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Abstract: Missing observations in time series will distort the data characteristics, change the dataset
expectations, high-order distances, and other statistics, and increase the difficulty of data analysis.
Therefore, data imputation needs to be performed first. Generally, data imputation methods include
statistical imputation, regression imputation, multiple imputation, and imputation based on machine
learning methods. However, these methods currently have problems such as insufficient utilization
of time characteristics, low imputation efficiency, and poor performance under high missing rates. In
response to these problems, we propose the informer-WGAN, a network model based on adversarial
training and a self-attention mechanism. With the help of the discriminator network and the random
missing rate training method, the informer-WGAN can efficiently solve the problem of multidimen-
sional time series imputation. According to the experimental results under different missing rates, the
informer-WGAN model achieves better imputation results than the original informer on two datasets.
Our model also shows excellent performance on time series imputation of the key parameters of a
spacecraft control moment gyroscope (CMG).

Keywords: informer; GAN; high missing rate; time series imputation

1. Introduction

Recently, with the continuous acceleration of industrialization, industrial sensors are
used in all walks of life to obtain various data and are widely used in many fields such
as weather forecasting, medical treatment, power statistics, and aerospace telemetry [1].
A time series is the data collected at a certain frequency of industrial physical quantities
monitored by sensors, since multiple sensors in an industrial scene are often correlated
and sampled from multiple industrial sensors to obtain a multidimensional time series.
However, due to the problem of the hardware device, the multidimensional time series
in the actual scene may have the problem of missing values. Not only that, but for some
fields, such as weather forecasting and stock forecasting, multidimensional time series
forecasting is also a very valuable research problem [2], both of which can be defined as
imputation problems for missing data. For imputation of multidimensional time series,
sufficient analysis of the time series is required.

In order to deal with the imputation problem of multidimensional time series, re-
searchers have provided many traditional algorithms, forming the initial solutions. For ex-
ample, the autoregressive integrated moving average (ARIMA) treats the imputation
of time series as the process of calculating the unknown dependent variable from the
known independent variables [3]. Schafter applied the Markov chain Monte Carlo method
(MCMC method) to data imputation for processing data with multivariate arbitrary miss-
ing patterns [4]. However, these methods often require some prior knowledge, such as
the difference order and autocorrelation lag order of the ARIMA [5]. At the same time,
for complex multidimensional time series with high missing rates, due to the incomplete
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utilization of time series characteristics, the performance of these methods is generally
poor [6].

In recent years, many machine learning methods have been used for multidimensional
time series imputation problems. Rhaman et al. used the EM algorithm to combine the
decision tree and build a decision forest. After classifying and merging the data, the EM
algorithm was used to implement data imputation. Through experiments on six public
datasets with missing values and three artificially made missing value datasets, as well
as a comparison with the DMI and SiMI algorithms, the effectiveness of this method for
the imputation of missing data in attribute classes was verified [7]. In 2015, Folguera et al.
proposed applying a self-organizing map neural network (SOM) to the data imputation task
to predict the physical and chemical parameters of water samples. An SOM uses a nonlinear
method to automatically fill in missing values in the data matrix. Folguera verified the SOM
method in data imputation through experiments on surface water data (17–39% missing
rate) sampled from the Reconquista River in Argentina. Regarding task effectiveness [8],
Langkvist provided a review of the methods related to building prediction models for time
series through deep learning. The two models that perform well in sequence modeling
problems are based on self-attention mechanism models and recurrent neural network-
based models [9]. DeepAR, proposed by Salinas et al., utilizes an encoder-decoder structure
combined with an autoregressive RNN model for time series prediction [10]. These machine
learning methods have all conducted valuable explorations for the multidimensional time
series imputation problem. Inspired by Langkvist’s review, we adopted a network model
based on the self-attention mechanism to impute time series.

The main contributions of this paper include the following two aspects:

• We propose a model for multidimensional time series imputation, which is based on
the WGAN-GP framework and uses the informer part of the network structure to
form the generator and the discriminator. The networks proposed outperform the
original informer model and the GAN-based AST model in both real-world datasets.

