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Abstract: Mechanical vibrations have a significant impact on ride comfort; the driver is constantly
distracted as a result. Volumetric engine inertial unbalances and road profile irregularities create
mechanical vibrations. The purpose of this study is to employ optimization algorithms to identify
structural elements that contribute to vibration propagation and to provide optimal solutions for
reducing structural vibrations induced by engine unbalance and/or road abnormalities in a motor-
cycle. The powertrain assembly, swing-arm assembly, and vibration-isolating mounts make up the
vibration-isolating system. Engine mounts are used to restrict transferred forces to the motorbike
frame owing to engine shaking or road irregularities. Two 12-degree-of-freedom (DOF) powertrain
motorcycle engine systems (PMS) were modeled and examined for design optimization in this study.
The first model was used to compute engine mount parameters by reducing the transmitted load
through the mounts while only considering shaking loads, whereas the second model considered
both shaking and road bump loads. In both configurations, the frame is infinitely stiff. The mount
stiffness, location, and orientation are considered to be the design parameters. The purpose of this
study is to employ computational methods to minimize the loads induced by shaking forces. To
continue the optimization process, Grey Wolf Optimizer (GWO), a meta-heuristic swarm intelligence
optimization algorithm inspired by grey wolves in nature, was utilized. To demonstrate GWO’s
superior performance in PMS, other optimization methods such as a Genetic Algorithm (GA) and
Sequential Quadratic Programming (SQP) were used for comparison. To minimize the engine’s trans-
mitted force, GWO was employed to determine the optimal mounting design parameters. The cost
and constraint functions were formulated and optimized, and promising results were obtained and
documented. The vibration modes due to shaking and road loads were decoupled for a smooth ride.

Keywords: engine mount system; mechanical vibrations; ride comfort; optimization; decoupling
modes; computational mechanics

1. Introduction and Background

Ride comfort is one of the most important dynamic aspects of motorcycles. Ride
comfort is mostly harmed by mechanical and acoustic vibrations, which expose the driver
to continual disturbances. Mechanical vibrations are mostly caused by volumetric engine
inertial unbalances and variable road profiles [1].

In recent years, the need for vehicle/motorcycle vibration and noise performance
has increased. It is vital to have a mounting mechanism that works better in terms of
vibration isolation. The link between performance and design elements in mounting
systems, on the other hand, is complex, and determining the conditions necessary to achieve
optimal isolation performance is difficult. Engine mounts that support the engine while
limiting the engine’s transmitted force to the frame have recently been improved using
optimization approaches. Under defined boundary constraints, optimization algorithms
can explore the design search domain to discover the optimal design variables that will
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reduce mechanical vibration-transmitted stresses to the frame [2]. The motorcycle engine
mount mechanism, as well as the motorcycle frame shape design, has been optimized using
various optimization approaches.

The design optimization of motorcycle engine mounts has long been a crucial issue in
the motorcycle business. In this work, a few effective and durable optimization techniques
are used to optimize the motorcycle engine mounting system. Engine mounts are rubber
parts that go between the engine and the body or frame of a motorcycle to isolate and
eliminate mechanical vibrations. They also secure the engine to the body/frame and
improve ride comfort by isolating or limiting engine vibration transfer to the body/frame.
Force and motion isolation are two of the most important considerations for engineers when
designing an engine mounting system. Motorcycle engines have reciprocating elements
that create shaking forces due to the movement of various sections of the engine. The main
goal is to limit such tremors to a bare minimum. This is accomplished by sustaining the
powertrain using a strong support or isolator.

