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Abstract: Data mining refers to a variety of techniques in the fields of databases, machine learn-
ing and pattern recognition. The intent is to obtain useful patterns and associations from a large
collection of data. In this paper we describe extensions to the attribute generalization process to
deal with interval and intuitionistic fuzzy information. Specifically, we consider extensions for
using interval-valued fuzzy representations in both data and the generalization hierarchy. Moreover,
preliminary representations using intuitionistic fuzzy information for attribute generalization are
described. Finally, we consider how to use fuzzy hierarchies for the generalization of interval-valued
fuzzy representations.

Keywords: data mining; attribute generalization; concept hierarchies; interval-valued fuzzy sets;
intuitionistic-valued fuzzy sets

1. Introduction

Imprecise or uncertain information and data need to be taken into account for databased
organization and management. This sort of data occurs in many diverse areas, including
ecological data, economics and forensic information. In order to make use of such informa-
tion, we must settle on how the various pieces of data can be used to make a decision or
to take an action. This can involve some sort of summarization and generalization of the
pieces of data regarding what conclusions they can support [1–3]. A currently emerging
issue is the management of uncertain information arising from multiple sources and of
many forms that appear in the everyday activities and decisions of humans. This can
include sensor information and data ranging to the subjective interpretations obtained from
expert individuals and analysts. Currently, increasingly massive amounts of heterogeneous
data and information from multiple sources are prevalent where the problems of Big Data
are being managed [4–7]. However, although effective decision making should be able to
make use of all the available and relevant information about such combined uncertainty, an
assessment of the value of a generalization result is critical. There have been a number of
approaches to using soft computing in data mining [8,9]. One possible approach for such a
generalization process can be found in the use of concept hierarchical generalization [10,11].
In previous research, the problem of evidence resolution was studied for crisp concept
hierarchies [12].

In this paper, we first briefly review a number of approaches to modeling uncertainty,
including for the interest of this paper, interval-valued fuzzy sets (IVFS) and intuitionistic
fuzzy sets (IFS). Then, we describe the general process of attribute generalization used for
data mining. For he purposes of generalization, we further describe concept hierarchies
and their relationship to attribute generalization. Specifically, we consider extensions for
using interval-valued fuzzy representations in both data and the generalization hierarchy.
Moreover, preliminary representations using intuitionistic fuzzy information for attribute

Algorithms 2022, 15, 249. https://doi.org/10.3390/a15070249 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a15070249
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0001-6214-0349
https://doi.org/10.3390/a15070249
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a15070249?type=check_update&version=1


Algorithms 2022, 15, 249 2 of 13

generalization are described. Finally, we consider how to use fuzzy hierarchies for the
generalization of interval-valued fuzzy representations.

2. Background
2.1. Uncertainty Representations

In this section, we briefly overview common uncertainty representations [13], includ-
ing fuzzy sets, interval-valued sets, intuitionistic fuzzy sets and others for approaches to the
generalization of such data to concept hierarchies. The other types can be used in similar
approaches.

2.1.1. Fuzzy Set Theory

Fuzzy set representations [14,15] provide membership degrees of data values in a set,
as opposed to crisp sets. For a domain D, a fuzzy set, FS, is

FS(D) = {<ai, m(ai)> | 0 ≤m(ai) ≤ 1}, ai ∈ D (1)

where ai is a data value, and m(ai) is the membership of the data value.

2.1.2. Interval-Valued Fuzzy Sets

Interval values are used in many areas to capture the imprecision and uncertainty
of data. We first provide the formalisms for interval arithmetic [16–18] as needed for
interval-valued fuzzy sets. We let D be the domain, and intervals are represented by the
values of the lower bound, z† = lb(ai), and an upper bound, z† = ub(ai), of an interval I (ai)
for the data value ai ∈ D

I (ai) = [z†, z†] = {z ∈ D | z† ≤ z ≤ z†} (2)

Now, an interval-based fuzzy set representation, IVF(D), is based on using upper,
mu(ai), and lower bounds, ml(ai), on fuzzy memberships

IVF(D) = {<ai, I (ai) > | I (ai) = [ml(ai), mu(ai)]} (3)

For an interval I (ai), the size or length of the interval, IW, is the difference of the lower
and upper bounds,

IW (I (ai)) = |ml(ai) −mu(ai)| (4)

IW is often used as a representation of the uncertainty of a data value ai in an IVF as
an information measure [19,20].

