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Abstract: Advanced network services, such as firewalls, policy-based routing, and virtual private
networks, must rely on routers to classify packets into different flows based on packet headers
and predefined filter tables. When multiple filters are overlapped, conflicts may occur, leading to
ambiguity in the packet classification. Conflict detection ensures the correctness of packet classi-
fication and has received considerable attention in recent years. However, most conflict-detection
algorithms are implemented on a conventional central processing unit (CPU). Compared with a
CPU, a graphics processing unit (GPU) exhibits higher computing power with parallel computing,
hence accelerates the execution speed of conflict detection. In this study, we employed a GPU to
develop two efficient algorithms for parallel conflict detection: the general parallel conflict-detection
algorithm (the GPCDA) and the enhanced parallel conflict-detection algorithm (the EPCDA). In the
GPCDA, we demonstrate how to perform conflict detection through parallel execution on GPU cores.
While in the EPCDA, we analyze the critical procedure in conflict detection as to reduce the number
of matches required for each filter. In addition, the EPCDA adopts a workload balance method to
enable load balancing of GPU execution threads, thereby significantly improving performance. The
simulation results show that with the 100 K filter database, the GPCDA and the EPCDA execute
conflict detection 2.8 to 13.9 and 9.4 to 33.7 times faster, respectively, than the CPU-based algorithm.

Keywords: conflict detection; GPU; packet classification

1. Introduction

Packet classification techniques play a significant role in providing advanced network
services, such as packet filtering, quality of services (QoS), security monitoring, and virtual
private networks [1]. The packet classifier runs on the Internet router to classify the received
packets into different flows based on predefined rules called packet filters. Different net-
work services may use different header fields to classify the packets. For example, in IPv4,
five header fields are typically used in packet filters; these include the source/destination
Internet protocol (IP) address, the source/destination port, and the protocol type.

A filter, F, with d fields is called a d-dimensional filter, expressed as F = (f [1], f [2], ...,
f [d]), in which the content in the ith field f [i] could be a variable-length prefix, an exact
value, a range, or a wildcard, indicating that all values are valid for that field. For packet
P and filter F, if all selected packet headers correspond to the values in their associated
fields in F, we say that packet P matches filter F. For example, a two-dimensional (2D) filter
F = (140.113. *. *, *), source IP address (SA) with prefix 140.113.xxx.xxx, and any destination
IP address (DA) will match F. Therefore, packet p1 = (140.113.1.1, 8.8.8.8) matches F, but
p2 = (140.114.1.1, 8.8.8.8) does not. Each filter exhibits an associated action specifying how
to treat those packets that match the filter. When a packet matches multiple filters with
different actions, filter conflict occurs, resulting in ambiguity in packet classification. For
example, Table 1 presents a 2D filter database for firewall applications. Assuming that the
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IP address length is four bits, incoming packet p1 = (0001, 1000) will match filter a and be
accepted. Another incoming packet, p2 = (0001, 0000), matches filters a and b. Because a
and b exhibit different actions, they cannot decide whether the packet should be accepted
or rejected, resulting in a conflict. The conflicting actions of a and b may raise security
vulnerabilities, QoS failures, or routing errors [2,3], depending on the application used.
Three possible solutions can be applied to solve the conflict problem [3].

Table 1. Example of 2D filter database.

Filter Source IP Address Destination IP Address Action

a 00* * Accept
b * 00* Reject
c 11* * Accept
d * 11* Reject

1. Select the first matching filter in the filter database.
2. Assign each filter a priority and select the matching filter with the highest priority.
3. Assign each field a priority and select the matching filter with the most specific

matching field with the highest priority.

However, none of the above methods can fully solve the conflict problem. Figure 1
depicts a 2D representation based on the contents of Table 1, and the overlapped areas
indicate conflicts between filters. Let a→ b indicate that when a packet matches filters a
and b simultaneously, the action associated with filter a is selected. In other words, filter a
has a higher priority than filter b. If we set b→ c, c→ d, and d→ a, we observe that priority
setting may lead to a → a, which is a contradiction. There is no way to find a priority
sequence with no conflicts. Therefore, resolve filters [3] have been developed to solve
the filter-conflict problem. The idea is to add a new filter to the overlapped area of two
conflicting filters and set a higher priority to resolve the conflict. In Figure 1, resolve filter e
is generated for the overlapped area of filters a and b. Similarly, the other three overlapped
areas require associated resolve filters. For every resolve filter generated, it is necessary to
ensure that it does not conflict with the other filters. In addition, some applications must
update packet filters frequently [4]. For example, within one millisecond, several access
controls or QoS filters may be updated, or several thousand filters may be changed, due to
the dynamic creation or the deletion of the virtual routers [5]. Therefore, conflict detection
must be executed for every newly added or updated filter to prevent conflicts and ensure
the correctness of the packet classification. Consequently, the efficiency of conflict detection
influences network performance. It has been demonstrated that determining the minimum
number of resolve filters in a filter database is an NP-hard problem [3,6].
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Diversified network services will appear continuously, due to the development trend
of the Internet, and the transmission speed and data volume will continue to increase.
Regarding the filter database in routers, the number of filters will increase significantly.
In addition, due to the deployment of IPv6 and the development of software-defined
networks [7], filters should deal with more content, and the number of fields to match in
conflict detection is much greater than the number of fields in traditional network archi-
tecture. These new types of network protocols or services may increase conflict-detection
complexity. Currently, most conflict-detection algorithms can only handle 2D conflict detec-
tion, and for practical operation, additional dimensions other than the source/destination
IP address must be included. Although some 2D conflict-detection algorithms can be
extended to handle more dimensions for conflict detection, they require a large memory
space. Therefore, designing an efficient conflict-detection algorithm is still a challenge.

In packet classification applications, the classification process for each packet is in-
dependent. Due to the development trend of CPUs, researchers have investigated packet
classification on multicore CPUs [8–12]. However, from the viewpoint of parallelism, the
number of cores is not sufficiently high, and the scale of performance improvement is
limited. Compared with a CPU, a general-purpose GPU has a large number of cores and
can offer a superior parallel computing capability. Because the reduced dependence of data
and control makes them more appropriate for the parallelism on multi-core and many-core
systems. Many researchers have attempted to use GPUs to solve computing intensive
problems in related domains [13–25]. Similarly, each filter is independent while executing
conflict detection, and the field content matching does not require complex computations.
Thus, conflict detection can be executed in parallel to improve performance significantly.

