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Abstract: Atrial fibrillation (AF) is still a major cause of disease morbidity and mortality, making its
early diagnosis desirable and urging researchers to develop efficient methods devoted to automatic
AF detection. Till now, the analysis of Holter-ECG recordings remains the gold-standard technique
to screen AF. This is usually achieved by studying either RR interval time series analysis, P-wave
detection or combinations of both morphological characteristics. After extraction and selection of
meaningful features, each of the AF detection methods might be conducted through univariate and
multivariate data analysis. Many of these automatic techniques have been proposed over the last
years. This work presents an overview of research studies of AF detection based on RR interval time
series. The aim of this paper is to provide the scientific community and newcomers to the field of
AF screening with a resource that presents introductory concepts, clinical features, and a literature
review that describes the techniques that are mostly followed when RR interval time series are used
for accurate detection of AF.

Keywords: atrial fibrillation; arrhythmia; RR time series; diagnosis-based-data; univariate analysis;
multivariate analysis

1. Introduction

Decision making in healthcare domains is among the most critical tasks that a physician
has to formulate. To check the health status of patients and/or health subjects, several
qualitative and quantitative indicators are thoroughly analyzed, and a decision is then
rendered. Medical decision-making could be seen as a classification problem. For instance,
a specific disease can be recognized based on the combination of blood analysis, vitals
characterization, and symptoms. In addition, one may wish to stratify patients based on
medical imaging techniques (e.g., radiology, histopathology, etc.). Even if these tasks are
common in healthcare practice, it is well-admitted that they are time-consuming and entail
tedious and repetitive aspects mainly if the clinical data being measured are voluminous.
Not to mention, the limited available places (as shown in COVID-19 pandemic) and number
of healthcare professionals are other stressors complicating the hospital services. Therefore,
it is thought that the automation of the medical decision-making process is important,
as far as possible, especially for diseases with a major concern in public health, namely,
cardiovascular diseases.
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Cardiovascular diseases are the first cause of death and they are projected to remain
so [1,2]. They represent a large share in which healthcare professionals are called upon to
make decisions. Atrial fibrillation (AF), considered as the most common cardiac arrhythmia,
and a major public health burden associated with significant morbidity and mortality, is
spurring increased attention. More than 6 million people in Europe and 3 million people
in the US are affected by AF [3–5]. The correct prevalence of AF is still unknown because
AF is asymptomatic in many patients and thus remains undiagnosed [6]. In China, for
instance, around 10 million people have AF [7], but the approximate prevalence of AF is 1%
in the general population, which increases with age, more so in women than in men [8–11].
Since the current population ageing trends and the improvement of survival rates from
conditions predisposing to AF, the prevalence of AF is notably increasing [12,13].

Automatic AF detection is strongly advisable, mainly due to the lack of symptoms
raising the attention of either people undergoing AF or healthcare professionals. This
makes AF a silent killer. However, AF events may unfold quickly, in short time periods,
intrinsically hard to predict. This makes electrocardiography (Holter-ECG) recordings
a strong requirement for a successful detection. The analysis of ECG and Holter-ECG
recordings currently remains the gold-standard technique to diagnose AF. In fact, the
two signature features of AF are typically RR interval irregularities and missing P-waves
(replaced by rapid oscillations or fibrillatory waves), or combinations of both properties.

In this sense, the development of automated classification systems has been, and con-
tinues to be, a dynamic research field, especially with the vast increase in processing speed
and the evolution of data analysis science. Two approaches are emerging as promising
means in the attempt to efficiently address automatic AF detection: univariate analysis
in which data are analyzed according to a single variable, and in contrast, multivariate
analysis where relationships between several variables are investigated. Comparative stud-
ies of classifiers dealing with AF detection have been already published in the literature.
For instance, in 2003, Poli et al. [14] reviewed methods and algorithms for the prediction
of AF by studying the surface of electrocardiographic records in post-cardiosurgery or
paroxysmal patients. Larburu et al. [15] compared nine AF detection algorithms under
several criteria such as algorithm time resolution test, initial signal length, noise test, and
computation time.

This paper will focus on the employment of automated classification systems in AF
detection. After briefly introducing aspects of the workflow that clinical AF detection
follows (how cardiologists detect AF), relevant contributions in automatic AF detection
over the last years will be addressed. With the emergence of remote health and heart
monitoring paradigms, simple univariate algorithms for AF arrhythmia detection continue
capturing both the interest of research and commercial actors in the study of the heart
condition. However, as robust and powerful cloud infrastructures make their way into real
products and use case scenarios for remote health monitoring while device computational
capabilities increase, multivariate analysis methods that can be pretrained and hosted in
the cloud may be experiencing a wave of renewed interest. In the following sections of
this work, significant contributions of univariate and multivariate data analysis applied to
automatic AF monitoring are reviewed.

2. Clinical Experience

Before we review the use of several data analysis methods in automatic AF detection,
a short introduction to AF is given in this section. AF is medically defined as a supraven-
tricular tachyarrhythmia, i.e., an irregular heart rhythm which is driven by non-organized
atrial activity. Diagnosis criteria are then absence of the P-wave, the presence of an anarchic
auriculogram (F wave), and an irregular heart rhythm, usually rapid with thin QRS com-
plexes [16,17]. Great progresses have been made in the AF management, but AF remains a
major cause of cardiovascular mortality and morbidity, with examples such as heart failure,
stroke, and sudden death. AF is independently associated with a 2-fold increased risk of
all-cause mortality in women and a 1.5-fold increase in men. Up to 20–30% of patients that
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experienced an ischemic stroke were diagnosed with an AF before, during, or after the
initial event. Moreover, AF is currently the most frequent arrhythmia (1–3% of population)
and its occurrence is predicted to increase gradually in the coming years according to
population ageing trends. It is evaluated that 1% of total healthcare spending is directly
generated by AF. Only early and effective prevention and treatment will be able to prevent
its rising cost. For these reasons, AF has to be diagnosed as soon as possible and the largest
population should be screened [16,17].

Electrocardiogram (ECG) records of the heart rhythm are necessary for AF diagnosis,
exhibiting the typical AF characteristics: irregular RR intervals that are often said to be
anarchical and absence of P-waves. It is conventionally accepted that a 30 s lasting episode is
necessary and sufficient to diagnose a clinically relevant AF. AF can be seen in symptomatic
or asymptomatic (‘silent AF’) subjects and, in fact, AF patients often experience both
symptomatic and asymptomatic episodes. As silent undiagnosed AF is common and
associated with severe consequences such as stroke and death, quick ECG recording is
an efficient and cost-effective way to screen people and diagnose chronic AF. The longer
the duration of the ECG recording, the higher detection rate of paroxysmal AF. However,
chronic AF detection rate is also increased by daily short-term ECG recordings, especially
in elderly population.

To succeed in this challenge, new technologies are developed to increase AF detection,
such as patient-operated devices, skin patches, or even smartphones, smart watches,
and blood pressure monitoring devices. However, massive data generated need to be
automatically analyzed since a 24 h length recording is expected to show approximately
100,000 heartbeats that need to be read, making it especially time-consuming. Physician
time-consumption and costs can be reduced by automatic analysis of heart rhythm, leading
to concomitant developments of automatic AF arrhythmia detection algorithms.

