
����������
�������

Citation: Yildiz, S.; Pehlivan Solak,

H.; Nikbay, M. Multi-Fidelity

Low-Rank Approximations

for Uncertainty Quantification of a

Supersonic Aircraft Design.

Algorithms 2022, 15, 250. https://

doi.org/10.3390/a15070250

Academic Editors: Andrea Serani

and Stefano Marian

Received: 17 May 2022

Accepted: 11 July 2022

Published: 19 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Multi-Fidelity Low-Rank Approximations for Uncertainty
Quantification of a Supersonic Aircraft Design
Sihmehmet Yildiz 1,† , Hayriye Pehlivan Solak 2,† and Melike Nikbay 1,*

1 Faculty of Aeronautics and Astronautics, Istanbul Technical University, Maslak, Istanbul 34469, Turkey;
yildizsih@itu.edu.tr

2 Faculty of Naval Architecture and Ocean Engineering, Istanbul Technical University, Maslak,
Istanbul 34469, Turkey; pehlivanha@itu.edu.tr

* Correspondence: nikbay@itu.edu.tr
† These authors contributed equally to this work.

Abstract: Uncertainty quantification has proven to be an indispensable study for enhancing reliability
and robustness of engineering systems in the early design phase. Single and multi-fidelity surrogate
modelling methods have been used to replace the expensive high fidelity analyses which must be
repeated many times for uncertainty quantification. However, since the number of analyses required
to build an accurate surrogate model increases exponentially with the number of random input vari-
ables, most surrogate modelling methods suffer from the curse of dimensionality. As an alternative
approach, the Low-Rank Approximation method can be applied to high-dimensional uncertainty
quantification studies with a low computational cost, where the number of coefficients for building
the surrogate model increases only linearly with the number of random input variables. In this study,
the Low-Rank Approximation method is implemented for multi-fidelity applications with additive
and multiplicative correction approaches to make the high-dimensional uncertainty quantification
analysis more efficient and accurate. The developed uncertainty quantification methodology is
tested on supersonic aircraft design problems and its predictions are compared with the results
of single- and multi-fidelity Polynomial Chaos Expansion and Monte Carlo methods. For the same
computational cost, the Low-Rank Approximation method outperformed both in surrogate modeling
and uncertainty quantification cases for all the benchmarks and real-world engineering problems
addressed in the present study.

Keywords: low-rank approximation; high dimensional uncertainty quantification; multi-fidelity;
surrogate modelling; supersonic

1. Introduction

Over the past few decades, surrogate modelling or so-called meta-modelling has in-
creasingly been employed for predicting results of physical computer simulations.
Simulations can become prohibitively expensive when multiple realizations are required,
as is the case with Uncertainty Quantification (UQ) or optimisation processes; the fast
evaluation speed of surrogates makes them an attractive alternative, and have led to their
wide acceptance and adoption in several engineering fields (see [1] for an overview of UQ
with surrogate strategies). In the case of aerospace engineering design problems, where
the failure allowance is quite limited, uncertainties for the design space variables are propa-
gated through the output and have to be estimated accurately without any loss of reliability
and within a reasonable period of time. In uncertainty quantification processes, even
using surrogates for approximating physical phenomena can be quite time consuming
and costly due to the need for many high-fidelity simulations to achieve reliable and ro-
bust designs, especially in the case of high-dimensional design optimisation problems.
Thus, in an effort to further alleviate the computational burden of UQ, single-fidelity surro-
gates are extended to multi-fidelity versions by using additive and multiplicative correction
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approaches to reach an acceptable accuracy in limited time. Multi-fidelity models use dif-
ferent fidelity levels, which may significantly reduce the computational load and accelerate
the computation. These models have been widely used to overcome the computational
burden in uncertainty modelling and optimisation processes for complex simulations.
The key feature behind the multi-fidelity methodology is to increase the accuracy of the in-
tensively sampled low-fidelity simulations by exploiting a limited number of high-fidelity
simulations, thus maintaining an acceptable computational cost. A comprehensive review
for multi-fidelity methods in uncertainty quantification can be found in [2].

The main challenge in simulation-based realisations of engineering problems is the out-
growth in dimensionality, which increases the complexity and the computational time for calcu-
lating hyperparameters of the implemented surrogate. Particularly as dimensionality grows
large, the Low-Rank Approximation (LRA) methodology is a prominent tool among surrogate
modelling strategies model strategies, since the method models the response of the system
as the sum of a smaller number of rank-one tensors, which are products of univariate functions.
Since approximating the system of outputs is conducted using a smaller number of rank ten-
sors, the number of unknown coefficients to be calculated grows only linearly with the input
dimensions, which makes the method very advantageous, especially in high-dimensional cases.
The LRA method has been applied to several engineering disciplines recently, with particular
focus on scaling with dimensionality; these topics include reliability-based optimisation [3–5],
surrogate model strategies [6,7], uncertainty propagation [8–10], sensitivity analysis [11] and
comparative studies with the Polynomial Chaos Expansion (PCE) method [12]. LRA is proposed
as an alternative surrogate technique to the widely applied PCE. The number of unknown
coefficients grows exponentially with the input size in the PCE method, whereas LRA has
the advantage of only linearly increasing the number of coefficients with input size. In this study,
LRA is therefore selected as a promising surrogate modelling method to overcome the burden
of dimensionality as an alternative to PCE.

A number of related studies have been carried out in the literature. For instance,
Blatman and Sudret [13] focused on uncertainty quantification and sensitivity analysis
for high-dimensional problems; in particular, they calculated design variable sensitivities
for different sizes of problems with the surrogate model using the Sparse Polynomial Chaos
Expansion (SPCE) method. It was shown that SPCE was advantageous over PCE in terms
of the number of analyses required to make an accurate prediction. In a following study,
Blatmann and Sudret [14] combined SPCE with an adaptive algorithm to automatically
determine the important polynomial coefficients. Comparing the results of the adaptive
SPCE method with full PCE and stepwise SPCE demonstrated that the adaptive SPCE
method could represent high-dimensional problems with fewer data. Konakli and Su-
dret [3] performed a reliability analysis for high-dimensional models using LRA, where
the number of unknown coefficients increased linearly depending on the problem size. It
was concluded that the LRA method outperformed the SPCE method while also using
fewer analysis results. Papaioannou et al. [15] integrated the PCE method with the PLS
method to approximate unknown orthogonal polynomial coefficients for high-dimensional
problems and found that the PCE-PLS method provides more accurate estimations com-
pared to the LRA method when a small number of simulations results are used. Recently,
Son and Du [16] integrated the generalised dimension reduction algorithm with the PCE
method for efficient uncertainty quantification of non-standard distribution types and
Zuhal et al. [17] performed reliability analysis using the Kriging method integrated with
the PLS algorithm instead of orthogonal polynomial-based methods for high-dimensional
problems. Among multi-fidelity applications, Peterstorfer et al. [18] applied the multi-
fidelity Monte Carlo (MFMC) method and Quaglino et al. [19] performed high-dimensional
uncertainty quantification studies using the multi-level Monte Carlo method.

