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Abstract: Recent studies have been evaluating the presence of patterns associated with the occurrence
of cancer in different types of tissue present in the individual affected by the disease. In this article,
we describe preliminary results for the automatic detection of cancer (Walker 256 tumor) in laboratory
animals using preclinical microphotograph images of the subject’s liver tissue. In the proposed
approach, two different types of descriptors were explored to capture texture properties from the
images, and we also evaluated the complementarity between them. The first texture descriptor
experimented is the widely known Local Phase Quantization (LPQ), which is a descriptor based
on spectral information. The second one is built by the application of a granulometry given by a
family of morphological filters. For classification, we have evaluated the algorithms Support Vector
Machine (SVM), k-Nearest Neighbor (k-NN) and Logistic Regression. Experiments carried out
on a carefully curated dataset developed by the Enteric Neural Plasticity Laboratory of the State
University of Maringá showed that both texture descriptors provide good results in this scenario.
The accuracy rates obtained using the SVM classifier were 96.67% for the texture operator based on
granulometry and 91.16% for the LPQ operator. The dataset was made available also as a contribution
of this work. In addition, it is important to remark that the best overall result was obtained by
combining classifiers created using both descriptors in a late fusion strategy, achieving an accuracy of
99.16%. The results obtained show that it is possible to automatically perform the identification of
cancer in laboratory animals by exploring texture properties found on the tissue taken from the liver.
Moreover, we observed a high level of complementarity between the classifiers created using LPQ
and granulometry properties in the application addressed here.

Keywords: texture; local phase quantization; granulometry; liver tissue

1. Introduction

Cancer is the second biggest cause of death worldwide, accounting for nearly 10 mil-
lion deaths in 2020 [1]. This disease starts from the transformation of normal cells into
tumor cells, in a multi-stage process that generally progresses from a pre-cancerous lesion
to a malignant tumor. Different parts from the human body may be affected by this trans-
formation. In this vein, several research studies have been developed aiming to investigate
how these lesions happen in different types of tissue.

One of these investigations is under development in the Enteric Neural Plasticity
Laboratory of the State University of Maringá. In that work, the researchers have been
evaluating the transformations provoked by Walker 256 tumor in the cells contained in
samples of tissue taken from the liver of laboratory rats in a preclinical scenario. By visually
inspecting those images, they noticed that different patterns are present when samples
taken from healthy and sick individuals are compared.
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In this work, we describe results obtained in preliminary investigations developed
aiming to accomplish the automatic identification of cancer using the aforementioned im-
ages. For this purpose, we decided to explore the textural properties of the images, inspired
in another biomedical application previously investigated by our research group [2]. In that
work, we evaluated the use of some widely known texture operators for the identification
of chronic degenerative diseases from images taken from other types of tissue.

As far as we know, the automatic identification of cancer, using a spectral texture
descriptor and granulometry-based properties of the tissue taken from the liver, is proposed
for the first time in this work. Furthermore, we also investigate the complementarity
between classifiers created on both scenarios (i.e., the LPQ texture operator [3], and a
granulometry-based descriptor [4–6]). The experimental results demonstrate the existence
of a high level of complementarity between both on the task evaluated here.

Taking it into account, we describe the following Research Questions (RQ) we intend
to answer in this work:

• RQ1: What is the performance of LPQ to support cancer identification in a Walker
256 tumor model on microphotograph of rats liver?

• RQ2: What is the performance of granulometry-based descriptors (GBD) to support
cancer identification in a Walker 256 tumor model on microphotographs of rat liver?

• RQ3: Is it possible to obtain better results for cancer identification in a Walker 256 tu-
mor model by combining classifiers created using LPQ and GBD in this scenario?

The classification was performed using three of the most widely known shallow
classifiers: k-NN, Logistic Regression, and SVM. The choice of shallow classifiers is justified
by the size of the dataset, which is too small to feed deep learning models.

The remaining of this work is organized as follows: In Section 2, we describe some
remarkable related works. Section 3 presents the main facts related to the dataset used in
this work. In Section 4, we describe details about the feature extraction design adopted
here. In Section 5, the methodology used for classification is showed in details. In Section 6,
results and discussions are presented. Finally, we describe our concluding remarks.