3. AF Arrhythmia Detection Methods

In this paper, a selection of works that attempt to solve the problem of detecting AF
are presented. Most of them use a two-step procedure after ECG data pre-processing as
shown in Figure 1: first, feature extraction from RR time series (tachogram) or P-wave
or their combination is conducted and then followed by a classification building process
based on the extracted parameters. The performance of the major established classifica-
tion methods was evaluated on Physionet signals; a publicly accessible online database
containing physiologic signals. Seven datasets are commonly used: MIT-BIH Arrhythmia
Database (abbreviated MITDB or often MIT-BIH AR as well), MIT-BIH Atrial Fibrilla-
tion Database (AFDB), Long-Term AF database, Paroxysmal Atrial Fibrillation Prediction
Challenge Database (ParAFDB), AF Termination Challenge Database (AFTermDB), MIT-
BIH Normal Sinus Rhythm Database (NSRDB), and Normal Sinus Rhythm RR Interval
Database (NSR2DB).
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As said previously, cardiology experts inspect ECG recordings in an experienced-based
manner to identify any type of heart rhythm. In an automated AF detection algorithm,
this step is equated with extraction of interesting and discriminant variables from the ECG
signals. These parameters help to characterize the P-wave (presence, morphology) and the
RR intervals’ variability (regularity, irregularity, pattern).

After reviewing recent papers, we have noticed that the published works dealing with
AF detection may be categorized in six methodologies as summarized in Figure 2.
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This review highlights the advances in AF detection that followed RR time series
analysis. Since P-waves are associated with significantly higher computational resources
than are the RR-based classifiers, their integration in a low power demanding electronic
device is not a realistic option. Furthermore, the detection of P-wave fiducial points is a
very difficult task because of its low amplitude, which makes it prone to corruption by
noise. This being so, some authors have demonstrated that opting for complex features
by using morphologic analysis does not necessarily outperform that the results achieved
by an RR-based AF classifier [18,19]. For these reasons, the analysis of RR irregularities
is most studied by researchers rather than the absence of P-waves or the combination of
both characteristics.

The AF detectors are evaluated by the following metrics:
Accuracy: Ac = (TP + TN)/N, Sensitivity: Se = TP/(TP + FN), Specificity: Sp = TN/

(TN + FP), Precision, also known as Positive Predictive Value: Pr = PPV = TP/(TP + FP),
and, less often, Negative Predictive Value: NPV = TN/(TN + FN); where TP is the number
of True Positives or correctly detected AF episodes, TN is the number of True Negatives or
correctly detected non-AF episodes, FP is the number of False Positives, i.e., normal rhythms
misclassified as AF, and FN is the number of False Negatives or missed AF cases classified
as normal. The total number of observations is denoted by N. Sensitivity-Specificity and
Sensitivity-Precision metrics dyads are usually favored in comparison to Ac alone or more
ambiguous success rates, as better describing the classification tradeoffs between the ability
to capture existing cases and the certainty of the classification results obtained.

In terms of features, research on heart rate variability (HRV) traits has been paving the
way for the work on arrhythmia classification based on RR metrics (demoted NN when
dealing with normal heartbeats). The QRS complex, i.e., the most prominent characteristic
among the PQRST electrocardiogram wave points (see Figure 3), is understandably at the
basis of ECG assessment and has been extensively investigated. QRS detection algorithms
and R-R interbeat computation are standard practice in ECG processing nowadays, with
RR time series (tachogram) and subsequent HRV features currently being implemented
in online paradigms [20] and seen in wearable health tracking domains. Established HRV
analysis practice covers:
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• Statistical features of temporal nature, such as minimum RR intervals (minRR), max-
imum RR interval (maxRR), mean RR (<RR>), RR standard deviation (SDRR), root
mean square of successive ∆RR differences (RMSSD) and standard deviation of
successive differences (SDSD) working as derivative approximations, pNN20 and
pNN50 ratios characterizing the amount of heartbeat intervals greater than a given
value (20 or 50 milliseconds, respectively) with respect to all the intervals within the
processed window.

• Nonlinear features, such as those derived by the elliptic geometry of the recurrence plot
depicting RRi-RRi+1 consecutive interval relationship (known as Poincaré recurrence
plot or Lorenz plot depending on the research discipline).

• Spectral (frequency) features of the tachogram, characterizing power spectral densities,
and different spectral band ratios obtained by spectral analysis methods such as
Fourier transform approximations, Lomb-Scargle estimates or wavelet transforms,
among others.

• Geometric features, derived by histogram shape analysis, such as triangular indexes
and interpolation.
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Other features applied to RR or directly to the ECG waveforms have often been used,
such as the study of turning points, the application of different definitions of sample entropy
(SampEn), Shannon entropy (ShE), and coefficient of sample entropy (COSEn), more
elaborate statistics such as ANOVA analysis, statistical tests and coefficient of variation
(CV) taking mean and standard deviation ratios, or different approximations to parameter
derivatives. Moreover, it is well-known that the QRS complex is the least sensitive trait to
muscle artefacts and/or other noises [21]. Unlike sinus rhythm, which is characterized by
quite similar RR durations, AF has an irregular RR interval variability. Many researchers
have developed different methods to detect AF by RR time series. Among the different
AF detection methods centered on RR features, automatic techniques follow univariate or
multivariate approaches.

3.1. Application of Univariate Data Analysis on RR Time Series

The best way to get a first impression about the complex data of the RR time series
is a univariate data evaluation. Indeed, a great number of researchers has opted for this
approach rather than multivariate data analysis. Simplicity, short computation times and
efficiency are its main advantages. Major applications of univariate RR data analysis for
AF diagnosis found in the literature are described in this subsection.

To begin with, the effectiveness of three methods for the analysis of patients suffering
from AF or not are investigated by Kikillus et al. [22]. The first one is established on the
basis of risk level which is calculated from a Poincaré plot (recurrence). In this case, this plot
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is obtained from the temporal differences of consecutive RR intervals, after normalization
and standard deviation. A patient presenting higher risk levels than those specified in
specific threshold is identified as a patient with AF. The second method consists of three
different tests, based on integral calculation, that compare different frequencies of 45 min of
RR intervals. Their third method consists of two tests that utilize 3500 adjacent RR interval
differences. The AF decision is made based on histogram, difference feature and pNN200
(a modification of the standard parameter pNN50). The performance of the three methods
was evaluated by using the AFDB and the NSRDB datasets. The sensitivity and specificity
of the first method are 91.5% and 96.9%, respectively [23]. Method 2 results in a sensitivity
of 93.3% and a specificity of 92.8% and method 3 in a sensitivity of 94.1% and a specificity
of 93.4%. Since ectopic beats were removed from RR intervals, these results may change in
real cases.

The effect of recording duration on AF detection has been studied by P. Langley et al. [24].
Three features have been studied: coefficient of variation (CV), mean successive difference
(∆) and coefficient of sample entropy (COSEn). The Receiver operating characteristic (ROC)
analysis results show that for a recording duration of only 10 s, sensitivities and specificities
reached more than 94% and around 93%, respectively. They demonstrated that recording
durations of less than 5 s are possible but useless mainly for low heart rates, as the recorded
beats will not be able to determine the classifier indices. On the other hand, detection
performance using COSEn has shown less dependence on rhythm classification than the
other features and is said to be a powerful detector against ectopic beats.

Another use of Entropy was studied by Douglas E. Lake et al. [25], analyzing short
(12-beat) AF episodes. Optimal template length and the tolerance matching have been
carefully checked. ROC analysis results showed a sensitivity of 91% and a specificity of
94% for the AFDB dataset.

Sándor Hargittai [26] has investigated the performance of Shannon entropy, Root Mean
Square of Successive 80-RR Differences, other statistical methods (mean value, standard
deviation, etc.), turning point ratio, various scatter plots and Sample Entropy features to
detect AF. In this study, the scatter plot of successive RR differences (dRR Lorenz Plot)
and Sample Entropy were used to yield an approximate error rate of 5% for the MIT-BIH
Arrhythmia Database, AFDB and Long-Term AF datasets.

