
����������
�������

Citation: Müller, R.R.; Gäde, B.M.W.;

Bereyhi, A. Linear Computation

Coding: A Framework for Joint

Quantization and Computing.

Algorithms 2022, 15, 253. https://

doi.org/10.3390/a15070253

Academic Editors: Paulo Flores and

Mário Véstias

Received: 13 June 2022

Accepted: 15 July 2022

Published: 20 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Linear Computation Coding: A Framework for Joint
Quantization and Computing †

Ralf Reiner Müller * , Bernhard Martin Wilhelm Gäde ‡ and Ali Bereyhi

Institute for Digital Communications, Friedrich-Alexander Universität Erlangen-Nürnberg,
91058 Erlangen, Germany; bernhard_gaede@web.de (B.M.W.G.); ali.bereyhi@fau.de (A.B.)
* Correspondence: ralf.r.mueller@fau.de
† The Proceedings of Information Theory & Applications Workshop (ITA) 2021, the Proceedings of the IEEE

Conference on Acoustics, Speech, and Signal Processing (ICASSP) 2021, and the Proceedings of the IEEE
Statistical Signal Processing Workshop (SSP) 2021.

‡ Current address: Rohde & Schwarz GmbH Co. KG, 81671 München, Germany.

Abstract: Here we introduce the new concept of computation coding. Similar to how rate-distortion
theory is concerned with the lossy compression of data, computation coding deals with the lossy
computation of functions. Particularizing to linear functions, we present an algorithmic approach to
reduce the computational cost of multiplying a constant matrix with a variable vector, which requires
neither a matrix nor vector having any particular structure or statistical properties. The algorithm
decomposes the constant matrix into the product of codebook and wiring matrices whose entries are
either zero or signed integer powers of two. For a typical application like the implementation of a
deep neural network, the proposed algorithm reduces the number of required addition units several
times. To achieve the accuracy of 16-bit signed integer arithmetic for 4k-vectors, no multipliers and
only 1.5 adders per matrix entry are needed.

Keywords: approximate computing; computational complexity; estimation error; fixed-point arith-
metic; linear systems; rate-distortion theory; quantization

1. Introduction

Artificial neural networks are becoming an integral part of modern day reality. This
technology consists of two stages: A training phase and an inference phase. The training
phase is computationally expensive and typically outsourced to cluster or cloud computing.
It takes place only now and then, eventually only once forever. The inference phase is
implemented on the device running the application. It is repeated whenever the neural
network is used. This work solely targets the inference phase after the neural network has
been successfully trained.

The inference phase consists of scalar nonlinearities and matrix–vector multiplications.
The former ones are much easier to implement than the latter. The target of this work is to
reduce the computational cost of the following task: Multiply an arbitrary vector with a
constant matrix. At the first layer of the neural network, the arbitrary vector is the input to
the neural network. At a subsequent layer, it is the activation function of the respective
previous layer. The constant matrices are the weight matrices of the layers that were found
in the training phase and that stay fixed for all inference cycles of the neural network.

The computing unit running the inference phase need not be a general-purpose
processor. With neural networks being more and more frequently deployed in low-energy
devices, it is attractive to employ dedicated hardware. For some of them, e.g., field
programmable gate arrays or application-specific integrated circuits with a reprogrammable
weight-memory, e.g., realized in static random access memory, the data center has the option
to update the weight matrices whenever it wants to reconfigure the neural network. Still,
the matrices stay constant for most of the time. In this work, we will not address those

Algorithms 2022, 15, 253. https://doi.org/10.3390/a15070253 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15070253
https://doi.org/10.3390/a15070253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3780-9308
https://orcid.org/0000-0001-9565-6405
https://doi.org/10.3390/a15070253
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15070253?type=check_update&version=3

Algorithms 2022, 15, 253 2 of 27

updates, but focus on the most computationally costly effort: the frequent matrix–vector
multiplications within the dedicated hardware.

Besides the matrix–vector multiplications, memory access is currently also considered
a major bottleneck in the inference phase of neural networks. However, technological
solutions to the memory access problem, e.g., stacked dynamical random access memory
utilizing through-silicon vias [1] or emerging non-volatile memories [2], are being devel-
oped and are expected to be available soon. Thus, we will not address memory-access
issues in this work. Note also that the use in neural networks is just one, though a very
prominent one, of the many applications of fast matrix–vector multiplication. Many more
applications, can be found. In fact, we were originally motivated by beamforming in wire-
less multi-antenna systems [3,4], but think that neural networks are even better suited for
our idea, as they update their matrices much less frequently. Fast matrix–vector products
are also important for applications in other areas of signal processing, compressive sensing,
numerical solvers for partial differential equations, etc. This opens up many future research
directions based on linear computation coding.

Various works have addressed the problem of simplifying matrix–matrix multiplica-
tions utilizing certain recursions that result in sub-cubic time-complexity of matrix–matrix
multiplication (and matrix inversion) [5,6]. However, these algorithms and their more
recent improvements, to the best of our knowledge, do not help for matrix–vector products.
This work is not related to that group of ideas.

Various other studies have addressed the problem of simplifying matrix–vector mul-
tiplications in neural networks utilizing structures of the matrices, e.g., sparsity [7,8].
However, this approach comes with severe drawbacks: (1) It does not allow us to design
the training phase and inference phase independently of each other. This restricts interop-
erability, hinders efficient training, and compromises performance [9]. (2) Sparsity alone
does not necessarily reduce computational cost, as it may require higher accuracy, i.e.,
larger word-length for the nonzero matrix elements. In this work, we will neither utilize
structures of the trained matrices nor structures of the input data. The vector and matrix
to be multiplied may be totally arbitrary. They may, but need not, contain independent
identically distributed (IID) random variables, for instance.

It is not obvious that, without any specific structure in the matrix, significant compu-
tational savings are possible over state-of-the-art methods implementing matrix–vector
multiplications. In this work, we will develop a theory to explain why such savings are
possible and provide a practical algorithm that shows how they can be achieved. We also
show that these savings are very significant for typical matrix-sizes in present day neural
networks: By means of the proposed linear computation coding, the computational cost, if
measured in number of additions and bit shifts, is reduced several times. A gain close to
half the binary logarithm of the matrix size is very typical. Recent FPGA implementations
of our algorithm [10] show that the savings counted in look-up tables are even higher than
the savings counted in additions and bit shifts. In this paper, however, we are concerned
with the theory and the algorithmic side of linear computation coding. We leave details on
reconfigurable hardware and neural networks as topics for future work.

The paper is organized as follows: In Section 2, the general concept of computation
coding is introduced. A reader that is only interested in linear functions, but not in the
bigger picture, may well skip this section and go directly to Section 3, where we review
the state-of-the-art and define a benchmark for comparison. In Section 4, we propose our
new algorithm. Sections 5 and 6 study its performance by analytic and simulative means,
respectively. Section 7 discusses the trade-off between the cost and the accuracy of the
computations. Section 8 summarizes our conclusions and gives an outlook for future work.

Matrices are denoted by boldface upper letters, and vectors are not explicitly distin-
guished from scalar variables. The sets Z and R denote the integers and reals, respectively.
The identity matrix, the all zero matrix, the all one matrix, the expectation operator, the
sign function, matrix transposition, and Landau’s big O-operator are denoted by I, 0, 1, E[·],
sign(·), ·T, and O(·), respectively. Indices to constant matrices express their dimensions.

Algorithms 2022, 15, 253 3 of 27

The notation || · ||0 counts the number of non-zero entries of the vector- or matrix-valued
argument and is referred to as the zero norm. The inner product of two vectors is denoted
as 〈·; ·〉.

2. Computation Coding for General Functions

The approximation by an artificial neural network is the current state-of-the-art to
compute a multi-dimensional function efficiently. There may be other ones, yet undis-
covered, as well. Thus, we define computation coding for general multi-dimensional
functions. Subsequently, we discuss the practically important case of linear functions, i.e.,
matrix–vector products, in greater detail.

The best starting point to understand general computation coding is rate-distortion
theory in lossy data compression. In fact, computation coding can be interpreted as a lossy
encoding of functions with a side constraint on the computational cost of the decoding
algorithm. As we will see in the sequel, it shares a common principle with lossy source
coding: Random codebooks, if suitably constructed, usually perform well.

Computation coding consists of computation encoding and computation decoding. Roughly
speaking, computation encoding is used to find an approximate representation m(x) for
a given and known function f (x) such that m(x) can be calculated for most arguments
x in some support X with low computational cost and m(x) approximates f (x) with
high accuracy. Computation decoding is the calculation of m(x). Formal definitions are
as follows:

Definition 1. Given a probability space (X , PX) and a metric d : F ×F 7→ R, a computation
encoding with distortion D for given function f : X 7→ F is a mapping m : X 7→ M ⊆ F such
that Ex∈X [d(f (x), m(x))] ≤ D.

Definition 2. A computation decoding with computational cost C for given operator C is an
implementation of the mapping m : X 7→ M such that C[m(x)] ≤ C for all x ∈ X .

The computational cost operator C[m(·)] measures the cost to implement the function
m(·). It reflects the properties of the hardware that executes the computation.

Computation coding can be regarded as a generalization of lossy source coding. If we
consider the identity function f (x) = x and the limit C → ∞, computation coding reduces
to lossy source coding with m(x) being the codeword for x. Rate-distortion theory analyzes
the trade-off between distortion D and the number of distinct codewords. In computation
coding, we are interested in the trade-off between distortion D and computational cost C.
The number of distinct codewords is of no or at most subordinate concern.

The expectation operator in the distortion constraint of Definition 1 is natural to
readers familiar with rate-distortion theory. From a computer science perspective, it follows
the philosophy of approximate computing [11]. Nevertheless, hard constraints on the
accuracy of computation can be addressed via distortion metrics based on the infinity norm,
which enforces a maximum tolerable distortion.

The computational cost operator may also include an expectation. Whether this is
appropriate or not depends on the goal of the hardware design. If the purpose is minimum
chip area, one usually must be able to deal with the worst case and an expectation can be
inappropriate. Power consumption, on the other hand, overwhelmingly correlates with
average computational cost.

The above definitions shall not be confused with related, but different definitions
in the literature of approximation theory [12]. There, the purpose is rather to allow for
proving theoretical achievability bounds than evaluating algorithms. The approach to
distortion is similar. Complexity, however, is measured as the growth rate of the number of
bits required to achieve a given upper bound on distortion. This is quite different from the
computational cost in Definition 2.

Algorithms 2022, 15, 253 4 of 27

3. State of the Art in Linear Computation Coding

In this work, we mainly focus on matrix–vector products. Thus, we restrict the scope
to linear functions in the sequel.