2. Related Works

In a more general context, Matos et al. [7] recently described a review on the use of
machine learning methods for histopathological image analysis. In that work, the authors
easily found 2524 scientific works already published in the period between 2008 and 2020,
using five widely known research portal engines (i.e., IEEExplore, ACM Digital Library,
Science Direct, Web of Science and Scopus). In that work, the authors described the system-
atic review according to a taxonomy which takes into account some important aspects of
machine learning methods: the use of segmentation as a preprocessing strategy; the use of
handcrafted or non-handcrafted features; and the use of shallow or deep learning methods.

The choice for works from the literature related to this one is not such a trivial task,
because this relationship may be seen from different perspectives, considering different
arrangements. One of these possibilities is to make the stratification of the works in terms
of the tissue/organ from which the images were obtained. In this vein, the work presented
by Nativ et al. [8] is worth mentioning here. In that work, they proposed a particular
image analysis technique to automatically identify the steatotic state of livers. The proposal
was based on a carefully designed image analysis based on the segmentation of liver
cellular and tissue structures. Following, some metrics were obtained from the segmented
structures and used with a k-means unsupervised clustering algorithm. The authors claim
that the proposed method overcame the performance of the strategies already presented at
that moment.

Shi et al. [9] also performed automated liver fat quantification. For this purpose, they
developed a pipeline in which high-relevant pixel-level features are firstly extracted from
hematoxylin–eosin stained images. Following, the boundaries between nuclei, fat and
other components are found clustering pixels using an unsupervised strategy. Finally,
the fat regions are identified based on the use of morphological operations. The au-
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thors claim that the proposed approach presented a high accuracy and adaptability in fat
droplets quantification.

Deeply analyzing the literature, we still found one more work closely related to this
one. Thiran and Macq [10] performed morphological feature extraction for the Classifi-
cation of Digital Images of Cancerous Tissues. The authors used a dataset composed of
images from lungs and digestive tract obtained by biopsy. The proposal was based on the
use of mathematical morphology to segment the nuclei of the cell, as the shape is an impor-
tant attribute to make it. The sequence of operations used to perform this segmentation
was the following: morphological opening, morphological reconstruction, and lastly, a
threshold. Once the nuclei was segmented, the set of features was extracted using, once
again, morphological operations to capture measures related to Nucleocytoplasmic Ratio,
Anisonucleosis, Nuclear Deformity, and Hyperchromasia. Finally, they proposed a score
obtained from these four values and used it to decide whether a given tissue is cancerous
or not.

3. Dataset

The dataset used in this work was created by researchers of the Enteric Neural Plasticity
Laboratory of the State University of Maringá. For this, male adult rats, of the Wistar
(Rattus norvegicus) lineage were used. All the proceedings involving the animals were
previously approved by the “Standing Committee on Ethics in Animals Experimentation”
of the university.

The animals were randomly separated into a control group (C) and Walker tumor
group (TW). Animals from the TW group were inoculated with Walker 256 tumor cells.
The dataset is composed of 120 microphotographs taken from samples of rat liver tis-
sue. The images are divided in two classes: control (C), containing 60 microphotographs
taken from six healthy rats (10 from each rat) and Walker 256 tumor (TW), containing
60 microphotographs taken from six rats (ten from each rat) with the Walker 256 tumor.

The liver samples were made in a semi-serialized manner with 5 µm cuts; they
were stained with haematoxylin and eosin. The images were obtained using the cam-
era Moticam® 2500 5.0 Mega Pixel (Motic China Group Co, Shanghai, China) coupled to
the microscope Motic BA 400 (Motic China Group Co., Shanghai, China). The images were
collected with magnification of 40× and resolution of 1024× 768 pixels, which corresponds
to an area of 35,369.85 µm2 per image. Figures 1 and 2 show samples from the classes C and
TW, respectively. Some details about the images are summarized in Table 1, and additional
information about the dataset can be found in [11]. The dataset used in this work was made
freely available (https://github.com/Sersasj/Liver_Dataset, accessed on 1 April 2022) for
research purposes in such a way that other researchers can benefit from it and properly
compare the results obtained using different techniques with those obtained here.

Figure 1. Liver microphotograph from the control group (C).

https://github.com/Sersasj/Liver_Dataset


Algorithms 2022, 15, 268 4 of 16

Figure 2. Liver microphotograph from the Walker 256 tumor group (TW).

Table 1. Dataset characteristics.