High-fidelity engineering simulations are usually computationally expensive, and uncer-
tainty quantification processes using high-fidelity engineering models struggle with extreme
computational cost. Multi-fidelity methods leverage both high-fidelity and low-fidelity data to re-
duce the high computational or experimental costs by achieving high accuracy simultaneously.
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As multi-fidelity surrogate modelling methods reduce the computational cost of simulations
with an acceptable accuracy, this approach can be a remedy for uncertainty quantification
processes [2]. In uncertainty quantification studies, orthogonal polynomial-based surrogate
models such as multi-fidelity PCE [20] and SPCE [21] can be preferred since they successfully
represent the general behaviour of computational models. In [20,21] studies, additive and
multiplicative correction terms were used to extend the multi-fidelity versions of PCE and
SPCE. In addition, there are studies in which multi-fidelity extensions of these methods are
made with the Gaussian process such as [22]. Other widely used multi-fidelity methods are
kernel-based methods such as the multi-fidelity Gaussian process [23], coKriging [24], and
Stochastic Radial Basis function [25]. These methods are preferred in optimisation studies
due to their success in capturing local properties and are also used in uncertainty analysis. In
addition, there are methods such as Polynomial Chaos-coKriging [26] and Sparse Polynomial
Chaos-Kriging [27], which combine the ability to capture global features of orthogonal-based
methods with the ability to capture local features of kernel-based methods.

Regarding the uncertainty quantification for a low-boom aircraft design, the effects
of uncertainties in flight conditions and atmospheric profile at the sonic boom level
were studied by West et al. [28] using a mixed uncertainty quantification and second-
order probability method; they performed the uncertainty quantification for flow analysis
through a PCE surrogate model, which significantly increased the computational demand.
Philips and West [29] and Nikbay et al. [30] studied the effect of aeroelastic impacts on sonic
boom using the non-intrusive PCE method. Nikbay et al. [30] examined the effect of un-
certainties due to the material properties on the sonic boom and reduced the number
of uncertain parameters by performing sensitivity analysis. Rallabhandi et al. [31] used
the PCE method for uncertainty calculation and performed robust low boom design using
atmospheric uncertainties. West and Philips [32] measured the uncertainty in the sonic
boom level using the results of a small number of expensive analyses and based on three
different fidelity levels with the multi-fidelity PCE method. Tekaslan et al. [20] performed
low-dimensional sonic boom uncertainty analysis using MFMC and MF-PCE methods.
To the best of the authors’ knowledge, the LRA method has not been applied to any engi-
neering problems in the aviation field yet and the LRA method has not been implemented
within a multi-fidelity modelling approach. The authors implemented the LRA method
into an uncertainty quantification process for sonic boom prediction and further developed
a novel multi-fidelity approach of the LRA method which is called the MF-LRA method
in this paper. This new approach is comprehensively compared with the multi-fidelity PCE
method. In addition, it is observed that the literature lacks high-dimensional numerical
multi-fidelity benchmark problems; so as a contribution of the authors, a new multi-fidelity
extension of the Sobol’-Levitan function is implemented and presented in this study.

Within this perspective, this paper first aims to present a comprehensive performance
assessment by constructing a multi-fidelity extension to a Low-Rank Approximation and
comparing the results with a competing approach of multi-fidelity Polynomial Chaos
Expansion for multi-fidelity analytical test cases. Then, the present approach is used
for the uncertainty quantification of high-dimensional supersonic aircraft design problems
within an application-oriented framework.

The remainder of the paper is as follows: In Section 2, some of the basic properties
and concepts are introduced for the present methods and the details of the multi-fidelity
extension of the surrogates are explained. In Section 3, the details of the computational
experiment (e.g., the selected sampling strategy for the design of experiments (DoE)) are
given; accuracy metrics and performance results for both analytical and high-dimensional
engineering problem test cases are also demonstrated. In the final section, the results are
discussed and current challenges along with the recommendations for further investigations
are presented.
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2. Methods

In this section, the concepts and basic terms are explained for the Polynomial Chaos
Expansion and Low-Rank Approximation surrogate modelling strategies. For a more elab-
orate introduction and detailed descriptions of the models, one can refer to the following
references within the uncertainty quantification framework [33,34].

2.1. Polynomial Chaos Expansion

The PCE method is based on the principle that a computational model can be obtained
by an infinite series expansion of orthogonal polynomials as in Equation (1). In this equation,
M represent the computational model with the outputs of the system, Y = {Y1, . . . , YN},
being dependent on the variables X = {X1, . . . , XM}.

M(X) =
∞

∑
j=0

αjΨj(X) (1)

From a computational point of view, the infinite series should appropriately be trun-
cated. The PCE method suggests that, as in Equation (2), the computational model can be
expressed with a small error, ε, by using a P + 1 terms in the series expansion:

M(X) ≈MPCE(X) ∼=
P

∑
j=0

αjΨj(X) + ε (2)

The α terms in Equation (2) indicate unknown coefficients, and the Ψ vector are
the multivariate orthogonal terms. Multivariate orthogonal (Ψi(X)) terms are obtained
by multiplying univariate orthogonal polynomials (ψ

mj
i
(x)) as in Equation (3). mj

i in this

equation represents the index of the univariate Hermite polynomial.

Ψj(X) =
M

∏
i=1

ψ
mj

i
(xi) (3)

Depending on the probability distribution of the inputs of the computational model,
different orthogonal polynomials may be used. Legendre polynomials are used for uni-
formly distributed inputs and Hermite polynomials are used for normally distributed
inputs. The definition of the first few two-dimensional Hermite polynomials is expressed
in terms of the standard variable ξ as in Equation (4) [35].

Ψ0(ξ) = ψ0(ξ1)ψ0(ξ2) = 1

Ψ1(ξ) = ψ1(ξ1)ψ0(ξ2) = ξ1

Ψ2(ξ) = ψ0(ξ1)ψ1(ξ2) = ξ2

Ψ3(ξ) = ψ2(ξ1)ψ0(ξ2) = ξ2
1 − 1

Ψ4(ξ) = ψ1(ξ1)ψ1(ξ2) = ξ1ξ2

Ψ5(ξ) = ψ0(ξ1)ψ2(ξ2) = ξ2
2 − 1

(4)

There are different methods such as the Smolyak sparse grid [36], random sam-
pling [37], tensor product quadrature [38] and regression to calculate unknown α co-
efficients. The methods other than the regression method are spectral projection methods,
which consist of projecting the computational model responses against each basis func-
tion using inner products. Unlike projection methods, an arbitrary number of results
from the analysis can be used to calculate unknown coefficients in the regression method.
In the present work, the regression method is used to calculate the unknown coefficients.
The PCE series expansion in Equation (2) is expressed in matrix notation as in Equation (5):

Y = Ψα + e (5)
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The expressions in Equation (5) are expressed in matrix form as in Equation (6) where
e are the residuals.

Y =


Y1
Y2
...

YNs

, Ψ =


1 Ψ1(X1) . . . Ψp(X1)
1 Ψ1(X2) . . . Ψp(X2)
...

...
. . .

...
1 Ψ1(XNs) . . . Ψp(XNs)

, α =


α1
α2
...

αNs

, e =


e1
e2
...

eNs

 (6)

The unknown coefficients can be expressed as in Equation (7) with the ordinary least
square method:

α =
(

ΨTΨ
)−1

ΨTy (7)

With the calculation of unknown coefficients, the estimation for a new design variable
can be obtained as in Equation (8).