In this study, we propose two parallel algorithms that can solve five-dimensional
(5D) filter conflict problems. First, we formally defined the conflict-detection problem. To
develop efficient conflict-detection algorithms, we divided a 5D filter into two parts based
on the field format. We then derived the conditions under which both filters must hold if
they conflict. Based on these conditions, we developed a filtering mechanism that reduced
the number of comparisons for each filter during conflict detection. With the proposed
filtering mechanism, each filter experienced different comparisons, resulting in inefficient
parallel processing in the GPU because of workload imbalance among threads. Therefore,
we propose a scheme for workload balancing to further improve the parallel computing
performance.

The remainder of this paper is organized as follows. Section 2 reviews existing conflict-
detection algorithms and briefly introduces the GPU architecture. In Section 3, we propose
a simple 5D conflict-detection algorithm. In Section 4, we present our proposed general
parallel conflict-detection algorithm (the GPCDA) and enhanced parallel conflict-detection
algorithm (the EPCDA). Section 5 describes the experimental setup, results, and analyses.
Finally, Section 6 concludes this study.

2. Related Work
2.1. Existing Conflict-Detection Algorithms

A straightforward approach to detecting all filter conflicts is to check every pair of
filters in the filter database. This approach does not utilize extra storage to cache additional
information and makes it easy to detect conflicts. However, it takes O(n2) time to detect
all the conflicts, where n denotes the number of filters. Hari et al. [3] defined the source
IP address and destination IP address fields as 2D prefix fields. They introduced the filter
conflict concept and proposed an algorithm for detecting all conflicts in 2D prefix filters.
We assume that the filter f has two prefix fields. Let f [1] and f [2] denote the first prefix field
and the second prefix field, respectively. Filters f and g conflict when any of the following
two conditions hold.

1. f [1] is a prefix of g[1], and g[2] is a prefix of f [2].
2. g[1] is a prefix of f [1], and f [2] is a prefix of g[2].
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Hari et al. [3] developed the FastDetect algorithm to perform 2D prefix filter conflict
detection using two grid-of-tries and switch pointers [26]. All conflicts can be detected
within O(nW + S) time, where n is the number of filters, W is the length of the prefix,
and S is the number of conflict pairs generated by the filters. In addition, the space
complexity is O(nW). When the FastDetect algorithm is extended to 5D conflict detection,
the source/destination port and protocol fields are included for comparison. The preset
content of non-IP address fields can only be an exact value or a wildcard. This does not
conform to practical applications.

Baboescu and Varghese [4] proposed the scalable bit vector (SBV) conflict-detection
algorithm based on the bit vector (BV) scheme [27] and the aggregated bit vector (ABV)
scheme [28]. They used a compressed binary trie in each field. Each node in tries needs to
store an n-bit vector. In a static mode, their proposed algorithms can detect all conflicts with
time complexity O(knW), where k is the number of fields. In addition, the space complexity
is O(kN2). When dealing with 5D conflict detection, the data structure of the three binary
tries must be added to process the information of the three non-IP address fields. When the
port field is specified by a range, range-to-prefix conversion is required, leading to signifi-
cant filter duplications that consume large memory space. Lai and Wang [29] established
several algorithms that modified the original BV scheme to prevent the defect of massive
memory duplication caused by conversion from range to prefix and developed a method
for comparing range fields. This allows the algorithm to support 5D conflict detection.
However, it still incurs a high cost in memory space. Lee et al. [30] proposed an algorithm
to improve the SBV algorithm by reducing the amount of bits required to be read when
bit vectors are accessed. They divided all filters into several groups based on prefix fields,
and then constructed a conflict matrix to indicate whether two groups were in conflict or
not. The experimental results showed that their algorithm reduced the average detection
time per filter by up to 77.9%, compared with the SBV algorithm. However, this algorithm
focuses on 2D filter databases, and cannot be easily extended to handle 5D filter databases.
Kuo et al. [31] proposed a compact bit vector (CBV) conflict-detection algorithm to improve
the SBV algorithm. First, they proposed a redundancy reduction scheme that explored
and exploited the covering and potential conflict relations between filters to significantly
reduce the number of filters that must be involved in the construction of matching tries.
Second, the CBV algorithm further merged the redundant match nodes in each matching
tries by adopting an upward merging approach. Finally, the highly compact matching tries
were built to represent the relationships between filters. As with the data structures used
in [4,29,30], using the trie-based data structure incurs high memory usage.

Lu and Sahni [6] discovered that when 2D filters are translated to geometric area repre-
sentation, if two filters are conflicted, their represented area will cause overlap in the plane,
and the line segment belonging to the two areas may have a perfect crossing. Therefore,
they designed a magnifying mechanism to ensure that each filter conflict exhibited a perfect
crossing. They used a plane sweep method [32] to determine all perfect crossings in the
plane, and through the position, filter conflicts could be detected. The algorithm had a time
complexity O(nlogn + S) and space complexity O(n). The experimental results showed that
for five filter sizes with various prefix lengths of filter, their proposed algorithm was 4 to
17 times faster than [3], with 4 to 8 times less memory requirement, and was 4 to 27 times
faster than [4], with 6 to 205 times less memory requirement. Lee et al. [33] studied the
tuple-space search algorithm [34], observed the relationship between tuples, derived the
relationship for searching among tuples by generating markers, and proposed a tuple-based
conflict-detection algorithm (TCDA). The execution of conflict detection in each filter could
be accelerated by adding a marker pointer and a filter pointer. Finally, the TCDA can detect
all conflicts with time complexity O(nW + S) and space complexity O(nW). Compared
with [6], the experimental results showed that the proposed algorithm can reduce the
detection time by 19.6% to 97.7%. More importantly, it reduced the storage requirements of
most filter databases. The performance improvement over time is particularly significant
for filter databases with many conflicts. Neither [6] nor [33] proposed a method for 5D
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conflict detection. Yi et al. [35] used a formal method to analyze the meaning of IPv6
firewall filters and developed a method to find the filter conflicts. However, that research
did not illustrate how to support 5D conflict detection.