Class Abbreviation Image Dimension Number of Samples

Walker 256 tumor TW 1024 × 768 60
Control C 1024 × 768 60

4. Feature Extraction

This section describes the descriptors used in this work: Local Phase Quantization
(LPQ) and a granulometry-based descriptor. The rationale behind this choice is the follow-
ing. Firstly, we chose LPQ because this operator is supposed to achieve a good performance
when the images may be affected by blur, which is a noise that frequently occurs in this
type of image due to the nature of the collection process, as we can see in the bottom right
corner of Figure 1. Next, we decided to evaluate a granulometry-based descriptor [4,5],
supposing that both could have a high level of complementarity.

4.1. Local Phase Quantization (LPQ)

Blurring in images can limit the analysis of texture information, and such degradation
can happen for a number of reasons. Algorithms that enable image blur removal are
computationally intensive and may introduce new artifacts, so algorithms that can analyze
textures in a robust way are desired.

Ojansivu and Heikkila [3] proposed a texture descriptor insensitive to blur based
on the quantized phase of the discrete Fourier transform, which is called Local Phase
Quantization (LPQ). The information of the local phase of an image of size N × N is given
by the Short-Term Fourier Transform in Equation (1), being Φui defined by the Equation (2),
where r = (m− 1)/2 and ui is a 2D frequency vector

f̂ui (x) = ( f ×Φui )x, (1)

Φui = e−j2πuT
i y|y ∈ Z2||y||∞ ≤ r. (2)

Only four complex coefficients are considered in LPQ, which correspond to the 2D
frequency u1 = [a, 0]T , u2 = [0, a]T , u3 = [a, a]T , u4 = [a,−a]T , where a = 1/m. The STFT
(Equation (1)) is expressed using the vector described in Equation (3) with wu being the
STFT basis vector at a frequency u and f (x), a vector of size m2 containing the values of
the image pixels in the m × m neighborhood of x.

f̂ui (x) = wT
ui

f (x) (3)
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Here, F = [ f (x1), f (x2)..., f (xn2)] is denoted as a matrix m2× N2 containing the neigh-
borhood of all image pixels and w = [wR, wI ]

T , where wR = Re[wu1 , wu2 , wu3 , wu4 ] and
wI = Im[wu1 , wu2 , wu3 , wu4 ]. Re[] and Im[] represent, respectively, the real and imaginary
parts of a complex number, and the (8× N2) transformation matrix is given by F̂ = wF.

Ojansivu and Heikkila [3] assume that the function f (x) of an image is the result of
the first-order Markov process, where the correlation coefficient between two pixels xi and
xj is exponentially related to their L2 distance. The vector f is defined by a covariance
matrix of size m2 × m2 according to the Equation (4), and the covariance matrix of the
Fourier coefficients can be obtained by D = wCwT . As long as D is not a diagonal matrix,
the coefficients are correlated and may become not correlated through E = VT F̂, where
V is an orthogonal matrix derivative from the singular value decomposition (SVD) of a
matrix D, which is D′ = VT DV.

Ci,j = σ||xi−xj || (4)

The coefficients are quantized using Equation (5), in which eij are components of E.
The coefficients are represented as integer values between 0 and 255 using the binary code
obtained from Equation (6).

At last, a histogram of these integer values from all images positions is used to make a
256-dimensional feature vector used for classification. The pseudocode for LPQ is described
in Algorithm 1.

qi,j =

{
1, if ei,j ≥ 0,
0, otherwise.

(5)

bj =
7

∑
i=0

qi,j2j (6)

Algorithm 1: Pseudocode for LPQ based descriptors.
Input: img: Color image under the RGB color space model,
m: defines a sized m×m neighborhood size of the Short-Term Fourier Transform
Output: H: A 256-dimensional feature vector.
imgr ← img red band
imgg ← img green band
imgb ← img blue band
f ← imgr + imgg + imgb
a← 1/m
u1 ← [a, 0]T

u2 ← [0, a]T

u3 ← [a, a]T

u4 ← [a,−a]T {compute the four coefficients ui for the STFT}
Compute basis vectors wui

f̂ui (x)← wT
ui

f (x) {compute the STFT}
Compute the covariance matrix C
D ← wCwT {compute the covariance matrix of the transform}
E← decorrelated matrix D {E = eij}
Q← coefficients quantization (see Equation (5))
Quantized coefficients bi are converted to an 8-bits values representation (see
Equation (6))
H ← {histogram of the quantized and converted coefficients}