2.1.3. Intuitionistic Fuzzy Sets

Intuitionistic fuzzy set theory extends ordinary fuzzy set theory by allowing both
positive and negative memberships to be specified. Recall that an ordinary fuzzy set FS (D)
= {<ai, m(ai)>} has only one membership value for a data element ai. An intuitionistic fuzzy
set IFS(D) [21] allows both positive, mS(ai), and negative membership values, mS*( ai).

IFS(D) = {< ai, mS(ai), mS*(ai) > | ai ∈D} (5)

where mS(ai), m*S(ai), ∈ [0, 1].
Specifically, the sum of the membership, mS(ai), and non-membership, mS*(ai), is not

necessarily one, then: 0 ≤mS(ai) + m*S(ai) ≤ 1. Additionally, the hesitation hS (ai)

hS (ai) = 1 − (mS(ai) + m*S(ai)) (6)

is the degree of indeterminacy (hesitation).
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2.1.4. Type-2 Fuzzy Sets

A type-2 fuzzy set TY2(D) [22,23] is one in which the membership values, mT(ai,r), are
themselves uncertain and can be represented by a fuzzy set itself. Therefore, if there is no
uncertainty in the membership function, this reduces to ordinary fuzzy sets.

TY2(d) = {< (ai, r), mT(ai,r) > | ai ∈ D} (7)

where r ∈ Px ⊆ [0, 1].

2.1.5. Rough Set Theory

The core concept of rough sets is an indiscernibility relation IR on the domain D [24].
A rough set N is specified by using the upper, RuN, and lower approximations, RlN, of N.

• The lower approximation of N is the set RlX = {ai ∈ D/[ai]R ⊆ N}.
• The upper approximation of N is the set RuX = {ai ∈ D/[ai]R ∩ N 6= ∅}.

where [ai]R denotes the equivalence class of the indiscernibility relation R containing ai.
In summary, the lower approximation of a set is a conservative approximation compris-

ing only elements which can definitely be determined to be members of the set. The upper
approximation is a liberal approximation, including all elements that may be members of
the set.

2.1.6. Dempster–Shafer Uncertainty Theory

The Dempster–Shafer (D–S) theory is an established approach to modeling uncer-
tainty [25] by providing representations of non-specific forms of uncertainty. A Dempster–
Shafer belief structure consists of a collection of non-empty crisp subsets of a space D,
called focal elements: R1, Rq. The mass or basic probability, bp, is used to assign every
member of the power set a belief, bp:

bp: 2D → [0, 1]

Therefore, here, our knowledge of the value of a variable is inexact, where for the
focal set, Ri ⊂ D, bp(Ri) indicates the probability that the value is in Ri. Two important
properties of bp are: the basic probability of the empty set is zero,

1. bp (Φ) = 0, and the basic probabilities of the rest of the power set’s elements sum
to 1,

2. ∑
Ri∈2D

bp (Ri) = 1.

Two commonly used measures for a Dempster–Shafer belief structure are measures of
belief (best case) and plausibility (worst case). The belief for a specific set W, Bel (W), is the
sum of the basic probabilities of all subsets of W. The plausibility, Pl (W), is the sum of the
bps of the sets Ri that intersect W.

3. Attribute Generalization and Concept Hierarchies

In this section, we overview the overall process and objectives of data mining using
the attribute generalization approach. Then, concept hierarchies are introduced, and the
relationship of the hierarchies is used for attribute generalization.

3.1. Attribute Generalization

The objective of attribute generalization in databases is both to reduce the number
of tuples in a relation and to have values of some of the attributes to be more general or
a higher [26–28]. This aids in the user interpretation and analysis of the data. Attribute
generalization has been applied in a number of uncertainty representations, including
fuzzy [29,30] and rough databases [31]. In this section, we consider a number of combina-
tions of uncertainty in hierarchies as well as in the data being generalized.
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We consider the database to consist of relations with attributes, Rk (A1, A2, . . . , An),
where each relation is a set of tuples, tj, that contains the actual data values of the attributes,
ai. A tuple tj is of the form

tj (a1, a2, . . . an) ∈ Rk (8)

where ai is the specific data value attribute Ai in tuple tj. Now, after generalization for a
specific relation, the tuples have the original data replaced by the more general values, ais.