Another simple method to detect AF was proposed by J. Lian et al. [27]. Their algo-
rithm is based on a map of RR vs. RR intervals change of RR intervals (RdR). The map was
constructed by dividing a grid with 25-ms resolution in two axes and only non-empty cells
are counted to distinguish between AF and non-AF episodes. Three recording durations
have been studied: 32, 64, or 128 RR intervals. ROC curve analysis allowed to fix an optimal
threshold for AF detection, which yields good sensitivity and specificity for episodes of
32 RR time series (94.4% and 92.6%, respectively), 64 (95.8% and 94.3%), and 128 (95.9%
and 95.4%).

Ghodrati et al. [28] have investigated two RR irregularity characteristics for AF de-
tection in ECG: Normalized absolute deviation of RR intervals and normalized absolute
difference between successive RR intervals. Some constraints for RR intervals have been
added before the calculation of these parameters. ROC results showed 87.33% and 89.33%
as overall of sensitivities of three AF datasets (AFDB, MIT-BIH Arrhythmia Database and
Drager Atrial Fibrillation Database). In another paper, A Ghodrati and S Marinello [29]
have compared two probability density functions (Gaussian and Laplace) to model the
histograms of RR intervals. They have used Neyman–Pearson (NP) detection approach
to find out suitable criteria for the arrhythmia detection. Indeed, Gaussian probability
density function assumption leads to a simple NP detection criterion reduced to variance
test and absolute deviation [30]. Analysis has been done on windows of 30 heartbeats.
Since both detection criteria are sensitive to noise measurement, they added a constraint
on the absolute value of the RR time series differences and excluded those greater than
a fixed threshold. RR intervals bounded by Ventricular Beats have also been excluded.
These approaches did not outperform their previous study as it reached 88% and 89.33%
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as overall of sensitivities of the same AF datasets for Gaussian and Laplace probability
density functions, respectively.

Petrėnas et al. [31] conceived a low complexity structure to detect AF arrhythmia. This
method involved different blocks including preprocessing (3-point median filter), bigeminal
suppression (measurement of inter-beats irregularity), data fusion, decision function, and
finally detection of an appropriate threshold (specific value for which sensitivity and
specificity are identical). High specificity and sensitivity (98.3%and 97.1%, respectively)
were achieved for AFDB and NSRDB. However, a lot of false alarms were produced when
atrial flutter or ventricular flutter is encountered. It is worth noting that this algorithm
required a window of only 8 RR intervals, which is appealing for short AF episodes
detection. Rather than RR intervals, L. Hong-wei et al. [32] have reconstructed a phase
space of RR intervals following the application of Takens’ embedding theorem [33]. The
distribution of probability density function (PDF) of the distance between two points in
the attractor is then analyzed. The authors argue that the PDF possibly contains relevant
information about the phase point spatial distribution in the reconstructed attractor. A
new characteristic variable kn, defined as the sum of n points slope in filtered PDF curve, is
established in order to detect AF arrhythmia. The use of the information on filtered PDF
curve slopes contributed to higher precisions achieved in AF detection. Additionally, how
the number of RR intervals affect AF detection precision has been studied. Experiments
on the AFDB dataset following this technique proved correct AF identification with a
performance of 97.80% sensitivity and 99% specificity for 40-RR intervals. However, the
reduction of analyzed RR intervals undermines the detection precision.

Three linear and nonlinear features have been proposed by S. Cerutti et al. [34] to
characterize RR dynamics for the detection of AF episodes of AFDB and local datasets. On
one hand, two parameters were extracted through the identification of an autoregressive
model of RR time series to assess the predictivity and to enhance the presence or absence
of normal sinus and AF rhythms in the tachogram. On the other hand, the minimum of
the corrected conditional entropy is calculated to verify the regularity of the RR sequences.
An optimum set of threshold was selected by ROC analysis and results showed that the
three parameters share the same sensitivity (93.3%), but they differed in terms of positive
predictivity. The variable that characterizes the tachogram predictivity showed the best
performance (94.4%).

K. Tateno and L. Glass [35] have studied the similarity between the successive dif-
ference of RR intervals (∆RR) and the standard density histograms of 100-RR. First, a
density histogram of RR and ∆RR was computed. The two histograms were then used as a
template for AF detection. Benchmark standard histograms and a test record differences
followed a quantitative evaluation by Kolmogorov–Smirnov (KS) test using p-value statisti-
cal significance. Test record comparisons (AFDB and the MIT-BIH Arrhythmia Database)
led to the demonstration that the density histograms of ∆RR work more accurately for
most subjects (the average sensitivity and specificity is 93.2% and 96.7%, respectively)
than RR intervals density histograms. Nevertheless, for short AF episodes, the specificity
decreased. In another paper [36], the same authors have compared coefficient of variation
of RR and ∆RR intervals density histograms. The Kolmogorov–Smirnov test using RR
intervals did not improve the coefficient of variation test results, while the Kolmogorov–
Smirnov test using the ∆RR intervals improved both the sensitivity and specificity (94.4%
and 97.2%, respectively).

Other uses of RR distribution plots and ∆RR histograms have been performed by
E. Petrucci et al. for very long terms (weeks) AF monitoring [37]. Geometric features,
such as width of the histogram base, its height and some characteristics from unimodal
or multimodal distribution, have been studied to characterize theses distributions. Main
distribution width of ∆-RR histograms has been selected as the best discrimination parame-
ter. Sensitivity and positive predictivity reached 92% and 78%, respectively, when tested
on the AFDB dataset. Only episodes longer than two minutes RR intervals segments were
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included in the analysis. As a clinical output linked to shorter AF episodes, authors argue
that their relevance is lower in long-term monitoring use cases.

X. Ruan et al. [38] presented a scatter plot approach to distinguish AF arrhythmia
from normal sinus rhythm. One-minute RR interval signals were used to represent the
plots. From the plots, four geometrical features were used, namely, Vector Angular Index
(VAI), Vector Length Index (VLI), Dispersion of points along the diagonal line (SD2) and
perpendicular to the diagonal line (SD1). Each index was tested using Mann–Whitney
test to see if there was significant difference between the two groups. Indeed, Box plots
demonstrated clear difference of each index between AF and regular ECG. The optimal
threshold ranges for the classification of the two groups have been found by ROC curve
analysis. The best parameters to achieve high performance are SD1 and SD2 which reached
a sensitivity of 98.3% and a specificity of 100%. These results have been obtained using
a small dataset as it contained only 120 recordings (60 from AF Termination Challenge
Database and 60 ECG recordings from healthy people) of 1 min duration, which cannot be
directly integrated into an applicable tool as a generalization study involving a big dataset
would be required.

The method introduced by Zhou et al. [39], comprised a three-pass procedure. The
first pass, where a sequence of RR interval is pre-processed with median and low-pass
integer filters, aims to generate low/high scale reference sequences. The second pass is
aimed at obtaining a dynamic symbolic sequence of the first pass data. Symbolic dynamics
transform the information as a variation of successive RR to a series of fewer symbols,
where each symbol is representing an instantaneous state. Finally, a third pass consists in
calculating Shannon entropy for the symbolic sequences to discriminate AF presence in
the corresponding heartbeat. ROC analysis on Shannon entropy feature allows setting a
threshold for optimal discrimination (0.353). The best performance achieved corresponds
to a sensitivity and specificity of 96.72% and 95.07%, respectively (Long-Term AF used as
training set). AF and normal sinus rhythm samples are found in the test dataset (AFDB),
reaching a sensitivity and specificity of 96.89% and 98.25%, respectively. However, the
study stresses that sporadic AF episodes of relatively short duration (e.g., ten seconds) may
pose potential limitations due to false negative detections.