Johnson and Subhedar [3] designed and published a computer simulation and opti-
mization method for determining the best mounting system configuration that matches
user-defined system dynamic characteristics. Their goal was to figure out the optimal first
mounting configuration. They discussed the challenges and limitations of generic engine
mounting system designs. They improved the design of the powertrain mounting system,
focusing on natural frequency and the energy-decoupling rate as optimization targets, and
attained good results. For vibration insulator design, Arai et al. [4] established a simple
optimization approach. The stiffness, location, and tilt of each insulator were used as
design factors in their model. A new optimization approach has been developed based on a
performance index and the sensitivity of design elements. A designer might easily examine
the performance of a mount system in development and determine the optimum system
specs, according to the authors. Heyns [5] used an optimization method to create stiff body
mounting arrangements in 1996. He employed sequential quadratic programming (SQP)
as a direct optimization method. As design elements that may be modified to limit force
transfer to the vehicle body, mounting positions and stiffness coefficients were considered.
Foumani et al. [6] devised an experimental/numerical approach for engine mount optimiza-
tion. They provided an optimization approach for active and passive vibration isolators
or absorbers in any mechanical system. Rather than using a mathematical model of the
vehicle or its components, their proposed technique optimizes based on experimental data.
Two optimization based approaches were utilized to tackle an issue by Kaul et al. [7]. Due
to dynamic stresses, the first strategy minimizes the load delivered to the frame while keep-
ing engine displacement within a set envelope. The second procedure adjusts the mount
settings to modify the system’s natural frequencies to avoid specified predetermined opera-
tional frequency ranges. In both approaches, the authors used the local optimization search
method. For determining the optimal engine-mounting configuration, Courtelle et al. [8]
developed a MATLAB/FRONTIER design technique. The authors created a GA (MOGA)
based on a multi-objective optimization technique and determined that it meets industry
standards for preliminary engine suspension system design. They claim that their method
meets both comfort and packing requirements in a reasonable length of time while also
considering the solution’s robustness. Kual et al. [9] investigated the impact of frame
flexibility on an improved engine mounting method for improved motorcycle vibration
isolation. They developed a theoretical model to depict the structural dynamics of the
engine mount system on a motorcycle. Due to enforced stresses, the optimization approach
used optimizes the load given to the frame while keeping engine displacement within set
limitations. The stiffnesses, locations, and orientations of the mounts are used as design
elements in their model. Kual and Anoop [10] regarded the engine mounts as triaxial
spring-damper systems, and the front-end assembly was represented as a lumped mass.
They created a complete vehicle model to solve the engine mount optimization challenge,
which entails decreasing the overall force imparted to the frame while remaining compliant
with packaging and other constraints. The mount system’s stiffness, position, and orienta-
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tion vectors were used as design variables in their model’s optimization problem. Forces
and moments induced by engine imbalance, as well as loads conveyed through the tire
patch due to high amplitude, low frequency bump loads, were among the imposed loads.
Nariman-Zadeh et al. [11] used multi-objective optimization using genetic algorithms
(MOGA) on a five-degree-of-freedom vehicle vibration model, and the optimization results
clearly improved vibration isolation performance. Cheli F., et al. [12] developed a technique
for statistically forecasting inertial engine unbalances induced by the crank mechanism and,
ultimately, the countershaft, lowering the consequent propagating vibrations transmitted
to the frame by optimizing the engine mount structure. Design issues included the quantity
of the engine mounts, their optimal positions, and their viscous elasticity qualities. Their
goal was to discover the optimal engine mount architecture that would limit the engine
block’s shaking effects on the frame in terms of forces. Ooi and Ripin optimized an engine
mounting system dynamically [13], considering frequency-dependent stiffness and loss
factor. The optimal placements and orientation angles of the individual engine mounts
were found to lower the system’s mean force transmissibility across a wide frequency
range, and the dynamic characteristics in all three principal directions were measured in
their model. The application of optimization methods in the design of fluid mounts was
examined by Ahn Y. et al. [14]. The authors explored the role of the notch and resonance
peak in the dynamic stiffness of fluid mounts. The utility of two additional optimization
approaches for selecting the parameter combination that generated the deepest notch and
shortest resonant peak, the Enhanced Genetic Algorithm (EGA) and Sequential Quadratic
Programming (SQP), was also investigated. The literature on the application of meta-
heuristic algorithms (MHs) or evolutionary algorithms (EAs) for engine mounting and
part design was reviewed by Ayarani-N et al. [15] using finite element (FE) and multibody
dynamics (MBD) simulation techniques. The balance of a single cylinder motorcycle en-
gine’s crankshaft was changed by Ganguly et al. [16] to reduce vibration at the motorcycle’s
touch sensitive point (TSP), which includes the handlebar and footrest. In 2016, AlKhatib
and Dhingra [17] presented a vibration isolation model for a motorcycle mounting sys-
tem. Their methodology only considers shaking loads, with the purpose of disconnecting
vibrations (decoupling) by lowering transmitted loads. Scappaticci et al. [2] improved
the performance of a tubular frame intended for Moto2 racing by using an optimization
technique based on the size of the frame’s single pipes and involving the creation of an
objective function to reduce the frame’s weight by managing its stiffness. Kerathana and
Nizamuddin [18] used CATIA for modeling and Hyper-works for finite element analysis
to examine the topology optimization of a ‘Chevrolet beat’ engine-mounting bracket. By
evaluating the design and material arrangement, they were able to lower the weight of
the engine-mounting bracket. Xu et al. [19] developed a vehicle vibration model based on
GA and fusion robustness analysis, with the targets being the decoupling rate and modal
frequency of the mountings in all directions, and GA optimizing the stiffness of the three
mountings. Using a multi-objective evolutionary algorithm, Sleesongsom and Bureerat [20]
proposed a new design technique for the vibration mitigation of a single-cylinder engine
(MOEA). Design components such as the engine’s shape and sizing characteristics are
shown in [21] to decrease inertia and pressure forces.

The purpose of this study is to employ computational design optimization algorithms
to determine optimal design parameters that minimize the loads induced by shaking
forces, which eventually isolate mechanical vibrations. The following is a breakdown of
the structure of the paper. Section 2 provides background information on engine mount
system optimization techniques, specifically global optimization algorithms. In Section 3,
we presetn advanced computerized automated optimization approaches that can be used to
improve the problem’s design. GWO [22], GA [23], and SQP [24] were used to find the best
design parameters for the two 12 DOF PMS models given. In Section 4, the computational
simulation is carried out, and the simulation results are presented and explained in detail.
Finally, the final section is summarized in the conclusion.
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2. Engine Mounting System Optimization Procedures

A typical engine mount system consists of three to four engine mounts. The overall
performance of the mounting system, as well as the performance of individual mounts,
determines how the mounting system behaves. In the design of an engine mount system,
stiffness coefficients, position, and orientation of individual mounts are routinely used
design criteria. Mounts were traditionally built utilizing time-consuming analysis tech-
niques, experimental methodologies, or technical skills. If the development activity’s initial
mounting configuration is close to optimum, this situation is greatly enhanced. Defining a
near-optimal first mounting arrangement is difficult due to the convoluted nature of engine
inertia qualities and packing constraints on mount locations imposed by manufacturability
factors. An efficient computational design approach, black-box optimization techniques,
and accurate modeling methodologies are crucial for such applications.

A flurry of optimization strategies has been introduced over the years. New concepts
and strategies have been developed to deal with highly nonlinear engineering design
difficulties, which are intrinsically complicated. Calculating the gradient for such en-
gineering problems is extremely time-consuming and expensive, requiring significant
computational effort and resources. Non-gradient optimization techniques (stochastic
or heuristic optimization algorithms) became appealing and promising because of their
enhanced efficiency and capacity to extract information from the search space without
experiencing any computational problems.

Despite the availability of a variety of optimization algorithms to solve complex
engineering problems for a variety of applications, the complexity of engineering design
challenges mandates the use of a reliable and efficient optimization technique. Such
challenges have just recently begun to be addressed by swarm intelligence optimization
approaches. Most swarm intelligence-based algorithms use multi-agent algorithms, which
are inspired by social organisms such as bees, fireflies, and ants, as well as other animal
societies including herds of birds, schools of fish, and packs of wolves. The firefly algorithm
(FFA) [25] uses firefly-flashing activity instead of fish and bird behaviour in the traditional
particle swarm optimization (PSO) [26]. Cuckoo search (CS) [27] is based on the brood
parasitism of some cuckoo species, whereas the bat algorithm depends on the echolocation
of foraging bats. Ant colony optimization (ACO) [28] is based on the chemical language of
social ants, whereas bee algorithms (BA) [29,30] are based on honeybee foraging behaviour.
Swarm intelligence-based algorithms have become quite popular and have been widely
used in recent years due to their capacity to disseminate information among several
agents. The efficiency of such algorithms is improved by self-organization, co-evolution,
and learning over iterations. Another argument is that large-scale optimization may
be easily handled by parallelizing several agents. As a result, nonlinear and difficult
design optimization problems involving costly analysis and simulation methods such as
finite element analysis (FEA) and computational fluid dynamics are well suited to such
optimization strategies (CFD). Yildiz et al. [31] examined the efficacy of ten modern meta-
heuristic strategies for optimizing the design of six mechanical engineering optimization
problems. Their comparative analysis optimization methods were recently developed
and shown to be promising and capable of generating good results. Yildiz et al. [31]
employed some of these methodologies in a comparative study. The methods include
particle swarm optimization (PSO) [25], moth–flame optimization (MFO) [32], ant lion
optimizer (ALO) [33], water cycle algorithm (WCA) [34], the evaporation rate water cycle
algorithm WCA (ER-WCA) [35], grey wolf optimizer (GWO) [22], mine blast algorithm
(MBA) [36], whale optimization algorithm (WOA) [37], and salp swarm algorithm [38].

