16.20% 15.53 12.48 19.64% 28.59 23.24 18.71%
ACL3 7.77 6.49 16.47% 12.55 10.7 14.74% 19.06 16.49 13.48%
ACL4 5.77 5.11 11.44% 8.49 7.55 11.07% 16.21 14.44 10.92%
ACL5 0.11 0.09 18.18% 0.13 0.09 30.77% 0.14 0.1 28.57%
FW1 88.28 67.55 23.48% 362.74 232.61 35.87% 481.74 400.73 16.82%
FW2 45.29 40.33 10.95% 91.31 79.31 13.14% 210.65 189.07 10.24%
FW3 191.88 131.88 31.27% 441.27 353.3 19.94% 691.06 609.51 11.80%
FW4 50.53 42.75 15.40% 140.17 119.9 14.46% 332.15 286.39 13.78%
FW5 159.38 136.22 14.53% 464.03 395.66 14.73% 879.9 746.2 15.19%
IPC1 4.7 4.17 11.28% 9.93 8.8 11.38% 19.69 17.27 12.29%
IPC2 45.79 35.58 22.30% 109.85 93.73 14.67% 302.72 234.91 22.40%

Table 13. Average detection time required to detect conflicts for databases of three sizes.

Databases

5K 10K 20K

Average
Detection Time Speedup

Average
Detection Time Speedup

Average
Detection Time Speedup

SBV Ours SBV Ours SBV Ours

ACL1 6.81 5.26 22.76% 13.59 11.06 18.62% 26.94 22.13 17.85%
ACL2 7.82 5.72 26.85% 15.11 11.4 24.55% 27.61 22.11 19.92%
ACL3 7.46 5.95 20.24% 13.89 11.5 17.21% 26.86 22.87 14.85%
ACL4 7.43 6.01 19.11% 14.02 11.41 18.62% 26.86 22.65 15.67%
ACL5 4.55 3.39 25.49% 9.9 7.83 20.91% 18.21 15.27 16.14%
FW1 8.45 7.27 13.96% 15.82 14.28 9.73% 31.7 28.27 10.82%
FW2 8.83 6.33 28.31% 15.93 12.53 21.34% 30.06 25.24 16.03%
FW3 7.89 7.14 9.51% 15.76 14.13 10.34% 30.99 27.82 10.23%
FW4 8.97 7.17 20.07% 15.82 13.3 15.93% 28.96 25.23 12.88%
FW5 8.83 7.51 14.95% 15.99 14.67 8.26% 33.65 28.32 15.84%
IPC1 7.59 5.85 22.92% 13.86 11.43 17.53% 26.41 22.9 13.29%
IPC2 8.82 6.19 29.82% 15.87 12.51 21.17% 28.03 24.44 12.81%



Algorithms 2022, 15, 285 15 of 17

Remarkably, to perform 5D conflict detection, the SBV algorithm must additionally
construct binary search tries and set bit vectors for these non-prefix fields. Besides ad-
ditional memory space, constructing a corresponding data structure also increases the
execution time. We list the execution time and memory space that the SBV algorithm
requires in order to construct the additional data structure in the 20K filter databases.
Table 14 shows that constructing an additional data structure for non-prefix fields costs
considerable time and memory compared to our proposed algorithm, which cost little time
and memory to set up 6-bit information for each filter and 1.5 KB lookup table. For appli-
cations that require frequent filter updates, the performance impact of the SBV algorithm
is even greater. For example, each filter costs an average of 30.79 microseconds to build
auxiliary information. In other words, it takes 30.79 microseconds to update each filter
which is more than the time it takes to detect all conflicts in FW4. All the algorithms that
use the trie-based data structure are affected in the same way. That is the reason we only
compared our algorithm with the SBV algorithm.

Table 14. Cost of the SBV algorithm to build auxiliary information with 20K filter databases.