3.1. Scalar Functions

The principles and benefits of computation coding are most easily explained for
linear functions. Let us start with scalar linear functions, before we get to the multi-
dimensional case.

Example 1. Let x ∈ R have unit variance and f (x) = tx, t ∈ [−1,+1]. Let the computation
encoding take the form

m(x) = sign(t)
C−1

∑
b=1

cb2b−Cx (1)

where the coefficients cb ∈ {0, 1} are the binary digits of the (C − 1)-bit unsigned integer ap-
proximation of |t|2C−1 starting to count with the least significant digit. There are only C− 1 bits
available to approximate |t|, as one bit is reserved for the sign. This is the standard way a linear
function is implemented on a modern computer by means of additions and bit shifts. Consider-
ing t as a random variable with uniform distribution on [−1,+1], the trade-off between average
mean-squared distortion and bit-width C is well-known to be [13]

E
x∈R

[f (x)−m(x)]2 =
4−C

3
, (2)

i.e., every additional bit of resolution reduces the quantization error by 6 dB. The bit-width C
is clearly a sensible measure for the computational cost. The variance of t is 1

3 , so the signal-to-
quantization noise ratio (SQNR) is given by 4C.

Assuming that the coefficients cb are independent random variables with a 50% chance
to be one, the total number of nonzero coefficients i is binomially distributed with parameter
1
2 . The number of additions given i is max{0, i− 1}. Thus, we obtain the average number
of additions in Example 1 as

21−C
C−1

∑
i=1

(
C− 1

i

)
(i− 1) =

C− 3
2

+ 21−C (3)

for C > 2. For 16-bit signed integer arithmetic, we need approximately 6.5 additions
per multiplication. The multiplication of a 4096× 512 matrix of 16-bit signed fixed-point
numbers by an unknown column vector, thus, requires 4096 · (512 · 6.5+ 511) ≈ 15.7 million
additions, i.e., 7.5 additions per matrix entry, on average. It achieves an average distortion
of 4−16/3, which is equivalent to −101 dB and a signal-to-quantization noise ratio (SQNR)
of 96 dB.

Example 2. Consider the setting of Example 1, except for the computation encoding to take Booth’s
canonical signed digit (CSD) form [14], i.e.,

m(x) = ∑
b∈B

cb2bx (4)

Algorithms 2022, 15, 253 5 of 27

with B ⊂ Z. Like in Example 1, the number t is approximated by a weighted sum of powers of 2.
However, the weighting coefficients cb are chosen from the set {−1,+1} instead of {0, 1}. For the
optimum set B, the average mean-squared distortion is shown in Appendix A to be

E
x∈R

[f (x)−m(x)]2 =
28−|B|

3
. (5)

Every addition reduces the quantization error by 14.5 dB. The SQNR is given by 28|B|.

In Example 2, the average distortion of −101 dB is achieved for |B| = log28 416 ≈ 6.66,
i.e., ≈ 6.66 additions per matrix entry. This is an 11% reduction in comparison to Example 1.
Booth’s CSD representation is useful, if the standard binary representation of Example 1
contains sequences of 3 or more 1-bits, e.g., in numbers like 7, which is more efficiently
represented as 8− 1 instead of 4 + 2 + 1. Modern VDHL compilers, e.g., use the CSD form
automatically whenever useful. Therefore, the performance of the CSD form is used as
benchmark in the sequel.

For very high precision, i.e., very small distortion, more efficient algorithms are
known from literature that are all based on some version of the Chinese Remainder
Theorem [15–20]. For precisions relevant in neural networks, however, these algorithms
are not useful.

There are various further improvements to computation coding of scalar linear func-
tions in the literature, e.g., redundant logarithmic arithmetic [21,22]. One can also search for
repeating bit patterns in the representation of t and reuse the initial computation for later
occurrences [23–25]. This search, however, is known to be non-polynomial (NP)-complete,
if performed in an optimal way [26]. One can represent t by multiple bases at the same
time [27]. However, the conversion into the multiple base number system does not come for
free. Area and power savings were studied in [28] for 32-bit and 64-bit integer arithmetic.
Only for 64-bit arithmetic improvements were reported.

An approach relevant to our work is reported in [29]. The authors address multiple
constant multiplication. That is the parallel computation of several scalar linear functions.
The authors utilize common terms among the several functions and report significant
savings. In some sense, our work can be understood as a generalization of [29] to linear
functions with vector-valued arguments. When targeting very low precision, simply using
tables can also be a promising alternative [30].

3.2. Multidimensional Functions

Lossless linear computation coding for products of structured matrices with unknown
real or complex vectors is widely spread in the literature. The most known example is
probably the fast Fourier transform [31]. Computation coding for linear functions with
unstructured matrices is much less investigated. Similar to [29], existing work [32–35] is
based on subexpression sharing. These algorithms achieve significant savings, but their
complexity scales unfavorably with matrix size. This makes them infeasible for large
matrices. Lower bounds on the number of additions required for subexpression sharing
are proven in [36].

The algorithm proposed in this work can be seen as the happy marriage between
two algorithms proposed earlier: The coordinate rotation digital computer (CORDIC)
algorithm [37] and the mailman algorithm [38]. Both of them have their advantages and
shortcomings. Our proposed method keeps the advantages and avoids the shortcomings.
We start with discussing the latter one.

3.2.1. The Mailman Algorithm

Accelerations to products of unstructured matrices with arbitrary vectors is well-
studied for Boolean semi-rings [39,40]. For Boolean semi-rings, [40] shows that lossless
linear computation coding in K dimensions requires at most O(K2(log K)−2) operations.
The mailman algorithm [38] is inspired by these ideas. It allows to compute the product of

Algorithms 2022, 15, 253 6 of 27

a matrix composed of entries from a finite field with an arbitrary (even real or complex)
vector by at most O(K2(log K)−1) operations. For this purpose, the target matrix

T = BW (6)

is decomposed into a codebook matrix B and a wiring matrix W in order to simplify the
computation of the linear function f (x) = Tx by f (x) = B(Wx) with appropriate choices
of the codebook and the wiring matrix.

Let T ∈ T N×K for the finite set T = {0, . . . , T − 1}. Let K = TN and fix the codebook
matrix B ∈ T N×K in such a way that the (n, k)th entry of B is the nth digit of the T-
ary representation of k − 1. Thus, the kth column of the codebook matrix is the T-ary
representation of k − 1. Since B contains all the TN possible columns, any column of T
is also a column of B. The purpose of the wiring matrix is to pick the columns of the
codebook matrix in the right order similar to a mailman who orders the letters suitably
prior to delivery. Since the wiring matrix only reorders the columns of the codebook
matrix, it contains a single one per column while all other elements are zero. Thus, the
product h = Wx is simply a permutation and does not require any arithmetic. On a circuit
board, it just defines a wiring. For the product Bh, ref. [38] gives a recursive algorithm that
requires O(K) operations. Decomposing a K× K matrix into K/ logT K submatrices of size
logT K× K, the overall complexity scales as O(K2/ log K).

The main drawback of the mailman algorithm is that it can only be used for matrices
whose entries are all positive. We may generalize the wiring matrix W and also allow
negative entries within it. However, this still requires the entries of any column of the
target matrix T to have the same sign. This constraint severely restricts the applicability of
the algorithm, in practice. In particular, it cannot be applied in neural networks.

A further drawback of the mailman algorithm is its inflexibility. The accuracy of
computation depends on the parameter T. However, T is not free, but tied to the size of
the matrix.

3.2.2. The CORDIC Algorithm

The CORDIC algorithm [37] is typically used to compute scalar nonlinear, typically
trigonometric functions. Since these functions occur in rotation matrices, they can be
computed by a suitable coordinate transform of the input. Thus, computing the nonlinear
function is reduced to calculating a linear function in multiple, typically two dimensions.

To save computations, the coordinate transform is approximated by multiple rotations,
such that each rotation matrix contains only zeros or signed powers of two. Thus, the
CORDIC algorithm also performs a matrix factorization as in (6). For rotations in two
dimensions, e.g., that results in the following approximation of a rotation by the angle φ:[

cos φ − sin φ
sin φ cos φ

]
≈

L−1

∏
b=0

1√
1 + 4−b

[
1 −cb2−b

cb2−b 1

]
(7)

with appropriate choices of the signs cb ∈ {−1,+1} and accuracy growing with the
number of factors L. However, the algorithm is limited to rotation matrices and not suited
for general linear functions. Furthermore, the reduction to multiple rotations implies that
all involved matrices must be square.

While we also propose a multiplicative decomposition into matrices containing only
zeros and powers of two, we show that a decomposition into only square matrices is a very
bad choice. In fact, for low approximation error, at least one of the matrix factors should be
either very wide (as in the mailman algorithm) or very tall.

3.2.3. Other Decompositions into Products of Matrices

Another decomposition into the product of matrices is proposed in [41]. In this work,
a target matrix is represented as the product of a full matrix quantized to signed powers
of two, which is sandwiched in-between two diagonal matrices that may have arbitrary

Algorithms 2022, 15, 253 7 of 27

diagonal entries. While this approach is useful in certain cases, it suffers from the same
issue as the CORDIC algorithm: the decomposition into square matrices.

4. Proposed Scheme for Linear Computation Coding

The shortcoming of the mailman algorithm is the restriction that the wiring matrix
must be a permutation. Thus, it does not do computations except for multiplying the
codebook matrix to the output of the wiring. The size of the codebook matrix grows expo-
nentially with the number of computations it executes. As a result, the matrix dimension
must be huge to achieve even reasonable accuracy.

We cure this shortcoming, allowing for a few additional entries in the wiring matrix. To
keep the computational cost as low as possible, we follow the philosophy of the CORDIC
algorithm and allow all non-zero entries to be signed powers of two only. We do not
restrict the wiring matrix to be a rotation, since there is no convincible reason to do so. The
computational cost is dominated by the number of non-zero entries in the wiring matrix. It
is not particularly related to the geometric interpretation of this matrix.

The important point, as the analysis in Section 5 will show, is to keep the aspect ratio of
the codebook matrix exponential. This means the number of rows N relates to the number
of columns K as

K = 2RN (8)

for some constant R, which is log2 T in the mailman algorithm, but can also take other
values, in general. Thus, the number of columns scales exponentially with the number of
rows. Alternatively, one may transpose all matrices and operate with logarithmic aspect
ratios. However, codebook matrices that are not far from square perform poorly.