• We propose a random missing rate training method for the time series imputation
problem which improves the accuracy of the data imputation model for time series
imputation with different missing rates.

2. Related Work
2.1. Time Series Imputation

The data imputation method is to solve the problem of missing data, which refers to
the phenomenon where the dataset is incomplete due to a missing value for one or more
attributes. Missing data will not only distort the data characteristics and increase the diffi-
culty of analysis but also change the statistics such as expectations and high-order distances,
causing serious deviations in the analysis methods based on statistical models. For the
imputation of missing data in time series, many researchers have proposed solutions before.
The ARIMA model proposed by Box-Jenkins uses the autocorrelation of the time series
lag k order to construct an autoregressive model [3] for time series forecasting. To predict
the time series which exhibit long-range dependence or persistence in their observations,
Javier E. Contreras-Reyes compared several autoregressive fractionally integrated moving
average (ARFIMA) models [5]. Augustine Pwasong and Saratha Sathasivam [11] com-
bined the ARFIMA model and a layer recurrent neural network (LRNN) to form a hybrid
forecasting model. The ARIMA-LRNN model achieved a very robust and dependable
result. Liu et al. combined the online learning algorithm with the ARIMA algorithm and
proposed the online ARIMA algorithm. The online ARIMA algorithm is mainly used to
solve the difficult problems of parameter estimation in the traditional ARIMA algorithm,
such as lag order and interference terms. Liu reduced the ARIMA model to an online
parameter optimization problem and verified through experiments that the online ARIMA
algorithm performed better than the traditional ARIMA algorithm [12]. The network model
of time series imputation based on an RNN is also a major research direction [13]. DeepAR
was proposed by Salinas et al. by using the encoder-decoder structure combined with
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the autoregressive RNN model for time series prediction [10]. LSTNet is another RNN-
based autoregressive model that utilizes long short-term memory (LSTM) for time series
prediction [14]. However, due to the natural disadvantages of the RNN network model,
parallel operations cannot be used to improve the imputation efficiency, especially when
the missing rate is high, at which point it shows poor performance.

2.2. Generative Adversarial Networks

A generative adversarial neural network is a kind of generative deep neural network
proposed by Ian et al. in 2014 [15] through the adversarial training of a generator and
discriminator to learn the distribution characteristics of the original dataset. Generative
adversarial networks have achieved great success in computer vision and natural language
processing in recent years, and at the same time, several studies have also been applied
to generate sequence data [16]. After using the method of machine learning to complete
the data imputation, we need to train the model by minimizing the likelihood function,
but the likelihood function is limited to the description of the sequence characteristics,
meaning that the discriminator is essentially fitting a better likelihood function to identify
the complete sequence after imputation.

In 2019, Yoon et al. used a GAN and unsupervised learning to generate time series
data and proposed TimeGAN, which achieved the best results for time series generation
tasks. This model is not directly applicable to data imputation, as it was only used to
model historical time series data [17]. Luo et al. proposed a method using E2EGAN for
multidimensional time series imputation using a gate recurrent unit (GRU) as a generator
and a discriminator network and achieved the best results on multiple real-world datasets.
At the same time, the E2EGAN model is superior to the two-stage method in terms of time
consumption. Combining the idea of a GAN and the self-attention mechanism, Wu et al.
proposed an adversarial sparse transformer (AST) model, which achieved optimal results on
multiple real-world datasets. The AST model uses a sparse attention encoder and decoder
as the generator network and uses a linear fully connected layer as the discriminator
network, which improves the imputation performance of the model compared with the
RNN-based algorithm. At the same time, Wu also proved through ablation experiments
that adversarial training helps to obtain better data imputation models. However, the AST
model adopts the step-by-step generation method, which has low imputation efficiency
and has the problem of error accumulation [6].