Databases Number of Filters Total
Time (µs)

Average
Build Time Space (KB)

ACL1 19,912 104,103.40 5.23 3197.71
ACL2 18,674 110,627.00 5.92 680.75
ACL3 19,049 172,434.20 9.05 4625.60
ACL4 19,221 166,306.80 8.65 5388.98
ACL5 13,585 80,651.80 5.94 752.05
FW1 18,643 190,337.60 10.21 1386.76
FW2 19,254 180,186.80 9.36 214.29
FW3 17,743 157,403.60 8.87 1183.20
FW4 17,333 533,745.20 30.79 1711.34
FW5 17,470 129,372.20 7.41 1141.49
IPC1 19,477 117,780.00 6.05 2037.23
IPC2 20,000 53,946.80 2.70 146.86

6. Conclusions

Conflict detection ensures the correctness of packet classification and has received
considerable attention in recent years. However, most conflict detection algorithms detect
conflicts for only prefix fields. For greater practicality, the non-prefix fields should be
considered. In this study, our proposed algorithm focuses on the conflict detection of
non-prefix fields and is used either to extend an existing 2D conflict detection algorithm to
support fast 5D conflict detection, or to increase the throughput of an existing 5D conflict
detection algorithm. As the experimental data revealed, our proposed algorithm showed
significantly better performance than the FastDetect and SBV algorithms when detecting
conflicts for filter databases of different sizes and types. Since the SBV algorithm can
also filter out in advance those filter sets that do not conflict, the performance of our
algorithm is clearly not better than the SBV algorithm when detecting some FW-type filter
databases. However, the SBV algorithm requires additional running time and memory cost
for additional auxiliary data structure; when the number of fields in the filter comparison
increases or the update operations are frequent, these additional costs will affect the
performance of the SBV algorithm. With our algorithm, the additional cost can be avoided
because the memory demand is minimized.

Author Contributions: Conceptualization, C.-L.L. and Y.-C.C.; Data curation, G.-Y.L.; Formal analy-
sis, G.-Y.L.; Investigation, G.-Y.L.; Methodology, G.-Y.L.; Project administration, C.-L.L. and Y.-C.C.;
Resources, Y.-C.C.; Software, G.-Y.L.; Supervision, C.-L.L. and Y.-C.C.; Validation, G.-Y.L.; Writing—
original draft preparation, G.-Y.L.; Writing—review and editing, C.-L.L. and Y.-C.C. All authors have
read and agreed to the published version of the manuscript.



Algorithms 2022, 15, 285 16 of 17

Funding: This research was funded by the Ministry of Science and Technology of Taiwan (MOST
104-2221-E-182-005 and 110-2221-E-182-010) and Chang Gung Memorial Hospital (BMRP 942).

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Taylor, D.E. Survey and Taxonomy of Packet Classification Techniques. ACM Comput. Surv. 2005, 37, 238–275. [CrossRef]
2. Gupta, P.; McKeown, N. Algorithms for Packet Classification. IEEE Netw. 2001, 15, 24–32. [CrossRef]
3. Zhang, X.; Xie, G.; Wang, X.; Zhang, P.; Li, Y.; Salamatian, K. Fast Online Packet Classification with Convolutional Neural

Network. IEEE ACM Trans. Netw. 2021, 29, 2765–2778. [CrossRef]
4. Wan, Y.; Song, H.; Xu, Y.; Wang, Y.; Pan, T.; Zhang, C.; Wang, Y.; Liu, B. T-Cache: Efficient Policy-Based Forwarding Using Small

TCAM. IEEE ACM Trans. Netw. 2021, 29, 2693–2708. [CrossRef]
5. Matoušek, J.; Lučanský, A.; Janeček, D.; Sabo, J.; Kořenek, J.; Antichi, G. ClassBench-Ng: Benchmarking Packet Classification

Algorithms in the OpenFlow Era. IEEE ACM Trans. Netw. 2022, 1–14. [CrossRef]
6. Hari, A.; Suri, S.; Parulkar, G. Detecting and Resolving Packet Filter Conflicts. In Proceedings of the IEEE INFOCOM, Tel Aviv,

Israel, 26–30 March 2000; pp. 318–331.
7. Baboescu, F.; Varghese, G. Fast and Scalable Conflict Detection for Packet Classifier. Comput. Netw. 2003, 42, 717–735. [CrossRef]
8. Hongxin, H.; Gail, J.A.; Ketan, K. Detecting and Resolving Firewall Policy Anomalies. IEEE Trans. Dependable Secur. Comput. 2012,

9, 318–331. [CrossRef]
9. Zhang, X.; Yin, Y.; Liu, W.; Peng, Z.; Zhang, G.; Wang, Y.; Tateiwa, Y.; Takahashi, N. A Conflict Detection Method for IPv6

Time-Based Firewall Policy. In Proceedings of the 2019 IEEE International Conference on Parallel & Distributed Processing with
Applications, Big Data & Cloud Computing, Sustainable Computing & Communications, Social Computing & Networking,
Xiamen, China, 16–18 December 2019; pp. 435–442.