4.2. Granulometry-Based Descriptors (GBD)

Mathematical Morphology (MM) is an algebraic theory that studies the decomposition
of operators between complete lattices in terms of elementary operators (erosion and
dilation) and operations (union, intersection and negation) [4,12]. It is a field of non-linear
digital image processing tools, and it is widely applied to process and analyze topological
and geometrical structures.
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Two basic and important morphological operators are the openings and closings [4,5].
Openings are morphological filters with the following properties:

• increasingness: f ≤ g⇒ γ( f ) ≤ γ(g).
• idempotence: γ(γ( f )) = γ( f ).
• anti-extensivity: f ≥ γ( f ).

Closings operators are also morphological filters which are increasing, idempotent
and extensive ( f ≤ ϕ( f )).

Considering images as a surface, an opening operator filters bright smaller peaks
while maintaining the bigger ones. On the other hand, a closing operator sieves smaller
darker valleys while preserving the bigger ones. Such removal depends on the type of the
filter. For instance, structural openings remove peaks where a structuring element can not
be fit [6]. More, the higher the size of the structuring element, the higher the amount of
filtered structures.

This paper uses three types of openings:

Definition 1 (Structural opening). Let f be an image. Let B be a structuring element [12].
The structural opening [4,5] is given by

γB( f ) = δB(εB( f )), (7)

where δB( f ) and εB( f ) are, respectively, the dilation and erosion of f by a structuring element
B [12].

Definition 2 (Opening by reconstruction). Let f be an image. Let B be a structuring element.
Let Bc be a structuring element that denotes connectivity [13]. The opening by reconstruction is
given by

γrec
B,Bc

( f ) = δrecBc
(εB( f ), f ), (8)

where δrecBc
( f , g) is the morphological reconstruction of g from f [5].

Definition 3 (Area opening). Let f be an image. Let λ ≥ 0. The graylevel area opening [14] of
parameter λ is given by

γarea
λ ( f ) = max{h ≤ f (x) : area(γx(Th( f ))) ≥ λ}, (9)

where Th( f ) is the threshold of f with parameter h [14]. In this paper, for simplicity, the graylevel
area opening will be called area opening.

This paper also uses three types of closings:

Definition 4 (Structural closing). Let f be an image. Let B be a structuring element. The struc-
tural closing [4,5,12] is given by

ϕB( f ) = εB(δB( f )). (10)

Definition 5 (Closing by reconstruction). Let f be an image. Let B be a structuring element. Let
Bc be a structuring element denoting connectivity. The closing by reconstruction [13] is given by

ϕrec
B,Bc

( f ) = εrecBc
(δB( f ), f ), (11)

where εrecBc
( f , g) is the morphological dual reconstruction of g from f [13].

Definition 6 (Area closing). Let f be an image. Let λ ≥ 0. The graylevel area closing [14] of
parameter λ is given by

ϕarea
λ ( f ) = (γarea

λ ( f c))c, (12)

where f c is the negation of f [4]. Again, for simplicity, the graylevel area closing will be called
area closing.
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Figure 3 shows a detailed view of the pixels affected by application of two morpho-
logical filters, an opening by reconstruction and a closing by reconstruction. In each case,
the affected pixels are highlighted in green.

Figure 3. Pixels affected by application of a opening by reconstruction and of a closing by reconstruc-
tion, using a disk structuring element with radius one.

Definition 7 (Granulometry). A granulometry [4,5] is a family of openings Γ = {γλ : λ ≥ 0},
which has the following property:

∀µ ≥ 0, γλ(γµ) = γµ(γλ) = γmax{λ,µ}. (13)

Definition 8 (Anti-granulometry). An anti-granulometry is given by a family of closings
Φ = {ϕλ : λ ≥ 0}, such that

∀µ ≥ 0, ϕλ(ϕµ) = ϕµ(ϕλ) = ϕmax{λ,µ}. (14)

(In this paper, for simplicity, all granulometries and anti-granulometries will be called
granulometry.)

Let Ψ = {ψλ : λ ≥ 0} be a granulometry. In the granulometric analysis, the amount
of sieved structures by ψλ is computed for each increment of λ. Let Ω(Ψ) be the size
distribution of Ψ such that ∀λ ≥ 0, Ω(Ψ)(λ) is the amount of sieved structures by ψλ [5].
Note that since Ω(Ψ)(λ) increases as λ is incremented, Ω(Ψ) is an increasing function.