The engine mount application in this study is optimized using two types of swarm
intelligence optimization algorithms, with the purpose of minimizing transmitted forces
from the engine to the frame and hence mechanical vibrations. A local search optimization
method is also used to compare performance and show how swarm intelligent optimization
algorithms perform better in real-world engineering applications. These three methods
are most notable in that they are utilized to determine the optimal design variables that
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minimize the objective function while taking into consideration the application limits,
eventually lowering the transmitted forces caused by engine vibrations.

3. Utilized Design Optimization Algorithms

There are various advantages of potential design optimization methods over other
procedures. For starters, they drastically cut computational time, which is a sophisticated
feature for costly, non-linear, high-dimensional, and computationally heavy models. Sec-
ond, such algorithms are known for their robustness, accuracy, and high convergence
efficiency (convergence speed).

This article’s optimization approach employs a range of optimization methods from
several categories. Swarm optimization intelligence, evolutionary, and gradient-based
optimization techniques were used to optimize two motorcycle engine mount models.
These optimization strategies have already been tested on real-world problems and have
proven to be effective and dependable [23,25,26]. Yildiz [31] presents a comprehensive
and in-depth examination, as well as the application of ten newly developed algorithms,
including GWO, to six mechanical design problems. The next sections give an overview of
the overall context and promising optimization tactics employed in this study to complete
the optimization process for PMS.

3.1. Grey Wolf Optimizer (GWO)

In 2014, Mirjalili et al. [22] proposed the grey wolf optimizer (GWO), a groundbreaking
swarm intelligence optimization algorithm that simulates various animals’ hunting and
searching activities. GWO is a nature-inspired metheuristic that is based on the behavior of
a pack of wolves. It explores the search space in hope of finding an optimal solution. It is
an iterative method that is used to solve optimization problems. It primarily mimics the
natural wolf leadership structure and hunting mechanism. Four types of grey wolves are
employed to replicate the leadership structure: alpha, beta, delta, and omega. GWO also
executes the three core hunting processes: locating prey, enclosing prey, and attacking prey.
Muro et al. [39] summarized the hunting strategy of GWO in first approaching and chasing
the prey, followed by an encircling maneuver around the prey until it completely stops
moving, and finally attacking of the prey when it is exhausted.

In terms of optimization performance, the authors in [22] show that ordinary GWO is
better than other optimization algorithms in the same family such as PSO, GSA, DE, and
FEP algorithms.

The pseudo code of GWO (Algorithm 1) can be summarized as follows:

Algorithm 1. Grey Wolf Optimizer

Initialize the grey wolf population Xi, i = 1 . . . n
Initialize a, A, and C
Calculate the fitness of each search agent
Xalpha = the best search agent
Xbeta = the second best search agent
Xgamma= the third best search agent
While t < max number of iterations do
for each search agent do
Randomly initialize r1 and r2
1.1 Update the position of the current search agent
2.1 Update a, A, and C
Calculate the fitness of all search agents
Update Xalpha, Xbeta, Xgamma
t = t + 1
Return Xalpha
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3.2. Genetic Algorithm (GA)

The genetic algorithm (GA) [23] is an evolutionary optimization (EO) algorithm.
GA is modeled after natural selection, in which the fittest individuals are picked for
reproduction to produce children for the following generation. The goal of these tactics is
to use randomization, mating behavior, and mutations to evolve our solution. A genetic
profile is assigned to each particle, which is utilized to determine its fitness. The particles
with the highest fitness will reproduce more, whereas those with the lowest fitness will
die and be replaced. Crossover reproduction procedures are utilized, mixing both parents’
genes, although mutations are possible, allowing the new generation to evolve further.
Five phases are considered in GA, intial population; fitness function; selection; crossover;
and mutation. GA is used in this study to find the optimal design variables for reducing
transmitted forces from the engine to the frame. Mechanical vibrations are decreased or
isolated as a result.

3.3. Gradient-Based Algorithms

Gradient-based algorithms are one type of deterministic optimization technique. When
the gradient is easily defined, it can deal with problems involving unimodal and convex
functions. The gradient of the goal function and the initial guess or starting search point
are crucial in these algorithms. They resemble a ball shot aloft that is retracted downhill
by gravity until it lands in a stable spot. SQP methods solve a sequence of optimization
sub-problems, each of which optimizes a quadratic model of the objective subject to a
linearization of the constraints. The downside of these algorithms when dealing with
multi-model objective functions is that they are easily locked in local optimum rather than
global optimum. SQP (Sequential Quadratic Programming) [24] is an example of such
algorithms that will be used to compare and explain whether gradient-based methods
succeed or fail in tackling MPS design optimization in this study. The failure of gradient-
based algorithms to converge to global solutions or handle complex optimization problems
is widely known. It is used in this research to show that such algorithms fail horribly in
complex engineering issues such as PMS. Some researchers, including AlKhatib in [40],
employed a gradient-based technique and were pleased with the results; however, some
parameters, such as the initial search point, needed to be changed or adjusted in order for
the algorithm to converge to an optimal solution. The pseudo code of SQP (Algorithm 2)
can be summarized as follows:

Algorithm 2. Sequential Quadratic Programming

3.1 begin
Choose a starting point Xo and approximation Ho to the Hessian
repeat i = 1, 2, . . .