MPCE(X) = Ψα (8)

The number of terms to be included in the polynomial expansion in Equation (2) is
calculated as in Equation (9). In this equation, M represents the number of random variables
and p represents the maximum degree of the one-dimensional orthogonal polynomial.

Ns = P + 1 =
(M + p)!

M!p!
(9)

In order to obtain the unknown polynomial coefficients correctly, the required num-
ber of analyses (Ns) must be greater than the number of polynomial coefficients P + 1.
Hosder et al. [39] suggest that Ns = 2(P + 1) should be the number of analyses required
for accurate surrogate modelling. It is observed from Equation (9) that the number of anal-
yses required to obtain the correct result increases exponentially depending on the size
of the problem.

In order to set up the PCE surrogate model, it is necessary to determine the degree
of polynomial to be used. As the degree of polynomial increases, the number of unknowns
also increases; this improves accuracy of the representation but also increases the number
of required model evaluations. It is therefore necessary to determine the optimal maximum
polynomial order. For the test cases in the present work, this is conducted by searching
a limited interval through the use of an n-fold cross-validation metric.

2.2. The Low-Rank Approximation Method

The LRA method is constructed as an alternative to the PCE method to overcome
the curse of dimensionality for high-dimensional problems [12]. As discussed in the previ-
ous section, in the PCE methodology, the response of the problem is expanded onto a basis
of orthonormal multivariate polynomials. LRA instead relies on a tensor product form
of multivariate basis, which accelerates the solution procedure of the unknown coefficients.
In this study, LRA implementations are conducted using UQLab, an open-source MATLAB
toolbox for uncertainty quantification [40].

A computational modelMLRA, which represents a surrogate, maps the input variables
to the response of the system. M represents the physical behaviour of the system outputs,
which are denoted as Y = {Y1, . . . , YN} and correspond to the variables X = {X1, . . . , XM}.
By considering a rank-one function of the input vector X in Equation (10),

w(X) =
M

∏
i=1

v(i)(Xi) (10)

where w is product of univariate component of the input variables and the LRA model
in general form is given in Equation (11):
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M(X) ≈MLRA(X) ∼=
R

∑
l=1

bl

( M

∏
i=1

v(i)l (Xi)
)

(11)

In this expression of the model, v(i)l are univariate functions of Xi in the lth rank-one
component and {bl , l = 1, 2, . . . , R} are scalars defined as weighing factors. To approximate
the response of the system, univariate functions v(i)l are expanded onto the polynomial

basis {ψ(i)
k , k ∈ N} that is orthonormal with respect to fxi .

〈ψ(i)
j , ψ

(i)
k 〉 =

∫
Dxi

ψ
(i)
j ψ

(i)
k x(i) fxi (xi)dxi = δjk (12)

Dxi represents a particular input variable while δjk is the Kronecker delta, which is 1
if j = k and otherwise equal to 0. Accordingly, the polynomial basis representation leads
to the equation,

v(i)l (Xi) =
pi

∑
k=0

z(i)k,l ψ
(i)
k (Xi) (13)

where ψ
(i)
k is the k-th degree univariate polynomial in the i-th input variable, pi is the maxi-

mum degree of ψi
k, and zi

k,l is the coefficient of ψi
k in the l-th rank-one term. Then, using

this expression in the LRA model in Equation (14),

MLRA(X) =
R

∑
l=1

bl

(
M

∏
i=1

(
pi

∑
k=0

z(i)k,l ψ
(i)
k (Xi)

))
(14)

the approximation for the system outputs is obtained. Two stages are needed to construct
LRA; one is to define the polynomial basis in each dimension and the other is to determine
the polynomial coefficients. As indicated in the previous section, Legendre polynomials
are used for uniformly distributed inputs, and Hermite polynomials are used for normally
distributed inputs. While several algorithms have been implemented for computing
unknown coefficients in the related literature, in this work the alternated least-squares
(ALS) minimisation scheme is used [41]. The key feature of the ALS minimisation method
is that the coefficients are obtained within each dimension while keeping the coefficients
in remaining dimensions constant, thus accelerating the solution process.

The construction of the LRA methodology is based on both correction and updating
steps in which the rank–one tensor is created in correction and the weighting factors are
subsequently determined in the updating stages [12]. In the correction stage, assuming that
Rr represents the residual after the r-th iteration,

Rr(X) =M(X)−MLRA
r (X) (15)

the solution procedure is initiated byMLRA
0 (X) = 0. By using the ALS scheme, the min-

imisation problem;

z(j)
r = argmin

ζ∈Rpj

∥∥∥Rr−1 −∏
i 6=j

v(i)r

pj

∑
k=0

ζ
(i)
k ψ

(j)
k

∥∥∥2

ε
, j = 1, 2, . . . , M. (16)

turns into smaller minimisation problems, with each considering the coefficients of one
dimension. Correction step starts with arbitrary values of {v(i)r , i = 1, 2, . . . , M}. The algo-
rithm stops when the maximum iteration is reached or the error between iterations is smaller
than the predetermined limit. As suggested by Konakli and Sudret [11] the maximum num-
ber of iterations is taken as Imax = 50, while the predetermined limit for the error between
iterations should be less than 10−6. Accordingly, in the updating step, the coefficients are
obtained by solving the minimisation as in Equation (17).
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b = argmin
β∈Rr

∥∥∥M− r

∑
l=1

βlwl

∥∥∥2

ε
(17)

The LRA methodology can be summarised in two steps; the correction stage consists
of solving M minimisation problems of size {pi + 1, i = 1, 2, . . . , M.} while the updating
stage considers a minimisation of a smaller problem with size corresponding to rank r
in the approximation.

The correction and updating stages are continued when the optimal rank and polyno-
mial degree satisfies the predetermined error threshold between the iterations.
Optimal rank is determined based on n-fold cross validation error. It is important to note
here that the number of the unknowns in Equation (14) is R ·∑M

i=1(pi + 1), which grows
linearly with the input dimensions, making the LRA a more preferred approach when
compared to the PCE method, especially for high-dimensional problems. One can see
that, by disregarding the redundant parameters, the number of unknown coefficients is
drastically reduced when compared to PCE in Equation (2). Figure 1 demonstrates the ad-
vantage of LRA, with the number of unknown coefficients increasing linearly with problem
dimensionality; in contrast, PCE demonstrates an exponential trend, making it prohibitively
expensive for high dimensional problems.

Figure 1. Comparing number of unknown coefficients between the PCE and LRA methods for high
dimensional problems.

For a conceptual comparison of the surrogates considered here; the general format
of models are represented in Table 1. As summarised in this table, both surrogate strategies
belong to the family of univariate polynomials.

Table 1. The general form of the surrogates.