2.3. Attention Mechanism

The attention mechanism has been shining in the field of time series processing and
prediction since it was proposed in 2017 [18], as it solves the problem that the RNN model
can by not only predicting in a single step in time series prediction but can also improve
the efficiency of the time series processing. Especially in long sequence prediction, the
attention mechanism has a tendency to replace RNN methods such as LSTM. Some recent
works also used sparse attention [19,20] based on the attention mechanism. Due to the
softmax mechanism, the traditional attention mechanism gives an attention score to each
unit in the embedding even if the correlation is extremely low, resulting in distraction
and reduced computing efficiency. The sparse attention mechanism sets the irrelevant
units to zero, which will make the model more focused. Experiments have shown that the
sparse attention-based model is effective for time series imputation tasks on some datasets.
In 2021, the informer proposed by Zhou et al. used convolution and pooling operations to
perform knowledge distillation on the embedded data, and they were combined with the
prob attention (i.e., sparse attention) to improve the performance of the model [21].
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3. Materials and Methods
3.1. Materials
Dataset

We used three public real-world datasets (electricity, ETTh1, and CMG) for our evalua-
tion. The electricity dataset (Table 1), which consists of hourly electricity consumption data
collected from 370 customers, was used to evaluate the AST model. The ETTh1 dataset is
hourly power load index data collected from several counties in China, and it was used
for the informer model. The cmg dataset is the real telemetry time series data of the key
parameters of a spacecraft’s control moment gyro (CMG).

Table 1. Dataset data, where F represents the sampling frequency, L represents the number of samples,
and D represents the data dimension.

Dataset F L D

electricity hourly 32,304 370
ETTh1 hourly 17,420 6

3.2. Informer-WGAN Model

In this section, we will present the details of the proposed time series imputation
method. The generative adversarial network (GAN) consists of a generator network and
a discriminator network. The generator network takes low-dimensional random noise
as its input and outputs high-dimensional fake data according to different tasks. The
discriminator network takes fake data and real data as the input and outputs a number in
the range of (0, 1) as the evaluation of the input data. The discriminator network will try
to score real data close to 1 and fake data close to 0, while the generator network will try
to generate fake data that makes the discriminator network give a high score. We would
obtain an excellent generator that generates realistic data taking advantage of adversarial
training of the generator and discriminator. In order to avoid the mode collapse problem
in GAN training, we adopted the WGAN-GP model (please see Figure 1) as the neural
network framework while making some modifications to the original loss function.

Figure 1. Informer-WGAN structure.
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Our network structure refers to the adversarial sparse transformer (AST) model, and
we redesigned and implemented the generator network and the discriminator network
based on it.

3.2.1. Problem Definition

The problem is multidimensional time series imputation, where d represents the
dimension of the time series, t represents the length of the time series, and thus the time
series is defined as x ∈ Rd×n. According to the time feature of the sequence, we generated
a covariate matrix through the sequence timestamp information cov, cov ∈ Rdcov×n, where
dcov describes the information of dimensions such as month, day, hour, and weekday in the
sequence timestamp. We decided the specific dcov according to the feature of the actual
time series, such as the period and trend.

3.2.2. Generator

In our proposed generator network Figure 2, the informer is mainly used as the
generator network. Different from the specified missing length and token length of the
original informer, the random missing rate and data window are used to calculate the miss-
ing length, which increases the robustness of the network for imputation under different
missing rates of time series.

Figure 2. Generator structure.

First, according to the missing rate r, the data window size L, and the formulas
t0 = L ∗ (1− r)/100 and τ = L ∗ r/100, we calculated the known time series and the
unknown part. The encoder part receives x0:t0 and cov0:t0 as inputs, where x0:t0 is the
real value of the time series from 0 to t0 and cov0:t0 is the part of the covariate matrix
from 0 to t0, calculated according to the time characteristics of the time series mentioned
above. After the operation of n encoder parts, the network outputs the memory mod-
ule z. The input of the decoder includes the output of the encoder z, dec_input, and
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covt0+1−token_len:t0+τ to participate in the self-attention operation of the decoder part, where
dec_input = concat(xt0+1−token_len:xt0

, 0t0+1:t0+τ). After n decoders, the generator outputs
a fake sequence x̂t0+1−token_len:t0+τ , which is spliced with the real value of the time series
from 0 to t0 + τ, to obtain the full time series forecast from 0 to t0 + τ x̂.