4.1. Aspect Ratio

An exponential or logarithmic aspect ratio is not a restriction of generality. In fact,
it gives more flexibility than a linear or polynomial aspect ratio. Any matrix with a less
extreme aspect ratio can be cut horizontally or vertically into several submatrices with
more extreme aspect ratios. The proposed algorithm can be applied to these submatrices
independently. A square 256× 256 matrix, for instance, can be cut into 32 submatrices of
size 8× 256. Even matrices whose aspect ratio is superexponential or sublogarithmic do not
pose a problem. They can be cut into submatrices vertically or horizontally, respectively.

Horizontal cuts are trivial. We simply write the matrix vector product Tx as

Tx =

 T1
T2
...

x (9)

such that each submatrix has exponential aspect ratio and apply our matrix decomposition
algorithm to each submatrix. Vertical cuts work as follows:

Tx = [T1 T2 · · ·]

 x1
x2
...

 (10)

Here, the input vector x must be cut accordingly. Furthermore, the submatrix–
subvector products T1x1, T2x2, · · · need to be summed up. This requires only a few addi-
tional computations. In the sequel, we assume that the aspect ratio is either exponential,
i.e., T is wide, or logarithmic, i.e., T is tall, without loss of generality.

Algorithms 2022, 15, 253 8 of 27

4.2. General Wiring Optimization

For given distortion measure d(·, ·) (see Definition 1 for details), given the upper limit
on the computational cost C, given wide target matrix T and codebook matrix B, we find
the wiring matrix W such that

W = argmin
Ω:C[Ωx]≤C

E
x

d(Tx, BΩx) (11)

where the operator C[·] measures the computational cost.
For a tall target matrix T, run the decomposition algorithm (11) with the transpose of

T and transpose its output. In that case, the wiring matrix is multiplied to the codebook
matrix from the left, not from the right. Unless specified otherwise, we will consider wide
target matrices in the sequel, without loss of generality.

4.2.1. Multiple Wiring Matrices

Wiring optimization allows for a recursive procedure. The argument of the compu-
tational cost operator C[·] is a matrix–vector multiplication itself. It can also benefit from
linear computation coding by a decomposition of Ω into a codebook and a wiring matrix
via (11). However, it is not important that such a decomposition of Ω approximates Ω

very closely. Only the overall distortion of the linear function Tx is relevant. This leads to
a recursive procedure to decompose the target matrix T into the product of a codebook
matrix B and multiple wiring matrices such that the wiring matrix W in (6) is given as

W = W1W2 · · ·WL (12)

for some finite number of wiring matrices L. Any of those wiring matrices are found
recursively via

W` = argmin
Ω:C[Ωx]≤C`

E
x

d(Tx, BW1 · · ·W`−1Ωx) (13)

with ∑L
`=1 C` = C. This means that B serves as a codebook for W1 and BW1 · · ·W`−1 serves

as a codebook for W`.
Multiple wiring matrices are useful, if the codebook matrix B is computationally cheap,

but poor from a distortion point of view. The product of a computationally cheap codebook
matrix B with a computationally cheap wiring matrix W1 can serve as a codebook BW1
for subsequent wiring matrices that performs well with respect to both distortion and
computational cost.

Multiple wiring matrices can also be useful if the hardware favors some serial over
fully parallel processing. In this case, circuitry for multiplying with W` can be reused
for subsequent multiplication with W`−1. Note that in the decomposition phase, wiring
matrices are preferably calculated in increasing order of the index `, while in the inference
phase, they are used in decreasing order of `, at least for wide matrices.

4.2.2. Decoupling into Columns

The optimization problems (11) and (13) are far from trivial to solve. A pragmatic
approach to simplify them is to decouple the optimization of the wiring matrix columnwise.

Let tk and wk denote the kth columns of T and W, respectively. We approximate the
solution to (11) columnwise as

wk ≈ w̃k = argmin
ω:maxξ C[〈ω;ξ〉]≤s

d(tk, Bω). (14)

with s = C/K. This means we do not approximate the linear function Tx with respect to
the joint statistics of its input x. We only approximate the columns of the target matrix T
ignoring any information on the input of the linear function. While in (11), the vector x may
have particular properties, e.g., restricted support or certain statistics that are beneficial to

Algorithms 2022, 15, 253 9 of 27

reduce distortion or computational cost, the vector ξ in (14) is not related to x and must
be general.

The wiring matrix W̃ resulting from (14) will fulfill the constraint C[W̃x] ≤ C only
approximately. The computational cost operator does not decouple columnwise, in general.

4.3. Computational Cost

To find a wiring matrix in practice, we need to measure computational cost. In the
sequel, we do this by solely counting additions. Sign changes are cheaper than additions
and their numbers are also often proportional to the number of additions. Shifts are much
cheaper than additions. Fixed shifts are actually without cost on dedicated hardware such
as ASICs and FPGAs. Multiplications are counted as multiple shifts and additions.

We define the non-negative function csd: R 7→ Z as follows:

csd(t) = min
B

∣∣∣∣∣
{

b ∈ B : t = ∑
b∈B

cb2b ∧ cb ∈ {+1,−1}
}∣∣∣∣∣ (15)

This function counts how many signed binary digits are required to represent the
scalar t, cf. Example 2. The number of additions to directly calculate the matrix–vector
product Ωx via the CSD representation of Ω ∈ RN×K is thus given by the function csda:
RN×K 7→ Z as

csda(Ω) =
N

∑
n=1

max

{
0,−1 +

K

∑
k=1

csd(ωn,k)

}
. (16)

In (16), ωk,n denotes the (n, k)th element of Ω. The function csda(·) is additive with
respect to the rows of its argument. With respect to the column index, we have to consider
that adding k > 1 terms only requires k− 1 additions. This means the function csda(·)
does not decouple columnwise (although it does decouple row-wise). For columnwise
decoupled wiring optimization in Section 4.2.2, this means that csda(W̃) 6= csda(W)
in general.

Setting
C[Ωx] = csda(Ω) (17)

in (13), we measure computational cost in terms of element-wise additions. Our goal is to
find algorithms, for which

csda(W1) + csda(W2) < csda(W1W2). (18)

Although the optimization in (13) implicitly ensures this inequality, it is not clear how to
implement such an algorithm in practice. Even if we restrict it to C[〈ω; x〉] = csda(ωT), the
optimization (14) is still combinatorial in csda(ωT).

If the matrix contains only zeros or signed powers of two, the function csda(·) can be
written as

csda(Ω) =
N

∑
n=1

max

{
0,−1 +

K

∑
k=1
‖ωn,k‖0

}
(19)

≈ ‖Ω‖0 − N (20)

in terms of the zero norm. The approximation (20) was used in the preliminary conference
versions of this work [4,42,43]. In the sequel, we continue with the exact number of
additions as given in (16).

While counting the number of additions by means of the zero norm is helpful to
emphasize the similarities of linear computation coding with compressive sensing, it
enforces one, though minor, unnecessary restriction: the constraint for the matrix Ω to
contain signed powers of 2 as non-zero elements. The wiring matrix W forms linear
combinations of the columns of the codebook matrix B, cf. (6). If we form only linear

Algorithms 2022, 15, 253 10 of 27

combinations of different codewords, the zero norm formulation in (19) is perfectly fine. If
we do not want to be bound by the unnecessary constraint that codewords may not be used
twice within one linear combination, we have to resort to the more general formulation
in (16). While for large matrices the performance is hardly affected, for small matrices this
does make a difference. This is one of several reasons why, in the preliminary conference
versions of this work [4,42,43], the decomposition algorithm does not perform so well for
small matrices.

4.4. Codebook Design

For codebook matrices, the computational cost depends on the way they are designed.
Besides being easy to multiply to a given vector, a codebook matrix should be designed
such that pairs of columns are not collinear. A column that is collinear to another one is
almost obsolete: It hardly helps to reduce the distortion while it needs to compute additions.
In an early conference version of this work [42], we proposed to find the codebook matrix
by sparse quantization of the target matrix. While this results in significant savings of
computational cost over the state of the art, there are even better designs for codebook
matrices. Three of them are detailed in the sequel.

4.4.1. Binary Mailman Codebook

In the binary mailman codebook, only the all zero column is obsolete. It is shown
in Appendix B that the multiplication of the binary mailman matrix with an arbitrary
vector requires at most 2K − 5 and K − 2 additions for column vectors and row vectors,
respectively. The main issue with the binary mailman codebook is its lack of flexibility: It
requires the matrix dimensions to fulfill K = 2N . This may restrict its application.

4.4.2. Two-Sparse Codebook

We choose the alphabet S ⊂ {0,±20,±21,±22, . . . } as a subset of the signed positive
powers of two augmented by zero. Then, we find K vectors of lengths N such that no pair
of vectors is collinear and each vector has zero norm equal to either 1 or 2. For sufficiently
large sizes of the subset, those vectors always exist. These vectors are the columns of
the codebook matrix. The ordering is irrelevant. It turns out to be useful to restrict the
magnitude of the elements of S to the minimum that is required to avoid collinear pairs.

4.4.3. Self-Designing Codebook

We set B = B0B1 with B0 = [IN 0N×(K−N)] and find the K × K matrix B1 via (14)
for C = K interpreting it as wiring matrix for some given auxiliary target matrix T̃. The
auxiliary target matrix may, but need not, be identical to T. The codebook designs itself
taking the auxiliary target matrix as a model.

4.4.4. Codebook Evolution

If multiple wiring matrices are used, the codebook evolves towards the target matrix.
For multiple wiring matrices, the previous approximation of the target matrix serves as a
codebook. Thus, with an increasing number of wiring matrices, the codebook gets closer
and closer to the target matrix, no matter what initial codebook was used.

Codebook evolution can become a problem if the target matrix is not a suitable
codebook, e.g., it contains collinear columns or is rank deficient. In such cases, multiple
wiring matrices should be avoided or reduced to a small number.

Codebook evolution can also be helpful. This is the case if the original codebook is
worse than the target matrix, e.g., because it shall be computationally very cheap as for the
self-designing codebook.

4.4.5. Cutting Diversity

Target matrices that are not wide or tall are cut into wide or tall submatrices via (9)
and (10), respectively. However, there are various ways to cut them. There is no need

Algorithms 2022, 15, 253 11 of 27

to form each submatrix from adjacent rows or columns of the original matrix. In fact,
the choice of rows or columns is arbitrary. Some of the cuts may lead to submatrices
that are good codebooks, other cuts to worse ones. These various possible cuts provide
many options, which allow us to avoid submatrices that are bad codebooks. They provide
diversity to ensure a certain quality in case of codebook evolution.

4.5. Greedy Wiring

Greedy wiring is one practical way to cope with the combinatorial nature of (14). It is
demonstrated in Sections 5 and 6 to perform well and briefly summarized below:

1. Start with s = 0 and ω = 0N×1.
2. Update ω such that it changes in at most a single component.
3. Increment s.
4. If s ≤ C/K, go to step 2.