After generalization, we must check to see if tuples have become similar enough to
be merged, which assists the desired reduction in the number of tuples. For simplicity,
consider two tuples that have been generalized, and let Sim (t1, t2) be the similarity of
the two tuples. If two generalized tuples become similar enough, they are merged, and a
multiple count attribute, Mul, is added to keep track of how many tuples have been merged
to form the current generalized tuple. Therefore, if Sim (t1, t2) = 1, where ai’ denotes the
generalized value, then

t1 (a1
′, . . . ai

′, . . . ) = t2 (a1
′, . . . ai

′, . . . ) (9)

and we then have the merger of these tuples:

t12 (a12
′ = a1

′, . . . ., Mul = 2) (10)

The value of the multiple count of a tuple should be carried to its generalized tuple,
and the counts should be accumulated when merging identical tuples in generalization.

The overall objective of generalization is to reduce the data into forms that are more
easily analyzed and interpreted. This can be achieved by using thresholds; therefore, there
is not an over-generalization. An attribute threshold is compared to the distinct values in
the tuples for attribute domain P(Ai), and if they are more than the threshold, additional
generalization on this attribute is needed. Moreover, the number of tuples in a generalized
relation should be lower than this tuple threshold, and if not, generalization continues.

A common approach to analyzing a class of the data is by using characteristic rules
from generalized data. For this, tuples that are relevant to the class correspond to a disjunct
of a rule. The count attribute formulates the rule condition’s strength. These rules provide
the conditions characterizing the particular class in which a user is interested.

3.2. Concept Hierarchies

We consider a simple or ordinary concept hierarchy, CHi, associated with Ai, an
attribute variable in the database where P(Ai) is the domain of the data values of Ai. Then,
CHi has a number of levels which partition the domain space P(Ai).

In a concept hierarchy (Figure 1), each level k specifies a relationship Γk: P(Ai) × P(Ai)
→ {0, 1} [32]. This relationship is reflexive, symmetric and transitive, i.e., an equivalence
relationship. This relationship is a many-to-one relationship, which means that many data
values are, in general, related to the same concepts at the next level of the hierarchy. We
also consider in this section the idea of complex hierarchies for which the data values may
be related to more than one concept at a higher level, i.e., a many-to-many relationship.
This was used to represent fuzzy hierarchies in previous research [33].

The meaning of this relationship, Γk(x, y) = 1, is that two values, x and y, are essentially
the same. Therefore, Γ partitions P(Ai) into mk disjoint subsets [34]. We can denote Qi, the
ith equivalence class at the kth level of a concept hierarchy.

As CH is ascended, partitions coarsen, and if data values are in same class Q for
the level j of CH, they are in the same class in any higher-level k. Therefore, the concept
hierarchy, CH, at each level, consists of the partitioning of the data domain P(Ai) into mk
categories (equivalence classes):

Q1, Q2, . . . ., Qmk (11)
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If we have m levels, then the concept hierarchy is a collection of m partitions of the
space P(Ai). In particular, the concept hierarchy consists of

Partition 1: Q1|i − i = 1 . . . m1
Partition 2: Q2|i i = 1 . . . m2
Partition t: Qt|i i = 1 . . . mt
Each category Qt|i corresponds to a subset of P(Ai), and it has an associated label or

value describing the category. Therefore, when performing a generalization of the data for
a given attribute in a tuple, we use a linguistic label c ‘ for the generalized data value in
the tuple.

We note that the partition of data values for any category may be an imprecise set, as
we shall use in following sections.

3.3. Generalization with Respect to Partitions

We can describe attribute generalization with respect to these hierarchy concepts. For
simplicity, we consider a one-attribute relation R(A1), where P(A1) ⊆ P(A) is the domain
of values for A1. At level k in a concept hierarchy, we have the categories Qk|1, Qk|2, . . .
. . . , Q k|n. Therefore, in the relation R(A1), the subset of data is P(A1)′⊆ P(A1), in general.
Then, for this data subset, there is Q′k|i

Q′k|i ⊆ Q k|i (12)

In some cases, Q′k|i may be empty, i.e., none of the specific data values, A1, in R
generalize to the concept Qk|i.