The loss function of the generator is a bit different from that of the original WGAN-GP:

LG = α ∗ D(x̂) + Q50(G(z), xt0+1:t0+τ) (1)

Since the discriminator network evaluates the entire complete sequence, we paid
more attention to the sequence part of the actual imputation, which was achieved by the
quantile-50 loss.

3.2.3. Discriminator

Different from the AST model, which uses a multi-layer fully connected layer as the
discriminator, the discriminator network Figure 3 we propose uses the encoder part of
the informer model to extract the features of the time series. The time series features are
extracted through a multi-layer encoder, and the discrimination results are output through
a multi-layer fully connected layer.

Figure 3. Discriminator structure.

The discriminator is used to distinguish the real value x of the time series from the
fake sequence x̂ generated by the generator. The goal is to give a high score to the real value
of the sequence and a low score to the fake sequence, so the loss function is as follows:

LD = D(x̂)− D(x) + gradient_penalty (2)

3.2.4. Random Training

According to the problem definition, in order to enhance the robustness of the model
and enable the model to generate high-quality imputation data at various missing rates,
especially at high missing rates, we propose a network training process based on random
missing rates. The process is as follows Algorithms 1:
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Algorithm 1 GAN training process based on random missing rate.

1: for each training iteration do
2: randomly sample [X,Y] from dataset by window_size
3: set missing_rate = random(10, 80)
4: set missing_len = window_size ∗missing_rate//100
5: compute decoder_input by missing_rate and token_len
6: compute Yf ake by Generator G with Yf ake =

G(yknown, covknown, decoder_input, covmissing)
7: update Generator and Discriminator
8: end for

4. Results
4.1. Evaluation Indicators

There are generally two types of evaluation indicators for time series imputation
results. The first is the evaluation indicators using regression models, such as MAE and
MSE. The other is to use correlation coefficients, such as cosine similarity, to calculate time
series as vectors. We evaluated the time series imputation results with reference to the
root mean square error (RMSE) and Pearson correlation coefficient (PCC). The RMSE and
Pearson correlation coefficient formulas are as follows:

RMSE(x̂, x) =

√
1
m

m

∑
i=1

(x̂i − xi) (3)

PCCs(x̂, x) =
N ∑ x̂ixi −∑ x̂i ∑ xi√

N ∑ x̂2
i − (∑ x̂i)2

√
N ∑ xi

2 − (∑ xi)2
(4)

The smaller the root mean square error, the better, and the larger the Pearson correla-
tion coefficient, the better. Therefore, we present the comprehensive evaluation indicators
as follows:

p_RMSE =
RMSE(x̂, x)

PCCs
(5)

4.2. Implementation Details

We used an Nvidia RTX3080 to train the model for 100 epochs on the dataset for
experimentation and result comparison. The discriminator network was trained using the
RMSProp algorithm, and the generator network was trained using the Adam algorithm.
For both datasets, 80% was used as the training set, 10% was used as the validation set,
and 10% was used as the test set.

4.3. Performance Comparison

Figure 4 shows the actual imputation effect of our proposed model on the electricity
dataset. The upper half is the time series imputation value, the lower half is the time series
real value, and the red dots describe the missing data. Under the high missing rate, our
model can still complete high-quality time series imputation, which fully demonstrates the
performance of the informer-WGAN model. We also applied the informer-WGAN model
on the CMG dataset, and Figure 5 shows the imputation results on the CMG dataset at the
missing rates of 20% and 50%. Our proposed method revealed trends in the CMG time
series. The pRMSE was 0.583 at the 20% missing rate and still reached 0.729 at the 80%
missing rate. This shows that informer-WGAN is suitable for CMG time series imputation.