Solve a QP sub-problem QPi to obtain the search direction Si
Given Si, find alpha so to determine Xi+1
Update the approximation Hessian Hi+1 using the BFGS scheme
i = i + 1

Until reaching stopping criterion
end

4. Motorcycle Engine Mount Design Models

One of the most common challenges engineers face when it comes to vibration isolation
is motion isolation. This is a burden when external loads are transmitted to the engine.
These loads, which are caused by road profile faults, are transferred to the frame via
the tire patch. The typical engine mounting system consists of an engine, rubber engine
mounts, and a base, which is represented by the motorcycle frame or body. As can be
seen in Figure 1, the engine is modeled as a twelve DOF rigid body that can translate
and rotate along/around three Cartesian axes. According to the pattern of excitations, the
powertrain is allowed to oscillate on its mounts. Because the engine’s inherent frequency is
substantially higher than that of the mounting mechanism, it should be treated as a stiff
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body. In each of the three major directions, the mounts are represented as springs with
stiffness coefficients and hysteresis or viscous damping. Figure 2 depicts a 12-DOF model
with a shaft assembly connecting the powerplant to the swing arm. This consists of two
rigid bodies, one for the powertrain and the other for the swing-arm assembly, connected
by a coupler shaft.

Figure 1. Powertrain and swing-arm layout [40].

This section shows the first of two twelve-degree-of-freedom (DOF) models for the
motorcycle mounting system, with the first considering the influence of road loads. Road
loads must be addressed when building a motorcycle mounting system because of the
nature of motorcycles. This ensures the greatest possible handling. In this work, two
twelve-DOF motorcycle engine mount models were modified and improved. The first
model has twelve degrees of freedom but ignores road loads, whereas the second model
has twelve degrees of freedom but takes into consideration both road and shaking loads.
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Figure 2. Schematic diagram of the motorcycle engine mount model.

4.1. Model 1: Deriving Matrices for Stiffness and Damping Coefficients

In the model presented herein [40], the equation of motion (EOM) is represented
as follows:

M
..
X + C

.
X + K X = F ejωt (1)

For mass, damping, and stiffness, M, C, and K are 12 × 12 matrices. F denotes the
input force vector coming from engine imbalance and/or road loads produced by road
profile defects. The term ejωt is called a harmonic vector in which ω is angular frequency
and t is time. X represents both the swing-arm and the powertrain’s displacement vector,
which encompasses both translational and rotational DOFs. Equation (2) demonstrates
how to represent the vector X.

X = [xsa ysa zsa αsa βsa γsa xe ye ze αe βe γe]
T (2)

The subscripts ‘sa’ and ‘e’ in Equation (2) denote the parameters for the wing-arm and
powertrain assemblies, respectively. xsa; ysa; and zsa represent translation motion along x,
y, and z, and αsa; βsa ; and γsa represent rotation motion for the wing arm. The same
applies for powertrain assemblies where xe; ye; and ze represent translation motion along
the x; y; and z axes, and αe; βe; and γe represent rotational motion around the x, y, and
z axes. The system’s total mass matrix is calculated as stated in Equation (3) below:

M =

[
Mswingarm Z6

Z6 Mengine

]
(3)

Mengine and Mswingarm are the 6 × 6 mass matrices for the powertrain and swing-arm
assemblies, respectively. Z6 is a 6 × 6 zero matrix as a result.

The wing-arm and engine mass matrices are equivalent, and they are defined as shown
in Equation (4). The inertia matrices for the engine and swing-arm are set at their respective
local centers of gravity.

Me =



me 0 0 0 0 0
0 me 0 0 0 0
0 0 me 0 0 0
0 0 0 Ixxe −Ixye −Ixze
0 0 0 −Ixye Iyye −Iyze
0 0 0 −Ixze −Iyze Izze

 (4)
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The stiffness matrix for the 12-DOF system is determined in Equation (5), whereas the
damping matrix is defined in Equation (6):

K =

[
Ksa + Kc −Kc
−Kc Ke + Kc

]
(5)

C =

[
Csa + Cc −Cc
−Cc Ce + Cc

]
(6)

Ke and Kse and Ce and Csa are the stiffness and damping matrices for the powertrain
and swing-arm, respectively, in Equations (5) and (6). The stiffness characteristics of the two
rear shock springs linking the swing-arm to the frame are used to create the swing-arm’s
stiffness matrix. The coupler’s stiffness and damping matrices, Kc and Cc, are both 6 × 6.

The frame is indefinitely stiff in this model. This assumption implies that the connec-
tion points between the engine mounts and the frame, as well as the frame and the rear
suspension, exhibit zero deflection.

Two situations will be discussed using the EOM formulation introduced in the previ-
ous section. The first example addresses the engine’s shaking forces as they are communi-
cated to the frame (Model 1). The second scenario examines the loads sent to the frame by
shaking forces, as well as the loads transmitted to the frame by the road (Model 2).

4.2. Model 1: Shaking Forces

In Equation (7), the shaking force vector is a 6 × 1 vector. It is worth noting that the
shaking force vector development is for a 45◦-bank angle V-twin engine.

Fs =
[
Fsx Fsy Fsz Msx Msy Ts

]T (7)

The overall shaking forces of the V-twin engine are shown in Equations (8) and (9)

Fsx = sinβ
{

2(mA + mB)rω2 sinθsinβ
−2(mA + mB)rα cosθsinβ

+2mB
r2ω2

l sin2θsin2β + mB
r2α

l cos2θsin2β
}

+ ω2sinβ {mcb2r2 cos(θ + β)
− mcb1r1 cos(θ − β)}
+αsinβ {mcb2r2 sin(θ + β)
− mcb1r1 sin(θ − β)}
+cosβ

{
2mArω2 sinθcosβ− 2mArα cosθcosβ

}
+αcosβ {mcb1r1 cos(θ − β) + mcb2r2 cos(θ + β)}
−ω2cosβ {mcb1r1 sin(θ − β)
+mcb2r2 sin(θ + β)}

(8)

Fsy = cosβ
{

2(mA + mB)rω2 cosθcosβ
+2(mA + mB)rα sinθcosβ

+2mB
r2ω2

l cos2θcos2β + mB
r2α

l sin2θcos2β
}

− ω2cosβ {mcb1r1 cos(θ − β)
+mcb2r2 cos(θ + β)}
−αcosβ {mcb1r1 sin(θ − β)
+ mcb2r2 sin(θ + β)}
+sinβ

{
2mArω2 cosθsinβ + 2mArα sinθsinβ

}
+αsinβ {mcb2r2 cos(θ + β)
−mcb1r1 cos(θ − β)}
+ω2sinβ {mcb1r1 sin(θ − β)
−mcb2r2 sin(θ + β)}

(9)
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The corresponding masses at distances r1 and r2 for the left and right banks are mcb1
and mcb2, respectively, in the previous formulae.