For quadratic distortion measures, this algorithm is equivalent to matching pursuit [44].
Note that orthogonal matching pursuit as in [45] is not applicable, since restricting the
coefficients to signed powers of two results in a generally sub-optimal least-squares solution
that does not necessarily satisfy the orthogonality property.

4.6. Pseudo-Code of the Algorithm Used for Simulations

In Section 4, many options for linear computation coding are presented with various
trade-offs between performance and complexity, some of them even being NP-hard, which
prevents them from being implemented unless the target matrices are very small. In
order to clarify the algorithm we have used in our simulation results, we provide its
pseudo-code here.

Algorithm 1 requires a zero mean target matrix T as input. The number of additions
per row for the `-th wiring matrix is a free design variable, which is conveniently set to
unity. Any initial codebook can be used. Algorithm 1 calls the subroutine Algorithm 2 to
perform the decomposition in (14) by means of greedy wiring.

Algorithm 1 Algorithm used in the simulation results.

1: procedure MATRIXFACTORIZATION
2: T← zero-mean target matrix
3: B← identity matrix with same size as T or other codebook matrix
4: S` ← number of additions per row for `-th wiring matrix
5: `← 0
6: loop:
7: if T and B differ too much then
8: `← `+ 1
9: W(`)← SubroutineGreedyWiring(T, B, S`)

10: B← W(`)B
11: goto loop.
12: else
13: return the matrix factors W(1) . . . W(`)

Algorithms 1 and 2 are suited for tall matrices as used in the simulation section. This
is in contrast to the wide matrices used in Sections 4.2–4.5. For wide instead of tall matrices,
just transpose both inputs and outputs of the two algorithms.

Algorithms 2022, 15, 253 12 of 27

Algorithm 2 Subroutine used in Algorithm 1.

1: procedure SUBROUTINEGREEDYWIRING(T, B, S)
2: k← number of rows in T
3: W← k× k all zero matrix
4: outer loop:
5: if S ≥ 0 then
6: k← number of rows in T
7: inner loop:
8: if k > 0 then
9: n← index of row in B that if scaled with a signed power of 2

is closest to k-th row of T
10: W(k, n)← W(k, n) + signed power of 2 that was used to find n
11: k-th row of T← k-th row of T−W(k, n)× n-th row of B
12: k← k− 1
13: goto inner loop.
14: S← S− 1
15: goto outer loop.
16: else
17: return the matrix W

5. Performance Analysis

In order to analyze the expected distortion, we resort to a columnwise decoupling of
the wiring optimization into target vectors and greedy wiring as in Sections 4.2.2 and 4.5,
respectively. We assume that the codebook and the target vectors are IID Gaussian random
vectors. We analyze the mean-square distortion for this random ensemble. The IID Gaussian
codebook is solely chosen, as it simplifies the performance analysis. In practice, the IID
Gaussian random matrix B must be replaced by a codebook matrix with low computational
cost, but similar performance. Simulation results in Section 6 will show that practical
codebooks perform very similar to IID Gaussian ones.

5.1. Exponential Aspect Ratio

The key point to the good performance of the multiplicative matrix decomposition
in (6) is the exponential aspect ratio. The number of columns of the codebook matrix, i.e.,
K, scales exponentially with the number of its rows N. For a linear computation code, we
define the code rate as

R =
1
N

log2 K. (21)

The code rate is a design parameter that, as we will see later on, has some impact on
the trade-off between distortion and computational cost.

The exponential scaling of the aspect ratio is fundamental. This is a consequence of
extreme-value statistics of large-dimensional random vectors: Consider the correlation
coefficients (inner products normalized by their Euclidean norms) of N-dimensional real
random vectors with IID entries in the limit N → ∞. For any set of those vectors whose
size is polynomial in N, the squared maximum of all correlation coefficients converges to
zero, as N → ∞ [46]. Thus, the angle α in Figure 1 becomes a right angle and the norm
of the angle error is lower bounded by the norm of the target vector. However, for an
exponentially large set of size 2RN with rate R > 0, the limit for N → ∞ is strictly positive
and given by rate-distortion theory as 1− 4−R [47]. The asymptotic squared relative error
of approximating a target vector by an optimal real scaling of the best codeword is therefore
4−R. The residual error vector can be approximated by another vector of the exponentially
large set to get the total squared error down to 4−2R. Applying that procedure for s times,
the (squared) error decays exponentially in s. In practice, the scale factor cannot be a real
number, but must be quantized. This additional error is illustrated in Figure 1 and labeled
distance error as opposed to the previously discussed angle error.

Algorithms 2022, 15, 253 13 of 27

target vector

scaled codeword

distance error

an
gl
e
er
ro
r

α

β

Figure 1. Decomposition of the approximation error.

5.2. Angle Error

Consider a unit norm target vector t ∈ RN that shall be approximated by a scaled
version of one out of K codewords bk ∈ RN that are random and jointly independent.
Denoting the angle between the target vector t and the codeword bk as αk, we can write
(the norm of) the angle error as

ak = | sin αk|. (22)

The correlation coefficient between target vector t and codeword bk is given as

ρk =
〈t; bk〉
‖t‖2 ‖bk‖2

= cos αk. (23)

The angle error and the correlation coefficient are related by

a2
k = 1− ρ2

k . (24)

We will study the statistical behavior of the correlation coefficient in order to learn
about the minimum angle error.

Let Pρ2|t(r, t) denote the cumulative distribution function (CDF) of the squared cor-
relation coefficient given target vector t. The target vector t follows a unitarily invariant
distribution. Thus, the conditional CDF does not depend on it. In the sequel, we choose t
to be the first unit vector of the coordinate system, without loss of generality.

The squared correlation coefficient ρ2
k is known to be distributed according to the beta

distribution with shape parameters 1
2 and N−1

2 Section III.A in [48], and given by

Pρ2(r) = B
(

1
2

,
N − 1

2
, r
)

. (25)

Here, B(·, ·, x) denotes the regularized incomplete Beta function [49]. It is defined as

B(a, b, x) =

x∫
0

ξa−1(1− ξ)b−1dξ

1∫
0

ξa−1(1− ξ)b−1dξ

(26)

for x ∈ [0; 1] and zero otherwise. With (24) and (26), the distribution of the squared angle
error is, thus, given by

Pa2(r) = B
(

N − 1
2

,
1
2

, r
)

. (27)

5.3. Distance Error

Consider the right triangle in Figure 1. The squared Euclidean norms of the angle
error ak and the codeword bk scaled by the optimal factor vk give

a2
k + v2

k‖bk‖2
2 = 1 (28)

Algorithms 2022, 15, 253 14 of 27

for a target vector of unit norm. The distance error dk is maximal, if the magnitude of the
optimum scale factor vk is exactly in the middle of two adjacent powers of two, say pk and
2pk. In that case, we have

dk = ‖bk‖2(|vk| − pk) = ‖bk‖2(2pk − |vk|) (29)

which results in

|vk| − pk =
|vk|

3
. (30)

Due to the orthogonal projection, the magnitude of the optimal scale factor is given as

|vk| =
1
‖bk‖2

√
1− a2

k . (31)

Thus, the distance error obeys

|dk| ≤
1
3

√
1− a2

k (32)

with equality, if the optimal scale factor is three quarters of a signed power of two.
It will turn out useful to normalize the distance error as

δk =
dk√

1− a2
k

(33)

and specify its statistics by Pδ(δ), to avoid the statistical dependence of the angle error.
The distance error is a quantization error. Those errors are commonly assumed uniformly
distributed [13]. Following this assumption, the average squared distance error is easily
calculated as

d2 =
1− a2

27
. (34)

Unless the angle α is very small, the distance error is significantly smaller than the
angle error. Their averages become equal for an angle of arccot

√
27 ≈ 11◦.

Note that the factor 1/27 slightly differs from the factor 1/28 in Example 2. Like in
Example 2, the number to be quantized is uniformly distributed within some interval. Here,
however, the interval boundaries are not signed powers of two. This leads to a minor
increase in the power of the quantization noise.

5.4. Total Error

Since distance error and angle error are orthogonal to each other, the total squared
error is simply given as

ε2
k = a2

k + d2
k = δ2

k + a2
k

(
1− δ2

k

)
. (35)

Conditioning on the normalized distance error, the total squared error is distributed as

Pε2|δ(r, δ) = B
(

N − 1
2

,
1
2

,
r− δ2

1− δ2

)
. (36)

The unconditional distribution

Pε2(r) =
∫

B
(

N − 1
2

,
1
2

,
r− δ2

1− δ2

)
dPδ(δ) (37)

is simply found by marginalization.
As the columns of the codebook matrix are jointly independent, we conclude that for

ε2 = min
k

ε2
k, (38)

Algorithms 2022, 15, 253 15 of 27

we have
Pε2(r) = 1− [1− Pε2(r)]K. (39)

For Pδ(δ) having support in the vicinity of δ = 0, it is shown in Appendix C to
converge to

lim
K→∞

lim
N→ 1

R log2 K
Pε2(r) =

{
0 r < 4−R

1 r > 4−R . (40)

for exponential aspect ratios.
The large matrix limit (40) does not depend on the statistics of the normalized distance

error. It is indifferent to the accuracy of the quantization. This looks counterintuitive and
requires some explanation. To understand that effect, consider a hypothetical equiprobable
binary distribution of the normalized distance error with one of the point masses at zero. If
we now discard all codewords that lead to a nonzero distance error, we force the distance
error to zero. On the other side, we lose half of the codewords, so the rate is reduced by 1

N .
However, in the limit N → ∞, that comes for free. If the distribution of the angle error has
any nonzero probability accumulated in some vicinity of zero, a similar argument can be
made. This above argument is not new. It is common in forward error correction coding
and is known as the expurgation argument [50].

The CDF is depicted in Figure 2 for a uniform distribution of the distance error. For
increasing matrix size, it approaches the unit step function. The difference between the
angle error and the total error is small.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2. CDF of the squared total error (solid lines) and squared angle error (dashed lines) for rate
R = 1

2 and various numbers of columns K.

The median total squared error for a single approximation step is depicted in Figure 3
for various rates R. Note that the computational cost per matrix entry scales linearly
with R for fixed K. In order to have a fair comparison, the average total squared error is
exponentiated with 1/R. For large matrices, it converges to the asymptotic value of 1

4 found
in (40), which is approached slowly from above. For small matrices, it strongly deviates
from that. While for very small matrices low rates are preferred, medium-sized matrices
favor moderately high rates between 1 and 2. Having the rate too large, e.g., R = 5

2 , also
leads to degradations.