10. Lai, C.Y.; Wang, P.C. Fast and Complete Conflict Detection for Packet Classifiers. IEEE Syst. J. 2017, 11, 1137–1148. [CrossRef]
11. Daly, J.; Bruschi, V.; Linguaglossa, L.; Pontarelli, S.; Rossi, D.; Tollet, J.; Torng, E.; Yourtchenko, A. TupleMerge: Fast Software

Packet Processing for Online Packet Classification. IEEE ACM Trans. Netw. 2019, 27, 1417–1431. [CrossRef]
12. Lu, H.; Sahni, S. Conflict Detection and Resolution in Two-Dimensional Prefix Router Tables. IEEE ACM Trans. Netw. 2005, 13,

1353–1363. [CrossRef]
13. OpenFlow Specification v1.5.1. Available online: https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-

v1.5.1.pdf (accessed on 1 June 2022).
14. Jamil, H.; Yang, N.; Weng, N. Many-Field Packet Classification with Decomposition and Reinforcement Learning. IET Netw. 2022,

11, 112–127. [CrossRef]
15. Lim, H.; Lee, S.; Swartzlander, E.E., Jr. A New Hierarchical Packet Classification Algorithm. Comput. Netw. 2012, 56, 3010–3022.

[CrossRef]
16. Yingchareonthawornchai, S.; Daly, J.; Liu, A.X.; Torng, E. A Sorted-Partitioning Approach to Fast and Scalable Dynamic Packet

Classification. IEEE ACM Trans. Netw. 2018, 26, 1907–1920. [CrossRef]
17. Wee, J.; Choi, J.-G.; Pak, W. Wildcard Fields-Based Partitioning for Fast and Scalable Packet Classification in Vehicle-to-Everything.

Sensors 2019, 19, 2563. [CrossRef]
18. Alimohammadi, H.; Ahmadi, M. Common Non-Wildcard Portion-Based Partitioning Approach to SDN Many-Field Packet

Classification. Comput. Netw. 2020, 181, 107534. [CrossRef]
19. Bremler-Barr, A.; Hendler, D. Space-Efficient TCAM-Based Classification Using Gray Coding. In Proceedings of the IEEE

INFOCOM, Anchorage, AK, USA, 6–12 May 2007; pp. 1388–1396.
20. Fong, J.; Wang, X.; Qi, Y.; Li, J.; Jiang, W. ParaSplit: A Scalable Architecture on FPGA for Terabit Packet Classification. In

Proceedings of the IEEE 20th Annual Symposium on High-Performance Interconnects, Santa Clara, CA, USA, 22–24 August 2012;
pp. 1–8.

21. Erdem, O.; Le, H.; Prasanna, V.K. Hierarchical Hybrid Search Structure for High Performance Packet Classification. In Proceedings
of the IEEE INFOCOM, Orlando, FL, USA, 25–30 March 2012; pp. 1898–1906.

22. Pnevmatikou, A.; Lentaris, G.; Soudris, D.; Kokkalis, N. Fast Packet Classification Using RISC-V and HyperSplit Acceleration on
FPGA. In Proceedings of the IEEE International Symposium on Circuits and Systems, Seville, Spain, 12–14 October 2020; pp. 1–5.

23. Chen, D.; Li, Z.; Xiong, T.; Liu, Z.; Yang, J.; Yin, S.; Wei, S.; Liu, L. CATCAM: Constant-Time Alteration Ternary CAM with Scalable
In-Memory Architecture. In Proceedings of the 53rd Annual IEEE/ACM International Symposium on Microarchitecture, Athens,
Greece, 17–21 October 2020; pp. 342–355.