2.2. CUDA Architecture and Programming Model

In 2007, NVIDIA introduced the Compute Unified Device Architecture (CUDA), which
provides a platform for developing parallel computations on GPUs. The CUDA defines
parallel thread execution and instruction set architecture so that GPU cores in the CUDA
can process a specific segment of a parallel program simultaneously. The CUDA provides
libraries and toolkits for developers, and version 11.6.2 [36] is currently the most updated.
Following the evolution of hardware from version 1.0 to version 8.7, the GPU architecture
provides increased GPU cores and computing power to improve GPU computing efficiency.
The streaming processor (SP) is the basic processing unit. Many SPs in a GPU can perform
computations simultaneously, and several SPs attached to other units, such as memory,
computing units, and control units, can form a streaming multiprocessor (SM). An SM is
the basic hardware unit for executing threads in the CUDA. CUDA-capable GPUs have
a memory hierarchy, as shown in Figure 2. The GPU architecture exposes the following
memory units.
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1. Registers: These are private to each thread, suggesting that registers assigned to one
thread are invisible to other threads.

2. L1/Shared memory (SMEM): Every SM has a fast, on-chip scratchpad memory that
can be used as an L1 cache and SMEM. All threads in a CUDA block can share shared
memory, and all CUDA blocks running on a given SM can share the physical memory
resources provided by the SM.

3. Read-only memory: Each SM has an instruction cache, constant memory, texture
memory, and a read-only cache.

4. L2 cache: The L2 cache is shared across all SMs; therefore, every thread in every CUDA
block can access this memory.

5. Global memory: As with the L2 cache, all threads can read and write this memory, but
it is slower to access than other memories. This memory can be used to exchange data
between the GPU and the CPU.

A CUDA program contains two parts: the host function and device function, which are
executed on the CPU and the GPU, respectively. Initially, the host function copies the data
required by the device function to the device memory of the GPU through PCI-express and
executes the device function on the GPU. The host then retrieves the results from the device
memory when GPU computation is performed. The minimum execution unit in the device
is a thread; several threads form a block, and several blocks form a grid. Before executing
a program, program developers can set the number of threads and blocks based on the
purpose of the computation. The maximum number of threads allowed within a block
varies, depending on the hardware version. Up to 1024 threads are allowed in the current
version. While the device is in execution, it assigns blocks to the SMs for computation block
by block, and threads in the block are executed in groups based on the warps. Figure 3
illustrates an actual execution in the CUDA. Each warp consists of 32 threads, and the



Algorithms 2022, 15, 237 6 of 19

threads in each warp perform computations simultaneously. When an SM provides more
warps, more threads can be executed simultaneously. The maximum number of warps
supported by an SM varies, depending on the hardware specification.

Algorithms 2022, 15, x FOR PEER REVIEW 6 of 19 
 

within a block varies, depending on the hardware version. Up to 1024 threads are allowed 
in the current version. While the device is in execution, it assigns blocks to the SMs for 
computation block by block, and threads in the block are executed in groups based on the 
warps. Figure 3 illustrates an actual execution in the CUDA. Each warp consists of 32 
threads, and the threads in each warp perform computations simultaneously. When an 
SM provides more warps, more threads can be executed simultaneously. The maximum 
number of warps supported by an SM varies, depending on the hardware specification. 

 
Figure 3. Programming model of the CUDA. 

Each filter is mutually independent when executing conflict detection; therefore, we 
can assign the task of conflict detection to the device for execution. The task is then dis-
tributed to the threads for computation to improve performance through parallel compu-
ting. However, this distribution may reduce parallel computing performance if the work-
load distribution is imbalanced. For example, when more workload is assigned to fewer 
threads, the remaining threads accomplish the work earlier because of fewer assigned 
tasks, and these threads become idle. Therefore, evenly distributing the workload to 
threads is a critical issue in parallel computing. 

3. Definition and Method of 5D Conflict Detection 
In this study, we define 5D conflict detection as the matching of five common fields 

in an IP header. The five fields are SA, DA, source/destination port (SP/DP), and protocol. 
Table 2 presents an example of a 5D filter database. In this section, we define how the two 
5D filters encounter the conflict condition, then we explain our proposed simple and fast 
5D filter detection algorithm. 

Table 2. Example of a 5D filter database. 

Filter SA DA SP DP Protocol 
F0 101* 01* * 0–1023 TCP 
F1 10* 010* * 80 * 
F2 10* 0* * * UDP 
F3 10* 0* * 0–1023 * 

3.1. Definition of 5D Filter Conflict 
Conflict detection is relatively easier in 2D because it uses only two fields. If the con-

flict condition defined in [3] is extended to 5D conflict detection, it should compare five 
fields. When two filters, f = (f[1], f[2], …, f[5]) and g = (g[1], g[2], …, g[5]), satisfy the fol-
lowing two conditions, we can determine that filter f conflicts with filter g. 

Figure 3. Programming model of the CUDA.

Each filter is mutually independent when executing conflict detection; therefore, we
can assign the task of conflict detection to the device for execution. The task is then
distributed to the threads for computation to improve performance through parallel com-
puting. However, this distribution may reduce parallel computing performance if the
workload distribution is imbalanced. For example, when more workload is assigned to
fewer threads, the remaining threads accomplish the work earlier because of fewer as-
signed tasks, and these threads become idle. Therefore, evenly distributing the workload
to threads is a critical issue in parallel computing.

3. Definition and Method of 5D Conflict Detection

In this study, we define 5D conflict detection as the matching of five common fields in
an IP header. The five fields are SA, DA, source/destination port (SP/DP), and protocol.
Table 2 presents an example of a 5D filter database. In this section, we define how the two
5D filters encounter the conflict condition, then we explain our proposed simple and fast
5D filter detection algorithm.