Figures 6 and 7 show the frequency hist of the imputation results and real-time
series on the electricity dataset and ETTh1 dataset. The imputation series demonstrates
obvious similarity with the real-time series. The frequency hist shows the effect of our
imputation model.
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Figure 8 shows the actual results of different imputation methods on the ETTh1 dataset
at missing rates of 50% and 80%. Obviously, our informer-WGAN performed better than
the other imputation methods such as ARIMA and informer, especially when the missing
rate was high.

In order to show the actual effect of the model proposed, we chose and compared
the traditional data imputation methods, including the ARIMA, the AST model, and the
original informer, to compare the data imputation of each model under different missing
rates. We also modified the original AST model and compared its effect, and we named it
as ST-WGAN. The supplementary results were quantitatively evaluated by the p_RMSE
value proposed in the previous section.

Figure 4. Imputation results of informer-WGAN method on electricity dataset at missing rates of 20%
and 50%.

Figure 5. Imputation results of informer-WGAN method on CMG dataset at missing rates of 20%
and 50%.
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Figure 6. Frequency hist of imputation results and real-time series on electrity dataset.

Figure 7. Frequency hist of imputation results and the real time series on ETTh1 dataset.
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Figure 8. Imputation results of different methods on ETTh1 dataset at missing rates of 50% and 80%.

Tables 2 and 3 show the imputation results of our informer-WGAN model on the
electricity and ETTh1 datasets. We chose five indicators to evaluate the distance and the
Pearson correlation coefficient to evaluate the similarity between the imputaion results
and the real data. With the increase in the missing rate, our model demonstrated a slight
decrease with respect to all six indicators, which fit our expectation. This means all six
indicators can reveal the effect of the imputation task well.

Table 2. The results of the informer-WGAN on the electricity dataset.

Missing Rate mae mse rmse mape mspe p_corr

20% 0.82615 6.70904 2.39374 0.19931 0.44089 0.95462
40% 0.86958 7.50290 2.61123 0.21357 0.51383 0.95277
60% 0.89981 7.64285 2.63168 0.23651 0.70946 0.94944
80% 0.97250 8.13361 2.72510 0.27141 0.79367 0.93473

Table 3. The results of the informer-WGAN on the ETTh1 dataset.

Missing Rate mae mse rmse mape mspe p_corr

20% 1.90835 10.73479 3.27281 0.53457 9.75783 0.77216
40% 1.97126 12.07560 3.47173 0.54006 10.14137 0.75321
60% 2.01376 12.42590 3.52390 0.58413 11.62296 0.74823
80% 2.05503 12.64088 3.55464 0.57709 10.30420 0.74734

Tables 4 and 5 show the comparison results of our informer-WGAN model and the
other four imputation models on two datasets. Our informer-WGAN model showed a
better effect with respect to the different indicators.

Table 4. The imputation results of different models on electricity dataset at a missing rate of 60%.

Imputation Model mae mse rmse mape mspe p_corr

ARIMA 2.47689 31.01061 4.43682 0.20056 0.06220 0.86310
AST 2.22961 181.73460 9.469879 1.15476 11.27290 0.48822

Informer 1.74750 19.67988 4.21687 0.61075 3.34536 0.84613
ST-WGAN 1.35948 60.82138 5.773326 0.86076 8.81188 0.84930

Informer-WGAN 0.89969 7.64734 2.61395 0.23624 0.70543 0.94789
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Table 5. The imputation results of different model on electricity dataset at the missing rate of 60%.