We prefer to show the median error over the average error that was used in the
conference versions [4,43] of this work. The average error is strongly influenced by rare
events, i.e., codebook matrices with many close to collinear columns. However, such rare
bad events can be easily avoided by means of cutting diversity, cf. Section 4.4.5. The median
error reflects the case that is typical, in practice.

Algorithms 2022, 15, 253 16 of 27

0 2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Figure 3. Rth root of median total squared error vs. the number of columns K in logarithmic scale for
various rates R.

5.5. Total Number of Additions

The exponential aspect ratio has the following impact on the trade-off between dis-
tortion and computational cost: For K + S` choices from the codebook, the wiring matrix
W` contains K + S` nonzero signed digits according to approximation (20). Due to the
columnwise decomposition, these are 1 + S`/K of them per column. At this point, we must
distinguish between wide and tall matrices.

Wide Matrices: For the number of additions, the number of nonzero signed digits per row
is relevant, as each row of W` is multiplied to an input vector x when calculating the
product h = W`x. For the standard choice of square wiring matrices, the counting
per column versus counting per row hardly makes a difference on average. Though
they may vary from row to row, the total number of additions is approximately equal
to S`.

Tall Matrices: The transposition converts the columns into rows. Thus, S` is exactly the
number of additions.

In order to approximate an N×K target matrix T with N = 1
R log2 K = O(log K) rows,

we need approximately S` additions. For any desired distortion D, the computational cost
of the product W`x is by a factor O(log K) smaller than the number of entries in the target
matrix. This is the same scaling as in the mailman algorithm. Given such a scaling, the
mailman algorithm allows for a fixed distortion D, which depends on the size of the target
matrix. The proposed algorithm, however, can achieve arbitrarily low distortion by setting
S` appropriately large, regardless of the matrix size.

Computations are also required for the codebook matrix. All three codebook matrices
discussed in Section 4.4 require at most K and 2K additions for tall and wide matrices,
respectively. Adding the computational costs of wiring and codebook matrices, we obtain

C ≈ vK +
L

∑
`=1

S`K = (S + v)K (41)

with S = ∑L
`=1 S` and

v =

{
1 for tall matrices
2 for wide matrices

. (42)

Algorithms 2022, 15, 253 17 of 27

Normalizing to the number of elements of the N × K target matrix T, we have

C̃ =
C

KN
≈ S + v

N
. (43)

The computational cost per matrix entry vanishes with increasing matrix size. This be-
havior fundamentally differs from state-of-the-art methods discussed in Examples 1 and 2,
where the matrix size has no impact on the computational cost per matrix entry.

There are slightly less overall additions required, if a K×K square matrix is cut into tall
submatrices than if it is cut into wide submatrices. Although the vertical cut requires K/N
surplus additions due to (10), it saves approximately K additions due to (41) in comparison
to the horizontal cut.

6. Simulation Results

In this section, we present simulation results to show the performance of the proposed
linear computation coding in practice, compare it to competing methods from the literature,
as well as test the accuracy of our analytical analysis.

6.1. Compounding

The greedy wiring approach, cf. Section 4.5, is based on compounding. Each new
addition serves to reduce the total squared error by a certain factor, asymptotically by
4−R. In the analysis, we have assumed that the target vector is statistically independent
of the codebook. In the greedy approach, however, the running target vector depends on
the wiring of the previous matrix factor. Thus, this independence assumption is violated.
The practically important question is, whether this violation has any significant effect. If
so, we could not simply multiply the individual savings of each wiring matrix to get the
total saving.

Consider L wiring matrices each with two nonzero entries per column, i.e., S` = 1 for
all `. Let mε2 denote the median of the unconditional distribution of the total squared error
ε2 given in (37). The median of total distortion is shown in Figure 4 vs. S (approximately the
total number of additions per column required for all wiring matrices) and compared to mS

ε2 .
For unit rate, mS

ε2 is very close to the simulation results. The violation of the independence
assumption appears to have a rather minor effect.

0 10 20 30 40 50
-300

-250

-200

-150

-100

-50

0

Figure 4. Median total squared error D for target matrix of unit Frobenius norm vs. the parameter
S (approximately the total number of additions per column required for all wiring matrices). The
solid lines refer to mS

ε2 , the markers to simulation results. Circles and crosses are for IID Gaussian
codebook matrices and mailman codebooks, respectively, all with unit rate. IID Gaussian target
matrices. Results are averaged over 106 random matrix entries.

Algorithms 2022, 15, 253 18 of 27

While for N ≥ 3, all curves are close to each other, N = 2 is exceptional. This does not
imply, however, that small matrix size is beneficial. Contrarily, the number of additions per
matrix entry is given in (43), which clearly decays with increasing matrix size.

The influence of the codebook in Figure 4 is very small. Only for N = 3 is a difference
between the mailman and the IID Gaussian codebook visible. This is partially a result of
codebook evolution, as discussed in Section 4.4.4.

6.2. Codebook Comparison

For an IID Gaussian target matrix with K = 256 columns, we compare various
codebook matrices in Figure 5. In contrast to Figure 1 in [43], we use a single wiring matrix
to avoid the effects of codebook evolution. The wiring matrix is designed as described in
Section 4.2.2.

1 3 5 7 9 11 13 15 17 19 21 23 25
-95

-85

-75

-65

-55

-45

-35

-25

-15

-5

IID Gaussian

two-sparse

self-designing

mailman

Figure 5. Median total squared error D for target matrix of unit Frobenius norm vs. the parameter S
(approximately the total number of additions per column required for all wiring matrices). Gaussian
IID target matrices of size N × 256. Results are averaged over 106 random matrix entries.

The Gaussian codebook, of course, is not useful for practice due to its high computa-
tional cost. It is just shown as a benchmark. For all numbers of rows N that are shown in
the figure, Gaussian codebooks perform significantly superior while the self-designing and
two-sparse codebooks perform the worst. The mailman codebook, which only exists for
N = 8, bridges half the gap to the Gaussian codebook. The choice of the codebook affects
the slope of the curve.

Codebook evolution can be quite helpful to obtain a good codebook. Note that in
Figure 4 there is hardly any difference between the Gaussian and the mailman codebook.
This is due to codebook evolution. Whenever the target matrix is a good codebook,
codebook evolution can be utilized to convert an initial poorly performing codebook into a
good one. In that case, we need multiple wiring matrices.

If the target matrix is a poor codebook, we cannot utilize codebook evolution directly.
However, we can invest few wiring matrices to build up the codebook Gaussian-like, before
we fix the approximately Gaussian codebook and wire all the remaining computation
via a single wiring matrix. The creation of a good codebook initially incurs additional
computational costs, but these can be more than offset by a faster decay of the distortion.

Algorithms 2022, 15, 253 19 of 27

6.3. Number of Additions Per Matrix Entry

Due to their superior performance, we use evolutionary codebooks. Since the initial
codebook hardly matters in that case, we choose the self-designing codebook for the sake of
simplicity and flexibility. Since the number of additions in (43) is only approximately correct
for wide matrices, while it is exact for tall matrices, we study the latter in this section.

6.3.1. IID Gaussian Target Matrices

If the target matrix is IID Gaussian, it is well-suited to self-design the codebook, as
IID Gaussian codebooks work excellently. As in Section 6.1, we use wiring matrices with
S` = 1, ∀`. Table 1 shows the average number of additions per matrix entry to achieve
a certain accuracy ranging from 24 dB to 144 dB SQNR. SQNRs of 24 dB, 48 dB, 72 dB,
96 dB, 120 dB, and 144 dB are commonly associated with the accuracy of 4, 8, 12, 16, 20, and
24-bit integer arithmetic, respectively. This correspondence is pretty accurate for uniformly
distributed random variables. For Gaussian random variables, a few additional bits are
required to achieve that accuracy, in practice, as one has to avoid clipping effects and to
encode the sign.

A integer number of matrix factors clearly does not to lead to an integer multiple of
24 dB in SQNR. Therefore, we used interpolation to find the fractional number of matrix
factors that are required to achieve a certain SQNR. A fractional number of matrix factors
is not impossible, in practice. It simply means that the last wiring matrix contains only a
single nonzero entry in some, but not all of its rows.

For higher and lower accuracies, higher and lower code rates are favored, respectively.
This behavior is explained as follows: There is the fixed computational cost of about K
additions for the codebook matrix. The higher the code rate, the fewer rows share this cost.
This increases the computational burden per row (and also per matrix entry) for higher
code rates. For high accuracy, the wiring matrices clearly dominate the computational
cost, so the computation of the codebook is secondary. Thus, higher rates are favored, as
they generally result in lower distortions, see Figure 3. For low accuracy, only few wiring
matrices are needed, and the relative cost of the codebook is more important. This shifts
the optimum rate towards lower values.

In the last two rows of Table 1, we compare linear computation coding to our bench-
mark set by Booth’s CSD representation, cf. Section 3. For Gaussian distributed random
variables, (5) is not valid. Therefore, we obtained an equivalent relation by means of
computer simulation averaging of 106 Gaussian random numbers—which turns out to be
very close to (5), though—to obtain the penultimate row in the table.

CSD, however, can do better than that. Instead of using a fixed number of CSDs for
each entry of the matrix, one could also adaptively assign more or less digits to the various
entries, based on the overall gain in reducing the total quantization error. Such a procedure
leads to the last row in Table 1 and is marked as CSDa.

The number of additions per matrix entry hardly depends on the size of the matrix, as
CSD works element-wise. It reduces the effort of scalar multiplications, which are required
exactly once per matrix entry. Only when it comes to summing these scalar products to
obtain the output vector, does the number of columns of the matrix matter. This is, as
summing N numbers only required N − 1 additions. After normalization, this yields the
− 1

N corrections in the table.
Returning to the 4096× 512 matrix of Examples 1 and 2, we cut this matrix into 32 tall

submatrices of size 4096× 16. According to Table 1, we need 32× 4096× 16× 1.549 additions
for the 32 submatrix-vector products to obtain 96 dB SQNR, if the matrix has IID Gaussian
entries. Furthermore, we need 31× 512 additions to sum the subvectors in (10). In total, that
gives 512× (4096× 1.549 + 31) ≈ 3.26 million additions. This means 1.557 additions per
matrix entry. Note that the number of additions per matrix entry in Table 1 is 1.549 for a
4096× 16 matrix, while we actually need 1.557 for the 4096× 512 matrix. Apparently, the
surplus effort for summing the subvectors in (10) is insignificant. For the two CSD methods,

Algorithms 2022, 15, 253 20 of 27

we obtain 6.65− 1
512 ≈ 6.65 and 5.43− 1

512 ≈ 5.43, respectively. In comparison to these, linear
computation coding requires 77% and 71% fewer additions, respectively.