Model Name Model Shape

Polynomial Chaos Expansion ∑P
j=0 αjΨj(X)

Low-Rank Approximation ∑R
l=1 bl ∏M

i=1 v(i)l (Xi)

2.3. Multi-Fidelity Extension of PCE and LRA

In multi-fidelity surrogate modelling, by taking advantage of the low-cost computa-
tion of the low-fidelity model data, the accuracy of the surrogate model is increased by
integrating a limited number of high-fidelity data with a larger number of low-fidelity
data. In the present study, the additive and multiplicative correction approaches are
implemented in order to use the orthogonal polynomial-based PCE and LRA methods
in multi-fidelity surrogate modelling. Ng et al. [42] used the PCE method with the additive
and multiplicative correction approach for multi-fidelity surrogate modelling and demon-
strated that more accurate results were achieved with the correction approach as compared



Algorithms 2022, 15, 250 8 of 26

with those of the single-fidelity model. To the best of the authors’ knowledge, a multi-
fidelity surrogate modelling study in which the LRA method is used does not exist. Thus,
the authors are encouraged to investigate the cost and accuracy performance of the LRA
method in multi-fidelity modelling in the present study where the LRA method is extended
for multi-fidelity surrogate modelling with additive and multiplicative approaches similar
to the PCE method.

The present multi-fidelity surrogate strategy is based on modelling the difference between
low-fidelity fl f (X) and high-fidelity fh f (X) model responses. The additive and multiplicative
correction approach essentially shifts and scales the low-fidelity model according to the high-
fidelity model results. The additive (Ca(Xh f ) : X→ Y) and multiplicative correction (Cm(Xl f ) :
X→ Y) functions are defined as in Equations (18) and (19), respectively.

Ca(Xh f ) = fh f (Xh f )− fl f (Xh f ) (18)

Cm(Xh f ) =
fh f (Xh f )

fl f (Xh f )
(19)

Using the combination of the correction functions, the multi-fidelity surrogate model,
which shifts the low-fidelity prediction to high-fidelity data, is given in Equation (20).

f̃m f (X) = γ[ f̃l f (X) + C̃a(X)] + (1− γ) f̃l f (X)C̃m(X) (20)

In Equation (20), the˜expression represents the surrogate model, while f̃l f (X), C̃a(X),
and C̃m(X) represent the surrogate models established for the low fidelity, additive function,
and multiplicative function results, respectively. Here, f̃m f (X) refers to the multi-fidelity
surrogate model established by the combination of these surrogate models. In this context, γ
is called the weight coefficient and represents the weights of the additive and multiplicative
models. The authors of [42] proposed an expression for γ that can be calculated using
the norm of the additive and multiplicative correction in the mean-square sense as in
Equation (21):

γ =
〈C̃2

a(X)〉
〈C̃2

a(X)〉+ 〈C̃2
m(X)〉

(21)

3. Computational Experiments

Real-world engineering applications are expected to be solved within limited computa-
tional budgets. For uncertainty quantification studies, the number of simulations increases
drastically when propagating the input uncertainties to an output response through time
consuming simulation processes. On the contrary, very limited amount of high fidelity data
may be available to be used in surrogate modelling and uncertainty quantification studies.
In this study, the goal is to investigate the cost and accuracy performance of the LRA
method in multi-fidelity modelling with respect to the PCE method; in order to isolate
the effects of surrogate performance, all accompanying computational strategies are kept
the same, including design of experiments, local/global accuracy metrics, UQ metrics, and
fidelity cost assignment criteria.

• Design of Experiments (DoE): Halton Sampling
The key component of the surrogate modelling process is the design of experiments
for the simulations. As already known from the associated studies, surrogate model
predictions strictly depend on the applied design of experiments (DoE) set. In this
study, several widely used DoE sampling types are demonstrated for a reliable perfor-
mance assessment of the considered surrogates. To incorporate all the characteristics
of the data over the sampling space, samples must be distributed homogeneously
as much as possible. If this is achieved, the performance of the surrogate can be
evaluated without the biased effect of the selected sampling strategy. With this
in mind, Monte Carlo (MC) [43], Latin Hypercube (LHS) [44], Optimized Latin Hyper-
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cube (OLHS) [45] and Halton sequence (HS) sampling [46] strategies are compared
in Figure 2 to visualise behavioural differences for several conventional sampling types.

Figure 2. Comparison of sampling methods [47].

As indicated in the two-dimensional sampling strategy visualisations, Latin Hyper-
cube sampling has the ability to fill the design space successfully. In contrast, Monte
Carlo sampling may have some accumulated data areas that may result in learn-
ing deficits for the implemented surrogate model. The Halton sequence distributes
the samples homogeneously over the design space. As the number of samples is in-
creased, HS keeps the previous sampling set the same, while adding the new samples
homogeneously distributed to the vacant regions of the design space. In the present
work, Halton sequence is therefore selected as a DoE strategy in an effort to prevent
potential bias effects from the sampling strategy.

• Local/Global accuracy metrics:
In order to compare the accuracy of surrogate models, error metrics are calculated
using the predicted values of the surrogate models and their corresponding analytical
results at the same test points. The proposed metrics are selected to offer a compre-
hensive assessment of the surrogates both in terms of local and global characteristics
of the modelling ability of the real functions. These metrics include coefficient of deter-
mination (R2), root-mean square error (RMSE), and maximum absolute error (MAE);
their formulas and normalised versions are later given in Equations (22)–(24).
The coefficient of determination is a statistical measure of how well the regression
estimate converges to the actual data points. R2 takes a value between 0 and 1, with
a high R2 value indicating that the model fits well with the data used. Using the test
data-set, the formulation is expressed as follows, where ȳ is the mean of test data-set,
yi is the exact value of the function and ŷi represents the surrogate model prediction.

R2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i (yi − ȳ)2 (22)

The RMSE metric expresses the standard deviation of the prediction error and mea-
sures how well the predicted values match the actual values in absolute terms.
The RMSE value ranges from 0 to ∞, with smaller values indicating that the method
makes a more accurate prediction. In this respect, RMSE is a global accuracy metric
that represents the difference between the true value and the surrogate model value.
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It is used in the study to measure the success of the methods in capturing global
behaviour. Using a test data-set, the formulation is expressed as in Equation (23).

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2

NRMSE =
RMSE

(ymax − ymin)

(23)

The maximum absolute error value represents the greatest difference in the design
space between the surrogate model prediction and the actual value. MAE is frequently
used in the literature to measure the prediction success of the surrogate model locally,
and in this study, it is used to quantify how accurately the surrogate models capture
the local features. The formulation is expressed using a test data-set as follows,

MAE = max(|yi − ŷi|)

NMAE =
MAE

(ymax − ymin)

(24)

The proposed assessment metrics might show different characteristics, as global accu-
racy may differ from local accuracy. In order to present a comprehensive performance
evaluation of the surrogates, two different type of metrics are considered. A surrogate
model’s ability to capture both local and global characteristics needs to be evaluated.
For example, when considering a search for an optimum or any other local response
of the surrogate, the MAE has crucial importance to ensure that the model has no
local deficits. At the same time, to facilitate an efficient evaluation of the surrogate
performance, some kind of a compromise has to be observed between local and global
accuracy of the models.

• Uncertainty quantification (UQ) metrics:
Evaluation of the uncertainty quantification results is performed using the probability
density function. In engineering problems, the terms mean, standard deviation,
skewness and kurtosis, which express the behaviour of the density function, are used
to numerically compare the results of the uncertainty quantification. The mean (ȳ) is
the general tendency of the response based on the variation of the uncertain variables,
and the standard deviation(σ) refers to the variation in the analysis program’s response
based on the distribution of the uncertain variable. The mean and standard deviation
formulas are given in Equation (25), where N represents the number of responses.