Now, in this simplified situation of a single-attribute relation, Q′k|i corresponds to the
tuples merged after generalization. If the label corresponding to Q′ k|i is ck

′, the merged
tuple is

t′ (ck
′, |Q′k|i|) (13)

and the cardinality of Q′k|i is the merge count, i.e., the number of tuples merged to form t′.
The number of tuples in the single-attribute relation R, after generalization to a level k, is

N =
nk

∑
i=1

{
1 if Q′k|i 6= ; 0 otherwise

}
(14)

For a relation with additional attributes—for example, two attributes—R(A1, A2), then,
after generalizing on A1, it is completely possible that not all tuples are merged. This arises
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since there may be two generalized tuples in which the values of A2 are different, even
after generalization, such as

t′(c′ k|i, c′ k|p) 6= t′(c′ k|i, c′ k|q) (15)

which cannot be merged, since Qk|p 6= Qk|q. If R’ is the relation after merging, then we can
see that N is a lower bound on the size (number of tuples) of R′

|R′| ≥ N (16)

4. Generalization Involving Interval-Valued and Intuitionistic Fuzzy Information

This section proposes a number of extensions to attribute generalization, in which the
forms of imprecise information may be in both the data values as well as being represented
in a concept hierarchy. We describe concept hierarchies as either ordinary or complex. By
this, we mean that, in an ordinary hierarchy, data generalize to a single concept in the
hierarchy. For a complex hierarchy, we allow multiple concepts that correspond to data
values. This allows the degrees of the memberships of the relationship of the data values to
concepts and has been used to model fuzzy hierarchies in previous research [12,33].

4.1. Generalization with Ordinary Hierarchies

We first consider the generalization of the values of the imprecise attributes using a
crisp concept hierarchy. Again, after generalization, we must check to see if tuples become
similar enough to be merged. For simplicity, we use an example of two tuples that are
being considered for generalization.

4.1.1. IVF Data

For interval-valued fuzzy data, we use the following notation, I(a′), for a data value’s
membership m(a′):

m(a′) = I(a′) = [ ml(a′), mu(a′)]. (17)

Then, consider the two tuples

t1 (a′, I1(a′)) and t2 (b′, I2 (b′)) (18)

Here, the data values a′ and b′ generalize to one concept in CHi, labeled as c′. This
produces two tuples for which the membership values of the data are not affected by the
generalization when using a crisp hierarchy:

t1 (c′, I1(a′)) and t2 (c′, I2(b′)) (19)

Now, to assess the similarity of the tuples, Sim (t1, t2), we must consider the relation-
ships possible between the membership intervals in the tuples. There are several cases to
consider for the generalization of interval-valued fuzzy data:

1. Data intervals are contained: Ij ⊆ Ik.
2. Data interval overlap: Ij ∩ Ik 6= ∅.
3. The intervals are disjoint, so tuples cannot be combined: Ij ∩ Ik =∅.
For the first two cases, we must combine the membership intervals of the generalized

tuples that are being merged. The first approach uses an arithmetic averaging of interval
bounds, Favg:

Favg (I (a′) = [ml(a′), mu(a′)]; I(b′) = [ml(b′), mu(b′)])

= [(ml(a′) + ml(b′))/2, (mu(a′) + mu(b′))/2]

The second approach is a melding process of the intervals, Fmd:

Fmd (I (a′) = [ml(a′), mu(a′)]; I(b’) = [ml(b′), mu(b′)])
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= [min(ml(a′), ml(b′)), max(mu(a′), mu(b′))]

Here is an example of three tuples that have been generalized:

t1 (c′, [0.2, 0.6]); t2 (c′, [0.3, 0.5]); t3 (c′, [0.4, 0.8]) (20)

Using Favg, we can obtain the merged tuple t′ (c′, [0.3, 0.635]), and for Fmd, there is the
tuple t′ (c′, [0.2, 0.8]).

To compare these results, we can use the interval width IW (a′) = |ml(a′) −mu(a′)|.
Note that 0 < IW (a′) < 1, where a greater interval width implies more uncertainty in the
interval. Then, the interval width of the merged tuples for Favg is IW (c′) = 0.335, and for
Fmd, IW (c′) = 0.6. Therefore, Favg has preserved more information in the merged tuples.
We also note that the average IW for the three original tuples is 0.333, so the information
content has essentially been preserved.

4.1.2. IVF Concepts in Hierarchies

Next, we consider the case where the concept sets, Qis, in the hierarchy have associated
uncertainty. In this case, for interval-valued fuzzy memberships, I (ci

′),

Q1: <c1
′, I (c1

′)>, Q2: <c2
′, I (c2

′)>, . . . Qm: <cm
′, I (cm

′)>

For cases where n of the data values ai, aj, . . . in tuples generalize to some c′, we
have n tuples of the form t (ci

′, I (ci
′)), and these can be merged as in the previous section.