In another paper, Xiaolin Zhou and co-workers [40] have reapplied the same strategy
with a different optimal discrimination threshold (0.639) to four clinical datasets. For the
same training dataset, 96.14% and 95.73% were achieved for sensitivity and specificity,
respectively. For AFDB (test dataset), they reached 97.37% and 98.44%, respectively. There-
fore, by comparing results of the remaining datasets, the present threshold demonstrates a
slightly better performance.

Dash et al. [41] have developed an algorithm that combines three features: root mean
square of successive differences to measure the variability, the turning points ratio as
a test for RR intervals randomness and Shannon entropy to characterize its complexity.
Suppression of ectopic beats bas been applied prior to the calculation of parameters. AF
arrhythmia presence using this method is determined in accordance to threshold-based
conditions. AF detection using a beat-by-beat approach is evaluated and accuracy is shown
through a ROC curve indicating that the optimal episode length is 128-RR intervals with at
least half of AF to ensure correct classification of the segment/episode as AF. For AFDB,
sensitivity and specificity metrics achieved were 94.4% and 95.1%, respectively; and 90.2%
and 91.2% for the MIT-BIH Arrhythmia Database, respectively.

Winkler et al. [42] have studied the accuracy rate of a new algorithm for AF detection
in cardiac telemonitoring with portable ECG devices. In order to do so, an AF indicator is
calculated in overlapping 52-beat windows from the histogram of RR interval differences
of 120-s ECG recordings. The indicator is calculated from the ratio of histogram width to
height, the number of premature ventricular beats that it may include and the position of
the histogram peak. The ROC analysis on only 8 recordings in the MIT-BIH Arrhythmia
Database has permitted us to determine an optimal threshold value for AF detection. The
reported method reached a sensitivity of 92.9% and a specificity of 90.9%. As limitations of
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the study, this algorithm cannot run if ECG recordings do not have enough beats because
of the required minimum of 52 beats.

To screen for AF presence, B. Logan and J. Healey have used a smoothed normalized
variance of 10 s of RR intervals [43]. The feature normalization was inspired by Moody
and Mark [44]. This method comprised 5-step-process: RR calculation, RR normalization,
variance computation and initial AF detections over each 10 s. Finally, a decision, based on
a simple majority voting scheme over 600 beat windows, is formulated using the smoothed
initial classifications. The algorithm, which is a morphology-independent, is suitable for
ambulatory monitoring situations. ROC analysis results on the AFDB showed a sensitivity
of 96% and a specificity of 89%.

Different cardiac rhythm transitions, in particular between AF and sinus rhythms,
have been carefully studied by C. Huang et al. [45]. The proposed method involved
2-step process: (1) AF detection using 100 ∆-RR intervals distribution difference curve
(dRDDC) and (2) AF event classification (onset, cessation, and none). The first step includes
dRDDC computing, detecting a peak in the dRDDC (local maximum value) for at least
each 20 beats, and filtering noise peak (distinction between noise peak and event peak).
The second step involves one to four successive steps to classify event type: (1) analysis of
histogram; (2) analysis of standard deviation; (3) numbering aberrant rhythms recognition;
and (4) Kolmogorov–Smirnov (K–S) test. The algorithm performance increases step by step
to finally reach 96.1% and 98.1% of sensitivity and specificity, respectively, for the AFDB
dataset. The authors assumed that the accuracy decreases with the number of RR intervals,
stating a 20-heartbeat-long limitation for AF episode detection.

Moody and Mark [44] are among the first researchers having proposed an AF au-
tomatic detector. They have compared a basic Markov model to a basic Markov model
with filtering, with interpolation, and with both. The idea was to yield a Markov model in
which the probabilities for transitions between short, regular and long RR intervals of a test
record are compared with the transition probabilities measured during AF. Results showed
that a Markov model combined with filtering and interpolation outperformed the other
approaches and reached 96.09% and 86.79% of AF sensitivity and positive predictivity for
the MIT-BIH Arrhythmia Database.

Brian Young et al. [46] studied Markov models as well, comparing various algorithms
of AF detection to determine the best suited for clinical environment uses (real use case
scenario). The investigated algorithms followed a Hidden Markov Model (HMM), mea-
sures of variance, linear predictive coding, and measurement of approximate entropy.
Ectopic beat removal was performed before analysis, not having an impact on the detector
assessment. The HMM algorithm turned out to be the one which performed best for this
application, based on the study results from the training and test datasets. Error rate
estimates amounted to 7% for training dataset (MIT-BIH Arrhythmia Database) and 5.97%
in the case of the test dataset (AFDB).

A novel smart phone application has been conducted on moderately sized prospective
cohort study regarding 76 patients with AF undergoing cardioversion [47]. The real-
time pulse analysis was performed using two statistical techniques: normalized root mean
square of successive 64-RR difference (RMSSD/mean) and Shannon entropy (ShE). Decision
is given by a simple logical condition on the both features after fixing thresholds on the
basis of the AFDB and NSRDB datasets. Findings revealed that the algorithm combining
RMSDD/mean and ShE was 100% and 96.05% accurate for identifying pulse recordings
obtained from AF patients and NSR, respectively. The authors assumed that exposure to
very high temperatures or bright ambient light, or patients with a high burden of premature
beats and/or atrial tachy-arrhythmias might change the performance of the app.

The same authors have introduced time-varying coherence functions (TVCF) and
Shannon Entropy (ShE) for the same goal [48]. The TVCF is calculated by the multiplication
of two time-varying transfer functions (TVTFs), which are obtained from two adjacent
128-RR segments. Combination of the two features has been done by logical AND condition.
This approach reached a specificity of 97.54%, a sensitivity of 97.41% (accuracy of 97.49%)
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for the AFDB, and a specificity of 100% for the NSRDB dataset. In another study [49],
they have investigated the ability of three statistical techniques, namely, the root mean
square of successive differences (RMSSD), the Shannon entropy (ShE) and the sample
entropy (SampE) to diagnose paroxysmal AF. SampE use led to the best performance
achieved. The largest area under the ROC curve, using both the AFDB and NSRDB datasets,
yields optimal thresholds as the calculated sensitivity and specificity show: 97.26% and
95.91%, respectively.

Duverney et al. has proposed a cascade of two sequential complementary analyses
of RR intervals for automatic AF arrhythmia detection [50]. The first one consisted of
discrete wavelet transform (DWT) to identify periods of high heart rate variability (HRV)
coefficients. Afterwards, a fractal analysis based on Fourier transform was used to generate
a general trend that helps slope study of a log–log plot. This procedure permits classifying
high variability periods into physiological (SR) or pathological (AF) rhythms. Results,
obtained on local datasets, showed that specificity has reached 99.9% in the SR group,
sensitivity has reached 99.2% in the chronic AF group; and in the paroxysmal AF group,
sensitivity and specificity have reached 96.1% and 92.6%, respectively. However, short AF
episodes may go undetected since at least 64 consecutive beats are needed to compute the
features. Supraventricular premature beats, supraventricular tachycardia, and other kinds
of arrhythmias may be confused with AF detection.

G Hindricks et al. have exploited a subcutaneous insertable cardiac monitor device
to detect AF [51]. The device is optimized for the subcutaneous R-wave sensing [52],
and classification of all cardiac rhythms is based on the captured RR intervals. Two-
minute segments’ analysis via Lorenz plot of the RR interval differences was used for
HRV evaluation. Tests have been done on an internal dataset containing 2982 h of valid
recordings. The detection of AF episodes reached 90.6% and 98.1% sensitivities on average,
for AF episodes ≥2 min and ≥4 min, respectively. However, episodes shorter than 2 min
are unlikely to be covered by these approach capabilities.