ȳ =
∑N

i=1 yi

N
, σ̂ =

√
∑N

i=1(yi − ȳ)2

N − 1
(25)

Skewness is a measure of the asymmetry of the probability density of response relative
to the mean and is calculated as in Equation (26). Kurtosis, on the other hand, expresses
a measure of whether the data contain an abundance of outliers or lack of outliers
relative to a normal distribution and is calculated as in Equation (26).

Skewness =
∑N

i=1(yi − ȳ)3

(N − 1) · σ̂3 , Kurtosis =
∑N

i=1(yi − ȳ)4

(N − 1) · σ̂4 (26)

• Fidelity cost assignment criteria:
Multi-fidelity surrogate assessments are usually depicted by using a constant number
of low-fidelity analyses and adding high-fidelity data as necessary. Since design
problems have to be solved with limited computational budget to complete the process
within a reasonable amount of time, dominance of low fidelity data is more convenient.
Preliminary cost assignment is determined by using single-fidelity performance results,
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which means the data are fixed for low-fidelity cases when an initial convergence
occurs. Then, the number of low-fidelity runs are kept constant and high-fidelity runs
are increased to a level when an acceptable convergence is reached by the multi-fidelity
surrogate.

4. Numerical Results

Performances of the surrogate models are assessed by both analytical test cases and
real-world engineering problems.

4.1. Analytical Test Cases

Beginning with analytical test cases, the primary purpose of this paper is to present
performance assessments of the considered surrogates to determine whether they meet
the requirements of a reliable uncertainty quantification process. This section therefore
provides the analytical definitions of the selected benchmark functions to be used in the un-
certainty quantification studies. These benchmarks are described for varying numbers
of dimensions.

4.1.1. Problem 1: Park (1991) Function (4-D)

The Park (1991) function is a 4-D benchmark problem. It has been extended by
Xiong [48] for multi-fidelity problems, and the high- and low-fidelity versions are given
in Equations (27) and (28), respectively. For the presented problem, the design variable
domain is defined as xi ∈ [0, 1).

fh f (x) =
x1

2

[√
1 +

(
x2 + x2

3
) x4

x2
1
− 1

]
+ (x1 + 3x4) exp[1 + sin(x3)] (27)

fl f (x) =
[

1 +
sin(x1)

10

]
f (x)− 2x1 + x2

2 + x2
3 + 0.5 (28)

Uncertainty quantification is performed using a surrogate model, and model training
is conducted to determine the best parameters for the surrogate model to be used.

A surrogate model was created for single and multi-fidelity versions of the PCE and
the LRA methods using different numbers of high-fidelity simulations results. The global
and local accuracy metrics calculated at 105 test points and the results of the performed
surrogate models are demonstrated in Figure 3.

Figure 3. Surrogate model error metrics for Park (1991) function (Nl f = 35).

As is observed from Figure 3, an accurate surrogate model can be established by
using the LRA method with only 10 high-fidelity simulations results. In contrast, when
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the PCE method is considered, a locally and globally accurate surrogate model can be
established within approximately 35 high-fidelity simulations results. For the same sim-
ulation conditions (i.e., sampling strategy and number of simulations results), the PCE
method therefore requires three times more data to achieve similar accuracy. In addition,
by using the MF-PCE and MF-LRA methods, in which 35 low-fidelity simulations results
are used, a multi-fidelity surrogate model can be created with the same number of high-
fidelity simulations results. However, when few high-fidelity simulations results are used,
the MF-LRA method gives better results for this problem. It is observed that, as the number
of high-fidelity simulations increases, the MF-PCE method gives slightly more accurate
results both globally and locally in comparison with the MF-LRA method. Single-fidelity
simulations results demonstrate that a multi-fidelity surrogate model can be established
with the MF-LRA method by using a smaller amount of low-fidelity simulations data.
Moreover, for normalised RMSE results, one can conclude that, even the single-fidelity ver-
sion of LRA performs similarly to the multi-fidelity type of models. In addition, according
to the NMAE, it can be inferred from the results that single-fidelity PCE gives erroneous
results whereas MF-PCE gives competing results with MF-LRA.

Uncertainty quantification was performed by assuming that the variables defined
in the Park equation change uniformly in the range of [0,1). The probability density
function (PDF) for the surrogate models, where 20 high-fidelity results are used to observe
the difference between the methods, are presented in Figure 4.

Figure 4. Comparison of probability density function (Nh f = 20, Nl f = 35).

The PDF values are calculated by the MC method using 107 sampling points and shown
in Figure 4. It is observed in the figure that the results of the LRA and MF-LRA methods
are close to the MC method performance. Although the surrogate model implementation
results for the MF-PCE method produces similar accuracy values as the LRA and MF-LRA
surrogate models, the behaviour of the confronted surrogates in terms of probability density
function is quite different compared to the MC method. With regards to the presented
results, there are significant differences between the PCE and the MC methods in terms
of the uncertainty quantification metrics.

4.1.2. Problem 2: Borehole Function (8-D)

The Borehole function is an 8-D benchmark problem that models water flow through
a borehole. The extension to multi-fidelity purposes is described by the following equation [48],

fh f (x) =
2πTu(Hu − Hl)

ln(r/rw)
(

1 + 2LTu
ln(r/rw)r2

wKw
+ Tu

Tl

) (29)
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fl f (x) =
5Tu(Hu − Hl)

ln(r/rw)(1.5 + 2LTu
ln(r/rw)r2

wKw
+ Tu

Tl
)

(30)

For this uncertainty quantification benchmark problem, parameter statistics are de-
fined as shown in Table 2.

Table 2. Borehole function parameter statistics.

Variable Statistics

rw U (0.05, 0.15)
r U (100, 50,000)

Tu U (63,070, 115,600)
Hu U (990, 1110)
Tl U (63.1, 116)
Hl U (700, 820)
L U (1120, 1680)

Kw U (9855, 12,045)

For the value ranges defined in Table 2, a surrogate model is established for the number
of different high-fidelity analyses with the LRA, PCE, MF-PCE and MF-LRA methods.
The accuracy metrics of the surrogate models established using different numbers of high-
fidelity simulations results are shared in Figure 5.

Figure 5. Surrogate model error metrics for Borehole function (Nl f = 200).

As observed in Figure 5, a higher number of high-fidelity simulations results are required
to establish an accurate surrogate model with PCE compared to other methods. It is also
observed that the multi-fidelity versions of the methods are more accurate than the single-fidelity
versions when using the same number of high-fidelity simulations. Remarkably, the surrogate
model constructed by LRA with fewer high-fidelity simulation results is more accurate than
the surrogate model constructed by MF-PCE. The accuracy values obtained by using only
10 high-fidelity data in the MF-LRA method are achieved by using 50 high-fidelity analyses
in the MF-PCE method. When the single fidelity results of the methods are examined, it is
observed that the LRA method gives more accurate results with a small number of simulation
data as in the first application, while the PCE method produces more accurate results both
locally and globally when many high-fidelity simulation data are used.

For the case where 50 high-fidelity simulations results are used, the PDF value obtained
from the surrogate models is demonstrated in Figure 6. In this case, the surrogate model
obtained by the PCE method is highly erroneous. The PDF value obtained by the PCE method
is therefore quite different from the MC result. However, it is observed that the results obtained
with other methods overlap with the results obtained with the MC method.
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Figure 6. Comparison of probability density function (Nh f = 50, Nl f = 200).