Definition 9 (Opening Top-Hat). Let f be an image. The opening top-hat is given by

th(γ)( f ) = f − γ( f ).

Definition 10 (Closing Top-Hat). Let f be an image. The closing top-hat is given by

th(ϕ)( f ) = ϕ( f )− f .

Note that the opening top-hat and closing top-hat are residual operators, which gives
the sieved structures (the residue) by application of their respective morphological filters.
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Let Ψ = {ψλ : λ ≥ 0} be a granulometry. Let ∑ f = ∑x f (x) be the sum of all
intensities f (x) from an image f . The size distribution of Ψ is given by, ∀λ ≥ 0,

Ω(Ψ)(λ) = ∑ th(ψλ). (15)

In this measurement, Ω(Ψ)(λ) gives the sum of the volumes of all structures sieved
by ψλ.

Let β( f ) be the binarization function, which is given by

β( f )(x) =

{
1 if f (x) > 0
0 otherwise.

Let Ψ = {ψλ : λ ≥ 0} be a granulometry. The binary size distribution Ωβ(Ψ) is given by
∀λ ≥ 0,

Ωβ(Ψ)(λ) = ∑ β(th(ψλ)). (16)

In this measurement, Ωβ(Ψ)(λ) gives the number of pixels of all structures sieved
by ψλ.

Each one of the GBD assessed in this work is built as described in Algorithm 2.

Algorithm 2: Pseudocode for Granulometry-Based Descriptors.
Input: img: Color image under the RGB color space model,
binary: Boolean value: TRUE for binary granulometry; FALSE for gray level
granulometry
Output: Ψ = {ψλ : 1 ≤ λ ≤ 50}: Feature vector with 50 elements.
imgr ← img red band
imgg ← img green band
imgb ← img blue band
f ← imgr + imgg + imgb

if binary then
for each λ ∈ [1, · · · , 50] do

Ω(Ψ)(λ)← ∑ β(th(ψλ)( f ))

else
for each λ ∈ [1, · · · , 50] do

Ωβ(Ψ)(λ)← ∑ th(ψλ)( f )

Table 2 summarizes the set of twelve GBD tested in this work. Figure 4 illustrates the
construction of a size distribution Ω(Γ) from a granulometry given by a family of openings
by reconstruction. For each λ, a disk structuring element Bλ of radius λ was used by the
filter γrec

Bλ ,Bc
. The residue of such a filter is summed and taken as the λ-th component of the

feature vector.
Figures 5 and 6 show two sets of binary size distributions computed for each image

from the dataset introduced in Section 3. In this example, 120 binary size distributions were
computed: the blue curves are related to control images; the red ones are related to the
Walker 256 tumor images.
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Table 2. Granulometry-based descriptors.

Descriptor Morphological Filter Size Distribution

SO Structural Opening Ω(Γ)
BinSO Structural Opening (binary) Ωβ(Γ)

RO Opening by Reconstruction Ω(Γrec)

BinRO Opening by Reconstruction
(binary) Ωβ(Γrec)

AO Area Opening Ω(Γarea)
BinAO Area Opening (binary) Ωβ(Γarea)

SC Structural Closing Ω(Φ)
BinSC Structural Closing (binary) Ωβ(Φ)

RC Closing by Reconstruction Ω(Φrec)

BinRC Closing by Reconstruction
(binary) Ωβ(Φrec)

AC Area Closing Ω(Φarea)
BinAC Area Closing (binary) Ωβ(Φarea)

Figure 4. GBD generated by an opening by reconstruction. A disk-structuring element with radius λ

was used for each λ.

Figure 5. Binary size distributions from an area opening granulometry, λ ∈ [1, · · · , 50]. One size
distribution was computed for each image from the dataset introduced in Section 3.
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Figure 6. Binary size distributions from an area closing granulometry, λ ∈ [1, · · · , 50]. One size
distribution was computed for each image from the dataset introduced in Section 3.

5. Methodology Used For Classification

In this work, we have chosen three of the most popular classifiers algorithms frequently
used in different classification scenarios. Figure 7 illustrates the general overview of the
methodology used for classification.

Figure 7. General overview of the methodology used for classification.