3.2. Application of Multivariate Data Analysis on RR Time Series

In RR time series analysis, it is important to quantify the randomness of the RR
intervals. This is usually done by simple measures. Additionally, modeling helps in the
attempt to construct a model capturing RR irregularity. AF arrhythmia’s erratic nature,
though, makes it difficult to exactly model RR irregularities present in AF. However, telling
apart AF RR irregularities and that of other of other cardiac arrhythmias is supported
by models.

The research works on automatic AF detection using multivariate data analysis and
which have been applied successfully to RR time series are discussed in the subsection.
Figure 4 outlines different types of data analysis techniques. The abbreviations are listed
in Table 1.
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Table 1. Multivariate analysis methods and abbreviations.

Statistical Methods of Multivariate Analysis Biologically Inspired Methods of Multivariate Analysis

MLR: Multiple linear regression ANN: Artificial neural networks
PLS: Partial least square MLP: Multi-layer perceptron

PCA: Principal component analysis PNN: Probabilistic neural network
CA: Cluster analysis LVQ: Learning vector quantization

LDA: Linear discriminant analysis RBF: Radial basis function
KNN: K-nearest neighbors SOM: Self-organizing map

SVM: Support vector machine FIS: Fuzzy inference system
RVM: Relevance vector machine FCM: Fuzzy c-means

FNN: Fuzzy neural network
ART: Adaptive resonance theory

NFS: Neuro fuzzy system
GA: Genetic algorithm

To illustrate this idea, Roberta Colloca et al. have compared univariate and multivari-
ate data analysis to build a reliable AF detector [53]. Ten RR features present in approaches
that had demonstrated high performance were tested. The classification performances
of the selected features were evaluated via two methods, i.e., using univariate analysis
and Support Vector Machine (SVM) as a robust multivariate data analysis. The chosen
variables were as follows: COSEn; SampEn; OriginCount (the count of the number of
{RRi; RRi-1} values in the bin containing the origin); PACEvidence (reflects the evidence of
compensatory pauses); IrregularityEvidence (measured the sparseness of RR histogram
distribution); AFEvidence (AFEvidence = IrregularityEvidence OriginCount − 2 × PACEv-
idence), as described by Sarkar et al. [54]; and the median of absolute deviation (MAD) [55],
which is a RR variance-based AF feature. Median heart rate, minimum RR interval and
mean RR interval were also included within the set of chosen features. In addition, window
lengths (WL) varying from 12 to 300 s and minimum number of AF beats (minNbeat)
within an N-beat segment were carefully quantified as a requirement to classify a given
segment as an AF event. Indeed, researchers followed a 5-fold cross validation to assess
the optimal WL using the minNbeat values. Excellent results have been obtained by using
the SVM, built by nine out of ten features, on the AFDB for training purposes (Se = 99.07%
and Ac = 98.84%) and both the NSRDB and the MIT-BIH Arrhythmia Database for testing
(Se = 96.35% and Sp = 98.91% for a relatively short window length of 65 beats). These
findings were enhanced for window length of 140 beats and outperformed all the features
analyzed separately.

M. Mohebbi and H. Ghassemian have compared two cascade multivariate analysis
methods to detect AF episodes of only 32 RR intervals [56]. The idea was to perform a
dimensionality reduction of features and selection of discriminating ones by choosing
between principal component analysis (PCA) and linear discriminant analysis (LDA) and
then conduct a support vector machine (SVM) classification based on the resulting features.
PCA and LDA have reduced the initial set of features from 9 (6 linear and 3 nonlinear
features) to 4 principal components and 4 discriminant functions, respectively. To build
a robust SVM classifier, radial basis function (RBF) as kernel function has been used and
kernel width σ and regularization constant C were optimized (σ = 10 and C = 1). The
overall sensitivity and specificity of the proposed method (LDA + SVM) have reached
99.07% and 100%, respectively, when tested on MIT-BIH Arrhythmia Database. These
results outperformed those of PCA + SVM approach (99.28% of specificity) and were also
better than the SVM classifier when it was directly used on the initial nine features (97.22%
of sensitivity and 98.57% of specificity).

The same strategy has been attempted in a work with Mohammadzadeh Asl et al. to
discriminate six different types of arrhythmia classes including NSR and AF [57]. Here,
generalized discriminant analysis (GDA) feature reduction was used to yield 5 discriminant
functions instead of 15 extracted from the input HRV signal (32 RR intervals) of MIT-BIH
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Arrhythmia Database. SVM-based radial basis function was then applied to both original
and reduced features using the optimum values of σ (=0.08) and C (=30). The authors
have compared the performances of two types of SVM decomposition method: the one-
against-one and the one-against-all. This latter has outperformed the first one and therefore
can discriminate the NSR with an overall accuracy of 98.94%, the AF with 98.53%, the
premature ventricular contraction with 98.96%, the sick sinus syndrome with 98.51%, the
ventricular fibrillation with 100%, and the 2◦ heart block with 100%.

In another study [58], they have extracted 14 features from HRV signal. These features
consist of 4 spectrum features (spectral power in the low frequency (LF) and high frequency
(HF) bands and their frequency peaks), 6 cross-spectrum features, and 4 nonlinear features
including SD1, SD2, SD1/SD2, and sample entropy. ANOVA (analysis of variance) test
of these features was applied to determine whether there were statistical differences in
the features extracted from paroxysmal AF (PAF) and non-PAF episodes. For the AFDB,
all the features exhibit statistically significant differences in two groups except frequency
peaks in LF and HF bands, which were then eliminated from SVM classifier building. By
using RBF Kernel function, the optimum values of SVM parameters are achieved as 3.6
and 10 for σ and C, respectively. The obtained sensitivity and specificity were 96.30% and
93.10%, respectively.

Desok Kim et al. presented a study in which HRV features of AF arrhythmia episodes,
researchers hypothesize, could be different depending on the time of the day [59]. Indeed,
they started by studying HRV patterns of AF episodes during entire day, daytime and
evening time. From AFDB, four data acquisition sessions were chosen: morning session
(6 a.m. to 12 noon, time period (1)); afternoon session (from noon to 6 p.m., time period (2));
evening session (from 6 p.m. to 12 p.m., time period (3)) and late night session (from 12 a.m.
to 6 a.m., time period (4)). Only RR intervals between 0.75 and 1.5 times the accumulated
RR average are kept, to avoid significantly short or long RR intervals due to issues of noisy
signals or missing R peaks, respectively. Three classifiers based on Logistic regression
analyses were generated for the studied session’s day. The second classifier dedicated to
the daytime detection of AF episodes performed more accurately with 99.3% success rate
compared to the first (whole of the day) and third (evening time) classifiers (95.2% and
93.8%, respectively).

SG. Artis et al. pioneered the use of pattern recognition methods for AF diagnosis [60],
among other researchers. In the study, a backpropagation artificial neural network to
detect AF in the presence of other cardiac arrhythmias was designed and evaluated. The
input of the neural network consisted in a generalized interval transition matrix, similar
to that discussed above by Moody and Mark in [44]. The size of the hidden layer was set
empirically to 12 (established by training networks while changing hidden layer size from
4 to 16 units). A 30-point moving average post-processing technique, with two thresholds,
applied to ANN output, achieved AF classification positive predictive value of 92.34% AF
and a sensitivity of 92.86% for the used AFDB dataset.