4.1.3. Problem 3: Sobol’-Levitan (1999) Function (30-D)

The Sobol’-Levitan (1999) function is an n-D single-fidelity benchmark problem as defined
in Equation (31) [49]. The function is defined on the hypercube xi ∈ [0, 1] for all dimensions.

f (x) = exp

[
d

∑
i=1

bixi

]
− Id + c0, where

Id =
d

∏
i=1

exp(bi)− 1
bi

(31)

The value of the elements in the b vector (b1, ..., bd) indicates the significance of the cor-
responding x variables. The Sobol’-Levitan function is extended for multi-fidelity applica-
tions by defining two different b vectors for multi-fidelity applications. Within the scope
of the study, the 30-D version of the Sobol’-Levitan (1999) function is used, and the b vectors
used for the low- and high-fidelity versions are provided in Equation (32).

bl f = [1.25× ones(1, 15), 0.9× ones(1, 15)], for low-fidelity version

bh f = [1.25× ones(1, 15), 1.0× ones(1, 15)], for high-fidelity version
(32)

A surrogate model is established with single- and multi-fidelity versions of the LRA
and PCE methods using a different number of high-fidelity simulation results. The surro-
gate model accuracy metrics calculated using the 106 test data of the established surrogate
models are given in Figure 7.

As observed in Figure 7, despite the increase in the number of high-fidelity analyses,
no improvement is observed in the accuracy values of the PCE method. The main reason
for this is that the number of unknown coefficients that need to be calculated for the es-
timation of the PCE method is very high and it requires a large number of high-fidelity
simulations results for the estimation of the unknown coefficients. Similarly, the MF-
PCE method also has low accuracy values, as errors in the single-fidelity version result
in decreased accuracy values of the MF-PCE method. It is observed from the accuracy
metrics of the LRA method that a globally accurate surrogate model can be created with
a small number of high-fidelity simulations results. It has been observed that, with the help
of the widespread information obtained from the low-fidelity model, the surrogate model
established with the MF-LRA method is more accurate than the LRA method with few
high-fidelity simulations results. The inconvenience observed in this particular benchmark
problem is that the established surrogate models have locally high erroneous values at least
at one point in the design space.
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Figure 7. Surrogate model error metrics for Sobol’-Levitan function (Nl f = 10,000).

Uncertainty analysis is carried out by assuming uniform distribution for the variables
of the equation. The obtained PDF values for uncertainty analysis are shown in Figure 8.
As observed in Figure 8, the PDF functions obtained by the PCE and MF-PCE methods are
quite different than the PDF values obtained by the MC method. The PDF values obtained
by the LRA and MF-LRA methods are similar to the MC results, and it is observed that
these methods successfully model the tail regions of the PDF.

Figure 8. Comparison of probability density function (Nh f = 2500, Nl f = 10,000).

4.2. Application for Real-World Engineering Problems

In order to assess orthogonal polynomial based multi-fidelity models over engineer-
ing problems, two sonic boom uncertainty quantification applications are implemented.
Sonic boom analysis is performed using the aeroacoustic propagation method where
the general process for sonic boom analysis is depicted in Figure 9. The process consists
of two stages. In the first stage, a near-field pressure signature is obtained at several
body lengths away from the air vehicle by flow analysis. Then, the pressure signature
on the ground is obtained by propagating the near-field pressure signature to the ground
with an aeroacoustic propagation code. The noise level is calculated using the pressure
signature on the ground. The near-field pressure signature is calculated at 2 to 3 body
lengths away from the air vehicle based on the assumptions of the acoustic solution [50].
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Figure 9. Aeroacoustic propagation in sonic boom prediction. Reproduced with permission from
Ref. [51].

In the current applications, the high-order panel method PANAIR [52], which solves
the linearised potential flow equations, is used for low-fidelity flow analysis. The Eu-
ler solver in SU2 [53], which is developed by the Stanford University ADL Lab, is used
for high-fidelity flow analysis. For sonic boom analysis, the sBoom program [50], devel-
oped at NASA Langley Research Center, is used. The flow analysis calculations needed
in the sonic boom prediction process are time-consuming. Therefore, flow solvers with
different fidelity levels are employed for multi-fidelity flow analysis, while the same high-
fidelity solver in sBoom is used for sonic boom prediction.

Due to the limitations of the PANAIR program used in low-fidelity flow analyses,
a wing-body combination is preferred over a fully realistic aircraft model. Therefore,
the JAXA Wing-Body (JWB) model designed by JAXA for the Second AIAA Sonic Boom
Prediction Workshop (SBPW-II) is used. The JAXA Wing-Body geometry is demonstrated
in Figure 10.

Figure 10. The JAXA Wing-Body geometry.

For the Euler analysis performed by SU2, the flow domain is discretised into 12.8 million
elements using a hybrid mesh structure. An unstructured mesh is generated in the neigh-
borhood of the air vehicle while the far-field of the solution domain is discretised with
Mach-aligned prisms. The Mach number is equal to 1.6 and the Jameson-Schmidt-Turkel
(JST) method is used as a convective flux scheme in all Euler analyses. For discretisation
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to be used in PANAIR, quadrilateral elements on the surface are created. Approximately
5360 elements are used to model the JWB geometry and wake region.

Euler analysis is performed on a workstation with a 2.4 GHz processor with 36 cores
and 192 GB of RAM. The solution converged to a 10−7 root mean square density at 566 iter-
ations in 65 min. A PANAIR analysis takes approximately 15 min on a 2.4 Ghz processor
with one core using supersonic solid surface boundary conditions. The pressure coefficient
distributions on the surface obtained as a result of high and low fidelity flow analyses are
depicted in Figure 11.

(a) (b)

Figure 11. Pressure coefficient distribution comparison (a) on the upper surface (b) on the lower surface.

As an output of the flow analysis, the pressure signatures taken from two body lengths
below the aircraft are illustrated in Figure 12a. As observed in the figure, high oscilla-
tions are observed in the rear region of the fuselage in the near-field pressure distribution
obtained from the PANAIR program. These oscillations are due to the inability of the po-
tential flow method used in the PANAIR program to properly model expansion waves and
interactions. The pressure signature on the ground is obtained as the near-field pressure
distribution is propagated to the ground using the sBoom code with standard atmospheric
conditions; the result of this propagation is shown in Figure 12b. In this figure, the oscillations
in the near field obtained from the PANAIR program are damped as they are propagated
to the ground. Near-field pressure signatures are validated by SBPW-II participants’ results [54],
and the ground signature are validated by studies of Carpenter et al. [55].

(a) (b)

Figure 12. Pressure signature comparison: (a) Near-field pressure signature (b); ground signature
for JWB.

Aerodynamic coefficient and loudness values obtained from both fidelity levels are
provided in Table 3. For more detailed information and validation studies about flow and
sonic boom analysis, reference [20] can be examined.
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Table 3. The JWB model aerodynamic coefficients and loudness value.

CL CD Loudness (dB)

SU2 0.0770 0.0069 80.0247
PANAIR 0.0772 0.0064 87.0811
Error (%) 6.1656 7.5190 10.0635

4.2.1. Problem 1: Sonic Boom Uncertainty Quantification

In this application, sonic boom uncertainty quantification with four uncertain variables
is performed to show the success of the methods on low-dimensional engineering problems.
The effect of angle of attack, Mach number, reflection factor and ground elevation uncer-
tainties on the ground noise level have been examined, and the statistics of the uncertain
variables are shared in Table 4.