Table 2. Example of a 5D filter database.

Filter SA DA SP DP Protocol

F0 101* 01* * 0–1023 TCP
F1 10* 010* * 80 *
F2 10* 0* * * UDP
F3 10* 0* * 0–1023 *

3.1. Definition of 5D Filter Conflict

Conflict detection is relatively easier in 2D because it uses only two fields. If the
conflict condition defined in [3] is extended to 5D conflict detection, it should compare five
fields. When two filters, f = (f [1], f [2], . . . , f [5]) and g = (g[1], g[2], . . . , g[5]), satisfy the
following two conditions, we can determine that filter f conflicts with filter g.

1. ∀1≤k≤5( f [k] ∩ g[k]) 6= ∅.
2. ∃1≤x≤5∃1≤y≤5((x 6= y) ∧ ( f [x] ⊂ g[x]) ∧ (g[y] ⊂ f [y])).

Condition 1 indicates that when both filters f and g find any field k such that the set
of matched results is empty, no conflict exists between filters f and g. For example, when
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matching the protocol field of filters F0 and F2 (Table 2), the result is empty because no
packet uses the transmission control protocol and the user datagram protocol simultane-
ously. In other words, when all fields k, such as the matching result of f [k] and g[k], are
not empty, f and g may have conflicts. If we can find fields x and y such that the results of
matching filters f and g satisfy condition 2, we can conclude that f and g have conflicts. For
example, all field matching for filters F1 and F2 are nonempty (Table 2), and we can always
find DA and protocol fields such that F1[DA] ⊂ F2[DA] and F2[Protocol] ⊂ F1[Protocol].
Therefore, F1 and F2 are conflicted.

3.2. Conflict Detection for 5D Filters

If two matching filters satisfy condition 1, we select any two fields to fulfill condition 2;
we have 10 combinations of fields. Furthermore, because of the different formats of stored
data for different fields, the conflict-detection process becomes complex and tedious if
we match every combination individually. In addition, it is challenging to design an
efficient data structure and algorithms to perform 5D conflict detection. Furthermore, the
performance of GPU parallel computing is limited.

To reduce the complexity of 5D conflict detection, we designed a simple detection
algorithm that separated the 5D conflict-detection process into two parts, the matching
of prefix fields (SA/DA, two fields) and non-prefix fields (SP/DP/Protocol, three fields).
When matching two filters to verify whether they are conflicted, it first checks the prefix
field matching result and matches the non-prefix field contents to determine whether a
conflict will occur. By excluding the empty set, the matched result of prefix fields i and
j contains three cases. For each case, we describe the combination of the non-prefix field
content of filters f and g for conflict to occur.

1. (( f [i] ⊂ g[i]) ∧ (g[j] ⊂ f [j])): This case indicates that the prefix fields of filters f and g
conflict, as defined by [3]. Therefore, when the matched results of the non-prefix fields
of f and g are all nonempty sets, f conflicts with g. The filter pair (F0, F1) belongs to
this case because the non-prefix field matched results of F0 and F1 are all nonempty
sets (Table 2).

2. (( f [i] ⊆ g[i]) ∧ ( f [j] ⊂ g[j])): This case indicates that the prefix fields of f have at least
one field content contained in g. Thus, if the matched result of non-prefix fields of f
and g are all nonempty sets, and there is a field s such that (g[s] ⊂ f [s]), f conflicts with
g. Both filter pairs, (F0, F3) and (F1, F2), belong to this case (Table 2); therefore, conflicts
occurred in both cases. However, in the matching of non-prefix fields in (F0, F3), it did
not find any field s such that (F3[s] ⊂ F0[s]). Thus, (F0, F3) did not have conflict.

3. (( f [i] = g[i]) ∧ ( f [j] = g[j])): This case suggests that the contents in the prefix fields of f
and g are equal. Therefore, when the matched results in the non-prefix fields of f and g are
all nonempty, and we find any two fields s and t such that ((g[s] ⊂ f [s]) ∧ ( f [t] ⊂ g[t])),
then f and g have conflict. The filter pair, (F2, F3), is categorized into this case because
it can find the DP and protocol fields that satisfy condition 2, as defined in Section 3.1.

Based on the above analysis, all filter pairs with conflicts should satisfy one of the
above cases. In other words, we can focus on the above analysis to design a simple detection
algorithm that can replace the original complicated matching process. The execution steps
of the detection algorithm are as follows.

1. It determines whether the matching result of the prefix fields of the filters satisfies
any of the cases mentioned above. If it does, execute step 2; otherwise, terminate the
process.

2. It matches the non-prefix field content based on the cases satisfied and then determines
whether the matched result is the case for conflict to occur.

4. Conflict-Detection Algorithms Using GPU

In this section, we propose two new 5D detection algorithms implemented on GPUs.
First, we introduce the implementation of the detection algorithm on a GPU and describe
its operational process. The number of matches required by each filter varies to prevent
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a duplicate detection process because the workload for each filter is different. The main
design concept of the EPCDA is the proper assignment of filters to threads for balancing
the workload of each thread and improving the parallel computing performance.