M. Carrara and coworkers have proposed an effective solution to distinguish normal
sinus rhythm and AF from the condition of sinus rhythm (SR) with atrial and ventricular
ectopy for 10 min of RR segments [61]. First, a univariate analysis involving the coefficient
of sample entropy (COSEn), local dynamics score (LDs) and detrended fluctuation anal-
ysis has been conducted using ANOVA tests (one-way Kruskal–Wallis) to compare the
index values among the three groups (NSR, AF, SR with ectopy) and post hoc multiple
comparisons were performed following Wilcoxon rank-sum test with Bonferroni correction.
Results showed that taking one univariate metric is not sufficient to successfully achieve a
separation of the three groups, for 24 h Holter recordings collected from 2722 consecutive
patients (377,285 segments of 10 min RR interval) at the University of Virginia Heart Sta-
tion. Afterwards, three multivariate analysis methods were compared: Logistic regression,
K-nearest neighbors and Random forests. All models were validated using a 10-fold cross-
validation procedure on the entire dataset. The random forests analysis, applied to the
three nonlinear features with mean and standard deviation of RR segment, reached positive
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predictive values of 90, 98 and 97% for SR with ectopy, AF and NSR, respectively. The
effectiveness of the classifier in a continuous context, mimicking real-time implementation
has been also investigated. Changes in heart rhythm are faithfully detected. It is worth
noting that this classifier was trained to consider atrial flutter to be the same as AF.

F. Yaghouby and co-workers [62] have compared two approaches of genetic program-
ming, namely, linear genetic programming (LGP) [63] and multi-expression programming
(MEP) [64] and a weighted least squares (WLS) regression analysis to discriminate sam-
ples of AF arrhythmia and NSR episodes. Indeed, four statistical (Mean, STD, RMSSD
and pNN50) and two geometrical (HRV triangular index and triangular interpolation of
normal-to-normal interval histogram) features were extracted from 64-RR segment. Then, a
feature selection technique based on an improved forward floating selection (IFFS) analysis
was conducted. The IFFS algorithm was an improvement upon the sequential forward
floating selection (SFFS) [65] algorithm. Thus, Mean, STD and RMSSD were selected as
three relevant features. The application of the statistical methods on MIT-BIH Arrhythmia
Database (70% for training and 30% for testing) yields an arrhythmia class as simple func-
tions of the three features. Results have shown that LGP model has outperformed MED
and WLS models in training and test phases. Therefore, sensitivity and specificity of the
LGP model for the training data were 99.56% and 99.19%, respectively. These rates are,
respectively, equal to 99.11% and 98.91% for the testing data.

J. Park et al. [66] have exploited three features extracted from HRV in Poincaré plot
as inputs to K-means clustering methods and Support Vector Machines with radial basis
function kernel. These features are the number of clusters in Poincaré plot, mean stepping
increment of inter-beat intervals, and dispersion of the points in the plot. First, a K-means
clustering approach was followed to set a criterion about the number of clusters in Poincaré
plot. Consequently, this helped mitigate possible inter-beat interval calculation errors that
are not uncommon in AF data. In the case of clustering exhibiting either a single cluster
or too many of them, an SVM is called to discriminate AF from non-AF using only two
feature measures: the stepping increment of inter-beat intervals (average), and diagonal-
based dispersion of the points. The SVM performance was evaluated using a 4-fold cross-
validation method with leave-one-out on the Paroxysmal Atrial Fibrillation Prediction
Challenge Database and Atrial Fibrillation Termination Challenge Database samples. The
classification metrics achieved correspond to average values of 91.4% sensitivity and
92.9% specificity.

R. Acharya et al. [67] have attempted to classify NSR and 8 different arrhythmias in-
cluding AF, collected from Kasturba Medical College Hospital, Manipal (India), by using the
multilayer perceptron artificial neural networks. The spectral parameters of the RR interval
variability have been extracted using fast Fourier transform algorithm and three modelling
techniques, namely, autoregressive (AR) model, moving average (MA) model and autore-
gressive moving average (ARMA). The idea was to evaluate the frequency domain-based
approaches that would yield better resolution and could be used for diagnosis in clinical
practice. Results showed that the ARMA model gave better accuracy compared to the
other modelling approaches, which attained 83.33% as a correct classification of the studied
diseases. While this method may work very well for NSR (100% as correct classification), it
seems that it often failed to detect AF (66.67% as correct classification).

Tsipouras and Fotiadis have used ANN to compare time and time–frequency (t–f)
analysis to detect several arrhythmias including AF in only 32-RR intervals [68]. Standard
deviation, root mean square of successive differences, standard deviation of successive dif-
ferences, the percentage of intervals presenting time duration difference between adjacent
normal-to-normal RR intervals greater than 5 ms, 10 ms and 50 ms, have been extracted
from the tachogram. All possible combinations (63 cases) among these features were tested
by a feed-forward back-propagation neural network (FFBPNN) to create the pattern set
for the classification stage. Input features to FFBPNN for the t–f analysis was based on
the use of short time Fourier transform (STFT) and 18-different t–f distributions (TFDs).
The outputs from all neural networks are fed into a 3-step decision rule (average, vote and
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decision vote) to classify each RR-segment as normal or arrhythmic. These approaches
were evaluated using the MIT-BIH Arrhythmia Database. The obtained findings for both
sensitivity and specificity reached 87.5 and 89.5%, respectively, for time domain analysis
and 90 and 93%, respectively, for t–f domain analysis. This methodology lumped together
several arrhythmias (AF, ventricular fibrillation, ventricular tachycardia, supraventricular
tachycardia, etc.), which assumes that all arrhythmias may pretend to be AF.

Supervised linear discriminant classifier (LDC) has been used by Shouldice et al. to
estimate the likelihood of a segment of 100 RR intervals that contain PAF and NSR [69].
Trimmed mean of RR intervals, square root of spread in inter-heartbeat interval and its
difference, and normalized squared sum of inter-heartbeat differences values less and
greater than a fixed value (50 ms) have served as inputs to LDC. Accuracies of 92%, 94%,
100% and 100% have been reached on MIT-BIH Arrhythmia Database, AFDB, NSRDB and
NSR2DB databases, respectively. However, the authors noted that other rhythms (whether
arrhythmias or arising during periods that would be labeled as “normal”), ventricular
premature contractions and false detection of QRS complexes, that give rise to irregular RR
interval times, may also trigger the classifier.

Recently, deep learning techniques, as a new generation of machine learning pipelines,
began attracting interest to AF screening. In this sense, O. Faust et al. [70] have applied a
deep Recurrent Neural Network (RNN) with Long Short-Term Memory (LSTM) on 100-RR
interval. The training process has been performed without feature extraction and thereby
the RNN can use all the available information. This approach has been trained on data from
20 patients (AFDB) and blind tested with the data from the remaining 3 patients of AFDB.
This strategy achieved 98.32% and 98.67% as sensitivity and specificity, respectively, with
10-fold cross-validation process against 99.87% and 99.61% as sensitivity and specificity,
respectively, with the blind fold validation. Among the reported limitations of this work is
the significant time of training phase of the algorithm and the limited number of subjects
under study. Another recent account of deep learning capabilities for AF arrhythmia
detection is offered by the work of Mendez et al. [71], where the high performance of
convolutional neural networks (CNN) for image analysis is exploited by translating AF
detection into a suitable problem using of 400-point HRV sequences transformed into
four extended Poincaré plots that serve as the CNN (visual) feature matrix inputs. The
final input matrix choice is supported by a genetic algorithm. Addressing the problem of
Paroxysmal AF detection in 5-min HRV segments, performance achieved values of 80.4%
and 89% sensitivity and specificity, respectively, in a system trained by the Paroxysmal
Atrial Fibrillation Prediction Challenge data that is tested with a combination of NSRDB
and AFDB HRV sequences including Paroxysmal AF cases from the latter. In the work
of Ramesh et al. [72], important progress is shown in moving ECG-based AF detection
methods to photoplethysmography-equipped remote health tracking devices. Although
still falling short in performance with respect to benchmark tests on databases, partly due
to class imbalance for the device acquired data, this work successfully paves the way for
future transfer knowledge directions. Having trained CNNs fed with 13 temporal HRV
features by using 30 s samples from MIT-BIH Arrhythmia, AFDB and NSRDB databases,
data is downsampled to 50 Hz and tweaked to more closely match the pulse rate metrics
form the device operation. As a result, the classifiers are able to achieve a performance of
94.50% sensitivity and 96.00% specificity for a 5-fold cross-validation on the ECG dataset,
and a sensitivity of 77.80% and specificity of 88.54% for a test with wrist device data
(25% of test datapoints, with 60% retraining and 15% validation) that has followed weight
retraining and a 4-fold stratified cross-validation.