Table 1. Average number of additions per matrix entry that are required to have the median distortion
a certain level (between 24 and 144 dB) below the norm of the output vector. Best values for given
matrix width are shown in boldface.

C̃ −24 dB −48 dB −72 dB −96 dB −120 dB −144 dB

4× 2 0.948 2.243 3.490 4.715 5.922 7.124

16× 2 0.819 1.650 2.465 3.273 4.075 4.872
16× 3 0.874 1.793 2.699 3.597 4.493 5.384

64× 2 0.787 1.438 2.036 2.630 3.222 3.813
64× 3 0.756 1.390 2.020 2.651 3.278 3.906
64× 4 0.725 1.389 2.053 2.713 3.374 4.032
64× 5 0.726 1.425 2.123 2.817 3.510 4.203

256× 2 0.786 1.341 1.808 2.272 2.734 3.196
256× 3 0.729 1.217 1.702 2.187 2.671 3.155
256× 4 0.662 1.164 1.665 2.165 2.664 3.163
256× 5 0.631 1.144 1.657 2.169 2.682 3.196
256× 6 0.615 1.140 1.665 2.190 2.714 3.240
256× 7 0.606 1.143 1.679 2.216 2.751 3.286
256× 8 0.602 1.150 1.697 2.244 2.792 3.338
256× 9 0.601 1.159 1.717 2.274 2.832 3.389

256× 10 0.602 1.171 1.740 2.308 2.876 3.447

1024× 4 0.633 1.040 1.442 1.844 2.246 2.648
1024× 5 0.589 1.000 1.409 1.819 2.229 2.639
1024× 6 0.560 0.977 1.394 1.811 2.228 2.645
1024× 7 0.541 0.964 1.386 1.809 2.232 2.655
1024× 8 0.528 0.956 1.384 1.812 2.241 2.668
1024× 9 0.519 0.952 1.385 1.818 2.251 2.683
1024× 10 0.513 0.951 1.388 1.825 2.263 2.700
1024× 12 0.505 0.951 1.398 1.844 2.290 2.736
1024× 13 0.503 0.953 1.402 1.852 2.301 2.752
1024× 16 0.499 0.960 1.422 1.884 2.344 2.806
1024× 17 0.498 0.964 1.429 1.894 2.359 2.824
1024× 19 0.498 0.971 1.443 1.916 2.389 2.860
1024× 20 0.499 0.974 1.450 1.926 2.402 2.878

4096× 7 0.505 0.856 1.206 1.555 1.905 2.255
4096× 8 0.486 0.840 1.193 1.547 1.901 2.254
4096× 9 0.472 0.829 1.186 1.543 1.899 2.256
4096× 10 0.462 0.822 1.181 1.541 1.901 2.261
4096× 11 0.454 0.816 1.179 1.540 1.903 2.265
4096× 12 0.448 0.813 1.177 1.541 1.905 2.270
4096× 13 0.443 0.810 1.177 1.543 1.910 2.276
4096× 14 0.439 0.807 1.176 1.545 1.913 2.282
4096× 15 0.435 0.806 1.176 1.547 1.918 2.289
4096× 16 0.432 0.805 1.177 1.549 1.922 2.295
4096× 17 0.429 0.804 1.178 1.553 1.927 2.302
4096× 18 0.427 0.803 1.180 1.556 1.933 2.308
4096× 19 0.425 0.803 1.181 1.559 1.938 2.316
4096× 20 0.424 0.804 1.183 1.563 1.943 2.323
4096× 27 0.418 0.809 1.199 1.590 1.981 2.373
4096× 28 0.417 0.810 1.202 1.595 1.987 2.379
4096× 32 0.417 0.815 1.213 1.612 2.009 2.408
4096× 33 0.418 0.817 1.217 1.617 2.016 2.416

K× N CSD 1.68− 1
N 3.34− 1

N 5.00− 1
N 6.65− 1

N 8.31− 1
N 9.97− 1

N

K× N CSDa 1.44− 1
N 2.78− 1

N 4.10− 1
N 5.43− 1

N 6.75− 1
N 8.07− 1

N

Algorithms 2022, 15, 253 21 of 27

6.3.2. IID Uniform Target Matrices

Consider now a random matrix T whose entries are uniform IID within [0, 1). If the
same algorithm is used as before, the performance degrades significantly, as such a matrix
is not a good codebook. Since all entries are positive, all codewords are constrained to a
single orthant of the full space. A uniform distribution within (−1,+1), on the other hand,
would hardly be an issue.

We write the K× N target matrix as T = T̃ + 1
2 1. We deal with the matrix T̃ whose

entries are uniformly distributed within [− 1
2 , 1

2) in exactly the same way as in Section 6.3.1.
We calculate the term 1

2 1x directly and add the result to T̃x. In addition to the linear
computation coding for T̃x, this requires N− 1 additions for 1x and K additions for adding
T̃x to 1

2 1x. Since the norm of T̃ is half the norm of T, the SQNR for T̃ may be 6 dB lower
than for T. The results are shown in Table 2. A comparison to Table 1 shows that this
procedure only causes a minor degradation, if any at all, that is more pronounced for
small matrices.

Table 2. Average number of additions per matrix entry that are required to have the median distortion
a certain level (between 24 and 144 dB) below the norm of the output vector.

C̃ −24 dB −48 dB −72 dB −96 dB −120 dB −144 dB

4× 2 1.280 2.578 3.836 5.069 6.289 7.493
16× 2 1.142 1.997 2.822 3.640 4.451 5.259
64× 4 0.846 1.520 2.196 2.870 3.541 4.212

256× 6 0.685 1.221 1.761 2.300 2.839 3.378
1024× 10 0.528 0.975 1.424 1.873 2.322 2.771
4096× 16 0.422 0.803 1.185 1.567 1.949 2.332

K× N CSD 1.66− 1
N 3.32− 1

N 4.98− 1
N 6.63− 1

N 8.29− 1
N 9.95− 1

N

K× N CSDa 1.28− 1
N 2.53− 1

N 3.86− 1
N 5.19− 1

N 6.51− 1
N 7.84− 1

N

K× N CSD h 1.24+ N−1
NK 2.90+ N−1

NK 4.56+ N−1
NK 6.22+ N−1

NK 7.88+ N−1
NK 9.54+ N−1

NK

K× N CSDah 1.00+ N−1
NK 2.15+ N−1

NK 3.51+ N−1
NK 4.86+ N−1

NK 6.18+ N−1
NK 7.50+ N−1

NK

For comparison, Table 2 also shows the number of additions required for the CSD
representation. Here, the rows CSD and CSDa refer to the same methodology as in Table 1.
The last two rows indexed by an additional “h”, refer to the hybrid approach of decom-
posing T into its mean 1

2 1 and T̃. This approach is not only useful for linear computation
coding, but also for the CSD representation.

For the 4096× 512 matrix of Examples 1 and 2, this time with uniform entries within
[0, 1), we use the same cut into 32 submatrices of size 4096× 16. With the results of Table 2,
this results in 1.575 additions per matrix entry for 96 dB SQNR. Compared to the four
variants of CSD representation shown in Table 2, this means savings of 76%, 69%, 75%, and
68%, respectively.

6.4. Competing Algorithms beyond CSD

As discussed in Section 3.1, CSD is not the most efficient method reported in literature.
Various further optimizations are possible. The search for common subexpressions in the
calculations has been the most successful of them so far.

6.4.1. Multiplierless Multiple Constant Multiplication

An efficient approach in the literature is reported in [29]. For a bit width of 12,
which corresponds to a distortion level of −72 dB, approximately one addition per entry
is reported for multiplying a vector t with a scalar constant x Figure 12a of [29], if the
dimension of the vector t is larger than 20.

When utilizing the method of [29] for matrix–vector multiplication, however, one
also has to sum the vector-scalar products to obtain the final result. This requires close to

Algorithms 2022, 15, 253 22 of 27

one further addition per matrix entry (precisely 1− 1
N additions). So, in total close to two

additions per matrix entry are required. A comparison with Tables 1 and 2 shows that our
method is inferior for matrix sizes up to 64, but superior for matrix sizes of 256 and beyond.
For matrices of size 4096, we even save about 40% of the additions. While the savings
in [29] hardly depend on the size of the matrix, the efficiency of our method increases with
matrix size.

The complexity of the preprocessing algorithm in [29] is much higher. As reported in
Table VII in [29] it scales, even in its simplified form, as O(N3b5) with N and b denoting
vector dimension and bit width, respectively. For a square matrix containing N columns
and rows, that results in an overall complexity of O(N4b5). Our method, by contrast,
has decomposition complexity O(N3b). As a result, simulating the precise performance
of the algorithm in [29] for large matrices, where our method is most competitive, is
practically infeasible.

6.4.2. Multiplierless Matrix-Vector Multiplication

The ideas of subexpression sharing in multiple constant multiplication are applied
in several lines of work concerned with matrix-vector multiplication. Early studies have
focused on structured matrices. Reference [32] is the first one to report results on unstruc-
tured matrices. For random matrices of size 16× 16 and 8-bit precision (corresponding to
a distortion level of −48 dB) an average number of 412.4 additions is reported in Table 7
in [32]. This means 1.61 additions per matrix entry. Similar to [29], the number of required
additions in [32] hardly depends on the size of the random matrix and the complexity of the
preprocessing scales with the fourth power of matrix size. This means that the algorithm
in [32] outperforms our algorithm in terms of number of additions for 16× 16 matrices.
For matrix size 64× 64, it already falls behind our method.

Improvements can be found in subsequent work on subexpression sharing: In Table VIII
in [33] only 338.3 additions on average are reported for the same setting as above. This
means 1.32 additions per matrix entry. This is better than our results for matrix size
64× 64, but worse than what we achieve for matrix size 256× 256. This reduced number
of additions in [33] comes at a high price: The complexity of the preprocessing scales
approximately with the fifth to sixth power of the matrix size, see Figure 2c in [34]. The best
result for subexpression sharing we could find in the literature is due to [34]. Allowing for
exponential complexity in the preprocessing, Figure 2a in [34] reports only 1.15 additions
per matrix entry on average. This beats our method for size 256× 256, though it is more
than questionable whether the NP-complete algorithm can be implemented for that matrix
size. For matrices of size 1024× 1024 or larger, our algorithm requires fewer additions.

The method in Figure 4a in [35] requires about 2.1 additions per entry for an 8-bit
matrix of size 10× 10. This is not competitive with the methods described above. However,
the optimization goal of this paper also cares to reduce the overall delay in the signal
flow which is important for pipelining in FPGAs. A problem which often occurs in
subexpression sharing is as follows: Some intermediate results are ready earlier than
others, thus computing units need to wait for others to finish before they can continue. This
problem does not occur in our approach, if we use the vertical decomposition. In that case,
all computing paths have exactly the same lengths and all computations can be pipelined.