Table 4. Statistics of random variables.

Variable Statistics

Angle of attack, (◦) N (3.07, 0.1)
Mach N (1.6, 0.0016)

Reflection factor U (1.8, 2)
Ground elevation, (ft) U (0, 5000)

The accuracy metrics of the surrogate models are demonstrated in Figure 13. As can
be observed in Figure 13, an accurate surrogate model was not obtained by PCE and
MF-PCE methods using few high-fidelity analyses. With a small number of high-fidelity
analyses, an accurate surrogate model is constructed with the LRA and MF-LRA method,
and for the low-dimensional problem, there is no great difference between the LRA and
MF-LRA surrogate model accuracy metrics. In general, the accuracy value obtained by
using 40 high-fidelity simulations with the PCE and MF-PCE methods could be obtained
by using only 10 high-fidelity simulations with the LRA and MF-LRA methods.

Figure 13. Surrogate model error metrics for sonic boom problem 1 (Nl f = 70).

Using the considered surrogate models, the probability density functions (PDF) are
calculated and the results are visualised in Figure 14. In addition, the PDF value calculated
by using 100 high-fidelity analysis results is also demonstrated in Figure 14 as the reference
solution. As observed in the figure, the MF-LRA method gives very close results to the refer-
ence result with a small number of high-fidelity analyses. Although the success of the LRA
and MF-LRA methods are similar in surrogate model accuracy metrics, it is observed that
the PDF obtained by the LRA method is somewhat different from the reference result.
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PCE and MF-PCE methods, on the other hand, have low success rates when few HF
simulation results are used.

Figure 14. Comparison of probability density function (Nl f = 70, Nh f = 40).

In order to make numerical comparisons, the results of the uncertainty quantification
are shared in Table 5. If the results obtained from different methods are generally compared
with the reference result, the mean, standard deviation, skewness, and kurtosis values
estimated from the single- and multi-fidelity LRA methods are close to the reference re-
sults. However, if the results obtained with the single- and multi-fidelity PCE method are
examined, the mean and standard deviation values are in good agreement with the ref-
erence result, while the skewness and kurtosis values have a higher error rate compared
to the results obtained by the reference result.

Table 5. Comparison of descriptive statistics of sonic boom loudness (Nl f = 70, Nh f = 40).

Mean (dB) Standard Dev.
(dB) Skewness Kurtosis

Reference 83.0656 0.8435 −0.4968 3.3274
PCE 82.9029 0.8354 0.0134 2.9538
LRA 83.0479 0.8493 −0.4080 3.2467

MF-PCE 83.0426 0.8060 −0.4811 4.3893
MF-LRA 83.0621 0.8478 −0.5038 3.3242

4.2.2. Problem 2: Sonic Boom Uncertainty Quantification

The near-field and atmospheric propagation process involves several uncertain param-
eters that affect the ground noise prediction. Within the scope of this application, the effect
of uncertainties in the atmospheric propagation process on the prediction of the ground noise
is examined. The altitude-dependent temperature, relative humidity, and wind speeds in X
and Y directions in the atmospheric propagation process all affect the aleatory uncertainties
in the problem; the resulting uncertainty variable statistics are presented in Table 6. Statistics
of uncertain variables are taken from the study of Rallabhandi and et al. [31] and values are
obtained by simplifying the atmosphere profiling defined in SBPW-II [54].



Algorithms 2022, 15, 250 20 of 26

Table 6. Statistics of atmospheric propagation aleatory uncertain variables.

Variable Statistics Variable Statistics

H1 (m) N (0, 1) RH4(%) N (66.96, 15)
H2 (m) N (11,000, 1000) RH5(%) N (24.38, 10)
H3 (m) N (20,000, 1000) RH6(%) N (8.49, 5)
T1(oF) N (59, 5) WXH1 (m) N (0, 1)
T2(oF) N (−69.7,5) WXH2 (m) N (5000, 1000)
T3 (oF) N (−69.7,5) WXH3 (m) N (20,000, 1000)

ZH1 (m) N (0, 1) WX1 (m/s) N (0, 1)
ZH2 (m) N (1520, 500) WX2 (m/s) N (20, 5)
ZH3 (m) N (6400, 1000) WX3 (m/s) N (30, 10)
ZH4 (m) N (7620, 1000) WYH1 (m) N (0, 1)
ZH5 (m) N (10,060, 1000) WYH2 (m) N (5000, 1000)
ZH6 (m) N (13,720, 1000) WYH3 (m) N (20,000, 1000)
RH1(%) N (59.62, 15) WY1 (m/s) N (0, 1)
RH2(%) N (67.06, 15) WY2 (m/s) N (10, 5)
RH3(%) N (77.66, 15) WY3 (m/s) N (20, 10)

Temperature Profile Hi: Altitude Ti: Temperature
Humidity Profile ZHi: Altitude RHi: Relative Humidity
X-Wind Profile WXHi: Altitude WXi: X-wind
Y-Wind Profile WYHi: Altitude WYi: Y-wind

During the atmospheric propagation process, the change in the ground altitude and
reflection factor values are considered as epistemic uncertainty parameters, and their
statistics are shared in Table 7. The value ranges of these parameters are chosen to be
compatible with previous low-boom UQ studies [28,31].

Table 7. Statistics of atmospheric propagation epistemic uncertain variables.

Variable Statistics

Ground altitude ( f t) U (0, 5000)
Reflection factor U (1.8, 2.0)

As in the first sonic boom problem, the JWB geometry is used in this application.
Sonic boom uncertainty quantification is performed using the near field pressure signature
obtained from PANAIR for low-fidelity flow analysis and the SU2-Euler solver as high-
fidelity flow analysis.

A surrogate model is established with single- and multi-fidelity versions of the PCE
and LRA methods using different numbers of high-fidelity analyses. Surrogate model accu-
racy metrics calculated at 105 test points are given in Figure 15. As observed from the met-
rics, an accurate surrogate model can be constructed for a 32-D engineering problem
with the LRA method using 200 high-fidelity simulations results. With the MF-LRA
method, it is observed that an accurate surrogate model is established using fewer high-
fidelity simulations results, thanks to the information obtained from the low-fidelity model.
PCE-based methods, on the other hand, require a large number of simulations results,
because the number of unknown coefficients increases exponentially with problem size.
Therefore, surrogate models with single and multi-fidelity PCE methods give erroneous results
when few simulations results are used. When approximately 1000 simulations results are used
with the PCE method, a moderately accurate surrogate model could be established.

The PDF values are obtained by using the established surrogate models and shared
in Figure 16a. Since the PCE and MF-PCE methods are highly erroneous, the results
of the LRA, MF-LRA and MC are shared in Figure 16b in order to make a proper comparison.
The MC result is calculated using 106 simulations results. As observed in Figure 16,
the results obtained with the PCE and MF-PCE method are highly erroneous, while the LRA
and MF-LRA results overlap with the MC results.
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Figure 15. Surrogate model error metrics for sonic boom problem 2 (Nl f = 1000).