3.3. Summary of RR-Based Automated AF Detection Research Studies

By means of the state-of-the-art literature described, we presented a selection of works
that have kept studies on algorithms and features suited for automated atrial fibrillation
detection at the forefront of research. Originally, the QRS detection and the simple RR
interbeat interval estimation supporting the computation of tachogram (RR series) and
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HRV features gave rise to a wide set of statistical, spectral and nonlinear approaches
applied to such variables. This field, however, has recently experienced a significant
surge prompted by the advances seen in health monitoring device development initiatives
and the opportunities brought by a set of more mature IoT and Cloud infrastructures
giving way to remote processing paradigms traditionally deemed as computationally
demanding. Although the different reported performance metrics make comparisons
between studies difficult, the following Table 2 (univariate) and Table 3 (multivariate)
summarize the choice of studies conducted after year 2000 with the aim of providing some
insight on the main features used, algorithm approaches followed, datasets utilized, best
performance and observed limitations. It is worth noting that the generation of induced
variables using the time derivatives of RR interval time series [73,74] coupled to machine
learning is a well-established approach paving the way for a new research lead of automatic
arrhythmia detection.

Table 2. Summary of chosen univariate AF research studies published after year 2000, sorted chronologically.

Year [Ref] Main Features Techniques and
Algorithms Used Datasets Best %

PERFORMANCE
Limitations and

Remarks

2000 [35] 100-RR and ∆RR density
histogram similarity

Standard vs.
Kolmogorov–Smirnov

methods (dens. hist.
template matching)

AFDB,
MITDB

Se = 93.2
Sp = 96.7 (AFDB test)

Low Sp for short
AF episodes

2001 [36]

RR and ∆RR studied by
density histograms and
coefficient of variation

CV test

Statistics and
Kolmogorov–Smirnov test

AFDB,
MITDB

Se = 94.4
Sp = 97.2

Higher performance for
Kolmogorov–Smirnov

on ∆RR

2002 [50] Spectral and nonlinear
features of high HRV

Discrete wavelet transform
DWT and fractal analysis

applied to Power
Spectral Density

Local or
proprietary

Se = 99.2,
Sp = N/A
(ChAF);
Se = 96.1
Sp = 92.6
(ParAF)

Class separation of
Chronic (ChAF) and
Paroxysmal (ParAF);
Local DB limitation
on reproducibility

2005 [43] RR, smoothed normalized
RR and RR variance

Basic statistics and initial AF
detection followed by

majority vote approach
(600 beat)

AFDB Se = 96
Sp = 89

Application to
10 s RR segments

2005 [37]

Modal behavior (statistics)
and base width or height
(geometrical) features of

week-long histograms of RR
and ∆RR distribution plots

Basic statistics AFDB Se = 92
Pr = 78

Only applicable to
AF episodes > 2 min.
Best performance for

∆RR dist. widths

2007 [22,23]

SDSD with Poincaré plot
eye diagram analysis (I),

45 min spectral integrals (II),
RR difference histograms

and pNN200 (III)

Statistics, 3500 interval
representation of Poincaré

plots and FFT

AFDB,
NSRDB

Se = 91.5
Sp = 96.9

(test I);
Se = 93.3
Sp = 92.8
(test II);

Se = 94.1
Sp = 93.4
(test III)

Tests performed on
3500-interval time

series and 60 bpm time
normalization applied

2008 [28,29]

Normalized absolute
deviation of RR, normalized

absolute difference of
successive RR and
probability density

function comparisons

Basic statistics, Gaussian vs.
Laplacian probability

density function estimation,
Neyman–Pearson test

MITDB,
AFDB,

Draeger AF
(proprietary)

Se = 92
Pr = 73

(MITDB);
Se = 89 Pr = 87

(AFDB);
Se = 87
Pr= 94

(Draeger)

Class separation of
Chronic (ChAF) and
Paroxysmal (ParAF);
Normalized absolute

differences and
Laplacian PDF yielding

the best results;
Proprietary DB

limiting reproducibility
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Table 2. Cont.

Year [Ref] Main Features Techniques and
Algorithms Used Datasets Best %

PERFORMANCE
Limitations and

Remarks

2008 [51,52]

Subcutaneous R-wave and
2-min HRV RR Lorenz

(Poincaré)
geometric features

Representation of RR
Lorenz plots Local

Se = 90.6
(AF > 2 min)

Se = 98.1
(AF > 4 min)

Pr = 55.1 (mean)

In vivo study
with low Pr;

Performance limited in
AF < 2 min episodes

2009 [41]
RR RMSSD,

Turning point ratio,
Entropy

Basic statistics MITDB,
AFDB

Se = 90.2
Sp = 91.2
(MITDB);
Se = 94.4
Sp = 95.1
(AFDB)

Techniques applied to
128-RR segments with

50% AF ratios

2009 [32]

RR Takens phase space,
kn slope of probability

density function of nonlinear
attractor distance

Basic statistics and
Takens embedding for
m-dimensional phase

space computation

AFDB Se = 97.8
Sp = 99.0

Results achieved for
time series as short

as 40RRs

2011 [45]

100-∆RR distance difference
curve (dRDDC) with

AF event
classification (onset,

stop, none)

Basic statistics and
Kolmogorov–Smirnov test

AFDB,
NSRDB

Se = 96.1
Sp = 98.1
(AFDB)

Observed limitations in
short AF episodes

(4–62 beats)

2011 [25]

Sample entropy, quadratic
sample entropy (QSE, ad

hoc) and RR variability for
template matching

Basic statistics, logistic
regression, Wald-χ2 statistic

and developed
COSEn algorithm

MITDB (training),
UVa Virginia
Holter (local)

Se = 91
Sp = 98
Pr = 63

2011 [27]

Geometrical nonlinear
features of RR vs. dRR
difference maps (with
different resolutions)

Representation of
recurrence plots

MITDB,
NSRDB,
AFDB,

NSR2DB

Se = 95.9
Sp = 95.4

(combined DBs)

Suitable for short
32-beat AF
episodes;

Different window size
resolutions

studied (32/64/128)

2011 [48]
Time-varying coherence

using ARMA and
Shannon Entropy

Time-varying
transfer functions AFDB, NSRDB

Se = 97.41
Sp = 97.54
Ac = 97.49

Applied to adjacent
128-RR sets

2011 [31]
RR 3-point median and

specific decision thresholds
(Se = Sp)

Bigeminal suppression,
signal fusion

AFDB,
NSRDB

Se = 97.1
Sp = 98.3

Technique applied to
8-RR windows

2011 [38]

Vector angular index (VAI),
vector length index (VLI),

SD1 and SD2
geometric features of

1-min RR
recurrence plots

Statistics (with
Mann–Whitney test) and

ellipse fitting for
recurrence plot

AFTermDB
Se = 98.3
Sp = 100

(SD1 and VAI)

No generalization
insight despite high

performance (additional
clinical samples tests)

2011 [42]

AF index derived from
histogram geometric

features (width/height
ratio, peak) and premature

beat presence

Basic statistics

MITDB
(index setup),

Local
(testing)

Se = 92.9
Sp = 90.9

Method applied to 120 s
RR series;

Limitation on
generalization claims

due to closed DB

2012 [24]

RR Coefficient of variation
(CV), mean successive

difference and
COSEn

Basic statistics 2 Local DBs (2130
10-s ECG samples)

Se > 94
Sp ≈ 93

RR time interval
only approach

2013 [47,49]

RR RMSSD, Shannon
entropy,

SampEn, RMSSD/<RR>
(64RR sets)

Cubic spline (interpolation)
and decision logic AFDB, NSRDB Se = 97.26

Sp = 95.91 (combined)
Method developed for

iPhone 4S use.