In Equations (10) and (11) below, the overall shaking moments for the V-twin engine
are articulated:

Msx = cosβ
{

2(mA + mB)rω2 cosθcosβ

+2mB
r2ω2

l cos2θcos2β
+2(mA + mB)rα sinθcosβ

+mB
r2α

l sin2θcos2β
}
·z

−ω2cosβ {mcb1r1 cos(θ − β)
+mcb2r2 cos(θ + β)} ·z
−αcosβ {mcb1r1 sin(θ − β)
+mcb2r2 sin(θ + β)} ·z

(10)

Msy = sinβ
{
−2(mA + mB)rω2 sinθsinβ

−2mB
r2ω2

l sin2θsin2β
+2(mA + mB)rα cosθsinβ

+mB
r2α

l cos2θsin2β
}
·z

+ω2sinβ {mcb1r1 cos(θ − β)
−mcb2r2 cos(θ + β)} ·z
+αsinβ {mcb1r1 sin(θ − β)−mcb2r2 sin(θ + β)}
·z

(11)

The shaking torque is expressed in Equation (12).

Ts =
1
2 mBr2ω2[ r

l sinθcosβ− 2sin2θcos2β− 3r
l sin3θcos3β

]
k̂ (12)

where r is the crank length, θ = ωt, mB is the equivalent rotating mass, and β is the
bank angle.

4.3. Model 2: Shaking Forces and Road Loads (Combined Loads)

Both shaking forces related to imbalance inside the engine and loads due to irregulari-
ties in the road profile are considered in the model given here. Model 1 shows the governing
equations for shacking loads. Through the tire patch, road loads are passed to the frame.
The road loads that are transmitted to the frame might be either periodic or nonperiodic.
The frequency content of these loads is determined using Fourier Transforms [21] after
they are evaluated for specified displacement functions. Fast Fourier Transforms (FFT) in
MATLAB were employed in this study. The loads are calculated using Equation (13) for a
certain road profile.

Fy = kx + c
.
x (13)

In Equation (13), Fy is the vertical force component that is transmitted through the tire
patch due to displacement x and the velocity

.
x generated from the road profile. k and c are

the respective stiffness and damping of the rear wheel in the y-direction.
The continuous time Fourier series (CTFS) for a periodic function is expressed in the

equation below:

x(t) =
∞

∑
m=−∞

cmejmωot ; where ωo =
2π

P
(14)

In the above equation, cm is the Fourier series coefficients that are determined as
follows:

cm =
1
P

P
2∫

−P
2

x(t) e−jmωot dt (15)
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P is the fundamental period of the displacement function, which corresponds to the
fundamental frequency ωo, as shown in Equation (14). The discrete time Fourier series
(DTFS) is written as

x[n] = x(nT) = ∑
m=〈N〉

cmd ejmωonT (16)

where ωo = 2π/NT and cmd are the Fourier series coefficients that are determined using
the following equation:

cmd =
1
N

N−1

∑
n=0

x[n]e−jmωonT (17)

In Equations (16) and (17), the sample period is denoted by T. Equation (18) is used to
derive the DTFS coefficients. When a restricted band displacement function is used and a
suitable sample frequency is set using FFT, the following results are obtained:

cmd =
X[m]

N
(18)

The continuous time Fourier transform (CTFT) of the displacement function is shown
in Equation (19), and the discrete time Fourier transform (DTFT) is expressed in Equation
(20) below:

X(ω) =

∞∫
−∞

x(t)e−jωtdt (19)

Xd(ω) =
∞

∑
n=−∞

x(nT)e−jωnT (20)

In Equations (19) and (20), X(ω) is the spectrum of x(t) that can be used for periodic
and non-periodic displacement functions.

The optimization problem for the model presented in Figure 2 is solved using a
swarm intelligence optimization method (GWO), an evolutionary algorithm (GA), and
a local optimization algorithm known as Sequential Quadratic Programming (SQP). The
objective function is designed to lower transmitted forces while also considering the engine
displacement constraints imposed by static and dynamic loads.

4.4. Formulation of the Optimization Problems

The cost function used in this study is the weighted total of the transmitted force
through each individual mount. The shaking loads inside the engine generate the transmit-
ted forces through the mounts. The force that each individual mount exerts on the frame is
calculated as follows:

fi = [−k∗i k∗i r̃i]

[
Xti
Xri

]
(21)

Xti and Xri are the translational and rotational displacements at the powertrain’s
center of gravity owing to shaking loads, and ri is the skew symmetric from the position
vector of the individual mount stated in Equation (1). ki is the individual mount’s local
stiffness matrix. The objective function, fw, is obtained by adding the Euclidean norms of
the individual forces passed by each mount.

fw = ∑
j

λj ∑
i
‖ fi‖ (22)

λj is the weighting parameter in Equation (22) that corresponds to various loading
circumstances.
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Adding a deflection limitation to the optimization issue determines the maximum
permitted engine weight. The static deflection Xst at the origin of the global coordinate
system is calculated as follows:

Xst = K−1Fst (23)

In Equation (23), Fst is the static load on the system.
The engine mount optimization problem can be expressed as follows:

Minimize fw (ki, ri, θi) (24)

subject to gj(ki, ri, θi) ≤ 0 j = 1, . . . , N

Mount stiffness, location, and orientation, ki, ri, θi, represent the design parameters
in Equation (24) that are subjected to a total of N constraints gj. The problem has boundary
constraints on the engine mount stiffness, constraints on the mount placement based on
available space, symmetry requirements on the mount orientation, and lastly a constraint
on the powertrain’s center of gravity deformation owing to static weight. The objective
function fw is defined by Equation (22). Both fw and, gj are functions of the design
parameters, ki, ri, θi.