4.1. General Parallel Conflict-Detection Algorithm

During conflict detection, the matching process for each filter is independent. From
the practical execution example in Section 3.2, during the programming stage we can
assign a filter to several threads for execution. Figure 4 illustrates the proposed GPCDA
architecture and its operating process. In Step 1, we copy the filter database from the host
to the device. In Step 2, we sequentially assign the filter stored in the filter database to
pre-allocated threads. Since the memory space required by the filter database is not large,
we can store the filter database in a unified L1/texture cache (which is a read-only cache)
to minimize memory access latency. In Step 3, each thread executes the detection algorithm
independently and stores the conflict-detection results in the pre-allocated shared memory.
In Step 4, each block collects the detection result reported by its associated thread and
stores it in the device memory. In Step 5, all the detection results are sent back to the host
through the device. We define the total execution time for conflict detection as the total
time required to execute Steps 1 to 5.
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Suppose that i threads and j blocks are allocated. This means that i × j = K threads are
available for parallel computing. If n filters should execute conflict detection, each thread
must execute dn/Ke filter conflict detections. In the GPCDA, the filter dispatch order is
based on the successive location in the filter database, such that threads can be assigned to
execute sequentially. Assuming that n filters are stored in a filter database and denoted as
list T = {F0, . . . , Fn−1}, K filters F0–FK−1 are initially assigned as threads 0 to K − 1, and
the next K filters, FK–F2K−1, are also assigned as threads 0 to K − 1. Thus, each assignment
order of K filters starts from thread 0 and ends at thread K − 1. Figure 5 illustrates how the
filters in T are dispatched to K threads using the GPCDA. Because each filter must match
other filters in T, each thread should execute the detection algorithm twice when n = 2K,
and the total number of matches is 2(2K − 1).
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We observed that the GPCDA might obtain a duplicated detection result when the
above filters perform conflict detection. Assuming that filters f and g conflict, both f and g
will detect each other while executing conflict detection [33]. Therefore, we changed the
matching policy. For filter Fs in T, we only needed to compare the filter set before Fs, that
is, filters F0–Fs−1. Consequently, it could prevent the duplicated detection problem and
reduce the number of comparisons required by each filter. The reduction in the number
of comparisons required by each filter indicates a reduction in time for the GPCDA to
execute conflict detection. This creates a new problem. If we use the term “the total number
of filter comparison for each thread to execute” to represent the workload of the threads,
the workload of each thread will become unbalanced (Figure 5). For example, when
n = 2K, thread 0 needs to execute K comparisons, whereas thread K − 1 needs to perform
a comparison 3K − 2 times. When the workloads between threads are unbalanced, some
threads with less workload may finish the task earlier and become idle. However, threads
in different blocks cannot access the same shared memory and support each other. Thus, the
final detection results can only be returned to the host until the thread that “finishes the last
comparison” reports its result. If the workloads among threads are balanced, thread idling
and the total execution time of conflict detection can be reduced. The even distribution of
the workload to threads is a key factor for improving the performance of parallelism.

4.2. Workload Scheduling Problem

To achieve optimized performance, we defined a workload scheduling problem re-
garding how to assign filters to threads evenly according to their workload.

Description of workload scheduling problem: Assuming that we perform conflict
detection for n filters, the workloads of n filters are α1, . . . , αn, which are assigned to m
threads with equal computing capability. The issue is to perform workload scheduling to
minimize the execution time for conflict detection.

We can convert the above problem to the well-known deterministic scheduling
problem as follows: n independent tasks (J1, . . . , Jn), which require execution times
(t1, . . . , tn), respectively, are assigned to m processors with equal computing capability,
and tasks will not be interrupted during their execution. The goal is to obtain a scheduling
result so that the finish time is the shortest. During workload scheduling, the conflict
detection of n filters is considered as an independent task. When a filter executes conflict
detection, it cannot be interrupted or reassigned to another thread, and m threads with
equal capabilities are similar to m processors with identical capabilities. Unfortunately, the
deterministic scheduling problem has been proven to be an NP-complete problem [37,38],
indicating that an optimum workload scheduling algorithm cannot be found within a
limited time. Therefore, we attempted to propose a near-optimum workload scheduling
algorithm. The longest processing time (LPT) algorithm [39] has been analyzed and proven
to be the near-optimum algorithm closest to the optimum result.



Algorithms 2022, 15, 237 10 of 19

The concept of the LPT algorithm is to arrange the task to be executed from long-
to-short execution times, followed by its designed dispatch algorithm assigning tasks to
the processors. The LPT algorithm guarantees that the difference in performance does
not exceed 4/3− 1/3 m, compared with the optimum result; that is, the lower-bound
performance of the LPT algorithm is 1.33 of the optimum performance. Therefore, we
propose an EPCDA based on the LPT concept. In the EPCDA, a filter list is assigned to
each thread to achieve workload balancing.

4.3. Enhanced Parallel Conflict-Detection Algorithm

When a filter executes conflict detection, its number of comparisons represents the
workload of that filter; therefore, we prearranged the order of each filter based on the
number of comparisons required for that filter. In the GPCDA, each filter Fs in list T must
be initially compared with all preceding filters in list T. We changed the comparison policy
in the EPCDA. For each filter in the EPCDA, Fs only needs to compare the filter set with
the location behind Fs. For example, filter F0 needs to be compared with n-1 filters behind
it, and F1 needs to be compared with n-2 filters behind it. Consequently, the number of
comparisons required for each filter decreases with its sequential order in the filter list. In
this way, the conflict-detection process is not duplicated, and the concept is the same as
the LPT algorithm’s, in which tasks are executed based on the sorted order of execution
time. Furthermore, we presorted the filters in T based on the SA prefix length. When
the EPCDA performs a conflict detection for filters, each comparison process performs a
large number of logical comparisons. The presorted order of filters ensures that the SA
prefix length of each filter that is being compared does not exceed its own. This simplifies
the logical comparison process and reduces the number of memory accesses. We could
construct T′ =

{
F′0, . . . , F′n−1

}
as the list obtained after sorting T.

In the EPCDA, the filter dispatch order is the same as that of the method proposed
in [39]. Figure 6 illustrates the EPCDA dispatch method. Initially, K filters F′0–F′K−1 are
dispatched to thread 0 through thread K − 1. Because the filters in T′ have been sorted
based on the workload, the dispatch order of the next K filters is opposite to that of the
former K filters to balance the workload of each thread. Thus, F′K–F′2K−1 are dispatched
sequentially from thread K − 1 through thread 0. Whenever the EPCDA dispatches 2K
filters, the former K filters are dispatched to threads in the order from thread 0 to thread
K − 1. In contrast, the latter K filters are dispatched to threads from thread K − 1 to thread
0. Such a dispatch order ensures that for each 2K filter, the workload of each thread will be
nearly balanced. Even when the number of dispatched filters is less than 2K, it still achieves
minimal difference in the workload of each thread. Algorithm 1 shows the algorithm for
each thread to process filter conflict detection in the EPCDA, and Table 3 lists the notations
used in Algorithm 1.
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Algorithm 1: Parallel function of EPCDA

Input:
filter database filter[]

Output:
conflict results

1 threadID = blockIdx.x ∗ blockDim.x + threadIdx.x;
2 threadSize = blockDim.x ∗ gridDim.x;
3 base = threadSize ∗ 2;
4 start = (base − 1) − threadID;

5 i = threadID; // dispatch direction→.
6 do
7 for j← i + 1 to filter.size() – 1 do
8 detection(filter[j], filter[i]);
9 end
10 i += base;
11 while i < filter.size();
12 i = start; // dispatch direction←.
13 do
14 for j← i + 1 to filter.size() – 1 do
15 detection(filter[j], filter[i]);
16 end
17 i += base;
18 while start < filter.size();

Table 3. Summary of notation.