As we can see, in phase 1, the extraction of the handcrafted features is performed.
The texture operators used are those already described in Section 4. Next, in phase
2, the classification is carried out using one of the three classifiers described in this
section. In phase 3, the results are evaluated considering each possible combination
f eature× classi f iers in isolation. Finally, in phase 4, the fusions combining the out-
puts of the classifiers with the best individual performances are evaluated, using late
fusion strategies (i.e., max rule, sum rule and product rule) proposed by Kittler et al. [15].
Equations (17)–(19) describe the mathematical details behind the max, product and sum
combinations rules, respectively. In these equations, x is the pattern to be classified, c is the
number of classes involved in the problem, n is the number of classifiers involved in the
combination, ωk represents a class, with k ∈ 1..c, and P(ωk|li(x)) is the probability that x
belongs to the class ωk according to the classifier i.

Max Rule (x) = arg
c

max
k=1

n
max
i=1

P(ωk|li(x)) (17)
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Product Rule (x) = arg
c

max
k=1

n

∏
i=1

P(ωk|li(x)) (18)

Sum Rule (x) = arg
c

max
k=1

n

∑
i=1

P(ωk|li(x)) (19)

Three classifiers’ algorithms were applied in this work: Support Vector Machines
(SVM), K-Nearest Neighbor and Logistic Regression.

SVM: Support Vector Machine (SVM) was first proposed by Vladmir Vapnik [16].
The SVM algorithm is able to perform the classification by determining a hyperplane that
best separates the classes in the training data [17]. In this work, we used the Gaussian
kernel, and cost and gamma parameters were tuned using a grid search.

k-NN: k-NN is an instance-based algorithm widely used for classification. The K-
Nearest Neighbor algorithm for binary classifications is considered simple when compared
to other machine learning algorithms [18]. Despite its simplicity, k-NN is still one of the
top 10 classification algorithms in machine learning [19]. This simplicity lies in the fact that
it assumes all instances as points in the Rn dimensional space and uses a distance metric
(e.g., the Euclidean distance is frequently used in this case) to decide whether the element
belongs to class A or class B [18,20]. In the experiments, various numbers of neighbors
were tested, and k = 5 was chosen as it performed better than the other odd values.

Logistic Regression: Logistic Regression is a special case of Regression [21]. Logistic
Regression uses the following equation:

p(X) =
eβ0+β1 X

1 + eβ0+β1 X
=

1
1 + e−β0 + β1X

,

in which β0 and β1 are associated with every independent variable and are calculated by
the likelihood method based on the dataset. Reglog is a statistical technique that establishes
a relationship between the variable of interest and the probability of the outcome occurring;
this probability has the value of success (1) and failure (0) [21]. The values β0 and β1 assume
the value that maximizes the probability of the observed sample [22].

The choice for shallow learning methods in this work is basically justified by the
following aspects: (i) the number of samples available in the dataset is quite limited, which
makes it not appropriate to be addressed using deep learning methods; (ii) the accuracy
rates achieved using handcrafted features and shallow learning proved to be suitable to
address the problem both in terms of accuracy and computational time.

6. Experimental Results and Discussion

In this section, we describe the results obtained using the LPQ descriptor, the GBD
and the late fusion between them. As there were six animals per class (i.e., control and TW),
we decided to organize the data making cross-validation such a way one subject per class
was taken to compose the test set for each round of training.

Let us call the six control subjects C1, C2, C3, C4, C5 and C6 and the six subjects
affected by Walker tumor TW1, TW2, TW3, TW4, TW5 and TW6. One control subject and
one TW subject were separated to be tested on a model trained using all the remaining
subjects. For example, in the first round, {C1 ∪ TW1} was tested on a model trained
using {C2 ∪ C3 ∪ C4 ∪ C5 ∪ C6 ∪ TW2 ∪ TW3 ∪ TW4 ∪ TW5 ∪ TW6}. On the second round,
{C2 ∪ TW2}was used for the test, and so on, characterizing a six-fold cross-validation. This
strategy was used to avoid the presence of samples taken from the same subject both on
test and training sets simultaneously, which could introduce a bias on the classifier.

6.1. Results Obtained Using LPQ

Table 3 presents the accuracies found using SVM, k-NN and Logistic Regression
classifiers, fed by the LPQ feature vector. Window sizes 3, 5, 7 and 9 were experimented.
The best results were achieved using the SVM classifier with features vectors built using
window sizes 5, 7 and 9.
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Table 3. Classification accuracy using LPQ descriptor.