Now, if the data values themselves have interval-valued fuzzy memberships, then a fusion
of the intervals from the hierarchy and in the data must be considered. Depending on
the semantics of the application, there are several possibilities. Either interval-valued
fuzzy memberships may be used in the generalized and combined values by applying
Favg or Fmd as discussed above, or a weighted combination may be used. Note that the
resultant generalized tuples must still be combined based on their similarity. Again, we
must consider the possible interval relationships:

I (c′) ⊆ I (a′) or I (c′) ∩ I (a′) 6= ∅

If a concept interval, I (c′), does not overlap a particular data interval, I (a′), then a
reasonable semantic decision is that the tuple t (a′) should not be generalized. For the other
cases, Favg or Fmd can be used. The information about the interval-valued membership
of c′ is likely more significant, since the value from the hierarchy, c′, is the value in the
generalized tuple. Therefore, for example, in Favg, we can weigh I (c′) appropriately.

Favg (I (a′), w(c′)* I (c′)) (21)

This captures the general trend of the case of the relationships between the intervals.
When there is no overlap, w = 0 corresponds to there being no generalization. As the
overlap increases, w increases to 1 when I (c′) is totally contained in I (a′).

4.1.3. Evaluation of Generalization

In order to make effective usage of generalizations for decision-making criteria, mea-
sures and metrics must be used to provide an analysis of the generalizations. We can
consider measures such as granularity and the overlap of data associated with different
concept hierarchies. The most granular partitioning of data occurs when all values are
lumped into one set, and the finest partition is where each data value is in a separate set. A
measure that is termed as coarseness or granularity was used to characterize partitioning,
where the coarseness of the maximum partition was the greatest, 1, and the minimum was
the finest, with 0 granularity.

Let Ri (A1, A2, . . . , An) be a relation with attributes that have interval-valued fuzzy
membership values for their data values. Depending on specific applications, there may
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be more than just one concept hierarchy relevant that can be used to generalize these data
values. As a consequence, we would like to compare the effectiveness of generalization
using m different hierarchies, CH1, . . . , CHm. For this, we compare the sets of generalized
data values, S1, S2, . . . , Sm, with the granularity measure. The formulation of granularity
for crisp sets uses their cardinality, Cd, but must be extended for imprecise data, such as
for fuzzy sets [15]. Here, as above, we use the information measure IW of the intervals in
the generalized data for Cd.

Cd(Sj) = |Sj| = ∑
ci∈Si

Iw(ci) (22)

Then, the expression for the granularity G, extended from the form of Yager (2008), is

G(S1, S2 . . . Sm) =
m

∑
j=1

(Cd(Si)
2)− ∆)/Z (23)

where

Z = (∆2 − ∆)and∆ =
m

∑
j=1

Cd(Sj) (24)

Now, we consider the use of three potential concept hierarchies, CH1, CH2 and CH3,
to generalize some of the data in a relation Ri. This example corresponds to three sets of
the data values in the final generalized tuples, S1, S2 and S3.

S1 = {c1, IW(c1) = 0.7; c2, IW(c2) = 0.6 c3, IW(c3) = 0.6}

S2 = {c1, IW(c1) = 0.5; c2, IW(c2) = 0.4}

S3 = {c2, IW(c2) = 0.8; c3, IW(c3) = 0.7}

Therefore, the granularity of the possible choices, S1 and S2, S2 and S3, and S1 and S3
must be considered. First, we have

G (S1, S2) = (Cd (S1)2 + Cd (S2)2) − ∆)/Z = ((3.61 + 0.81) − 2.8)/0.04 = 0.32 (25)

Similarly,

G (S2, S3) = 0.66/3.36 = 0.196; G (S1, S3) = 2.46/8.16 = 0.30

For the purposes of data mining, this provides a criterion to provide multiple gen-
eralizations that may be useful to provide alternative data representations for evaluation
and interpretation. Therefore, the best choice for this example is using CH1, with CH2
corresponding to S1 and S2, although S1 and S3 derived from CH1 and CH3 are acceptable.

4.1.4. IFS Data

The structure of the intuitionistic fuzzy data and concept hierarchies has complications
that are not found in the generalization of the interval-valued fuzzy data. Therefore, in
this section, we describe some representations for IFS data that can potentially facilitate
attribute generalization techniques.