Imputation Model mae mse rmse mape mspe p_corr

ARIMA 2.48034 19.27467 4.35074 0.52469 4.69485 0.65881
AST 7.87295 94.89117 9.70722 2.44605 14.57877 0.38196

Informer 2.11488 11.82524 3.43685 0.59489 9.80083 0.74467
ST-WGAN 2.23207 21.70739 4.60613 0.69644 24.20782 0.65263

Informer-WGAN 2.01439 12.37496 3.51492 0.56910 10.93439 0.74725

As shown in Tables 6 and 7, the informer-WGAN model we proposed achieved the
best results on both the electricity dataset and the ETTh1 dataset. The traditional ARIMA
method had poor imputation performance. Compared with the deep learning method,
the traditional method had limited utilization of the temporal features, resulting in poor
imputation results. However, the accuracy of the AST method decreased significantly when
the missing rate increased. Because the sparse transformer model adopted a step-by-step
method during decoding (that is, the value of the next time was based on the imputation
value of the previous time), it could not be forwarded at one time. The operation was
obtained, and the problem of error accumulation occurred. Therefore, the AST model is
not suitable for imputation problems with high missing rates. In the informer model,
the concept of generative decoder is proposed, and all the imputation was completed
through one forward calculation process. The model we proposed also adopts a similar
design, which makes the model suitable for imputation under high missing rates. According
to the p_RMSE formula in the previous section, when the quality of the generated sequence
is poor, due to the introduction of the Pearson correlation coefficient, the performance gap
of the model is more significant.

Tables 8 and 9 show the RMSE and Pearson correlation coefficient of the imputation
results and the ground truth on the electricity and ETTh1 datasets. We note that in the
table, the ARIMA algorithm obtained the best RMSE value under the 20% missing rate,
but its actual imputation result was not close to the true value, so the Pearson correlation
coefficient result was poor. The PRMSE value obtained by combining these two statistics
was more conducive to obtaining time series imputation results that met the requirements.

Table 6. The PRMSE (the smaller, the better) results of the informer-WGAN and other imputation
results on electricity dataset.

Missing Rate ARIMA Infomer Informer-WGAN

20% 2.711 1.791 1.119
40% 4.247 1.830 1.157
60% 4.612 2.019 1.188
80% 12.609 2.062 1.283

Table 7. The PRMSE (the smaller, the better) results of the informer-WGAN and other imputation
results on ETTh1 dataset.

Missing Rate ARIMA AST Infomer Informer-WGAN

20% 2.709 2.477 2.311 2.309
40% 3.036 7.487 2.339 2.338
60% 3.156 9.963 2.438 2.437
80% 3.736 19.567 2.574 2.569
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Table 8. The RMSE/Pearson correlation results of the informer-WGAN and other imputation results
on electricity dataset.

Missing Rate ARIMA Infomer Informer-WGAN

20% 0.937/0.345 1.337/0.747 1.029/0.920
40% 1.081/0.254 1.348/0.737 1.055/0.911
60% 0.858/0.186 1.404/0.696 1.073/0.902
80% 1.132/0.089 1.430/0.694 1.130/0.880

Table 9. The RMSE/Pearson correlation results of the informer-WGAN and other imputation results
on ETTh1 dataset.

Missing Rate ARIMA Infomer Informer-WGAN

20% 2.066/0.762 1.795/0.773 1.796/0.774
40% 2.240/0.737 1.804/0.767 1.847/0.756
60% 2.311/0.732 1.832/0.750 1.867/0.751
80% 2.439/0.652 1.903/0.739 1.883/0.748

5. Discussion
5.1. Performance Comparison
5.1.1. Informer Discriminator vs. Linear Discriminator

In order to verify the influence of our proposed informer decoder-based discriminator
on the multi-dimensional time series imputation results, we used the fully connected layer
of AST and the informer encoder network we proposed as the discriminator of the model
and conducted experiments on the electricity dataset. The experimental results (Table 10)
show that when using the informer encoder, the time series imputation at each missing rate
was better than using the fully connected layer as the discriminator, which had a significant
effect on training a better time series imputation model. The goal of the discriminator is to
fit a likelihood function that evaluates the imputation results. When the informer is used
as the discriminator, it can make full use of the characteristics of the time series and learn
more reasonable evaluation criteria than the linear discriminator. Therefore, the model of
the discriminator is the practical choice.