5. Results and Discussion

In this section, the optimization findings are reported and discussed. The results of
the optimization algorithms are exhibited and compared to each other to demonstrate
that swarm intelligence optimization algorithms can effectively and reliably tackle highly
non-linear optimization problems and complicated engineering challenges. Most notably,
the two 12-DOF models’ optimal design variables were successfully determined, and the
transmitted force from the body/frame to the engine, and vice versa, was minimized.
Mechanical vibrations were thus isolated and/or reduced.

Each method undergoes a total of five computational optimization experiments to
guarantee that appropriate and dependable results are obtained. In addition to the tolerance
given in the method, the maximum number of iterations is set to 1000 iterations as a
stopping condition for these algorithms. Table 1 lists the parameters for the GWO, GA, and
SQP algorithms. Table 2 shows the engine mount’s optimum design variables, as well as
their upper and lower bounds. The achieved design optimization results for the first model,
which solely addresses shaking loads, are shown in Tables 3 and 4. The achieved design
optimization results for the second model that includes the combined loads are shown in
Tables 5 and 6 (shaking and road loads).

Table 1. The set parameters of the employed algorithms.

Algorithm Parameters Value/Setting

GWO

Number of wolves 30

Max. number of iterations 1000
⇀
a Decreases linearly from 2 to 0

r1 and r2 Random numbers in [0, 1]
⇀
A A = 2.

⇀
a . rand (r1)−⇀

a
⇀
C

⇀
C = 2. rand (r2)

GA

Population size 200

Crossover’s probability 0.8

Mutation probability 0.1

SQP
Starting point (475, 7500, 12, −9, 0, −19, −5, 0, 0.1, 50, 0.5, 25)

Max. number of iterations 1000
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Table 2. Upper and lower bounds of the design variables.

Design Variable LB UB

Stiffness along x and y axes (lb.in) 100 5000
Stiffness on the z-axis (lb.in) 500 10,000
Location of mounts 1 & 2 (x-axis) 8 12
Location of mounts 1 & 2 (y-axis) −9 −5
Location of mounts 1 & 2 (z-axis) −7 −3
Location of mounts 3& 4 (x-axis) −17 −11
Location of mounts 3 & 4 (y-axis) −10 −6
Location of mounts 3 &4 (z-axis) −7 −3
Orientation of mount 1 (deg.) 0 50
Orientation of mount 2 (deg.) 0 50
Orientation of mount 3 (deg.) 0 50
Orientation of mount 4 (deg.) 0 50

Table 3. Optimized mounts’ stiffness (12-DOF model—shaking loads only).

Opt. Algorithm Load Trans. (lb.) Number of Iterations Optimized Mount Stiffness (lb./in)

Kx Ky Kz

GWO 1.5981 80 100 100 500
GA 285.5898 200 1165.4271 1165.4271 1766.7258
SQP 38.7022 121 2144.1395 2144.1395 1155.4404

Table 4. Optimization results of natural frequencies (12-DOF model—shaking loads only).

Opt. Algorithm Natural Frequencies (Hz)

GWO
(Un-Damped)

1.5047 10.2841 10.5974 11.4362 19.2999 27.9737
36.2066 83.1606 103.0303 104.9282 200.5981 1271.338

GWO
(Damped)

1.4327 10.2178 10.5918 11.4340 19.2926 27.9086
36.1198 82.3092 102.9964 104.9138 198.4054 1270.326

GA
(Un-Damped)

1.6681 9.9124 10.7731 16.7775 24.2217 25.1362
42.3448 63.0191 103.6622 104.1913 200.5471 1271.340

GA
(Damped)

1.5951 9.8888 10.6892 16.7717 24.1934 25.1023
42.1556 62.8106 103.6198 104.1895 198.3563 1270.328

SQP
(Un-Damped)

1.4887 8.86195 10.9074 11.04533 20.2400 23.4522
44.8094 103.0313 104.7901 110.6138 200.6037 1271.304

SQP
(Damped)

1.4093 8.7623 10.8985 11.0445 20.2197 23.4471
44.5790 102.9973 104.7789 108.0104 198.4111 1270.297

Table 5. Optimization results of damping coefficients (12-DOF model—shaking loads only).

Opt. Algorithm Damping Coefficients

GWO
0.0166 0.0198 0.0257 0.0274 0.0327 0.0399
0.0682 0.0692 0.1134 0.1427 0.1475 0.3057

GA
0.0059 0.0263 0.0286 0.0399 0.0483 0.0519
0.0690 0.0813 0.0944 0.1246 0.1474 0.2925

SQP
0.021 0.0146 0.0209 0.0257 0.0397 0.0402
0.0448 0.1013 0.1474 0.1495 0.2157 0.3233
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Table 6. Optimized mounts’ position and orientation (12-DOF model—shaking loads only).

Design Variables Opt. Alg. Mount 1 Mount 2 Mount 3 Mount 4

Optimized Orientation
(deg)

GWO (0.7, 0.0012, 0) (−0.7, −0.0012, 0) (0.0002, 0.017, 0) (−0.0002, −0.017, 0)

GA (50, 10.6, 0) (−50, −10.6, 0) (50, 10.8, 0) (−50, −10.8, 0)

SQP (0.0005, 3.2, 0) (−0.0005, −3.2, 0) (0.00002, 0.00006, 0) (−0.00002, −0.00006, 0)

Optimized Position (in)

GWO (8, −5, −3) (8, −5, 3) (−12.3, −7.3, −5.2) (−12.3, −7.3, 5.2)

GA (11.265, −5, −3.0024) (11.265, −5, 3.0024) (−11.036, −6., −3) (−11.036, −6, 3)

SQP (8, −5, −7) (8, −5, 7) (−17, −6, −3) (−17, −6, 3)

The decoupled vibration modes for the two models utilizing different optimization
strategies are shown in Figures 3–11. It is accomplished by minimizing the global stiffness
matrix’s off-diagonal terms. We guarantee that the diagonal stiffness matrix terms are the
only dominant ones by doing so. This will ensure that the powertrain’s rolling motion
is kept to a minimum. At lower frequency values, vibration modes are not decoupled as
intended. Meanwhile, the vibration modes are cleaner, i.e., when the vibration frequency is
higher, and decoupling occurs as shown in Figures 3–8 for model 1 (shaking loads only)
and Figures 9–14 for model 2 (combined loading).