7. Computation-Distortion Trade-Off

Combining the results of Sections 5.4, 5.5 and 6.1, we can relate the mean-square
distortion to the number of additions. Section 6.1 empirically confirmed that the distortion
is given by

D = mS
ε2 (44)

(at least for rates close to unity). Combining (40) and (21), we have

mε2 = 4−R = K−
2
N (45)

Algorithms 2022, 15, 253 23 of 27

for matrices with large dimensions. Furthermore, (43) relates the number of additions per
matrix entry C̃ to S and N as

S ≈ C̃N − v. (46)

Combining these three relations, we obtain

D ≈ K−2C̃+ v
N = 4RvK−2C̃. (47)

This is a much more optimistic scaling than in Example 2. For scalar linear functions,
Booth’s CSD representation made the mean-square error reduce by the constant factor of
28 per addition. Due to linear computation coding as proposed in this work, the factor 28
in (5) turns into K2, the squared matrix dimension, in (47). Since we have the free choice to
go for either tall or wide submatrices, the relevant matrix dimension here is the maximum
of the number of rows and columns.

We may relate the computational cost C̃ in (47) to the computational cost |B| in (5), the
benchmark set by Booth’s CSD representation. For given SQNR, this results in

C̃
|B| ≈

logK2 SQNR + Rv logK2 4
log28 SQNR

. (48)

For q-bit signed integer arithmetic the SQNR is approximately given by SQNR ≈ 4q−1.
Thus, we obtain

C̃
|B| ≈

2(q−1)
2 log2 K + Rv 2

2 log2 K
2(q−1)
log2 28

=

(
1 +

Rv
q− 1

)
logK

√
28. (49)

Although this formula is based on asymptotic considerations, it is quite accurate for
the benchmark example. Instead of the actual 77% savings compared to CSD, which were
found by simulation in Section 6.3.1, it predicts savings of 79%. However, it does not allow
to include adaptive assignments of CSDs.

8. Conclusions and Outlook

Linear computation coding by means of codebook and wiring matrices is a powerful
tool to reduce the computational cost of matrix–vector multiplications in deep neural
networks. The idea of computation coding is not restricted to linear functions. Its direct
application to multidimensional nonlinear functions promises even greater reductions in
the computational cost of neural networks.

The considerations in this work are limited to measure computational cost by counting
additions. It is to be investigated how the savings reported in terms of additions relate to
overall savings on various computer architectures. For field programmable gate arrays,
very similar savings are reported in [10] counting look-up tables.

Since our method is entirely different from competing concepts based on pattern
search as in [29,33,34], there is hope that both concepts can be successfully combined to
benefit from both lines of thought and yield even further performance improvements.

9. Patents

Concerning the method for matrix–vector multiplication proposed in this work, patent
applications have been filed in 2020 and 2022.

Author Contributions: R.R.M. performed most of the work. B.M.W.G. and A.B. contributed to
literature survey, paper writing, and computer simulations. All authors have read and agreed to the
published version of the manuscript.

Funding: This work was partially supported by Deutsche Forschungsgemeinschaft (DFG) under
grant MU-3735/8-1.

Algorithms 2022, 15, 253 24 of 27

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors like to thank Veniamin Morgenshtern, Marc Reichenbach, Hans
Rosenberger, and Hermann Schulz-Baldes for helpful discussions.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.

Appendix A. Average Distortion of Canonical Signed Digit Form

For the CSD form, the set of reconstruction values isR = {±2k : k ∈ Z}. Let the target
variable t be uniformly distributed within [0, 1]. Thus, only reconstruction values for k ≤ 0
are used.

Consider the interval [2k−1, 2k] with k ≤ 0. The probability pk that the variable t falls
within that interval is equal to its width wk = 2k−1. The average mean-squared quantization
error within that interval is well known to be w2

k/12. Averaging over all intervals, the
average mean-squared distortion for quantization with a single digit is given by

1
12

0

∑
k=−∞

pkw2
k =

1
12

0

∑
k=−∞

w3
k =

1
12

0

∑
k=−∞

23k−3 (A1)

=
1

96

∞

∑
k=0

8−k =
1

96
× 8

7
=

1
3× 28

. (A2)

By symmetry, the same considerations hold true, if t is uniformly distributed within
[−1, 0]. Due to the signed digit representation, these considerations even extend to t
uniformly distributed within [−1,+1].

For representation by zero digits, t ∈ [−1,+1] is quantized to 0 with average mean-
squared distortion equal to 1

3 . This is 28 times larger than for quantization with one digit.
The CSD representation is invariant to any scaling by a power of two. Thus, any

further digit of representation also reduces the average mean-squared distortion by a factor
of 28.

Appendix B. Additions Required for Binary Mailman Codebook

Let BN×K denote the binary mailman matrix with N rows and K columns. It can be
decomposed recursively as

BN×K =

[
B(N−1)× K

2
B(N−1)× K

2
01× K

2
11× K

2

]
. (A3)

Wide Matrices: Following [38], we decompose h into its first half h1 and its second half h2
such that we get

BN×Kh =

[
B(N−1)× K

2
(h1 + h2)

11× K
2

h2

]
. (A4)

Let cw(N) denote the number of additions to compute the product BN×Kh. The
recursion (A4), implies

cw(N) =
K
2
+ cw(N − 1) +

K
2
− 1 (A5)

= cw(N − 1) + 2N − 1. (A6)

Algorithms 2022, 15, 253 25 of 27

These are K
2 additions for h1 + h2, cw(N − 1) additions for the matrix–vector product,

and K
2 − 1 additions to sum the components of h2. Note that B1×2h = h2. Thus,

cw(1) = 0 and cw(N) = 2N+1 − 5 = 2K− 5 for N > 1.

Tall Matrices: In this case, we decompose h into its first N − 1 components collected in h1
and the last component denoted by h2. We obtain

BT
N×Kh =

 BT
(N−1)× K

2
h1

BT
(N−1)× K

2
h1 + 1 K

2 ×1h2

. (A7)

Let ct(N) denote the number of additions to compute the product BT
N×Kh. The

recursion (A7), implies

ct(N) = ct(N − 1) + 2N−1. (A8)

These are ct(N− 1) additions for the matrix–vector product, and K
2 = 2N−1 additions

to add h2. Note that BT
1×2h = [0 h2]

T. Thus, ct(1) = 0 and ct(N) = 2N − 2 = K− 2
for N > 1.

Appendix C. Asymptotic Cumulative Distribution Function

In order to show the convergence of the CDF of the squared angle error to the unit
step function, recall the following limit holding for any positive x and u:

lim
K→∞

(
1− x

Ku

)K
=


0 u < 1
exp(−x) u = 1
1 u > 1

. (A9)

The limiting behavior of Pε2(r) is, thus, decided by the scaling of Pε2(r) with respect
to K. The critical scaling is 1

K . Such a scaling implies a slope of −1 in doubly logarithmic
scale. Thus,

lim
N→∞

∂

∂(NR)
log2 Pε2(r) = −1. (A10)

Explicit calculation of the derivative yields

lim
N→∞

∫
ג
(

r−δ2

1−δ2 , log2 x
)

dPδ(δ)

2R
∫
ג
(

r−δ2

1−δ2 , 1
)

dPδ(δ)
= −1 (A11)

with the definition

,r)ג f (x)) =
r∫

0

f (x)x
N−3

2 (1− x)−
1
2 dx. (A12)

By saddle point integration, Chapter 4 in [51], we have for any function f (x) that is
bounded away from zero and infinity within the open unit interval (0; 1) and that does not
depend on N

lim
N→∞

E
δ
,r(δ))ג f (x))

E
δ
,r(δ))ג 1)

= f
(

max
δ

r(δ)
)

. (A13)

This leads to
1

2R
log2 r = −1 (A14)

which immediately implies r = 4−R.

Algorithms 2022, 15, 253 26 of 27

References
1. Shen, W.W.; Lin, Y.M.; Chen, S.C.; Chang, H.H.; Lin, C.C.; Chou, Y.F.; Kwai, D.M.; Chen, K.N. 3-D Stacked Technology of

DRAM-Logic Controller Using Through-Silicon Via (TSV). IEEE J. Electron Devices Soc. 2018, 6, 396–402. [CrossRef]
2. Hong, S.; Auciello, O.; Wouters, D. (Eds.) Emerging Non-Volatile Memories; Springer: Berlin/Heidelberg, Germany, 2014.
3. Castañeda, O.; Jacobsson, S.; Durisi, G.; Goldstein, T.; Studer, C. Finite-Alphabet MMSE Equalization for All-Digital Massive

MU-MIMO mmWave Communication. IEEE J. Sel. Areas Commun. 2020, 38, 2128–2141. [CrossRef]
4. Müller, R. Energy-Efficient Digital Beamforming by Means of Linear Computation Coding. In Proceedings of the 2021 IEEE

Statistical Signal Processing Workshop (SSP), Rio de Janeiro, Brazil, 11–14 July 2021.
5. Strassen, V. Gaussian Elimination is not Optimal. Numer. Math. 1969, 13, 354–356. [CrossRef]
6. Copperfield, D.; Winograd, S. Matrix multiplication via arithmetic progressions. J. Symb. Comput. 1990, 9, 251–280.
7. Han, S.; Pool, J.; Tran, J.; Dally, W. Learning both weights and connections for efficient neural network. In Proceedings of the

Advances in Neural Information Processing Systems 28, Montreal, QC, Canada, 7–12 December 2015.
8. Louizos, C.; Ullrich, K.; Welling, M. Bayesian compression for deep learning. In Proceedings of the 31st Conference on Neural

Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.
9. Evci, U.; Pedregosa, F.; Gomez, A.; Elsen, E. The Difficulty of Training Sparse Neural Networks. arXiv 2019, arXiv:1906.10732v2.
10. Lehnert, A.; Holzinger, P.; Pfenning, S.; Müller, R.; Reichenbach, M. Most Resource Efficient Matrix Vector Multiplication on

Reconfigurable Hardware. IEEE Access 2022, submitted.
11. Palem, K.; Lingamneni, A. Ten years of building broken chips: The physics and engineering of inexact computing. ACM Trans.

Embed. Comput. Syst. 2013, 12, 87. [CrossRef]
12. DeVore, R.A. Nonlinear Approximation. Acta Numer. 1998, 7, 51–150. [CrossRef]
13. Gray, R.M.; Neuhoff, D.L. Quantization. IEEE Trans. Inf. Theory 1998, 44, 2325–2383. [CrossRef]
14. Booth, A.D. A signed binary multiplication technique. Q. J. Mech. Appl. Math. 1951, 4, 236–240. [CrossRef]
15. Karatsuba, A.; Ofman, Y. Multiplication of multidigit numbers on automata. Dokl. Akad. Nauk SSSR 1962, 145, 293–294.