Table 10. The ablation experiment results (PRMSE) of different discriminators on electricity dataset.

Missing Rate Informer-WGAN Informer-WGAN
(Linear Discriminator) (Informer Discriminator)

20% 1.710 1.119
40% 1.708 1.157
60% 1.798 1.188
80% 1.866 1.283

5.1.2. Random Training Process

We also conducted studies on a randomized training process to verify the effect of
this design on improving model performance. The experimental results are shown in the
Table 11. The experiment used for comparison only trained the time series data with a
missing rate of 20%. It was foreseeable that the performance of the model under the high
missing rate was significantly worse than the random training process. For the informer-
WGAN model, as the missing rate increased, the gap was more significant. Not only that,
but under the 20% missing rate, the model using the random training process was also
significantly better than the model trained with a fixed missing rate. The results show that
random training made the model more focused on the time series features, while fixed
missing rate training made it easier for the model stuck in a local optimum.
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Table 11. The ablation experiment results (PRMSE) of different training methods on electricity dataset.

Missing Rate Informer-WGAN (20% Train) Informer-WGAN (Random Train)

20% 1.560 1.119
40% 2.326 1.157
60% 2.582 1.188
80% 2.689 1.283

6. Conclusions

We proposed a new network model for multidimensional time series imputation based
on the informer and WGAN methods. We applied the random missing rate training process
to train our network in order to obtain a suitable model for the time series imputation task
with high missing rates. The results of the imputation experiments on real-world datasets
demonstrated the effectiveness of this model in time series imputation, being superior to
the ARIMA model, the AST model, and the informer model. At the same time, according
to the experimental results, we also verified that the self-attention decoder discriminator
was better than the linear discriminator, implying the necessity of the selection of the
discriminator model. Our next step is to optimize the informer model used by the generator
to improve the running efficiency of the model.

Author Contributions: Conceptualization, Y.Q.; methodology, Y.Q.; software, Y.Q.; validation, S.Z.
and R.W.; formal analysis, Y.Q.; investigation, Y.Q., S.Z. and R.W.; resources, R.W., L.T. and B.Z.; data
curation, Y.Q. and R.W.; writing—original draft preparation, Y.Q.; writing—review and editing, S.Z.;
visualization, Y.Q.; supervision, R.W.; project administration, Y.Q.; funding acquisition, L.T. and B.Z.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Civil Aerospace Technology Advance Research Program
(A0201) of the State Administration of Science, Technology and Industry for National Defense.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The raw data needed to reproduce these findings cannot be shared at
this time, as these data are also part of further research.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chatfield, C. The Analysis of Time Series: An Introduction; Chapman and Hall: London, UK; CRC: Boca Raton, FL, USA, 2003.
2. Luo, Y.; Zhang, Y.; Cai, X.; Yuan, X. E2gan: End-to-end generative adversarial network for multivariate time series imputation. In

Proceedings of the 28th International Joint Conference on Artificial Intelligence, Macao, China, 10–16 August 2019; pp. 3094–3100.
3. Box, G.E.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control; John Wiley & Sons: Hoboken, NJ,

USA, 2015.
4. Schafer, J.L. Analysis of Incomplete Multivariate Data; CRC Press: Boca Raton, FL, USA, 1997.
5. Contreras-Reyes, J.E.; Palma, W. Statistical analysis of autoregressive fractionally integrated moving average models in R. Comput.

Stat. 2013, 28, 2309–2331. [CrossRef]
6. Wu, S.; Xiao, X.; Ding, Q.; Zhao, P.; Wei, Y.; Huang, J. Adversarial sparse transformer for time series forecasting. Adv. Neural Inf.