SVM (%) 5-NN (%) REG (%)

LPQ3 76.67 65.83 66.67
LPQ5 91.67 84.166 83.33
LPQ7 91.67 80.83 74.16
LPQ9 91.67 78.33 69.16

As we can see, an accuracy of 91.67% was achieved with LPQ5, LPQ7 and LPQ9;
with these results, we can now confirm our first research question (RQ1), that it is pos-
sible to perform cancer identification exploring a spectral-based texture descriptor on
microphotographs of rat liver.

6.2. Results Obtained Using GBD

Tables 4 and 5 present the accuracies obtained using SVM, k-NN and Logistic Re-
gression classifiers, trained with the feature vectors created using the GBD described in
Section 6.2. The tables are divided according to the descriptor obtained by the closing and
opening morphological operations. Table 4 represents, respectively, Area Closing (AC),
Area Closing Binary (BinAC), Structural Closing (SC), Structural Closing Binary (BinSC),
Reconstruction Closing (RC) and Reconstruction Closing Binary (BinRC). Table 5 represents,
respectively, Area Opening (AO), Area Opening Binary (BinAO), Structural Opening (SO),
Structural Opening Binary (BinSO), Reconstruction Opening (RO) and Reconstruction
Opening Binary (BinRO).

Table 4. Classification accuracy using closing vectors.

SVM (%) 5-NN (%) REG (%)

AC 95.00 85.00 92.50
BinAC 96.67 95.83 88.33

SC 67.50 54.16 85.83
BinSC 71.66 75.83 92.50

RC 79.99 65.83 76.66
BinRC 82.50 70.83 75.83

Table 5. Classification accuracy using opening vectors.

SVM (%) 5-NN (%) REG (%)

AO 61.66 53.33 71.66
BinAO 89.16 88.33 86.66

SO 59.16 52.50 70.00
BinSO 70.00 70.83 87.50

RO 57.75 52.50 50.83
BinRO 73.33 69.16 67.50

The accuracies achieved with the vectors extracted using the Closing operation, as
shown in Table 4, in almost all classifiers are superior to the accuracies achieved with the
Opening vectors, as shown in Table 5. It is noticeable that the Area Closing Binary (BinAC)
achieved the best results when compared to other morphological filters, reaching the 96.67%
mark using SVM and 95.83% using k-NN (k = 5) classifier.

The Reconstruction Opening (RO) vector, as shown in Table 5, obtained the lowest
accuracies in all experiments, 50.83%, with the Logistic Regression classifier.

The results obtained using vectors obtained by the granulometry operations were very
divergent; AC, BinAC and BinSC performed even better than LPQ, and others such as SO
and RO obtained very poor results. Concerning our RQ2, we can conclude it is possible to
perform cancer identification exploring some granulometry filters described in Section 4,
but not all of them.
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6.3. Results Obtained Using Late Fusion strategies

Finally, aiming to achieve better results, the sum, max and product combination rules
were employed as a late fusion strategy. In all cases, the sum rule obtained the best results.
Due to this, we decided to describe in Table 6 only the results obtained with this rule.
The results described were obtained combining the three classifiers chosen among those
with the best performance in the experiments described previously.

Table 6. Accuracies obtained with late fusion combinations.

Classifier Individual Results (%) Combination Results (%)

LPQ7–SVM 91.67
BinAC–5-NN 95.83 99.16

BinSC–Reg 92.50

LPQ7–SVM 91.67
AC–SVM 95.00 99.16

BinAC–5-NN 95.83

LPQ7–SVM 91.67
AC–SVM 95.00 98.33

BinSC–SVM 82.50

The best overall results obtained in this work, i.e., 99.16% of accuracy, were obtained
in two different scenarios. The first one occurred in the combination between LPQ7–SVM,
BinAC–5-NN and BinSC–Reg. It is worth mentioning that in isolation, these classifiers
had reached, respectively, 91.67%, 95.83% and 92.50%, as can be seen in the first section of
Table 6.

The second scenario in which the best rate was obtained happened when the classifiers
LPQ7–SVM, AC–SVM and BinAC–5-NN were combined. In isolation, these classifiers had
reached, respectively, 91.67%, 95.00% and 95.83%, as can be seen in the second section of
Table 6.