Figure 3. GWO-optimized mode shapes 1–6 (12-DOF model—shaking loads only).

The modes were not totally separated for low-vibration frequencies, as shown in
Figures 3 and 4 specifically when the frequency was in the range of 0–100 Hz except for
few shapes where even at low frequency decoupling occurred Figure 3 (mode shape at
frequency 10.3316 Hz) and Figure 5 (mode shape at frequency 25.1378 Hz). GA and SQP
were also successful in decoupling the modes of vibration but at high computational cost
and not forgetting the values of the transmitted force that were not optimal compared to
those obtained by GWO.
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Figure 4. GWO-optimized mode shapes 7–12 (12-DOF model—shaking loads only).

Figure 5. GA-optimized mode shapes 1–6 (12-DOF model—shaking loads only).
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Figure 6. GA-optimized mode shapes 7–12 (12-DOF model—shaking loads only).

Figure 7. SQP-optimized mode shapes 1–6 (12-DOF model—shaking loads only).
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Figure 8. SQP-optimized mode shapes 7–12 (12-DOF model—shaking loads only.

Figure 9. GWO-optimized mode shapes 1–6 (12-DOF model—combined loading).
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Figure 10. GWO-optimized mode shapes 7–12 (12-DOF model—combined loading).

Figure 11. GA-optimized mode shapes 1–6 (12-DOF model—combined loading).
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Figure 12. GA-optimized mode shapes 7–12 (12-DOF model—combined loading).

Figure 13. SQP-optimized mode shapes 1–6 (12-DOF model—combined loading).
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Figure 14. SQP-optimized mode shapes 7–12 (12-DOF model–combined loading).

The best design variables and objective function for the 12-DOF model considering
solely the shaking loads are shown in Tables 3–5. Table 3 reports the optimized mount
stiffness along each axis. Tables 4 and 5 report the damped and un-damped natural
frequencies and damping coefficients, respectively. Table 6 reports the optimized mounts’
position and orientation where the engine mounts at these positions and orientations largely
contribute towards minimizing transmitted forces and isolating mechanical vibrations
considering shaking loads only. Likewise, Tables 7–9 report the optimal design variables,
optimized objective function, and mount stiffness along each axis for the 12-DOF model
when considering the combined shaking loads and road forces for various optimization
strategies. Table 10 reports the optimized mounts’ position and orientation considering
combined loads. It is worth noting that because the goal function values are directly
proportional to the design variables, the lower objective function values indicate a better
overall isolation system. Lower damping and stiffness values, on the other hand, will aid
in accomplishing this goal. The amount of damping and stiffness of a vehicle has a direct
impact on its handling and maneuverability. High damping and stiffness rates can result
in low vibration transmission at low frequencies, resulting in poor performance at higher
frequencies. Low damping and stiffness rates, on the other hand, will result in low noise
but significant vibration transmission. Finding the best damping and stiffness parameters
for the engine mounts can assist in reducing vibration transmission without sacrificing
handling and agility. The GWO method, as shown in Tables 3 and 7, delivers the lowest
values of the objective function, i.e., transmitted loads. The related values of the improved
design variables, such as mount stiffness, position, and orientation, are shown in Tables 3
and 6 when only shaking loads are considered and in Tables 7 and 10 when combined
loading is considered.
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Table 7. Optimized mounts’ stiffness (12-DOF model—combined loading).

Opt. Algorithm Load Trans. (lb.) Number of Iterations Optimized Mount Stiffness (lb./in)

Kx Ky Kz

GWO 92.9407 100 100 100 500
GA 288.0116 200 1500.657 1500.657 500
SQP 434.3781 76 1264.616 1264.616 2135.474

Table 8. Optimization results of natural frequencies (12-DOF model—combined loading).

Opt. Algorithm Natural Frequencies (HZ)

GWO
(Un-Damped)

1.5034 8.4261 10.7094 15.4325 20.9817 36.4454
41.4712 71.2310 103.2026 104.7980 200.5963 1271.338

GWO
(Damped)

1.4179 8.4167 10.7086 15.3437 20.9767 36.3291
41.2907 70.7991 103.1668 104.7911 198.4041 1270.326

GA
(Un-Damped)

1.5205 9.8706 10.5851 12.2400 21.6985 31.4408
37.3987 81.8021 103.0300 104.3988 200.5693 1271.372

GA
(Damped)

1.4506 9.8058 10.5762 12.2377 21.6925 31.3493
37.2482 80.9966 102.9962 104.3956 198.378 1270.352

SQP
(Damped)

1.426 8.9260 10.0566 11.3306 22.3357 36.9528
43.7704 79.2452 102.9955 104.4396 198.4062 1270.352

SQP
(Un-Damped)

1.5001 8.9318 10.1301 11.3319 22.3410 37.1080
43.9998 79.9703 103.0294 104.4435 200.5984 1271.371

Table 9. Optimization results of damping coefficients (12-DOF model—combined loading).

Opt. Algorithm Damping Coefficients

GWO
0.0114 0.0120 0.0218 0.0263 0.0399 0.0472

0.0798 0.932 0.1071 0.1100 0.1474 0.3326

GA
00.78 0.195 0.0234 0.0256 0.0400 0.0410

0.0763 0.0896 0.1144 0.1400 0.1474 0.29997

SQP
0.0087 0.0151 0.0218 0.0256 0.0360 0.0400

0.0914 0.1020 0.1201 0.1344 0.1474 0.3103

Table 10. Optimization results for mounts’ positions and orientations (12-DOF model—
combined loading).