Uncertainty quantification results are shown in Table 8. Since a small number of simu-
lations results are used while creating the surrogate model, the accuracy of the surrogate
model adopted by the PCE method is low. Therefore, the obtained results have discrepan-
cies with the MC method. Similarly, the MF-PCE method also yields poor accuracy metrics
for this small number of samples. When the LRA and MF-LRA results are examined,
it is observed that, although few analysis results are used, obtained results are in good
agreement with the MC method.

Table 8. Comparison of descriptive statistics of sonic boom loudness.

Mean (dB) Standard Dev.
(dB) Skewness Kurtosis

MC 83.5511 0.5062 −0.1590 3.1699
PCE 83.5649 0.7311 −0.0565 3.8712
LRA 83.5486 0.5000 −0.0357 2.8596

MF-PCE 28.9314 40.087 −0.6869 5.0330
MF-LRA 83.5507 0.5010 −0.0710 2.9130

(a) (b)

Figure 16. Comparison of probability density function (a) Results of all surrogate models (b) Results
of LRA and MF-LRA (Nh f = 500, Nl f = 1000).

5. Discussion and Conclusions

In the uncertainty quantification studies, the required number of realisations become
a computational burden due to the excessive number of unknown coefficients involved. De-
pending on the selected procedure for modelling the response, the curse-of-dimensionality
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may cause time-consuming computations and out-of-memory problems. Considering those
drawbacks, the Low-Rank Approximation (LRA) method becomes a promising surrogate
model, in which the unknown coefficients grow only linearly with respect to the input
dimensions. In the present study, the LRA method is investigated and compared with
widely used PCE methodology within an application-oriented framework. Their ability
to capture the uncertainty propagation of sonic boom prediction with four uncertain vari-
ables is assessed for low-dimensional engineering problems. The LRA method is observed
to generate more accurate results compared to the PCE method, even for higher dimensions
and when very limited amount of data are available. Thus, the multi-fidelity extension
of Low-Rank Approximation method is proposed by the authors and applied to uncertainty
quantification of high-dimensional supersonic aircraft design.

The methodology already derived is demonstrated on several multi-fidelity uncer-
tainty quantification benchmarks and applied to high-dimensional real-world engineering
problems. Since the quantification of the uncertainty strictly depends on the success
of the surrogate, the LRA and PCE methods are first compared in terms of surrogate
modelling capabilities and through local and global accuracy metrics, with the purpose
of displaying the surrogate performance of the LRA and PCE methods. Moreover, to demon-
strate the efficiency of proposed multi-fidelity extensions for improving the convergence
history, single-fidelity versions are taken into consideration for comparison.

As it is indicated by the accuracy metrics of the single- and multi-fidelity surrogate
models for the benchmark problems, an accurate surrogate model can be achieved with
a small number of high-fidelity simulations by using the LRA method. When using
the PCE method, however, many more high-fidelity simulations are required to set up
a single- or multi-fidelity surrogate model with a similar accuracy. The number of high-
fidelity simulations required in the single-fidelity PCE method is more than two to three
times the number of high-fidelity simulations required in the LRA method for the 4-D
Park and 4-D sonic boom uncertainty quantification implementations. However, as the
problem dimension increases, it is observed that this ratio is five times in the 8-D Borehole
function, and much higher than five times in the 30-D Sobol’-Levitan function and 32-D
sonic boom uncertainty quantification problem. The performance difference is attributed
to the fact that the LRA method contains fewer unknown coefficients than that of the PCE
method due to the univariate polynomials that the LRA method employs. It is observed
from the analytical test cases that the single- and multi-fidelity PCE and LRA methods
are successful in capturing global features of the response. Since the surrogate modelling
methods considered in the present study use orthogonal polynomials that show smooth
behaviour in the design space, it can be observed from the NMAE metric that the success
of capturing local features is low. These methods are generally preferred in uncertainty
and sensitivity analysis due to their ability to deal with the general behaviour of the design
space. However, because of their inefficient ability to capture local features, they are
generally not preferred for optimisation.

Considering the comparison of the multi-fidelity versions of the methods with the single-
fidelity methods, when using the same number of high-fidelity analyses, the multi-fidelity
surrogate versions produce more accurate results by making use of low-fidelity model
information. When the high-fidelity simulations required to construct a surrogate model
with similar accuracy using the LRA and MF-LRA methods are compared, it is observed
that the number of high-fidelity simulations required in the LRA method is two to three
times the number of simulations needed in the MF-LRA method. Considering the single-
and multi-fidelity applications of the PCE method, the number of high-fidelity simulations
required in the PCE method for low-dimensional problems is two to three times the number
of simulations required by the MF-PCE method. In high-dimensional problems, it is
observed that an accurate model cannot be obtained with the multi-fidelity PCE method.
In this respect, a more accurate surrogate model can be established with fewer simulations
in low- and high-dimensional problems with the LRA method compared to the PCE
method. Moreover, with the multi-fidelity version of the LRA method, accurate surrogate
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models are constructed with only few simulations results. The number of unknowns
increases exponentially with the problem dimension in both single- and multi-fidelity
PCE methods. Thus, an accurate surrogate model can be established for low-dimensional
problems. However, in high-dimensional problems, an accurate surrogate model cannot
be established with a low number of simulations. Moreover, the accuracy level of the low-
fidelity surrogate model directly affects the ability to model the response of the multi-
fidelity surrogate model. The importance of the accuracy level of the low-fidelity model is
especially noticeable when the number of high-fidelity analyses are increased in the multi-
fidelity surrogate, and it causes the multi-fidelity model to have lower accuracy values than
the single-fidelity model, as observed in the Sobol’-Levitan benchmark function and 32-D
sonic boom uncertainty quantification problem.

When examining the results of the uncertainty analysis tackled with different meth-
ods, it is observed that the PDF results of the LRA method are in good agreement with
the MC results, although a small number of the analyses results are used in all applica-
tions of the single- and multi-fidelity LRA method. In many applications, when using
the same number of results of the analyses, the PDF values obtained by the PCE method
produce incompatible results with the MC method. A remarkable point in the results is that
the single- and multi-fidelity LRA methods can model the tail region of the PDF very accu-
rately, which has crucial importance in reliability studies. Small probabilities of exceedence
used in the reliability analysis can be obtained more accurately by the LRA method which
makes the LRA method more advantageous than the PCE method in reliability studies. In
addition, the success of the LRA method in modelling the general behaviour of the compu-
tational model can be observed from the mean, standard deviation, skewness, and kurtosis
values shared in the results of the engineering problem, which can also be observed in PDF
functions. While the mean and standard deviation are obtained correctly with the single-
and multi-fidelity PCE method, parameter estimates that explain the behaviour of the PDF
function such as skewness and kurtosis contain high errors. However, the single- and
multi-fidelity LRA method can estimate the mean and standard deviation values, as well
as the skewness and kurtosis values, quite accurately.

Despite the outperforming results of the LRA method when compared to another
popular polynomial basis approximation, PCE, further investigations are needed for chal-
lenging problems to observe the capturing capability for a wide range of benchmarks with
diverse mathematical characteristics. Based on the present results, one particular challenge
in some implementations may be the ability to capture local behaviours. Therefore, ad-
vanced investigations are required to enhance the ability to represent local characteristics. In
addition, applications for higher dimensional industrial problems are currently underway.
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