Parameter Notation

blockIdx.x index of block
theradIdx.x index of thread
blockDim.x number of threads in each block
gridDim.x number of blocks in each grid
threadID current thread ID

From the dispatch in the EPCDA, we observed that the numbers of comparisons
required by each thread for performing conflict detection were very close. When n equals
2K, each thread must execute 2K − 1 comparisons. The more balanced the workload, the
smaller the maximum number of total comparisons performed by the threads. In other
words, the total time required to execute the detection algorithm is reduced. This finding
demonstrates that the EPCDA can improve parallelism performance.

5. Results and Discussion

In this section, the execution performance of conflict detection based on our proposed
GPCDA and EPCDA and a single CPU (Host) are evaluated. The filter databases required
for the experiment were obtained from Class-Bench [40], which provided 12 parameter files
obtained from three types of practical applications, including access control lists, firewalls,
and IP chains. For each parameter file, we generated six filter databases with sizes 5K,
10K, 15K, 20K, 30K, and 100K. The performance evaluation indicator was defined as the
average time required for each filter to execute conflict detection, counted in microseconds.
(nThread, nBlock) represents the allocation of nThread × nBlock threads for parallel execution.
Algorithms for simulation experiments were implemented in C++, whereas the GPCDA
and the EPCDA were implemented with an additional version 7.5 CUDA toolkit for parallel
programs. The test environment was set up using an Intel Core i5-4570 3.2 GHz PC with
12 GB memory. The GPU configuration was NVIDIA GeForce 970X (computation ability:
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5.2) [41], which provided 13 SMs to support parallel computing. Each SM was composed
of 128 SPs, 4G device memory, 98 KB shared memory, and a 48 KB L1 cache.

5.1. Comparing Speed Performance

In this subsection, we present a comparison of the speed performance of the Host,
the GPCDA, and the EPCDA in different filter databases. The GPCDA and the EPCDA
used two different total numbers of thread allocations, (256, 4) and (512, 8), for parallel
computing. Figure 7 shows the required time for each filter to execute conflict detection
in 12 different databases when the database size is 30K, among which databases the time
for the GPCDA and the EPCDA is defined in Section 4.1. After the acceleration of parallel
computing by the GPU, the GPCDA and the EPCDA are better than the Host in terms of
conflict-detection speed. When the (256, 4) allocation is used, the GPCDA and the EPCDA
are faster than the Host alone, by 1.3 to 4.5 and 3.9 to 9.3 times, respectively. Under the
(512, 8) allocation, more threads are available to support parallel computing; thus, the
speed performance significantly improves. The GPCDA and the EPCDA are 4.2 to 12.4 and
10.9 to 32.4 times faster, respectively, than the Host alone. Because the dispatch method
in the EPCDA enables every thread to have a balanced workload, it improves the parallel
computing performance. With the same number of threads, the EPCDA outperforms the
GPCDA. The average time required for conflict detection in the EPCDA (256, 4) allocation
is almost the same as in the GPCDA (512, 8) allocation, which demonstrates that workload
balancing affects performance significantly.
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Intuitively, when the number of allocated threads is doubled, performance should
also be doubled. However, the experimental results (Figure 7) show that the performance
did not double as expected. In the experiment, the number of allocated threads was four,
but the performance improved by only 2 to 3 times. This was because when more threads
executed parallel computation, the degree of resource competition increased, resulting in
performance degradation.

Table 4 lists the average time required for each filter to execute conflict detection using
algorithms in different databases when the filter database size is 100 K. Here, the GPCDA
and the EPCDA outperformed the Host alone. In the EPCDA, the maximum time for a
filter to perform conflict detection was lower than 22 µs, suggesting that the EPCDA still
maintained good performance for a large database. In addition, the EPCDA can operate in
applications with frequent filter updates; in such cases, fast conflict detection is required to
achieve high throughputs.
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Table 4. Performance evaluation for synthetic databases under (512, 8) allocation.

Databases
Statistics Average Detection Time (µs)

Number of Filters Number of Conflicts Host GPCDA EPCDA

ACL1 99,341 1,144,326 247.69 17.78 7.35
ACL2 74,194 10,851,664 128.47 21.45 8.78
ACL3 99,542 25,600,127 266.86 33.85 13.92
ACL4 99,121 14,013,339 262.43 29.82 12.40
ACL5 98,098 15 236.45 17.47 7.35
FW1 87,986 207,072,436 227.10 70.82 21.79
FW2 96,092 417,272,543 242.96 33.67 13.27
FW3 84,472 227,534,381 207.72 74.92 20.04
FW4 83,811 144,579,158 209.64 53.26 19.61
FW5 83,677 333,717,457 183.99 65.89 19.65
IPC1 99,284 49,864,378 263.68 35.90 15.42
IPC2 100,000 308,440,932 279.19 52.15 18.91

5.2. Comparison of Performance for Different Workload Dispatch Methods

In this subsection, we evaluate the effect of different workload dispatch methods on
performance. We added two workload dispatch methods for comparison with the GPCDA
and the EPCDA. The first comparison used the worst workload dispatch method. Suppose
that K threads execute a computation. We divided n filters into K equal parts. The filters in
each part were dispatched sequentially to the threads for execution. For example, thread 0
is responsible for performing conflict detection of filters 0 to n/K− 1, thread 1 is responsible
for filters n/K to 2n/K − 1, and so on, until thread K − 1 performs conflict detection of
filters ((K− 1)n)/K to n− 1. When the poorest workload dispatch method was used, we
observed a significant difference in the total number of comparisons between threads 0 and
K − 1, leading to the most significant workload imbalance. The second comparison method
involved using the dispatch method of the shortest processing time (SPT) algorithm in the
EPCDA (denoted EPCDAR). The dispatch method in the SPT algorithm is the opposite of
that in the LPT algorithm. Each filter Fs was compared with filters F0–Fs−1.