The issue is that positive and negative memberships that are found in IFS data may
have different semantics for each membership, which is not what we encounter with the
interval approach. Next, we consider how to generalize tuples in which the attributes for
the data have fuzzy intuitionistic memberships. We must consider how the crisp concept
hierarches for such attributes can be specified for this case. We propose to derive separate
tuples in which the positive and negative memberships are separated before generalization.
This can allow a simpler process for merging tuples after generalization.
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Therefore, for an attribute Ai, we partition the domain P(Ai) of its IFS values into two
sets of tuples: tp positive for ordinary memberships and tn negative for non-membership
degrees.

For example, then, we can have a data value a′ in both sets, although, for some
applications, there may not be a negative membership value for a′.

tpj = { . . . a′/mj(a′) . . . } tnj = { . . . a′/m*j(a′) . . . } (26)

When a value a′ is generalized to a concept Cj with label c′, since it can have both
positive and negative membership values, this can indicate support or the lack of support
for the concept. Based on this, as a further refinement, we can consider dividing the data
generalized by considering data for which a′ has a membership in which the positive
membership mj(a′) is greater or less than m*j(a′).

P1j = {a′ |(mj(a′) > 0 ∧mj(a′) ≥m*j(a′))} (27)

N1j = {a′|(mj(a′) > 0 ∧mj(a′) ≤m*j(a′))}

Therefore, then, the generalized tuples based on this sort of data value decomposition
can be merged more meaningfully. We can consider a further approach to the structure
of the intuitionistic generalization of data in the concepts. We have shown a structure
of sets where either the positive or negative membership values are greater for the data.
However, for evaluations, if the memberships are relatively small, then the structure has
less usefulness. For example, if mj(a′) = 0.2 and m*j(a′) = 0.1, the distinction of mj(di) being
greater is less important. In these cases, a structure can be introduced in which the larger
positive or negative membership is greater than some threshold T, such as 0.4, and the
analysis can proceed from this sort of data organization.

P11j = {a′|(mj(a′) > 0 ∧mj(a′) ≥m*j(a′) ∧mj(a′) ≥ T)}

P12j = {a′|(mj(a′) > 0 ∧mj(a′) ≥m*j(a′) ∧mj(a′) < T)}

N11j = {a′|(mj(a′) > 0 ∧mj(a′) ≤m*j(a′) ∧m*j(a′) ≥ T)}

N12j = {a′|(mj(a′) > 0 ∧mj(a′) ≤m*j(a′)) ∧m*j(a′) < T}

(28)

4.2. Generalization with Complex Hierarchies

In complex hierarchies, a data value can generalize to more than one concept in the
hierarchy, as seen in Figure 2. The data value b1 generalizes to more than one value, c1 and
c2. We note that this is not true in general, as a2 generalizes to only c1.
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Now, we can describe a complex hierarchy following the simple concept hierarchy
with respect to partitions, as in Section 3. Therefore, at each level k, we have a defining
many-to-many relationship:

Γk: P(A) × P(A)→ [0, 1] (29)

Such a relationship entails many-to-many equivalence classes of concepts at each
level. However, these sets do not form a formal set partitioning of a domain as for crisp
equivalence classes in simple concept hierarchies. This means that, instead of a partitioning
of the domain P(A), there is set decomposition. At each level, this is Sd k|1, Sdk|2, . . . , and,
in general,

Sd k|i ∩ Sd k|j 6= ∅ (30)

This means that there may not be a unique concept at level r to which a value at level
r − 1 generalizes, as seen in Figure 2, which then allows fuzzy concept hierarchies.

Fuzzy Hierarchies

Lastly, in this section, we describe the extensions for the generalization of interval-
valued fuzzy data representations using fuzzy hierarchies. The generalization of crisp and
fuzzy data for fuzzy hierarchies has been previously considered [12,33,35]. For crisp and
fuzzy data, the only factor is the modification of the count kept when similar tuples are
merged after generalization. Now, consider the relationship of the membership found in
the fuzzy hierarchy concepts and the interval-valued fuzzy data. As shown in Figure 2, a
data value may generalize to exactly one concept cj in CHC, implicitly with a membership
degree of 1, m(a, cj) = 1. In general, a data value can generalize to two or more concepts with
associated membership values. Let us consider a specific data value a′ which generalizes
to two concepts, denoted cj

′and ck
′. There are then memberships m(a′, cj

′) and m(a′, ck
′),

where m(a′, cj
′) + m(a′, ck

′) = 1. In particular, we must consider the relationship to the
interval-valued fuzzy membership of the data being generalized and how this changes
the interval after generalization. First, we analyze where the data value generalizes to the
first one of the values in the hierarchy, i.e., the value a′ generalizes to cj

′with membership
m(a′, cj

′).
t1 (a′, I 1 (a′))→ t1 (cj

′, I*1 (cj
′)) (31)

where I*1 = F (m(a′,cj
′), I 1 (a′)).