2014 [26]

Modified Lorenz dRR,
RR RMSSD, Shannon

entropy,
turning point ratio and

SampEn

Statistical methods and
representation of dRR

recurrence plots

MITDB,
AFDB,

Long-Term AF

Se = 95.79
Sp = 95.26

(MITDB for dRR)

High performances
achieved across

different single features

2014 [39]

Three-pass:
Median + low-pass filters,
symbolic dynamics and

Shannon entropy

Low/high scale reference
sequence generation and

statistics on
successive differences

Long-Term AF,
AFDB

(testing)

Se = 96.89
Sp = 98.25

(AFDB)

False negative detection
foreseen for short AF

episodes

2015 [40]
Symbolic dynamics and
Shannon entropy with

adapted thresholds

Long-Term AF
(training), AFDB,
MITDB, NSRDB

Se = 97.37
Sp = 98.44

(AFDB)

Adapted thresholds and
test generalization to

other DBs
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Table 3. Summary of chosen multivariate AF research studies published after year 2000, sorted
chronologically.

Year [Ref] Main Features Techniques and Algorithms
Used Datasets Best %

Performance
Limitations and

Remarks

2004 [68]

RR Temporal STD, RMSSD,
SDSD,

∆%5, ∆%10, ∆%50 (ANN)
and spectral t-f features

(FFBPNN)

ANN and Feed-Forward
Back-propagation (FFBPNN)

applied
respectively to RR and

time-frequency analysis
obtained by Short-time FT

and t-f distributions

MITDB
(AF aggregated)

Se = 87.5
Sp= 89.5 (time)

Se = 90
Sp = 93

(time-frequency)

32-RR intervals used

2007 [29] Trimmed <RR>, sqrt(spread),
NormSqSum(50 ms)

Linear discriminant classifier
(LDC)

MITDB,
AFDB,

NSRDB,
NSR2DB

Ac = 92
Ac = 94
Ac = 100
Ac = 100

Tested on 100-RR
interbeat blocks, subject
to performance loss due

to other arrhythmia

2008 [67]

Spectral FFT features and RR
autoregressive (AR), moving

average (MA) and
Autoregressive moving

average (ARMA)
model features

FFT for spectral analysis and
Multi-layer

perceptron (MLP)
networks

Kasturba Medical
college

(proprietary)

Correct classification
rate of AF = 66.67

(ARMA
features)

Not AF-centered.
Ambitious study
covering different

arrhythmia classes, with
small local datasets

2008 [57]

Combination of 15 RR HRV
features obtained from
32-RR sequences and

reduced to 6

Generalized Discriminant
Analysis (GDA) and SVM

with radial basis for
6 class detection

MITDB Ac = 98.53 (AF)

Scope is broader than
AF only;

one-against-one vs.
one-against-all

2008 [59] 4-period RR HRV features Logistic regression AFDB Success rate = 95.5

RR filtering and
day/evening

discrimination
criteria applied

2008 [56]
Combination of 5 RR time, 1

frequency and
3 nonlinear features

Principal component vs.
Linear discriminant (PCA vs.

LDA) applied before SVM
MITDB

Se = 99.07
Sp = 100
Pr = 100

AF episode target;
Radial-basis optimized

2009 [66] Poincaré plot features K-means ParAFDB
AFTermDB

Se = 91.4
Sp = 92.9

2012 [58]

Combination of 14 RR HRV
features: 4 spectral, 6

cross-spectral
and 4 nonlinear

SVM AFDB Se = 96.30
Sp = 93.10

2012 [62]

Combination of 5 RR
temporal (Mean, STD,

RMSSD and pNN50) and 2
geometrical (Triangular
index and interpolation)

features

Linear genetic program. vs.
Multi-expression program.
vs. weighted Least Squares

regression. Improved
forward floating selection

(IFFS)
of features

MITDB Se = 99.11
Sp = 98.91

Best performance
obtained for LGP

2013 [53]

Combination of 10 specific
features: COSEn, SampEn,

RR-RR origin counts,
compensatory pause feature,
AF evidence, irregularity RR
sparsity, median of absolute
RR deviations, median heart

rate, <RR> and minRR

SVM with radial basis
function kernel

AFDB
(training),
NSRDB,
MITDB

Se = 96.35
Sp = 98.81

(test)

5-fold CV with window
lengths WL = 12–300 s

2015 [61]

Nonlinear and statistic RR
features: COSEn, local

dynamics scores, detrended
fluctuation, <RR> and

standard deviations

Advanced statistics,
Logistic Regression,
Knn and Random

forests (RF)

Local 24 h Holter
(2722 samples) Pr = 97

10-min RR segments
used, 10-fold CV

approach and best
performance for RF

2018 [70]
100-RR intervals with no

feature extraction
(simplistic approach)

RNNs with Long Short-Term
Memory (LSTM)

AFDB database
with a (20/3)

patient
training/test
distribution

Se = 98.32
Sp = 98.67

(10-fold CV)

Computationally
demanding training.

Small dataset and
splitting

approach limitations

2021 [72] 13 RR HRV
temporal features CNNs

MITDB,
AFDB,

NSRDB

Se = 94.50
Sp = 96.00
(5-fold CV)
Se = 77.80
Sp = 88.54
(field data)

Generalization focus via
photoplethysmography

field data

2022 [71] 400-RR point HRV
Poincaré plots

Recurrence plot
representation and CNN

applied to Poincaré images

ParAFDB,
NSRDB + AFDB

(testing)

Se = 804
Pr = 890

Very promising research
line exploiting CNN

image
analysis capabilities
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4. Conclusions

This work has presented an overview of automatic AF arrhythmia detection methods
based mainly on inter-heartbeat intervals, roughly organized into two groups, namely
univariate and multivariate classifiers. The first group focuses on the analysis of single time
series features, while the second screens the arrhythmia as a multidimensional problem, in
which a set of features is coupled and then evaluated at once.

As exemplified by the reviewed studies, the contribution of widely renowned open
access databases is of utmost importance, covering different classes of arrhythmia but
proving crucial for the development of AF detection methods. However, assessment of
different AF classes remains limited, pioneered by field studies [29,50] separating AF
into chronic (ChAF) and paroxysmal (ParAF). Throughout reviewed studies, the research
efforts put on device-oriented and field data progress deserve special credit [25,47,49,72]
regardless of the not yet remarkable performances achieved, as only the fully ambulatory
approaches (online processing) that achieve success would enable future development
of pacemaker-like medical devices capable of reverting AF attacks to normal rhythms.
While the low computational demands of the RR-based univariate methods offer a bright
future in the domain of wearables with limited but increasing computational capabilities,
the interconnected IoT Cloud and services that are emerging in remote health markets
may be calling for a research look at a wide range of multivariate pretrained models with
renewed interest.
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