Process. Syst. 2020, 33, 17105–17115.
7. Rahman, M.G.; Islam, M.Z. Missing value imputation using decision trees and decision forests by splitting and merging records:

Two novel techniques. Knowl.-Based Syst. 2013, 53, 51–65. [CrossRef]
8. Folguera, L.; Zupan, J.; Cicerone, D.; Magallanes, J.F. Self-organizing maps for imputation of missing data in incomplete data

matrices. Chemom. Intell. Lab. Syst. 2015, 143, 146–151. [CrossRef]
9. Längkvist, M.; Karlsson, L.; Loutfi, A. A review of unsupervised feature learning and deep learning for time-series modeling.

Pattern Recognit. Lett. 2014, 42, 11–24. [CrossRef]
10. Salinas, D.; Flunkert, V.; Gasthaus, J.; Januschowski, T. DeepAR: Probabilistic forecasting with autoregressive recurrent networks.

Int. J. Forecast. 2020, 36, 1181–1191. [CrossRef]
11. Pwasong, A.; Sathasivam, S. Forecasting comparisons using a hybrid ARFIMA and LRNN models. Commun. Stat.-Simul. Comput.

2018, 47, 2286–2303. [CrossRef]

http://doi.org/10.1007/s00180-013-0408-7
http://dx.doi.org/10.1016/j.knosys.2013.08.023
http://dx.doi.org/10.1016/j.chemolab.2015.03.002
http://dx.doi.org/10.1016/j.patrec.2014.01.008
http://dx.doi.org/10.1016/j.ijforecast.2019.07.001
http://dx.doi.org/10.1080/03610918.2017.1341529


Algorithms 2022, 15, 252 14 of 14

12. Liu, C.; Hoi, S.C.; Zhao, P.; Sun, J. Online arima algorithms for time series prediction. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016.

13. Zhang, J.; Man, K.F. Time series prediction using RNN in multi-dimension embedding phase space. In Proceedings of the SMC’98
Conference Proceedings—1998 IEEE International Conference on Systems, Man, and Cybernetics (Cat. No. 98CH36218), San
Diego, CA, USA, 14 October 1998; Volume 2, pp. 1868–1873.

14. Lai, G.; Chang, W.C.; Yang, Y.; Liu, H. Modeling long-and short-term temporal patterns with deep neural networks. In
Proceedings of the 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, Ann Arbor,
MI, USA, 8–12 July 2018; pp. 95–104.

15. Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial
nets. In Proceedings of the Advances in Neural Information Processing Systems 27: Annual Conference on Neural Information
Processing Systems 2014, Montreal, QC, Canada, 8–13 December 2014.

16. Luo, Y.; Cai, X.; Zhang, Y.; Xu, J.; Yuan, X. Multivariate time series imputation with generative adversarial networks. In
Proceedings of the Advances in Neural Information Processing Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, Montreal, QC, Canada, 3–8 December 2018.

17. Yoon, J.; Jarrett, D.; Van der Schaar, M. Time-series generative adversarial networks. In Proceedings of the Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019,
Vancouver, BC, Canada, 8–14 December 2019.

18. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Proceedings of the Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing
Systems 2017, Long Beach, CA, USA, 4–9 December 2017.

19. Correia, G.M.; Niculae, V.; Martins, A.F. Adaptively sparse transformers. arXiv 2019, arXiv:1909.00015.
20. Martins, A.; Astudillo, R. From softmax to sparsemax: A sparse model of attention and multi-label classification. In Proceedings

of the International Conference on Machine Learning, New York, NY, USA, 20–22 June 2016; pp. 1614–1623.
21. Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence

time-series forecasting. In Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21), Virtual, 2–9
February 2021.


	Introduction
	Related Work
	Time Series Imputation
	Generative Adversarial Networks
	Attention Mechanism

	Materials and Methods
	Materials
	Informer-WGAN Model
	Problem Definition
	Generator
	Discriminator
	Random Training


	Results
	Evaluation Indicators
	Implementation Details
	Performance Comparison

	Discussion
	Performance Comparison
	Informer Discriminator vs. Linear Discriminator
	Random Training Process


	Conclusions
	References