How does this function, F, produce the new interval-valued membership I*? We must
consider three possibilities.

First, if
m(a′,cj’) ∈ I 1 (a′), then I*1 (cj’) = I 1 (a′) (32)

Otherwise, we use an application-derived threshold, 0 < h < 1. Therefore, if m(a′,cj
′) is

within this threshold of the upper or lower bounds of the interval, we modify the interval
by the membership. Therefore, if

ml(a′) −m(a′,cj
′) < h, then ml*(a′) = m(a′,cj

′)

or if
m(a′,cj

′) −mu(a′) < h, then mu*(a′) = m(a′,cj
′) (33)

where we allow the respective interval bound to be modified.
Finally, if a′ generalizes to multiple values in the hierarchy, we must use the above

approach for multiple fuzzy membership values in the generalized tuples. However, since
this is a generalization to different concepts, there are multiple tuples that cannot be merged.
Recall that our objective in attribute generalization is to reduce the number of tuples in a
given relation; therefore, in general, only one of these tuples should be maintained. We
need to establish criteria to select which tuple to keep. We can proceed by comparing the
intervals using our previous interval measure IW.
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Let the multiple concepts be indexed c1 . . . cn. Then, for a′ with I k=1, n (a′) in the m
tuples, we have the intervals I*1 (c1

′), . . . I*m (cn
′), as above. Then, our criteria is

n
Min
j=1

(IW (I ∗ (cj)) (34)

Let us illustrate this with an example for a data value a′, I (a′) = [lb = 0.2, ub = 0.6], for
two tuples where a′ generalizes to two concepts, c1 and c2. Let the memberships be

m (a′, c1) = 0.3; m(a′, c2) = 0.7 (35)

First, m (a′, c1) ∈ I (a′), so I*1 (c1
′) = I (a′). If we let the threshold h = 0.15, then we can

extend the upper bound for c2
′, so I*1 (c2

′) = [lb = 0.2, ub = 0.7].

IW(I*1 (c1
′)) = 0.4; IW(I*1 (c2

′)) = 0.5 (36)

Now, to compare, we use the interval width.
Then, with this evaluation, we retain the tuple t (a′, I*1 (c1

′)) as the generalization
result. If the membership is not within the threshold, then the semantics of the relationship
between a′ and cj

′ is such that the tuple with the data value a′ cannot be generalized in a
consistent manner.

5. Conclusions

We have developed a number of approaches for attribute generalization on interval-
valued and intuitionistic fuzzy data. Simple hierarchies for which generalization is single-
valued were first considered. The merging of tuples after generalization was developed
both for crisp concept hierarchies and concept hierarchies with uncertainty.

There are a number of future topics to be developed, including other representations
that can be used in data generalization, such as rough set theory and Dempster–Shafer
theory. The more complex structures of these require extensions for generalization to be
developed for these representations.

There are other uncertainty approaches that have been recently developed and that can
be considered for further research. An extension to intuitionistic sets is called Pythagorean
membership functions: PFS [36,37]. The key concept is extending the membership negation
value (1 −mk) by introducing a Pythagorean negation

(not(mk))2 = 1 −mk
2

Since these PFS membership functions allow extended values (mk + m*k > 1), the
space of such memberships is then larger, i.e.,

IFS ⊆ PFS.

Therefore, Pythagorean membership functions can be used as extensions to intuition-
istic fuzzy memberships in some applications (Saeed et al., 2022). Consider an application
in which an analyst needs to develop an evaluation of data values with memberships
such as mk (ai) = 0.7 and mk *(ai) = 0.5. However, the restriction of IFS is exceeded as
0.7 + 0.5 = 1.2 > 1.0. However, using PFS, the restriction is not violated, because by using
the Pythagorean condition, we have

(0.7)2 + (0.5)2 = 0.49 + 0.25 = 0.74 < 1.0

This allows the analyst more freedom to make use of the significant positive and
negative membership values found for the data value ai. Therefore, such an analysis better
reflects the actual assessments of the analyst.
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