(In Russian)
16. Toom, A.L. The complexity of a scheme of functional elements simulating the multiplication of integers. Dokl. Akad. Nauk SSSR

1963, 150, 496–498. (In Russian)
17. Cook, S.A.; Aanderaa, S.O. On the Minimum Computation Time of Functions. Trans. Am. Math. Soc. 1969, 142, 291–314.

[CrossRef]
18. Schönhage, A.; Strassen, V. Schnelle Multiplikation großer Zahlen. Computing 1971, 7, 281–292. [CrossRef]
19. Fürer, M. Faster integer multiplication. SIAM J. Comput. 2009, 39, 979–1005. [CrossRef]
20. Harvey, D.; van der Hoeven, J.; Lecerf, G. Even faster integer multiplication. J. Complex. 2016, 36, 1–30. [CrossRef]
21. Arnold, M.G.; Bailey, T.A.; Cowles, J.R.; Cupal, J.J. Redundant Logarithmic Arithmetic. IEEE Trans. Comput. 1990, 39, 1077–1086.

[CrossRef]
22. Huang, H.; Itoh, M.; Yatagai, T. Modified signed-digit arithmetic based on redundant bit representation. Appl. Opt. 1994,

33, 6146–6156. [CrossRef]
23. Dempster, A.G.; Macleod, M.D. Use of Minimum-Adder Multiplier Blocks in FIR Digital Filters. IEEE Trans. Circuits Syst.-II

Analog Digit. Signal Process. 1995, 42, 569–577. [CrossRef]
24. Hartley, R.I. Subexpression sharing in filters using canonic signed digit multipliers. IEEE Trans. Circuits Syst.-II Analog Digit.

Signal Process. 1996, 43, 677–688. [CrossRef]
25. Lefèvre, V. Moyens Arithmétiques Pour Un Calcul Fiable. Ph.D. Thesis, École Normale Supérieure de Lyon, Lyon, France, 2000.
26. Cappello, P.R.; Steiglitz, K. Some Complexity Issues in Digital Signal Processing. IEEE Trans. Acoust. Speech Signal Process. 1984,

ASSP-32, 1037–1041. [CrossRef]
27. Dimitrov, V.S.; Jullien, G.A.; Miller, W.C. Theory and applications of the double-base number system. IEEE Trans. Comput. 1999,

48, 1098–1106. [CrossRef]
28. Dimitrov, V.S.; Järvinen, K.U.; Adikari, J. Area-efficient multipliers based on multiple-radix representations. IEEE Trans. Comput.

2011, 60, 189–201. [CrossRef]
29. Voronenko, Y.; Püschel, M. Multiplierless multiple constant multiplication. ACM Trans. Algorithms 2007, 3, 11–48. [CrossRef]
30. de Dinechin, F.; Filip, S.I.; Forget, L.; Kumm, M. Table-Based versus Shift-And-Add constant multipliers for FPGAs. In Proceedings

of the IEEE 26th Symposium on Computer Arithmetic (ARITH), Kyoto, Japan, 10–12 June 2019.
31. Cooley, J.W.; Tukey, J.W. An algorithm for the machine calculation of complex Fourier series. Math. Comput. 1965, 19, 291–301.

[CrossRef]
32. Boullis, N.; Tisserand, A. Some Optimizations of Hardware Multiplication by Constant Matrices. IEEE Trans. Comput. 2005,

54, 1271–1282. [CrossRef]
33. Aksoy, L.; Costa, E.; Flores, P.; Monteiro, J. Optimization Algorithms for the Multiplierless Realization of Linear Transforms.

ACM Trans. Des. Autom. Electron. Syst. 2012, 17, 3. [CrossRef]
34. Aksoy, L.; Flores, P.; Monteiro, J. A novel method for the approximation of multiplierless constant matrix vector multiplication.

EURASIP J. Embed. Syst. 2016, 2016, 12. [CrossRef]
35. Kumm, M.; Hardieck, M.; Zipf, P. Optimization of Constant Matrix Multiplication with Low Power and High Throughput. IEEE

Trans. Comput. 2017, 66, 2072–2080. [CrossRef]

http://doi.org/10.1109/JEDS.2018.2815344
http://dx.doi.org/10.1109/JSAC.2020.3000840
http://dx.doi.org/10.1007/BF02165411
http://dx.doi.org/10.1145/2465787.2465789
http://dx.doi.org/10.1017/S0962492900002816
http://dx.doi.org/10.1109/18.720541
http://dx.doi.org/10.1093/qjmam/4.2.236
http://dx.doi.org/10.1090/S0002-9947-1969-0249212-8
http://dx.doi.org/10.1007/BF02242355
http://dx.doi.org/10.1137/070711761
http://dx.doi.org/10.1016/j.jco.2016.03.001
http://dx.doi.org/10.1109/12.57046
http://dx.doi.org/10.1364/AO.33.006146
http://dx.doi.org/10.1109/82.466647
http://dx.doi.org/10.1109/82.539000
http://dx.doi.org/10.1109/TASSP.1984.1164433
http://dx.doi.org/10.1109/12.805158
http://dx.doi.org/10.1109/TC.2010.200
http://dx.doi.org/10.1145/1240233.1240234
http://dx.doi.org/10.1090/S0025-5718-1965-0178586-1
http://dx.doi.org/10.1109/TC.2005.168
http://dx.doi.org/10.1145/2071356.2071359
http://dx.doi.org/10.1186/s13639-016-0033-y
http://dx.doi.org/10.1109/TC.2017.2701365

Algorithms 2022, 15, 253 27 of 27

36. Gustafsson, O. Lower Bounds for Constant Multiplication Problems. IEEE Trans. Circuits Syst.-II Express Briefs 2007, 54, 974–978.
[CrossRef]

37. Volder, J.E. The CORDIC Trigonometric Computing Technique. IRE Trans. Electron. Comput. 1959, EC-8, 330–334. [CrossRef]
38. Liberty, E.; Zucker, S.W. The Mailman algorithm: A note on matrix-vector multiplication. Inf. Process. Lett. 2009, 109, 179–182.

[CrossRef]
39. Kronrod, M.A.; Arlazarov, V.L.; Dinic, E.A.; Faradzev, I.A. On economic construction of the transitive closure of a direct graph.

Dokl. Akad. Nauk SSSR 1970, 194, 487–488. (In Russian)
40. Williams, R. Matrix-Vector Multiplication in Sub-Quadratic Time (Some Preprocessing Required). In Proceedings of the Eighteenth

Annual ACM-SIAM Symposium on Discrete Algorithms; Society for Industrial and Applied Mathematics, New Orleans, LA,
USA, 7–9 January 2007; pp. 995–1001.

41. Merhav, N. Multiplication-Free Approximate Algorithms for Compressed-Domain Linear Operations on Images. IEEE Trans.
Image Process. 1999, 8, 247–254. [CrossRef] [PubMed]

42. Müller, R.; Gäde, B.; Bereyhi, A. Efficient Matrix Multiplication: The Sparse Power-of-2 Factorization. In Proceedings of the
Information Theory & Applications Workshop, San Diego, CA, USA, 2–7 February 2020.

43. Müller, R.; Gäde, B.; Bereyhi, A. Linear Computation Coding. In Proceedings of the IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Toronto, ON, Canada, 6–11 June 2021.

44. Mallat, S.G.; Zhang, Z. Matching Pursuit with Time-Frequency Dictionaries. IEEE Trans. Signal Process. 1993, 41, 3397–3415.
[CrossRef]

45. Pati, Y.C.; Rezaiifar, R.; Krishnaprasad, P.S. Orthogonal Matching Pursuit: Recursive Function Approximation with Applications
to Wavelet Decomposition. In Proceedings of the 27th Asilomar Conference on Signals, Systems and Computers, Pacific Grove,
CA, USA, 1–3 November 1993.

46. Jiang, T. The asymptotic distribution of the largest entries of sample correlation matrices. Ann. Appl. Probab. 2004, 14, 865–880.
[CrossRef]

47. Berger, T. Rate Distortion Theory; Prentice-Hall: Eaglewood Cliffs, NJ, USA, 1971.
48. Müller, R. On Approximation, Bounding & Exact Calculation of Block Error Probability for Random Code Ensembles. IEEE Trans.

Commun. 2021, 69, 2987–2996.
49. Spanier, J.; Oldham, K.B. An Atlas of Functions; Springer: Berlin, Germany, 1987.
50. MacKay, D.J. Information Theory, Inference, and Learning Algorithms; Cambridge University Press: Cambridge, UK, 2003.
51. Merhav, N. Statistical physics and information theory. Found. Trends Commun. Inf. Theory 2010, 6, 1–212. [CrossRef]

http://dx.doi.org/10.1109/TCSII.2007.903212
http://dx.doi.org/10.1109/TEC.1959.5222693
http://dx.doi.org/10.1016/j.ipl.2008.09.028
http://dx.doi.org/10.1109/83.743858
http://www.ncbi.nlm.nih.gov/pubmed/18267471
http://dx.doi.org/10.1109/78.258082
http://dx.doi.org/10.1214/105051604000000143
http://dx.doi.org/10.1561/0100000052

	Introduction
	Computation Coding for General Functions
	State of the Art in Linear Computation Coding
	Scalar Functions
	Multidimensional Functions
	The Mailman Algorithm
	The CORDIC Algorithm
	Other Decompositions into Products of Matrices

	Proposed Scheme for Linear Computation Coding
	Aspect Ratio
	General Wiring Optimization
	Multiple Wiring Matrices
	Decoupling into Columns

	Computational Cost
	Codebook Design
	Binary Mailman Codebook
	Two-Sparse Codebook
	Self-Designing Codebook
	Codebook Evolution
	Cutting Diversity

	Greedy Wiring
	Pseudo-Code of the Algorithm Used for Simulations

	Performance Analysis
	Exponential Aspect Ratio
	Angle Error
	Distance Error
	Total Error
	Total Number of Additions

	Simulation Results
	Compounding
	Codebook Comparison
	Number of Additions Per Matrix Entry
	IID Gaussian Target Matrices
	IID Uniform Target Matrices

	Competing Algorithms beyond CSD
	Multiplierless Multiple Constant Multiplication
	Multiplierless Matrix-Vector Multiplication

	Computation-Distortion Trade-Off
	Conclusions and Outlook
	Patents
	Average Distortion of Canonical Signed Digit Form
	Additions Required for Binary Mailman Codebook
	Asymptotic Cumulative Distribution Function
	References