An accuracy of 98.33% was reached by combining LPQ7–SVM, AC–SVM and BinSC–
SVM. In isolation, these classifiers had reached, respectively, 91.67%, 95.00% and 82.50%,
as can be seen in the third section of Table 6.

6.4. Discussions

Aiming to check whether or not there is a statistical difference between the best results
obtained using LPQ, Opening Vectors, Closing Vectors, and the best late fusion result, we
performed the Friedman statistical test.

The Friedman test was made using the accuracies obtained by the Late Fusion (LPQ7–
SVM, BinAC–5-NN and BinSC–Reg), BinAC–SVM, BinAO–SVM and LPQ7–SVM classifiers.
The accuracies were computed over each folder, as described in the beginning of Section 6.
The test presented a p-value of 0.0299; considering α = 0.05, we can conclude that the
performance of the classifiers are not all equivalent to each other.

Furthermore, the selected classifiers were ranked according to their accuracies, as can
be seen in Table 7. As a result, the superior performance of the Late Fusion technique
is attested.

In respect to RQ3, we can conclude that classifiers built with LPQ and GBD presented
a good level of complementarity to each other. As a consequence of this complementarity,
the late fusion obtained the best overall results reported in this work.
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Table 7. Classifiers ranking.

Fold Late Fusion BinAC–SVM BinAO–SVM LPQ7–SVM

f1 1 2.5 4 2.5
f2 1.5 1.5 3 4
f3 1.5 1.5 3.5 3.5
f4 1.5 1.5 3 4
f5 1.5 1.5 4 3
f6 1.5 4 1.5 3

Average 1.416 2.083 3.166 3.333

7. Concluding Remarks

We proposed a method for cancer identification exploring texture properties taken
from microphotographs of rat liver. For this, we used the LPQ spectral texture operator,
a widely used descriptor, especially when the images may be affected by blur, a noise that
typically occurs in images such as those used in this work. We also experimented with
GBD, and lastly, we investigated the complementarity between classifiers created in both
scenarios by using late fusion strategies.

Experiments performed on a dataset created by researchers from Enteric Neural Plas-
ticity Laboratory of the State University of Maringá confirm the efficiency of the proposed
strategies in isolation. In addition, we noticed an important level of complementarity be-
tween the classifiers created using both descriptors experimented. The best result obtained
using LPQ was 91.16% of accuracy. In this way, it is possible to state that cancer can be
identified in the Walker 256 tumor model using the LPQ texture operator with reasonably
good rates, answering RQ1. For GBD, the best result obtained was 96.67% of accuracy,
which responds positively to RQ2. Finally, the best overall result was obtained combining
classifiers created using both LPQ and GBD descriptors, achieving 99.16% of accuracy.
Thus, we can state that RQ3 was also positively answered.

Finally, we make a brief comment regarding the main limitation of this work. As hap-
pens in several works that deal with biomedical images, the main difficulty faced here
refers to the limited size of the dataset, which makes it more difficult to create a more
robust model and to make comparisons. Aiming to mitigate this issue, we performed the
Friedman statistical test, and we confirmed that there is a meaningful difference between
the results obtained by combining both strategies investigated here and the results obtained
by each strategy in isolation.

As future work, we intend to expand our investigations using an additional dataset
currently under development. This dataset is also being created by researchers from Enteric
Neural Plasticity Laboratory of the State University of Maringá. In this new version of the
dataset, two new classes will be included: treated control and treated Walker 256 tumor.
Other tests using granulometry, such as pattern spectrum and others, are also planned to
be made.
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Abbreviations
The following abbreviations are used in this manuscript:

AC Area Closing
AO Area Opening
BinAC Area Closing (binary)
BinAO Area Opening (binary)
BinRC Closing by Reconstruction (binary)
BinSC Structural Closing (binary)
BinSO Structural Opening (binary)
BinRO Opening by Reconstruction (binary)
C Control group
GBD Granulometry-Based Descriptors
k-NN k-Nearest Neighbor
LPQ Local Phase Quantization
MM Mathematical Morphology
RGB Red, Green and Blue color space
RC Closing by Reconstruction
RQ Research Question
RO Opening by Reconstruction
SC Structural Closing
SE Structuring Element
SO Structural Opening
STFT Shor-Time Fourier Transform
SVM Support Vector Machine
TW Walker 256 Tumor
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