24. Srinivasan, V.; Varghese, G.; Suri, S.; Waldvogel, M. Fast and Scalable Layer Four Switching. Comput. Commun. Rev. 1998,
28, 191–202. [CrossRef]

25. Lakshman, T.V.; Stiliadis, D. High-Speed Policy-Based Packet Forwarding Using Efficient Multi-Dimensional Range Matching. In
Proceedings of the ACM SISCOMM, Vancouver, BC, Canada, 31 August–4 September 1998; pp. 203–214.

26. Baboescu, F.; Varghese, G. Scalable Packet Classification. IEEE ACM Trans. Netw. 2005, 13, 2–14. [CrossRef]

http://doi.org/10.1145/1108956.1108958
http://doi.org/10.1109/65.912717
http://doi.org/10.1109/TNET.2021.3100114
http://doi.org/10.1109/TNET.2021.3098320
http://doi.org/10.1109/TNET.2022.3155708
http://doi.org/10.1016/S1389-1286(03)00213-5
http://doi.org/10.1109/TDSC.2012.20
http://doi.org/10.1109/JSYST.2014.2367160
http://doi.org/10.1109/TNET.2019.2920718
http://doi.org/10.1109/TNET.2005.860108
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
http://doi.org/10.1049/ntw2.12038
http://doi.org/10.1016/j.comnet.2012.04.014
http://doi.org/10.1109/TNET.2018.2852710
http://doi.org/10.3390/s19112563
http://doi.org/10.1016/j.comnet.2020.107534
http://doi.org/10.1145/285243.285282
http://doi.org/10.1109/TNET.2004.842232


Algorithms 2022, 15, 285 17 of 17

27. Kuo, Y.-H.; Tsai, J.-S.; Leung, T. A Multilevel Bit Vector Minimization Method for Fast Online Detection of Conflicting Flow
Entries in OpenFlow Table. Comput. Commun. 2021, 167, 31–47. [CrossRef]

28. Bentley, L.B.; Ottmann, T. Algorithms for Reporting and Counting Geometric Intersections. IEEE Trans. Comput. 1979, 28, 643–647.
[CrossRef]

29. Lee, C.L.; Lin, G.Y.; Chen, Y.C. An Efficient Conflict Detection Algorithm for Packet Filters. IEICE Trans. Inf. Syst. 2012, 95, 472–479.
[CrossRef]

30. Kwok, A.; Poon, C.K. Two-Dimensional Packet Classification and Filter Conflict Resolution in the Internet. Theory Comput. Syst.
2009, 44, 289–303. [CrossRef]

31. Maindorfer, C.; Mohamed, K.A.; Ottmann, T.; Datta, A. A New Output-Sensitive Algorithm to Detect and Resolve Conflicts in
Internet Router Tables. In Proceedings of the IEEE INFOCOM, Anchorage, AK, USA, 6–12 May 2007; pp. 2431–2435.

32. Z3 Theorem Prover. Available online: https://github.com/Z3Prover/z3/wiki (accessed on 1 June 2022).
33. Taylor, D.E.; Turner, J.S. Classbench: A Packet Classification Benchmark. IEEE ACM Trans. Netw. 2007, 15, 499–511. [CrossRef]

http://doi.org/10.1016/j.comcom.2020.12.008
http://doi.org/10.1109/TC.1979.1675432
http://doi.org/10.1587/transinf.E95.D.472
http://doi.org/10.1007/s00224-007-9050-5
https://github.com/Z3Prover/z3/wiki
http://doi.org/10.1109/TNET.2007.893156

	Introduction 
	Related Work 
	Conflict Detection for 5D Filters 
	Conflict Detection for 2D Filters 

	Definition of 5D Filter Conflict 
	An Efficient Conflict Detection Algorithm for Non-Prefix Fields 
	Combined Detection Method for 5D Conflict Detection 
	Characteristic Analysis and Classification for Non-Prefix Field 
	Relationships of Non-Prefix Field Combined Comparison 
	Lookup Table Construction 

	Experimental Results 
	Filtering Ratio of the Comparison Result Lookup 
	Comparing Time Performance with Original 2D Detection Algorithms 
	Comparing Time Performance with Extended 5D Algorithms 

	Conclusions 
	References