Here, we address the EPCDA with respect to the difference in performing conflict
detection using the LPT and SPT algorithms. First, if the number of filters is a multiple of
K, regardless of whether the LPT or the SPT algorithm is used, each thread requires the
same total number of comparisons. However, if the number of filters is not a multiple of
K, a difference exists. This trend can be explained using Figure 8. When the dispatched
four threads performed conflict detection of filters F0–F8, the filters dispatched in the
LPT algorithm experienced a significantly more balanced workload than those in the SPT
algorithm. The total number of comparisons for both algorithms was 9. For example, F0
and F7 required eight and one comparisons, respectively, in thread 0 (F8 did not need an
additional comparison), and F2 and F5 required six and three comparisons, respectively, in
thread 2. However, when filters were dispatched through the SPT algorithm, the workload
in thread 0, which reached 15 (needing 0, 7, and 8 comparisons) was higher than that of the
other threads. Workload imbalance increased the total execution time for conflict detection.



Algorithms 2022, 15, 237 14 of 19

Algorithms 2022, 15, x FOR PEER REVIEW 14 of 19 
 

of the other threads. Workload imbalance increased the total execution time for conflict 
detection. 

 
Figure 8. Filter dispatch for different dispatch methods (LPT and SPT). 

Second, for the number of memory access times, after the dispatch of the LPT algo-
rithm, while processing the first conflict detection in each thread, each thread wrote the 
compared filters in the cache, owing to a cache miss. Assuming that the cache size is suf-
ficiently large to store all compared filters, the next conflict-detection process could be 
immediately performed because the filters to be compared were already written to the 
cache. For example, during F0 conflict-detection processing, thread 0 needed to load filters 
F1–F8 into its local cache because of cache miss; therefore, there were no additional 
memory access times during F7 and F8 conflict-detection processing. In contrast, most 
comparisons in the SPT algorithm still indicated cache misses after the first conflict detec-
tion was processed. Consequently, it needed to wait until the filter to be compared was 
written to the cache, resulting in a significant amount of memory access and an increase 
in the total required time for conflict detection. Under a highly unbalanced workload, the 
parallel performance was significantly reduced (Figure 9). The average execution time for 
conflict detection in each filter exceeded that in the GPCDA. Although the performance 
was better than that of the GPCDA when a filter used the EPCDAR to execute conflict 
detection, the EPCDA was the best when the LPT algorithm was used to dispatch tasks. 

 
Figure 9. Comparison of workloads. 

  

Figure 8. Filter dispatch for different dispatch methods (LPT and SPT).

Second, for the number of memory access times, after the dispatch of the LPT algo-
rithm, while processing the first conflict detection in each thread, each thread wrote the
compared filters in the cache, owing to a cache miss. Assuming that the cache size is
sufficiently large to store all compared filters, the next conflict-detection process could be
immediately performed because the filters to be compared were already written to the
cache. For example, during F0 conflict-detection processing, thread 0 needed to load filters
F1–F8 into its local cache because of cache miss; therefore, there were no additional memory
access times during F7 and F8 conflict-detection processing. In contrast, most compar-
isons in the SPT algorithm still indicated cache misses after the first conflict detection was
processed. Consequently, it needed to wait until the filter to be compared was written to
the cache, resulting in a significant amount of memory access and an increase in the total
required time for conflict detection. Under a highly unbalanced workload, the parallel
performance was significantly reduced (Figure 9). The average execution time for conflict
detection in each filter exceeded that in the GPCDA. Although the performance was better
than that of the GPCDA when a filter used the EPCDAR to execute conflict detection, the
EPCDA was the best when the LPT algorithm was used to dispatch tasks.
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5.3. Analysis of Parallelism Efficiency

In this subsection, we discuss the efficiency of parallelism for a fixed total number
of threads using different (nThread, nBlock) allocations for parallel computing. Here, we
compare the efficiency of the (256, 8) and (512, 4) allocations. Tables 5 and 6 list the average
required times to execute conflict detection by a filter using the Host, the GPCDA, and
the EPCDA, with databases of the lowest and highest numbers of detected conflicts for
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the three filter database types. The average required times for a filter to execute conflict
detection in the GPCDA and the EPCDA were several times lower than that in the Host
alone, regardless of the condition of the smallest or largest number of conflicts.

Table 5. Average detection time (µs) for databases with least conflicts in each category.

Database Algorithm
Filter Size

5K 10K 15K 20K 30K

ACL5

Host 2.94 10.91 13.69 21.08 31.91
GPCDA (256, 8) 0.72 1.61 2.06 2.86 3.97
GPCDA (512, 4) 0.90 1.92 2.52 3.40 4.73
EPCDA (256, 8) 0.34 0.72 0.88 1.37 1.72
EPCDA (512, 4) 0.35 0.82 1.00 1.56 1.97

FW4

Host 10.45 20.85 30.73 40.11 59.46
GPCDA (256, 8) 4.10 7.55 9.20 11.85 16.63
GPCDA (512, 4) 4.74 8.23 10.69 13.11 20.00
EPCDA (256, 8) 2.29 2.51 3.64 4.35 6.00
EPCDA (512, 4) 2.71 2.93 4.26 5.14 7.08

IPC1

Host 8.82 19.06 28.18 37.57 56.53
GPCDA (256, 8) 1.82 3.77 5.35 6.42 10.03
GPCDA (512, 4) 2.23 4.48 6.38 7.64 12.17
EPCDA (256, 8) 0.96 2.12 2.58 3.21 4.72
EPCDA (512, 4) 1.12 2.46 3.01 3.70 5.45

Table 6. Average detection time (µs) for databases with most conflicts in each category.