Design Variables Opt. Alg. Mount 1 Mount 2 Mount 3 Mount 4

Optimized Orientation (deg)

GWO (0.1, 18., 0) (−0.1, −18, 0) (28.7, 5.2, 0) (−28.7, −5.2, 0)

GA (0, 50, 0) (0, −50, 0) (0.1, 50, 0) (−0.1, −50, 0)

SQP (0, 30.2, 0) (0, −30.2, 0) (1.3, 50, 0) (−1.3. −50, 0)

Optimized Position (in)

GWO (8, −9, −7) (8, −9, 7) (−11, −6, −3) (−11, −6, 3)

GA (10.5, −5, −3) (10.5, −5, 3) (−11, −6, −6.4) (−11, −6, 6.4)

SQP (8, −9, −3) (8, −9, 3) (−13.1, −6, −4.7) (−13.1, −6, 4.7)

After around 100 iterations, GWO converged to the global optimum solution, which
was significantly less than the 1000 iterations chosen as the stopping condition. This
demonstrates that GWO had a fast convergence rate for this particular application PMS,
which means less computing time and expense, as well as optimum outcomes with limited
computational resources. The outcomes of the PMS application demonstrate GWO’s
exploration ability.
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The convergence characteristics of the first PMS model, which only includes shaking
loads, are shown in Figures 15 and 16. In terms of convergence speed, GWO outperformed
GA and SQP, needing less computational time, iterations, and function evaluations. It also
shows that GWO discovered the finest global minima.

Figure 15. Convergence characteristics of the optimization algorithms used for the 12-DOF model
(shaking loads only).

Figure 16. Convergence characteristics of the optimization algorithms used for the 12-DOF model
(combined loading).

GWO achieved a minimal value of 1.5981 lb. for the objective function, minimizing
the transmitted load, compared to 285.5898 lb. and 38.7022 lb. for GA and SQP, respectively.
The transmitted force from the engine to the framework was minimized for model 1
(including only shaking loads) and was found to be 1.5981 lb., 285.5898 lb., and 38.7022 lb.
using GWO, GA, and SQP, respectively. As can be observed in Figure 17, GWO obtained
the optimal and least transmitted force value of 1.5981 lb., as opposed to the high values
obtained by GA and SQP. A similar scenario can be seen for the other model, model 2
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(combined loading), where GWO obtained the smallest (optimal) transmitted force of
92.9407 lb. compared to 288.0116 lb. and 434.3781 lb. using GA and SQP, respectively, as
shown in Figure 18.

Figure 17. Minimized transmitted force for the 12-DOF model (shaking loads only).

Figure 18. Minimized transmitted force for the 12-DOF model (combined loading).
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In contrast to GA and SQP, GWO smoothly and precisely converged to a global
optimal solution, as illustrated in Figure 15. For the proposed PMS model, this reflects the
efficiency and resilience of the swarm intelligence optimization algorithm. The convergence
characteristics of the second PMS model when combined loads (shaking and road loads)
are considered are shown in Figure 16. Even though this is a complex model, GWO
outperformed GA and SQP. As shown in Figure 16, even the beginning of the search in
GWO was better than the optimum to which GA and SQP converged. GWO’s capacity
to handle complex PMS design optimization models is demonstrated in this way. When
swarm intelligence optimization techniques are applied to complex PMS models, the
computing cost is reduced, and the outcomes are improved.

It is worth mentioning that GA did not work well on MPS models since the objective
function value did not change much over many iterations, as seen in Figures 15 and 16. In
other words, new generations and children do not appear to have made much progress. The
SQP convergence trend shows that the algorithm has trouble finding a global best solution.
In both Figures 15 and 16, the objective function evaluation did not smoothly converge from
high to low values, but rather traveled up and down until it reached what the algorithm
believed is a global optimum. This is because SQP is a local search method, and the best
solution (which could be local or global) is determined by the search beginning point.
In [41], the authors gave a performance comparison of GA, SQP, and other evolutionary
and swarm optimization techniques.

Figures 17 and 18 show that GWO performed better than the GA and SQP algorithms
in terms of the amount of transmitted force for both 12-DOF models, the first model that
considers only shaking loads and the second model that considers the combined loads.
GWO was able to minimize the transmitted loads to 1.5981 lb. while GA and SQP did
not do well compared to GWO and produced a transmitted load of 285.58 lb. (the worst)
and 38.7002 lb., respectively. When considering combined loads, GWO outperformed
GA and SQP as can be seen in Figure 18. GWO minimized the shaking and road loads
and transmitted about 92.94 lbs. to the motorcycle frame compared to GA (transmitted
288 lbs.) and SQP, which was the worst in this loading case (transmitted 434 lbs.). It
can be concluded that GWO did very well for both models by minimizing and isolating
mechanical vibrations.

Finally, GO surpassed the competition in terms of PMS design optimization, as well
as being more resilient and less costly in terms of CPU costs. The results of GWO were
positive, highlighting the importance of swarm intelligence algorithms in MPS design and
optimization. On the other hand, different optimization techniques such as GA and SQP
may perform well in other technological applications. As a result, the engineering problem
determines the optimization algorithm. In MPS applications, GWO was better than MPS;
however, it may not be as effective in other engineering applications.

6. Conclusions

This paper investigated and optimized two 12-DOF PMS models. The first model
considers only shaking loads, while the second model considers both shaking loads and
road loads. The purpose of this work was to determine optimal PMS design parameters
that minimize the loads induced by shaking forces, which eventually isolate mechanical
vibrations. Stiffness, position, and orientation of the engine mounts were considered to be
design parameters. The optimal design parameters that minimize the selected objective
function of both models were determined using low-cost swarm intelligence and evolution-
ary optimization approaches. The implemented optimization approaches were successful
in capturing vibration isolation qualities and producing appropriate PMS design param-
eters. Based on the findings of this study, swarm intelligence optimization approaches
such as GWO have been shown to be promising in sophisticated and extensive computa-
tion engineering applications such as PMS. The transmitted force from the engine to the
framework was minimized for model 1 (including only shaking loads) and found to be
1.5981 lb., 285.5898 lb., and 38.7022 lb. using GWO, GA, and SQP, respectively. Compared
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to GA’s and SQP’s high values, GWO had the ideal and least transmitted force value of
1.5981 lb. For the other model, model 2 (combined loading), the transmitted force obtained
by GWO was 92.9407 lb., which was the smallest (optimal) when compared to 288.0116
lb. and 434.3781 lb. using GA and SQP, respectively. A comparison of the optimization
algorithms utilized in this work revealed GWO’s superior performance. In comparison to
GA and SQP, GWO successfully decoupled vibration modes at high frequencies with less
computational cost. GWO demonstrated improved performance in terms of reducing the
transmitted force values from the engine to the frame and decoupling vibration modes at a
reduced computational cost. Based on the simulation and computational findings for this
particular application PMS, GWO was the best in terms of convergence speed, accuracy,
and computing cost.
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