Database Algorithm
Filter Size

5K 10K 15K 20K 30K

ACL2

Host 8.69 18.19 26.16 34.83 50.10
GPCDA (256, 8) 1.88 3.34 4.51 6.60 9.20
GPCDA (512, 4) 2.42 4.22 5.65 8.16 11.26
EPCDA (256, 8) 0.87 1.87 2.54 3.29 4.36
EPCDA (512, 4) 1.00 2.18 3.02 3.86 5.16

FW2

Host 7.70 16.80 25.08 33.41 49.57
GPCDA (256, 8) 1.80 3.69 5.35 6.46 9.92
GPCDA (512, 4) 2.38 4.79 6.68 7.98 12.62
EPCDA (256, 8) 0.90 1.78 2.25 2.81 4.32
EPCDA (512, 4) 1.04 2.04 2.55 3.21 4.89

IPC2

Host 8.64 18.57 27.73 36.94 55.20
GPCDA (256, 8) 3.28 5.12 8.87 10.31 17.48
GPCDA (512, 4) 3.40 5.54 9.37 11.25 18.51
EPCDA (256, 8) 1.72 2.97 3.57 4.43 6.41
EPCDA (512, 4) 1.95 3.35 3.97 4.98 7.42

Regardless of whether the GPCDA or the EPCDA was used, the time required for each
filter to execute conflict detection under the (256, 8) allocation was always shorter than
that under the (512, 4) allocation. This trend indicates that for the same total number of
threads, the more threads in a block, the worse the parallel performance. Through analysis
with NVIDIA Visual Profiler [42], two major factors that affect parallelism efficiency are
“stalled for memory dependency” and “stalled for synchronization”. “Memory depen-
dency” is mainly attributed to the additional stall caused by the data dependency of two
consecutive instructions, whereas “stalled for synchronization” is mainly attributed to
the _syncthreads( ) instruction in the CUDA. Recall that threads in a block use a warp as
a unit for hardware to execute parallel computing, and threads in the same block access
the data in the same shared memory. When threads in the same warp are executed, the
CUDA invokes the _syncthreads( ) instruction to ensure data consistency while the threads
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are performing computations. If tasks in some threads of the same warp are completed
earlier, the threads must wait for other threads to complete their tasks, and that batch of
threads proceeds to the next dispatched task. Therefore, when a block is dispatched with
a higher number of threads, it is easier to cause “stalled for synchronization” and affect
parallel efficiency

5.4. Limitations of Parallel Computation

Based on the results discussed thus far, it can be observed that when the number of
allocated threads and blocks increases, the performance improves, so that the GPCDA and
the EPCDA can handle a large filter database. In this subsection, we discuss the limitations
of parallel computation in a large-filter database in the GPCDA and the EPCDA. When
the number of filters was large, even when the number of allocated threads for parallel
computing increases several times, the performance did not increase accordingly (Figure 10).
We have discussed the reason for this above. We observed that for parallel computing
of threads under allocation 13,312 (1024, 13), the GPCDA and the EPCDA exhibited the
best performance. However, the performance for threads under allocation 16,384 (1024, 16)
decreased. GTX 970 supports 13 SM at most for parallel computing, and each block allows
only up to 1024 threads. If more blocks are allocated, it causes some SMs to execute at least
two computation blocks, and the execution time increases, due to hardware scheduling.
In the 8192 (1024, 8) allocation, when threads executed the EPCDA, the difference was
minimal compared to configuration 13,312 (1024, 13). Thus, when the workload approached
a balance, we could use less hardware to achieve the same performance. This confirmed
that the EPCDA can execute conflict detection using a GPU with a few cores to reduce
hardware costs.
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6. Conclusions

In this study we applied GPUs to conflict-detection algorithms, and developed the
GPCDA and the EPCDA, which can accelerate conflict detection through parallel com-
puting in GPUs. Based on the simulation experiment, we found that the GPCDA and the
EPCDA performed conflict detection up to 33.7 times faster than the CPU, regardless of
the type and size of the filter databases; this was particularly evident when the number of
allocated threads for parallel computing became large. We also observed that for the same
total number of threads, different numbers of allocated blocks and threads significantly
influenced the parallel efficiency. We analyzed the factors affecting the parallel efficiency,
which may guide GPU utilization in other applications.
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If the workload between threads was unbalanced, different threads required different
computation times. This may have caused some threads to be idle because of a smaller
workload, whereas threads with a larger workload spent more time, increasing the total
parallel computing. Therefore, the workload balance was an essential factor that influenced
parallel performance. Unfortunately, the literature reports that dispatching tasks with
different execution times to multicores with the same computing capability and achieving
optimized workload balance is an NP-complete problem. Thus, we developed a near-
optimum workload balance mechanism in the EPCDA, such that the workload among
threads could approach a balance and maximize the performance of parallel computing.
Based on the simulation experiment, we observed different performances for different
workload dispatch methods. Using the EPCDA, even though we used fewer threads for
parallel computing, it achieved the same performance as the GPCDA, which used more
threads for parallel computing; thus, the hardware cost was reduced.

Finally, when the number of filters was large, the EPCDA still maintained good
performance, with a filter database size of 100K. In the EPCDA, each filter spent 22 µs,
at most, to process conflict detection; this was 9.4 to 33.7 times faster than using only
a CPU. Therefore, the EPCDA is suitable for applications with frequent filter-database
updates. The limitations and future research directions of this study are as follows. First,
the detection speed can be increased by improving the GPU memory access efficiency, such
as by minimizing non-coalesced memory accesses and bank conflicts. Second, in this study,
we focused on analyzing the critical procedure in 5D conflict detection, and balancing
the workload of GPU threads. The proposed algorithms were not designed for a specific
GPU architecture/model. For a specific GPU architecture/model, our proposed algorithms
can be modified to achieve better performance by taking advantage of hardware features.
Third, this study assumed that conflict detection is executed on a single-GPU platform.
For a heterogeneous multi-GPU platform, the workload balancing problem becomes much
more complicated and the communication cost between GPUs should be taken into account
when designing a conflict-detection algorithm.
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